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LACUNARITY FOR COMPACT GROUPS. 1L
RoBERT E. EDWARDS, EDWIN HEWITT AND KENNETH A. Ross

Let G be a compact Abelian group with character group
X. A standard characterization of Sidonicity of a subset P of
X is given by the statement: if fcC(G) and the Fourier
transform f vanishes on X\P, then Srexl Fiy)| < co. In this
paper, we show that the characterization remains intact if
C(G) is replaced by any one of a large class of smaller func-
tion spaces on G. Extensions to compact non-Abelian groups
are also given.

1. Introduction and notation. Throughout §§ 1-3, let G denote
a compact Abelian group with character group X [we take all topo-
logical groups to be Hausdorff]. For any subset P of X and any sub-
set F of LYG), we will write E, for the set of all f in F such that
F) = 0 for y € X\P. The space of functions in L'(G) with absolutely
convergent Fourier series will be denoted by A(G).

A subset P of X is said to be a Sidon set if Co(G) < A(G). The
purpose of this paper is to describe a class of proper subsets E of
C(G) having the property that the inclusion

(1) E, C AG)
implies [and is therefore equivalent to] the assertion
(2) P is Sidon .

It is well known ([4], (37.2)) that (2) implies [and is therefore equiva-
lent to] the inclusion
L3(G) C A(G) .

However, for E S C(G), the equivalence of (1) and (2) does not appear
to have been previously studied.
We now list some examples of sets K < C(G) for which we can

prove that (1) implies (2).
(a) For pell, =], we will write

A(G) = {f e C(G): fel(X)},

so that 44(G) = A(G) and A"(G) = C(G) for p=2. If 1 < p < 2 and
E = A*(G), then (1) implies (2).
(b) For any w in ¢,(X), we define

A(G; w) = {f e C(G): fwe IN(X)} .
Then (1) implies (2) for E = A(G; w).
99
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(¢) The set E can be taken to be any countable intersection of
spaces listed in (a) and (b). For example, E can be

AMG) = {f e C(G): FeI"(X) for all p>1}.

(d) Let G be the circle group T and let E = U(T), the space of
all f in LYT) for which the sequence of symmetric partial sums of
its Fourier series converges uniformly; see [5], p. 5. Then (1) implies
(2). In this connection, it is interesting to note that Figa-Talamanca
[3] has shown that the inclusion C.(T) c U(T) does not imply that P
is a Sidon set.

In §4 we indicate how all of our results can be established for
arbitrary compact groups.

We rely on the notation and terminology in [4] throughout this
paper. We also write PM(G) and PF(G) for the spaces of pseudo-
measures and pseudofunctions on G (see [5], pp. 27 and 44).

2. A general theorem. Our first theorem is a quite general
result giving certain sufficient conditions under which (1) implies (2),
as in §1. The fourth hypothesis may look somewhat artificial, but
in practice it is easy to apply and altogether works out to be natural.

THEOREM 2.1. Let G be a compact Abelian group with character
group X and let P be a subset of X. Suppose that E is a linear sub-
space of C(G). The inclusion E, < A(G) implies that P is a Sidon
set provided E satisfies the following four conditions:

(i) T»(G)CE;

(ii) there is a topology t on E, making (Ep, t) into a barrelled
locally convex topological vector space [see [1], p. 427T];

(iii) f xe P, then f—ef(x) 18 a continuous function on (K, t);

(ivy iof L is a continuous linear functional on (Ep, t), then there
exist o number a such that 0 < a <1, and also pe M(Q), < l°(X),
and a finite subset @ of P such that

(1) [v()| < for all yeP\@
and
(2) L(f) = p=fle) + 3, o (0F )

for all fe TxG).

Proof. We lose no generality in supposing that E = E,. Thus
we suppose that F = E, C A(G) and that conditions (i)—(iv) hold.
By (37.2) in [4], to prove P a Sidon set, it suffices to consider any
¢ in I°(P) and to show that there is a measure ve M(G) satisfying
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(3) [6(x) — ()| < a for all yeP,

where « is some number such that 0 < @ < 1. Condition (iii) and the
inclusion E < A(G) show that

f = SuerloQF0 | = sup {S,er | 0()F ) : ¥ < P, ¥ finite}

is a lower semicontinuous seminorm on E; by (ii) and [1], 7.1.1(a),
this seminorm is therefore continuous on E. A fortiori, the linear
functional L given by

L(f) = ZZEP ¢(X)f(X)

is continuous on E. For this L, select a, #, 4 and @ as in (iv).
From (i) and (2) it follows that

¢(0) = L) + v(x) for all yeP.

Define g as the trigonometric polynomial in T,(G) such that §(y) =
o) — f(y) for xe®, and then set v = ¢ + gn, where ) denotes
[normalized] Haar measure on G. Then v belongs to M(G) and (3)
follows easily from (1).

REMARKS 2.2. (a) In (2.1.iv) we may also write +» = & for some
pseudomeasure o € PM(G), the sum in (2.1.2) then being just oxf(1).

(b) In all applications of (2.1) in the present paper, (2.1.ii) is
satisfied by virtue of the fact that (E,, ¢) is either a Banach space
or a Fréchet space. It would be interesting to have some examples
not of either of these types.

(¢) Suppose that for ke{l,2, ---}, E, is a subspace of C(G)
satisfying the conditions in Theorem (2.1), where ((E,), t:) is a Fréchet
space. Then

E = nle Ek

satisfles these same conditions and so E, C A(G) implies that P is a
Sidon set. [To see this, note that E, = M., (E), and give K, the
topology ¢ having a base at zero formed of intersections U, N U,N -+ N
U.N E,, where t =1,2 ..., and each U, is a neighborhood of zero
in (E))p, t;). Equivalently, if {p,..n =1,2, ---} is a defining family
of seminorms for the topology t,, a defining family for ¢ is obtained
by taking finite sums of the restrictions to E, of the p,, with k and
7 varying.

A lengthy but routine argument shows that (E,, t) is a Fréchet
space and that (2.1.iii) holds. To verify (2.1.iv), use the Hahn-Banach
theorem to prove that every continuous linear functional on (E;, t) is
a finite sum of restrictions to E, of countinuous linear functionals on
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the various ((E,)p, t.); [cf. [1], p. 147, Exercise 2.18].

3. Some applications of the general theorem.

(8.1) We list here some spaces to which Theorem (2.1) applies.
The notation has been established in §1.

(a) For a fixed » in (1,2), let F = A?(G). The topology t for
E, is defined by the norm

1A= 1f e + 111l -

It is easy to check that all the conditions of Theorem (2.1) are ful-
filled. For example, condition (2.1.iv) is established by showing that
if L is a continuous linear functional on (¥j, t), then there exist pe
M(G) and e l”(X) satisfying (2.1.2), p’ being the exponent conjugate
to p.

(b) For a fixed w in ¢,(X), let E = A(G; w).
Note that for P X, we have

Er = {f € Co(@: fw|Pe I'(P)} .
The topology t on K, is defined by the norm
1A= 11F 1l + [lwf]l. .

It is evident that (2.1.))—(2.1.iii) are satisfied. Moreover, given a
continuous linear functional L on (&5, ?), there exist e M(G) and
B e l=(X) such that (2.1.2) holds with + = wg. Since + is in c¢(X),
(2.1.iv) is also satisfied (for any a > 0).

(¢) Remark (2.2.c) applied to (a) and (b) yields the following.
Let w be in ¢(X). In order that a subset P of X be Sidon, it is
sufficient [and trivially necessary] that Fel(X) for every f in Co(G)N
A (G) N AG; w).

(d) The space E = U(T) is a special case of a general class of
spaces E to which (2.1) applies. To describe these spaces, we next
establish some general notation and prove some general results.

NoTATION 3.2. Let I be a nonvoid set and S a topological linear
space. If s:7—s; is a function from I into S and se S, we write

limg, s =lim, s, =s

if and only if to every neighborhood V of zero in S there corresponds
a finite set J < I such that

1eI\J implies s—s€V.

[If I is the set of positive integers, this concept of limit is the usual
one. However, if I is a directed set, this concept of limit is not in
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general the same as that usually associated with the convergence of
the net 7—s;, i.e., is not generally the same as asserting that to
every V there corresponds an 7,€ I such that s —s;e V for all ieT
greater than 4, in the given partial ordering of I.]

We write ¢,(I, S) for the linear space of all functions s from 1
into S such that lim, s; = 0. Note that the range of every such
function is a bounded subset of S. If S is a normed linear space
[respectively, a Banach space], then ¢,(I, S) is a normed linear space
[respectively, a Banach space] relative to the norm

[ls]ll = sup;e; ||l «

The same observations apply to the linear space {'(I, S) of all func-
tions s from I into S such that

Wsllly = Shierllsill < oo

LEMMA 3.3. Let I be a monvoid set, let S be a mnormed linear
space, and let S’ denote the conjugate space of S. If L is a continuous
linear functional on ¢,(I, S), there exists v e (I, ') such that

(1) L(8) = 2lsern(sy)
for every scc,(l, S).

Proof. By hypothesis, there exists m e (0, «) such that
| L(s)| = m]||s]]]

for every sce¢, (I, S). For i€l and s€ S, let s(¢, s) denote the element
of ¢(I, S) defined by s(%,s); =s and s(¢,s); =0 for jeI and j = 1.
Plainly we have |||s(z, s)||| = ||s||l. It follows that

Ni(s) = Ls(i, s))

defines an element of S'.
Now let J be any finite subset of I and suppose that s;€S and
that ||s;]] £ 1 for each ieJ. We then have

Dies Nilsy) = ies Lls(r, 59) = L(Xie, 8(1, 53))
and also
Il Siesrs(@, )l = 1.
On letting the s; vary independently, we see that
Shies Nl = m

and hence that M = (\;);.; belongs to I'(I, ). From this it follows
at once that
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L'(8) = 3iier Ni(ss)

defines a continuous linear functional on ¢,(I, S). Moreover, as is easily
verified, L and L’ agree on the set of s € ¢,(I, S) having finite supports.
Since this latter set is dense in ¢(I, S), L. and L’ agree everywhere
on ¢,(I, S) and so (i) is established.

THEOREM 3.4. Let G be a compact Abelian group, let P be a sub-
set of X, and let I be a nonvoid set. For each 1€ I, let {; be an ele-
ment of M(G)U PF(G). Suppose that

(i) m = sup;.; 18ille < oo,
and

(ii) lim. &) =0 for every xe€P.

Then the set

E = {f € CP(G): (Cv.*f)zel € CO(I, C(G))}

satisfies conditions (2.1.)—(2.1.iv).! [Note that E depends upon both
(€:)ier and P

Proof. We define a topology ¢ on K by the norm

(1) WA= 11F 1l + supser (1S flu

The definition of E automatically implies (2.1.i)). Property (2.1.iii)
obviously holds. A routine argument shows that E is complete for
the norm (1); we omit the details. We need only verify (2.1.iv).

Let L be a continuous linear functional on K and « a positive
number. We apply Lemma (3.3) with S = C(G) and 8’ = M(G). Thus
there exist

(2) e M(G) and X = (A €I, M(G))
such that
(3) L(f) = pxf(e) + Dicr Mxlixf(e)

for all fe Tp(G). In view of (2), there is a finite subset J of I such
that

(4) mZiel\JH/\iHM(m = %a .

Write I, for the set of ¢ in I for which ;e M(G), and I, = I\I,, so

i Consider f in Cp(G). If &€ M(G) for all 4, then we automatically have {ixfe
C(G@) for all 4, and so f belongs to E provided only that limn || Cixfllw = 0. If some
¢: are not in M(G), then {:;+f denotes the pseudofunction for which (Ci*f)"(x):fi(x)f(x)
for all y€ X and does not automatically belong to C(G). Thus in general, for f to be in
E we must have {ixf€C(G) for all © and lim)|| Lixf|le = 0.
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that &, cc,(X) for ie I,. Write also
te =t 4+ Diesnr Ml
Vi = Siesn MEi
Yo = Siens N«

Then (2) ensures that g, e M(G). Also, since J is finite, the definition
of I, ensures that +,€¢,(X). By (i) and (4), we have

(5) wzuwg%a.

From (3) we have for every f ¢ T»(G):

(6) L(f) = txf(€) + SuervniQOFQ) + Spe sy FG0)
Now choose a finite subset @, of X such that

(7) wx)ré—;—a for yeX\o,,

put @ = @, N P, and define
L=t + Syeo Q0N
and
“Jf — “/flfx/w + ’slfz .

[¢, denotes the characteristic function of A.] Then pe M(G) and (6)
gives for every f e To(G):

(:8) L(f) = pxf(e) + Ser w00 -

Since P\@ c X\@,, (7) shows that |v.(x)| = (1/2)a for y € P\®@; and (5)
then goes to show that

SUD;ep\o ‘“/"(X)' g @ .

This, coupled with (8), confirms (2.1.iv).

THEOREM 3.5. Let G be a compact Abelian group, let P be a sub-
set of X, and let I, be a nonvoid set for ke{l, 2, ---}. Suppose that
(1) &re M(G) U PF(G) for i€, kel,2, ++-};
(i) Supiez,cAll@,klim < oo for kefl, 2, .-}
(i) limy, Cu(x) = 0 for ye P, ke{l,2, ---}.
Then

E = {feCpG): Cirficr, €0, C@) for k=1,2, .-}
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has the property that the inclusion E C A(G) is sufficient [and trivially
necessary] to ensure that P is Sidon.

Proof. By (8.4), Theorem (2.1) applies to each

E, = {feCu@Q): Cxxf)icr, € eIy, C(G))} -
Since F = Ny, E:, (2.2.c) shows that (2.1) also applies to E.

(8.6) Some interesting special cases of (8.5) arise in the following
manner. Suppose that P is countable and P = (P, is a sequence of
finite subsets of P satisfying

P=U3’°=1 ;o=jPi°

We take I to be the set of positive integers, select g, in M(G)U PF(G)
for ke{l1,2, ...}, and define

Cip =0 — Zzepﬁk(%)x
for tel and ke{l,2, ---}. Then (3.5.i))—(3.5.iii) are satisfied and
(1) Ciwxf = oxf — sp(04xf) »

where
SPig = ZXGP,; g(X)X

is the P;-partial sum of the Fourier series of g.

If we denote by U(G, P) the set of ge C(G) such that lim; . sp.g
exists uniformly on G, the associated space E in (3.5) is now none
other than

E={feCp@:oxfeclUGG,P) for k=1,2 +-+}.

In particular, if every o, is taken to be the unit mass at the identity
element of G, E becomes

UP(G! P) = CP(G) N U(G, P) ’

which is the set of f in C,(G) whose Fourier series, grouped in the
fashion specified by P, converge uniformly on G.

COROLLARY 3.7. A subset P of the group Z of integers is a Sidon
set if and only if Up(T) < A(T).

Proof. We have Up(T) = U(T, P) where P = (P)Z, and P, =
{neP:|n| < 1.

The next corollary illustrates how our results can be combined to
obtain what appear to be very weak conditions sufficient to ensure
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that a set is a Sidon set.

COROLLARY 3.8. Suppose that G is a compact Abelian group.
Suppose that w is in ¢(X), and that P, P, and the o, are as in (3.6).
In order that P be Sidon, it is sufficient [and trivially necessary] that
Fel(X) for every f in Cx(G)NA™(G)N A(G; w) such that

(i) oxfecUG,P) for k=1,2,---.

Proof. Apply (2.2.c) and (2.1), taking into account (3.1.a), (3.1.b),
and (3.6).

One of the standard inequalities known to be necessary and suffi-
cient for P to be a Sidon set is [see [4], (87.2)] expressed by the
existence of a number 7 = 7(P) such that

1AL < 7l £l

for every f € T»(G). From Corollary (3.8) we will derive an apparently
weaker inequality which is itself sufficient.

COROLLARY 3.9. Suppose that w is in c(X), and that P, P and
the o, are as in (3.6). In order that P be a Sidon set, it is sufficient
[and trivially necessary] that there ewist ke{l,2, ---}, pe(, ] and
e (0, =) szﬁch that R R

(1) WAL =2/lSle + 1F1l + Hwfll, + 5= sup: [[sp;(05+f) [l
for every fe Tp(G).

Proof. Choose and fix a net (e,) of elements of T(G) such that

(1) llealli 1 for every m
and
(2) lim, é,(x) =1 for every xeP.

[The existence of (e,) is proved in [4], p. 88, (28.53).] Consider any
felCr(@NAHG NA(G; w) satisfying (3.8.i). In view of (3.8), it will
suffice to show that fe I(X).

To this end, write f,, = e,xf, so that f, e T-(G) for all m. From
(1) we infer that

(3) Wfulle S 1 Fllas 1 Fnlls S UFllo» and  [Jwfall, < [lwfll,
for every m. From (3.6.1) we have
8p(05%fm) = enxsp,(0;%f) ,

and so
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(4) lsp(@ixfu) llu = llspy(0+S) |l

for every m, j, and 7. Note that we have
(5) sup; || sp; (0% ) [l < o

for each j, since 0;+xf ¢ U(G, P). Replacing f by f. in (i) and noting
(3), (4), and (5), we find that

SUD, || Fully < oo
This, combined with (2), shows that |||, < o, as we wished to show.

4, Extensions to arbitrary compact groups. In this section, G
will denote an arbitrary compact group with dual object 2. For any
subset P of ¥ and any pe {0} U[1, o], €, (P) is as defined in [4], (28.24)
and (28.34). Fourier and Fourier-Stieltjes transforms are operator-
valued functions defined on 3 as in [4], (28.34). The space of func-
tions f on G with absolutely convergent Fourier series, i.e. fe E.(2),
will be denoted by A(G); this space is studied in [4], §34, and denoted
there by (G).

The space PM(G) of pseudomeasures on G is, by definition, the
space of bounded linear functionals £ on A(G). For { e PM(G),  denotes
the element in E.(Y) for which

L) = Des dotr(f(0)2(0)™) for fe A .

Thus £ — ¢ is a linear isometry of PM(G) onto €.(2). The space PF(G)
of pseudofunctions on G is all { in PM(G) such that e @,(2). For
further discussion about pseudomeasures on compact groups, see [4],
(34.46).

The theorems and proofs in §§2 and 3 all carry over to this setting
in a straightforward manner. We content ourselves with the fol-
lowing summary.

THEOREM 4.1. Let G be a compact group with dual object Y. A
subset P of X is a Sidon set provided

E,={feE:flo) =0 for all oe3I\P}c AG)

for any of the following spaces E:

(1) A"G) ={feC@):feC,)},p>1;

(ii) AG; F) ={feC@): fFeG. ()}, FeGy();

(ill) any countadble intersection of spaces listed in (1) and (ii).
The space E can also be taken to be

{f € Co(G): CopxS)ier, € 0lly, C(@)) Sfor k=12, ---},
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where
I, s a monvoid set for each ke{l,2, ---};

Live M(G) U PF(G) for iel,kefl,2, --+};

SUP;ser, Ilzi,k lo < 00 for kefl,2,---};
lim(lk) zzk(a) =0 for oeP ke{l,2, --}.

Added in proof. For a short proof of some of our results, see
Ron C. Blei, A note on some characterizations of Sidon sets, to appear
in Proc. Amer. Math. Soc.
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