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Homotopy groups admit primary operations analogous to
the Steenrod operations in ordinary cohomology theory and
a good understanding of them seems vital to interpreting
patterns in the homotopy of spheres.

Also, it has been known for a long time that a type of
Steenrod algebra acts in Ext(Z,, Z,) if A is a cocommutative
Hopf algebra. Recently, D. S. Kahn showed that in the E
term of the Adams spectral sequence Extl’, (Z,, Z;), certain
of these operations on infinite cycles converge to the graded
elements associated to the actual homotopy operations. Also,

on infinite cycles, he showed how this structure determined
some differentials.

In this paper, we further explore the relations between
the operations in Ext*”,,(Z,, Z,) and differentials in the Adams
spectral sequence. In particular, for elements which need
not be infinite cycles, we prove

THEOREM 4.1.1. (a) There are operations Sq’ in Ext . ) (Zs,
Z,) so that

hoSqit'(a), © = s(2)
a S " = 0 ’
«(5¢(@) {0 otherwise
for ac Eth}s(zKZz, Zz)
(b) There are operations 7, $.F°" in Ext., »(Z,, Z,) for
» an odd prime so that

(P a)) = aoﬁﬁi(a),

for a € Ext’ ) (Z,, Z,). (Here, S¢* takes Ext”” homomorphical-
ly to Exts+"?" while &' takes Ext®" to Extst@i-ne-u.r gnd
ﬁﬁi(Eth,Q < Extstei-rite—ntLpr )

These operations are readily computable in the Ext groups.
(Methods for calculating them are given in §6 and [2], [19].) For
example, Sq°(h;) = ki, Sq*(h;) = hi where h; is the nonzero element
in Ext“* dual to Sg*’. (Our notation for elements in Ext is that of
[13].) Applying 4.1.1, 0.(h;) = hohi_,, which is nonzero for 7 greater
than 3. Consequently, we recover

COROLLARY (Adams). Amn element of Hopf invariant one (mod 2)
exists in 7w, (S™) if and only if n>s and s=1,3, 7.

(The Hopf invariant of a homotopy class a is nonzero in Z,-
cohomology if and only if « is represented by an infinite cycle in
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158 R. JAMES MILGRAM

Ext'.)
Similarly, the mod p operations can be calculated. We have ([12])

PR = Ry,

and 8777 " V(h;) % 0 for 4 =0. Thus we recover the result of
Liulevicius and Shimada on the elements of mod p Hopf invariant one.

In §6, we calculate the complete action of the S¢° operations in
Exts (2, Z,) for t — s < 42. It turns out that routine relations
among the various classes, together with the differentials of 4.1.1(a),
determine all 0, differentials in this range. (I am indebted to M.
Tangora for showing me how to obtain some of the more obscure 0,
differentials in this way.)

One surprising result is that d,(c,) = h.f,, a differential in the 41
stem which was overlooked in [13]. This differential, in turn, implies
vO, = 0 (which contradicts a result in [13]) where 6, is the class
corresponding to the Kervaire invariant 1 manifold in dimension 30.
This in turn forces a 0, differential in the 34 stem. Once these two
differentials are accounted for, there seem to be no further corrections
necessary in [13], and we can thus assume the two primary com-
ponents of 7;(S°) known for ¢ < 44. For further details, see [5].

Perhaps equally surprising, the technique used to prove Theorem
4.1.1 is purely geometric in nature. We never need mention secondary
cohomology operations or even primary ones.

Next, we study some of the ways in which the operations imply
higher order differentials. Here the answers are not as satisfactory
as before. However, we do succeed in characterizing all primary
differentials through 0, on these elements. More exactly, Theorem
5.1.1 characterizes the first possible nonzero 9,(S¢i(a)) for k < 20,
provided 0,(@) =0 for j <k + 1. However, there are no places in
the first 40 stems where such differentials occur (except, indirectly,
the differential d,(r) = h,d?), so in the absence of examples, it seemed
fruitless to pursue the matter further.

Also, there are further applications of these geometric techniques.
For example, in § 7 we give a very direct proof that 6, is nonzero.
Moreover, by using similar techniques with the two-cell-complex
S® U .e', together with the fact that (0,)* = (¢)* = 0, one obtains a proof
that ©, is nonzero. Similarly, using the result of Barratt-Mahowald
that (6,)’ = 0, one obtains the existence of O, (see [22] for details).

Finally, I would like to take this opportunity to express my
thanks to D. S. Kahn for sharing his insights with me, and the
Centro de Investigation for their support while this research was
carried out.
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1. Group representations and their Thom spaces.
1. We consider representations

rsG— L

where G is a finite group and L is the unitary group U, or the
orthogonal group O,,. Any such representation gives rise to a map
of classifying spaces

B.: B;— B,

see e.g., [18]. By the Steenrod -classification theorem B, is equi-
valent to specifying a principal L-bundle or its associated n-plane
bundle over B,. We denote this n-plane bundle by B}, (5,) where ¢&,
is the universal bundle over B;.

DEFINITION 1.1. The representation  is said to have L-filtration
k if the associated map B,,, is homotopically trivial on the k-1 skeleton
of B,.

This is equivalent, of course, to saying BY,(&,) is trivial over the
k — 1 skeleton of B, and may also be rephrased as

PROPOSITION 1.2. Let E, be the universal covering space of Byg;
then the represemtation r has filtration k if and only if there is an
r-equivariant map

¥: (Eg)y — L

where (Eg),_, i1s the k — 1 skeleton of E, and r-equivariant means
U(gx) = r(9)¥(x) for all xe (Eg)_-

Proof. Let E, be the universal principal L-bundle over B,.
Given a representation » this induces an r-equivariant map

p: Bg— K, ;

moreover, by standard arguments (since K, is contractible and E, is
G-free) any 2 such are equivariantly homotopic. Likewise, given any
r-equivariant map ¥: (E;),_, — E, it can be extended to an r-equi-
variant map ®. The induced map of classifying spaces @ will send
the & — 1 skeleton of B, to xe B,. To obtain the converse note that
B,,, is covered by an equivariant map E,— E, and use the covering
homotopy property.
2. By use of the Whitney sum maps

/45,:]-: L,,; X Lj — L'H—j
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we can define Whitney sums of representations (» @ +' is the com-
position

GL)G X G‘T“ﬂ) Ll X Lj—‘-)Li:‘vj) .

In particular, the positive integral multiples of » are defined and we
have

THEOREM 1.2.1. Let L, = U, and suppose the order of G is s.
Suppose r: G — Uy, has filtration k < 2¢, thew sr has filtration k + 2.

Proof. The obstruction to compression of the k-skeleton is an
element ¢ in H*B,, 7,(B;)). By naturality the obstruction to com-
pressing sr is so. However, |G|-H*(B;, Z) =0 so soc =0 and the
theorem follows.

Similarly in the case L, = O; we have

THEOREM 1.2.2. Let m = (2|G)*21|G|> with 0= 0,=<0, — 1,
0=<96, <2 and let r: G— O, be any representation, then mr has filtra-
tion at least 8s + 2+ + 42 — 1 in B,.

3. We now consider the Thom complex of the associated n-plane
bundle B?%,(&,). It admits a very simple description.

DEFINITION 1.8.1. Let B be a space with base point =, and A
be any space, then the half smash product

AX B

is A x B/A x =.

A representation r: G — L induces an action of G on S*(k =0
if L=0,,k=1if L =U,) induced from the action of L on $*** =
R ) co. In terms of this action we have

THEOREM 1.3.2. The Thom complex of B%,(¢,) is homeomorphic to
E, X ;S .

Proof. The associated bundle B%,(£,) can also be described as
E, x ;R*™

where the action of G is that given above. Also, the associated
sphere bundle admits a similar description. Hence, the theorem
follows on equating the sphere bundle to the base point and using
the fact that L acts linearly in R¥*".
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As an immediate corollary we have

THEOREM 1.3.3. If r has filtration p there is a G-equivariant map
P (EG)P—l X San D— Szkn
which ts of degree 1 on the bottom cell (i.e., P(xg, y) = P(x, gy)).

Proof. If r has filtration p then B%,(&,) is trivial on the p — 1
skeleton of B,, so there is a bundle mapping

0: B%r)(én) | (BG)P—l — Ran

and an induced map Thom spaces T(0): (Eg)p_s IX ¢S¥" — S**. Now
® is obtained by composing with the map

7 B, X 8*" —— E, X S,

4. In order to obtain alternate descriptions of these spaces we
need to observe that two bundles will have homeomorphic Thom
spaces if the bundles are isomorphic. In particular for representations
7, 7, this is equivalent to requiring that B, = B,,,.

ProposITION 1.4.1. B, = B, tf there is an element a in the
identity component of L so r.(g) = a~'ry(9)a for all geG.

Proof. Let P be a path from the identity to a, then P(t)~'r.(g)P(t)
provides an equivariant homotopy from 7, to 7, and hence a homotopy of
B, to B,.

Since U, is connected we can apply 1.4.1 without difficulty and
we find that the Thom complex of B¥,(¢,) is homeomorphic to the
Thom complex of a sum of irreducible representations which can
usually be calculated.

Over O,, however, we must be careful to check that the a used
to make 7, equivalent to r, has determinant +1 and not —1.

2. Some explicit representations and their Thom complexes.

1. Let Z, be a finite cyclic group with generator 7 and let R!
be the representation sending 7 to p = ¢¥?. Then R’ is the **
tensor product of R' with itself and sends 7' to p’. These R’ form
a complete set of irreducible representations of Z, and any unitary
representation is uniquely equivalent to a sum of these.

Let Z, act on S*' by T(z,---2,) = (0%2,, *+-, 0'z,).

The resulting quotient space is the Lens space

Lq(iu °t %n) .
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We define a classifying space construction for Z, by letting B,, be
the limit of the L., ---, 1).

THEOREM 2.1.1. The Thom space of m(I) + mR* + «++ + m,_ R
over qu 18 homeomorphic to

L(l++12:+2:e:(q—1,+--q—1),1.--1)

Hm 3™ mi m2 Mg—1 B
sl_mo Lq(l--l---q-—ly...q_l)
my Mg—1

(Here I is the trivial 1-dimensional representation.)

Proof. Embed S*~'in S**' as the points (0 --- 0, 2z, - -+ 2,). Define
anaction of Z, on S**as T(2, <« 2,4, 2, +* 2,) = (012, + » 0'»—42,_,, OF =«
02;). The embedding induces an inclusion L (1 ++-1)C L,(%, *+* Tysps
1...1) with normal bundle R: @ --- @ R»—+*. It is now evident that
the Thom complex of R @ ««« P Rin—*is L1, »++ %ty L o+« 1)/ Ly, »--
7,_) since the normal bundle maps homeomorphically till it arrives
at L,(¢, +-+1,_;), which is then the image of the sphere bundle.

For Z, and real representations we have 2 irreducible ones, the
trivial one I and the identity R: Z, — Z, = 0(1), so we have

THEOREM 2.1.2. Let RP= be B,, then the Thom space of m.I +
m,R is homeomorphic to
Y™(RP=/RP™™") .
(The proof does not differ essentially from that of 2.1.1.)

2. We recall the characteristic classes of these representations.

THEOREM 2.2.1. Let t€ H¥B;, Z) be the first Chern class of R,
then the total Chern class of R* is 1 + ke. (This allows us to cal-
culate, if necessary, the action of the Steenrod algebra .7 (p) in the
Thom spaces above.)

3. Consider the representation r,: Z, — O,, defined by 7,(T)(x, ¥)
= (y, #). From 1.3.2 the Thom complex of r, is K, X ,S" A 8" =
lim,, ... S™ X ;S" A S*, where T acts as the antipodal map on S™ and
as the interchange map on S™ A S™.

ProposiTION 2.3.1. 7, is equivalent to nR@nl. Thus X"RP~/
RP* is homeomorphic to E,, X ;S* A S".

Proof. By changing coordinates we can assume 7,(7) has the form
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M 0 0 0 0 ,
0 M ]l(/.; 0 where M is the matrix K(l) 1).
0 . - M
01 1 0
But <1 0) ~ <0 __1> and 2.3.1 follows.

Similarly we can consider the complex representation »,: Z, —
U,, where r(T)(®, -+ x,) = (X, &,y & +++ ¥,—,). Its Thom complex is
E, X 2 8"N oo e A S" = limy o S™7HX ST A 200 S where Z, acts on
St by T(2, +++ 2,) = (02, *++, 02,) and by the shift map in S" A
cee AS™

PROPOSITION 2.3.2. 7, is equivalent to n[I QR P R* P --- P R ]
so E, X z,8" A\ «++ N\ S" is homeomorphic to

L (L eeel eeeqg—1, ce0oq—1, 1,1...)/
~——— N ————

n n

Lp(l’..]_,..q_]_’...q__l).

Proof. The characteristic polynomial of »(T) is (1 — A\)*. More-

M 0 - 0
. . 0 M 0 0

over, by changing coordinates T becomes | ' . : . | where M
0 M

SO

0
% Thus, since 1 — A\? has ¢ distinct roots,

1
is the matrix( 0
0

[
S O O . .
o

-0
ff’ 0 )and 2.3.1 follows.

[
4. As a final example we consider the symmetric group .& and
the representation »,: .5 — O,, defined by

M can be diagonalized to (

T(CY)(CCL ‘e x4) = (%m e xau)) .

The Z, cohomology of B, is P(4, B, C)JAC =0 where P ( ) is a
polynomial ring on three generators with A of dimension 3, B of
dimension 2 and C of dimension 1. Let K be the Klein group. The
inclusion 7: K — &4 induces the cohomology map i:*H*(.5%) — H*(K) =
P(e,, e;) which sends A — ek, + e, B—el + ee, + e, C— 0. Next
let M be the group Z, P Z, and j: Z, P Z, — .54 be given by j(T,) =
(12), J(T:) = (34). Then j*(4) = 0, j*(B) = e, j*(C) = ¢, + ¢,

THEOREM 2.4.1. The total Stiefel-Whitney class of r, 1s (1 + C +
B+ A)".
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Proof. Clearly r, is equivalent to nr,. Hence we show the Stiefel-
Whitney eclass of », is (1 + C + B + A).
From the character tables we find

W(*r) = (1 + e)(L + e)(1 + e, + e)
=1+ i*(B) + i*(4) .

Also W(EH*(r)) = A + e)(d + €) =1 + j*(C) + 7*(B). Now the result
follows since

D H () — H*(K) © H (2. © Z,)

is a monomorphism.

Thus, for example, the first 7 Stiefel-Whitney classes of 7y, ¢> 3
are C, B+ C* A+ C? C*+ C*B, C°* + CB*, BC*+ B*+ C°+ A% AB*+
C.

By generalizing slightly the techniques of [6] we can use these
results to obtain a complete description of H*(.%%, Z,) for all n (see
e.g, [20, 89]) as well as the structure of the corresponding Thom
complexes

E, X, SN ANS".
n-times

We omit the details.

3. The geometry of the action of the Steenrod algebra on
EXtﬁ/(p)(Zm Zp)'

1. We start by recalling some well known facts from homological
algebra. Throughout this paragraph we assume given a fixed aug-
mented Hopf algebra A over a ground ring /" (Z or Z, for some prime
p) and we require that the coproduct

V'A— AR A

be coassociative and cocommutative. We have

THEOREM 3.1.1. Suppose & is an A-free resolution of the aug-
mentation, then for each subgroup G of the symmetric group &, there
s a chain map

P CRE —— T R QT
n-times
(where &, is a I'(G) free resolution of the augmentation 7"(G) — I'),
and
Pe(@ Q ac) = ¥ (@)Pe(@ &) o)
P80 ® ¢) = gP(® R ¢) -

Movreover, given any other map P satisfying * there is an equivariant
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chain homotopy H between @, and @, so that H(w Qac) = T (a) H(@ &) c).

Proof. (Compare [12]). Since ¥™: A —A" is a map of algebras it
induces a chain map

P G — ™

and @4(ac) = T (a)p,(c). Now * tells how to extend @, over (&%), ¥
& . Note that since ¥ is cocommutative and coassociative, g¥™ = ¥™
for each ¢ in G. Thus the various g @, are all homotopic, and @,(a x
%) is homotopic to 0 when regarded as a map @,: € - & ™ if a is
in the kernel of the augmentation. Thus we can extend over the 1
skeleton of &,. The remaining arguments are equally direct.

Now, in the standard way (e.g. as in [25, Chapt. VII]) we can
construct “cohomology operations” from the map @, &, Q & — & ™
when % is the reduced resolution of A. In particular this gives us
operations coming from the cohomology of the symmetric group which
have formal properties analogous to those of the ordinary Steenrod
operations. Explicitly

THEOREM 3.1.2. Let I' = Z, for p an odd prime, then the @g
allow one to define operations ', BF7° in Ext**,(Z, Z,) with the
following properties.

( i ) Pk Exthi — Extit@—a -1,

B.PE: Extii — Extit+@—i(p—n+1,pi
(i) &I, BF? are homomorphisms
(iili) Cartan formulae
FHab) = Siizjzo T (@) 7 (b)
BFi(ab) = 3PP b + I(— 1) FPiaRFI™in
(iv) Adem formulae

.7“@1, _[2/17:( 1)a+t<(p - 1)(b — t) —1
a — pt

—1)(b

—1)/p] wrint pP—1DOG—-1t) —1
2 =1 ( a—pt—1

)ga-}—b—-tﬁt

alp —t
PYRTY) = [tz:gl(_ 1)a,+t((p t )) (B.Po+r—t)

[(a

t=0

) ya-{-b—t(lg_—gﬁ t)

(v) Normation F*a) = a® if acExth, and 2k = 7 + 7,
FHa) = 0 if 2k < j.

THEOREM 3.1.3. For p = 2 there are homomorphisms Sg': Ext**
A2, Z,) — Ext** (Z,, Z,) and
(i) Sq¢': Extki — Extit#2i
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(i) Sq'(ab) = >, Sq’(a)Sg*~(b)
(i) Sg*S¢® = Je (b_t— 1) Sge++=Sg* .
a — 2t

(The properties listed in 3.1.2, 3.1.3 follow directly from the corres-
ponding properties in the homology of the symmetric groups .54, .55
and the proofs are in no way different from the corresponding proofs
in [25] for the ordinary Steenrod operations. The mod p case 3.1.2
appears in [12], however our grading of the mod 2 case differs from
those to be found in [12], [2].)

Theorem 3.1.2 differs from the corresponding result for the
ordinary Steenrod algebra in two ways. First, since there is no
notion of a Bockstein homomorphism in Ext,(Z,, Z,) if A is a Z,-
module 8¢ is not a Bockstein of 7%, and, in fact is an entirely
independent operation. Similarly, it is definitely not true that .Z°°
is the identity operation (It is zero in general). Mod 2, Sg**' is
independent of Sg¢*. Also note that Sg¢° is neither zero nor the
identity and both the Z, and Z, Adem relations preserve the number
of terms, thus two-fold iterations Sq¢“Sg® or 77?7 can only be equal
to other two-fold iterations — a considerable simplication of the
topological case. Finally we point out the important special example
of the Adem relations,

Sq°Sq® = Sq°Sq° .

2. Now our object is to imitate the construction of 3.1.1 geome-

trically. Thus, let
S" DY DY:Deee DY Do

be an Adams resolution of S* valid for a large range of dimensions
and filtrations, and suppose

S D2y, DAL, D e DL, T ves
is another such, then we have

THEOREM 3.2.1. Let G C & and suppose there is a G-equivariant

map
w: (B XS A\ eee AS"— 8™

p-times
then w ts equivariantly homotopic to a map % so
'ﬁ(EG)t X YA e ANYirC Zi;+.--+ip~t ,

moreover any two such u, &' are equivariantly homotopic via a homo-
topy H with

H{I X (E), X Yt N <o+ N Yoy Zinttiomtmt |
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(The proof proceeds by induction on the dimension of the skeleta of
E,, extending, first over a G-basis for the i-cells and then by G-
equivariance. Similarly for the homotopy. This uses essentially the
same analysis of the obstruction to compression as contained in 3.4,
3.5 of [1].)

Thus # induces maps

3.2.2.  ((Ep)., (Ee)iwr) Ko (Y;;l, Yty A eee A (Yir, Yirth)

(Z:;},+"'+i1’_t, Zilg—iz‘..+ip—t+1) ,

which, since Y?/Y*+', Zi/Zi+' are just one point unions of K(Z,, n)’s
through large ranges of dimensions, induces an .7 (p) map

g , ga* ® Grg)(n) .
This, in turn, defines a G-equivariant .o (p) map
L RE — EF",

and thus is suitable for defining the action of the & in Ext,. ,,(Z,,
Z,). In particular, on the E' level the map #% defines operations from
3.2.2 for each t-cell of E,;, which depend at the E® level only on the
homology classes in H,(G) and the classes in Ext,, ,(Z,, Z,) involved.
Thus, these are precisely the .Z7* operations, and their iterates.

3. Hence the existence of geometric models for the 7%, 8. &7¢, S¢'
depends on the existence of appropriate maps

(Ee)s X g8 A =v e A S»—— S,

But these are given by 1.2.1,1.2.2 and 1.3.3 if we start with the
representations

r 4 —0,,
defined by r"(a)(x, <+« ;) = (@), ***y Laip)-
We have

THEOREM 3.3.1. For a given s there is an % and an S -map

Pyt (BEoe XS A ces AS*—— 8" A =+0 A S
S—

g-times
Moreover, let G C & and suppose there is an equivariant map
P (Eg), DXS" A\ ot ANS"—— 8" A oo A S"
then given any G — map

w: Eg—
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there is an m so P,(w X id) is equivariantly homotopic to & on
(Bg)sa X 8™ A oee A S™™.
(Here & is defined as the composition

B 8™ A oo A S SRR (g pege A A S LD gom A

huff
/\ '._/\Smn_(_s_E) Snm _./\Snm

and similarly for #. The proof is entirely similar to the proof of 1.2.2
except applied to the obstruction to extending an equivariant homotopy.

3.3.1 shows that the operations obtained in this way are stably
well defined. (For further details see [22, p. 205].)

4. The &' operations and the d, differential in the Adams
spectral sequence.

1. We pointed out in 3.1 that Sg**' is not the Z, Bockstein in
any sense of Sg¢*; nor is B.Z°" the Z, Bockstein of .7¢, because there
is no cohomological notion of Z, Bockstein in Ext., ,,(Z,, Z,). However,
there is a homotopical notion of multication by p which, in some
sense, takes its place; namely, multiplication by «, when » is odd,
and by &, for p = 2. With this in mind, we state

THEOREM 4.1.1. Let a € Ext’,, ,(Z,, Z,) (the E, term of the Adams

spectral sequence); then
hSqgt'(a), 1=s(2)

dgs i -
@) 7@ 0 otherwise
for p = 2.
(b) d. 7 a) = a,B.F(a)
for p odd.

[Warning: The proof that follows appears to follow the formal
algebra which would prove a similar result for a spectral sequence
associated to a filtration of ordinary chain complexes. However, we
are dealing with homotopy groups, so there is an error term, and
the main work in the proof is to show that this error is in fact zero
in the E, term of the Adams sequence, though it may definitely
represent a nonzero element at level E, or E,.]

Proof. (a) Consider the homotopy groups m.(Y? Y***) for S"VD
Y;D.eDYiD---, a Z,-Adams resolution of the sphere. There is

an exact sequence
bl . . I ) ) J ) ) b
4.1.2 — T (Y, YY) — (Y, V) — (Y, YY) —

where 7,(Y*, Y*) is a Z, vector space isomorphic to C, .., ([1]) for
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the associated resolution of Z, over .&7(2)'. (Of course, the 0 map in
4.1.2 is just the d, differential.)

Hence 7;(Y* Y***) is a sum of Z,’s and Z,’s, and multiplication
by h, corresponds to multiplication by 2 here. In particular if J(B)
represents b in E, then the class I (2B) which is well defined in E,
represents A,b.

Turning now to the case at hand suppose o is represented by a
specific map

A: (Ds-—'r, Ss—-'r—l)___) (Yf’ YT+2)

and we are in the case ¢ = s(2).
Thusifv = 4(id x A x A): E,,X D™ A\ D" — 8§, we find that (e X
D= A D*") represents Sqg’(a). Then

a,v(er—i D< Ds—'r /\ Ds-—'r) — ’U[(T + (___ 1)r—i)er—i—-1 D( Ds—r /\ Ds—r]
4.13 + v((— D) X oD N\ D)
+ v((__ 1)s—~ie'r—-i D< Ds—«r /\ aDs——r) .

(More precisely o(e™* X D*=" A D7) is the topological union of discs
which we name in this way to stay as close as possible to the stand-
ard |J; formulae for cochain operations [11].) The disc (e™* X 0D A
D) = M satisfies v(M)c Y+ v(0M)C Y+, and similarly N =
(e X D" A\ 0D*") satisfies »(IN) C Yit™+2 (ON)c Y+ *°. Thus each
of these discs represents a term {M}, {N} in 7, (Y !, Y %), however
vt X D" A D) Yt while part of its boundary, the two
dises e 2 X D*" A D*", Ter~"% X D*~" A\ D*", is contained in Y +i+%
and similarly for Te—' X D" A D . Hence the formal decomposi-
tion of 4.1.3 is not quite valid in 7, (Y* "+, Y+,

Now, from the Blakers-Massey theorem we can regard {vwde X
D" A D77} as contained in 7w, (Yt /Y*+%), Here the first two
terms of 4.1.3 give a sphere P as does each of M, N and the boundary
is {P} + {M} + {N}.

Also, note that {dv(e~*'X oD A D)} = — {M} + {N}, thus
{P} + {M} + {N} ~ {P} + 2{N} ~ {P} since {N}eim(l). It remains to
prove {P} ~ 27 where v satisfies J(v) ~ Sg**'(a).

Since v is equivariant there is a homeomorphism

h: er—i—l [>< Ds~r /\ Ds—-r — Ter—-i—l D< Ds——r /\ Ds——r SO
vh = v. Since 0¢~' X D" A\ D"
— Ter»—i—z D< Ds—r A Ds—r — er~i—2 D< D A Ds—
L At this point, we indicate our stability conventions. We put
n.-j(Y", Yk+s) = lim 7rv+j(Y$, Ykits),
Noeo 1 2

Indeed, the absence of subscripts on the filtering spaces will always imply that we are
considering stable groups.
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we have the homotopy factorization of » on the boundary

-1

o( )—LS"VS"OV St Y, S where k=25 — r — i — 2.

The iteration (+ 1V — 1)er is homotopically trivial. Let I: Q — S
be such a homotopy. Now we can define a class v e 7w, (Y '+ +!/Y i+ +3)
as v(id x I) (e X D" A D" "U.Q). Note that J(v) ~ Sg*'(a). A
homotopy class » in 7,,,(S*) is defined as I, I: QU . Q@ — S* and
we have easily

LEMMA 4.1.4. {P} = 2v + n{v-S4.

Finally, note that {vS*} is (I)(B) for some B. Hence 7I(B) =
I(np) and part a of 4.1.1 follows from

LEMMA 4.1.5. Let SDY'D -+ DY ... be an Adams resolution
(any prime ) and aew (Y?, Y*') then for any element T in w;(S)
1> 0, we have ta = 0 in 7 (YF, Y.

(Since in the Adams resolution 7 has positive filtration the proof
of multiplicativity in [1] shows 7a is represented by an element of
filtration at least ¢ + 1.)

The remaining case = s(2) is analogous. However, here the homeo-
morphism £ is isotopic to the identity and the resulting error term is
0. Part b is similar toa. Again by standard arguments we arrive at
d,.7%(a) represented by pv + 7{S*¥} and 4.1.5 now gives the conclusion.

2. By the methods of [8] or [17], together with the results of
6.1 it is easy to prove

THEOREM 4.2.1 (a). Extl(Z,, Z,) is generated by elements «,
h; 1=0, 2?* (k) = h;y,(h; is dual to |.Z2*"]) and a,8.F77 "V (h) # 0 in
Ext* (Z,, Z,). .

(b) Ext-*(Z, Z.,) is generated by elements h; 1 = 0 (h; dual to Sg*)
Sq°h; = h;yy, and hh? # 0 in Ext**y(Z,, Z,) for 1 = 3.

(4.2.1 (a) was first proved in [12], and (b) is proved in [2].)

Thus d.h; = a,377*** " (h;) for 4> 0 and p odd, and the only
elements which live to E. in Ext' are «,, h,. Similarly d,(k;) =
hoSq*h;_, = hoh*_, and the elements A, h,, h,, h, are the only survivors
from Ext!' in E., for p = 2.

Of course these differentials are well known [16] and it is also
well known that their being nonzero is equivalent to the nonexistence
of elements of Hopf invariant one in these dimensions, but 4.1.1
certainly provides the first purely geometric proof of these results.

3. It sometimes happens that there is a relation such as ki =
0 which holds in Ext ,,(Z., Z). The relation then “propagates”.
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For example, let 6,4 = hh2, then 0,(w U ,u + hohd U ,u) = hdhE, 0,(u U ;u +
hohi U su) = hhi. However, some of these cup-7 operations on % ultima-
tely become parts of classes in Ext, as with (u* + hh2 U ,u) = w since
ow = h,ht which equals 0 for another reason. When this occurs and we
look more closely at this 0, differential—say in 7,.(Y*¢, Y***) rather than
(Y% Y+ it turns out that the “filtration 2” role of the differential
is to make 0,(v) = some element in higher filtration. In the example
above, we have in fact

o(u U, u + hohi U u) = hihi + 2(W + K)

in 7,(Y*, Y°) where K = h,V, 0,V = hi say. This and relations similar
to it sometimes account for higher differentials.
Consider, for example, the situation in dimensions 14 and 15

i

p

14

dy(h,) = hoh} hence d,(h.h,) = hihi, but from the above remarks hh: =
hod,, hence d,h.h, = 0 but d,hh, should equal h,d,. This would even
be a proof if we had a better hold on Ak} represented as a boundary
above as compared with hZh: represented as 4 times h:. Such a pro-
gram is possible and if carried out implies all known differential
through the 45 stem in a more or less direct manner.

5. The S¢° operation and higher differentials.

1. In [10] some theorems were proved on the connection of the
Sq operations with d,, d, under very restrictive hypothesis. Our object
here is to remove most of these restrictions and increase the range
of differentials considered. We have

THEOREM 5.1.1. Let a € Ext"' (2, Z,) and suppose d.,(a) =0 for
s<r. Let N=1t— 1+ k for a given k and define (N) = 8m + 2*
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if N+1=2""¢, ¢ odd, 0 <n <4, then

Ao +:18¢1(@) = hiSqi—ow(@) P(N) = 24,1 < 3
Ao +299:(@) = Mihs SQi—v (@), P(N) =9

Ao +3891(@) = Bihs SQi_om(@), P(N) = 10
Ao +99:(@) = P'(h:)Sqi—om (@), P(N) = 12
A +680:(@) = Rk, Sqi_oiv(@), P(N) = 16

provided (N) + g < r is satisfied in each case for the differential
0CCUTTING.

In particular we mean to imply by this that all lower differen-
tials on the specified elements are trivial. Also, note that Sg.(a) =
Sq¢*~*(a). It is probable that the theorem can be strengthened so its
conclusions hold even if @(N) <r — ¢. It is also likely that even
for greater @(N) the differentials could still be obtained but now in
terms of d.(a) as well.

2. To start the proof we “relativize” the construction of the Sg’
operations. Thus, suppose aerm,(Y? Y*?) satisfies dya) =0 k< 7r
then a is the restriction of an element « in 7, (Y", Y**") and we can
assume « represented by a map A: (D%, S — (Y Y*). We have
the diagram

5.2.1

(W) X (D, 8 A (D7, §) A gy e yip v -2 8

o Ll

(sz)t X SiA S id D(i/_\j_, W, Yi|YHr A Y Yier Syt

where ©: (D, S'') — (S, ) is the evident collapsing map.
The filtered map

SOY ! Deeaen DY i eeeens o Y-t
5.2.2 l | l

S|yt 5. Y/Y* D D«
induces a map of spectral sequences which is clearly a monomorphism
in all E¢ for t < 2¢ + » — t. Thus, if we can prove the existence of
the stated differentials in the spectral sequence of the bottom row of

5.2.2 the theorem will follow
3. From the bottom row of 5.2.1 there is a map

@3 IP —— S Y 50 that Syerts C YHCEYEL

We now define a “skeletal Adams filtration” of X7Pi*! so the map @



GROUP REPRESENTATIONS AND THE ADAMS SPECTRAL SEQUENCE 173

becomes filtration preserving and thus induces a map of spectral
sequences.

LEMMA 5.8.1. Let X be a finite CW complex, then there is a
spectral sequence comverging to m.(X, Q) with

~

E, = Ext., (2, 2:) ® Hu(X, Z),
(Ept = 3 Ext94Z, Z) Q H(X, Z)) .

It s multiplicative in the sense that the pairing
Ext. o (Z, Z) ® E, — E,
commutes with differentials and induces pairings
E.(S) ® E.(X) — E(X)
which also commute with differentials.

(Here @, is the ring of fractions a/b with b prime to 2.)?

Proof. Suppose X is N-dimensional. We start a resolution of
2*X as the fiber in the evident map

5.3.2 @,: S*X — K(HY (X), N + k) .

Let F, be the fiber of @, then F, looks like the N+ k —1
skeleton of 3*X attached to FY, y., where F| is the fiber in the map
similar to 5.3.2 for a boquet of spheres. Continue the resolution by
killing all the cohomology which corresponds to Fj ., and indepen-
dently killing the cohomology from H”(X). The new fiber looks
now like 3* X, , U F', vy U F3, vipe  Kill all the cohomology of F; .y,
independently that due to F) y.r—, and that due to H**X). The
cohomology splitting again occurs so the process continues. (Note
that this splitting is valid over .27 (2).) The resulting filtration of
Y*(X) gives the spectral sequence of 5.3.1 on taking the homotopy
exact couple. We omit the remaining details as they are standard.

COROLLARY 5.3.3. Suppose X is a finite K-connected CW complex
and there is a map
f: X__)SO/YZi+’r——!

so that fi Xg. C Y%, fi Xgo CY¥ 7 eee ft X, C YH9 then f in-
duces a map of the spectral sequence 5.3.1 into the Adams sequence

2 We must distinguish the spectral sequence introduced here from that developed
in [15, Chapter III]. The bottom edge of Mahowald’s sequence lies on the s = 0 axis,
while the bottom edge of ours lies on a line at a — 45° angle to the s = 0 axis. It is
this change that allows us to compare our sequence with the Adams sequence.
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for Y which s mnatural with respect to the action of the Adams
sequence for a sphere on each.
(This follows directly from the proof of 5.3.1.)

4. In the situation of 5.3.3 we assume X is X/P!*/ and the map
fi X—8Y is 4. Clearly ,(2%,;,,) = S¢*(a) in the spectral sequence
of 5.8.1. Thus it will suffice to prove the differentials of 5.1.1 occur
in this spectral sequence. We now need

LEmMMA 5.4.1. For L = N — @(N) we have
SEPY oy = SV YEPY (4

Moreover there is a map

h: DV+Ey  SVFHEme® ZLP%—qmw

30 hy 18 a monomorphism im mod 2 homology and « is an odd multiple
of the gemerator of im(J).

(Essentially 5.4.1 says the first nontrivial attaching map of any
cell in a truncated projective space is in im(J).)

Proof. PY_,y+: is the Thom complex of (N — @(N) + )& —is
hence the normal bundle to P¢*™~ is (2 — @(N))& but

27 — (N) = N — @(N) + 1 (mod 29
SO
Py o = 2M(PaZbw)

and, since the top class of the Thom complex for the normal bundle
is spherical the first statement follows.

To obtain the remaining statement note that by Atiyah’s duality
theorem (3.3 of [4]) the S-dual of Py_,y, is P% ™. But this the
Thom complex of 2% over P¢*. Now, 2% is trivial over P¢®—!
and it follows from [3] that using this trivialization there is a map

ng%—?(N) qu Uar 62"‘+<,c(1\’)

where « is some odd multiple of the generator of (im J). Taking
S-duals the result follows.

The proof of 5.1.1 follows since the &, hh,, Pi(h,), hih, are all
known to carry the generator of im(J). Indeed this shows that in
5.3.1 the boundary of the relevant cell is the term desired plus an
error term from lower cells. Checking the form of Ext in these
early dimensions it is clear that the only possible term besides those
in 5.1.1 is

(k3 Sqi—pm—s(@)) for all p(N) = 12.

However, by checking secondary operations we can show this attach-
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ing map is 0 so ¢ = 0 and the result follows.

5. It is easy to see how to generalize this to the mod p-case.
In view of the results of §2.3 it would seem that the hardest step
in doing this is to calculate sufficiently far into Ext, ,(Z,, Z,) and
still identify im(J).

REMARK 5.5.1. Recent results of Mahowald [14] enable one to
completely identify im(J) in Ext. ,(Z, Z.). It seems reasonable to
suppose the mod(p) problem can be handled in a similiar way.

6. Calculation of the action of the Steenrod Algebra in
Ext. (Z, Z,).

1. Some examples. We consider, mod p, the algebra A = DP(\)
where DP(\) is a divided polynomial algebra. It is given a Hopf
algebra structure by requiring that 4(\;) = I\; @ N;_;. Then for p
an odd prime

Eth*(Zm ZP) = E(I)\:, D\'ply ) I>\‘Pi}! “')@P(gh 0?; R} 01)7:"')

where 64,: is dual to [N\, |17
We calculate the .Z°% operations as

THEOREM 6.1.1. Z2P"® V| N\,i| = ¢, Npis1]
,3..7”1‘“’_1) [Npi| = €0y
.7""1.“’_”*1])\,,,1-] =0
Gpw-upitlng (0,:)?

where c¢,, ¢, are nonzero constants, and this completely determines the
action of 7 (p) here.

Proof. Consider in 4 |n,i|X,:»7'| the term [N\,i| @ [Api| @ Npi @
«os @ Nyi. Clearly as we go through the successive constructions of
the higher homotopies M*® which give the ¢ operations, we arrive
at the term |\,i|® --- ® |\,i| in M**f,). This proves the second
statement, the first is virtually identical.

Similarly, for the same algebra mod 2 we have

Ext (Z,, Z:) = P(IM], [ Naf o0 [Nai] ++2)
and for the Sg' operations we find
THEOREM 6.1.2 S | Ngi| = [Nai|?
Sq° [Nyi| = | Ngit1]

and these determine the action of .57 (2) in Ext (Z, Z).
(The proof is unchanged from that of 6.1.1)
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FIGURE 1 <Vertica1 lines denote multiplication by ho>
45° lines denote multiplication by h:
2. We now turn to the calculation of the S¢' operations in

EXtJ/ (2 (ZZ, Z2) .

[21]). Then .57 (2)//A?
algebras

w: EXtDP(Zl)(ZZy Z,) — Ext ., (2, Z,) .

Let A* be the sub-Hopf algebra of .©7(2) dual
to the polynomial algebra P(£) (using Milnor’s notation see e.g.,
DP(\)) and consequently there is a map of
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FiGURE 1 (Continued)

Clearly w(|\yi|) = h; in Exti2,(Z, Z.). Since  is induced from a map
of Hopf algebras o(Sq’) = S¢‘(w) and we can calculate the action of
57 (2) in the subalgebra of Ext., . (Z, Z) generated by the ().

The first generator which is not a polynomial in the h; is ¢
which has the Massey product representation < A, h,, k2 > .
(For further details and the “names” of various elements we refer to
Figure 1.)
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ProposITION 6.2.1. S¢*(c,) = ¢ = hid,
Sa*(c,) = hee,
Sq'(co) = fo
Sq’(c,) = ¢,

(The first statement and the fourth are known. The first following
from [17], and the fourth from [19]. The second and third are shown
using the techniques of [19] rather than the main theorem and ex-
plicitly writing representatives for these elements.) Thus, in view
of 4.1.1 we find d,(f,) = hie, di(hof;) = dy(he)) = hie, = hid, so d.e, =
hid,, and it is only the differential d,(h,h,) = h,d, which is not due to
4.1.1, at least through the 21 stem.

3. Now we consider the algebra A* more closely. (4)* =
P(Ezy 53 e 51 . ') Wlth @(51) = Z2§j§i—1 Ezj'_j ® Si—j' In particular (Sz, Es)
generate a sub-Hopf algebra B of (4®)* and, if A“ is the dual of B
in A% we have

A?/]A* = DP(\,) ® DP(\,) .
Consequently there is a map

w: Ext3h0, @ npug(Zey Z2) — Extio(Z,, Z)) -

PROPOSITION 6.8.1. Ext,ru,enroy(Ze £:) = Extpru, @ Extype, as

algebras over o7 (2). Moreover for t — s less than 50 u is onto and
has kernel generated by

9 s
Ng,pi * Ny gitzy Ny gr+3° Ng i = Ngpet2oNg o1y N3 2s* Ngad+i | Ag giti* A git2

and
h;,i'kz,m + >‘Jg,4 .

Proof. The first part is evident. To prove the second we use
the techniques of [8] and read off the differentials in the weighted
augmentation filtration spectral sequence developed there.

This determines the action of .%(2) in Ext, and in this range.
Consider finally the map v: A*— .7 (2), this induces v*: Ext. ., —
Ext,. and we have, again making use of [8]

PROPOSITION 6.3.2. v¥(dy) = {(Mazhe)?}
v*(er) = Mi(Na2)’}
v*(9) = {Aaa}
v*P'(d) = {Mni
v P(e) = {Mihis}
v*(d,) = Nehoi}?} -
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'l)*(k) = {)";Q"gz}y ’U*(?’L) = {)\’21)';2}

4. From 6.8.2 we obtain Sq°(d,) = d, (this is clear anyway from
[19]) Sq°(e,) = e, Sqg*(d,) = r since v*Sg*(d,) = A3, = 0 and the only ele-
ment in ¢t — s = 30 and filtration 6 in Ext,, ., is . Similarly S¢’(e,) =
m since v*Sg*(e,) = N\, #= 0 and m is the only candidate. Also Sg(e,) =
t since Sg*v*(e) = Mohs, = 0 and ¢ is the only candidate. Putting
these together we have

THEOREM 6.4.1. S¢’(d,) = Sq'(d,) = 0
Sq'(d,) = di, Sq*(d)) = 7, Sq"(do) = d,
Sq'(e;) = €, Sq*(e)) = m, Sg*(e)) = ¢, Sq'(e) =
Sq°(e)) = e, .

Proof. We first show Sg'(e,) = . From ([13, Proposition 5.1.3])
we have h,e: = hix. But from

Sq*(h.e,) = hee; = Sq'(hofo) = hiSq*(fy)
it follows that
6.4.2. SE(fy) = e(ht) + ki .

Also
Se*fy = S¢°Sq'c, = Sa*Sq*c, = Sq*(hoe,)

by the Adém relation SqSq* = S¢®Sq¢*. But
6.4.3. Sg°(hees) = hSqi(e)) + It

Now the result follows by comparing 6.4.2 with 6.4.3.

To verify Sg'(d,) = 0 note that the only candidate is » but v*(n) %=
0 while S¢* v*(d,) = 0. Again, the only candidate for S¢°(d,) is & but
v*(k) = 0 while S¢*(v*(d,)) = 0. This completes the proof of 6.4.1.

COROLLARY 6.4.4. d,m = h.ei.
COROLLARY 6.4.5. hy = s, hyr = hit + hizx.

Proof. From 6.4.2, 6.4.3, 6.4.1 Sq*(h.d,) = hyr = hiSq'(e,) + hit.
Now, since h,r #= 0 it must follow that ko = s.
(This result is asserted and an outline proof given in [13, 7.4], but
the proof given here is much more direct.)

5. We now have

THEOREM 6.5.1. Sg°(c) = ¢, Sq'(c.) = fi, S¢*(e,) = he,, Sq’c, = hid,,
Sq°(fo) = fr Sa'fo = 0, S¢*(f) = v, S¢(fo) = hit + hiz.
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Proof. 8Sq°(c,) = ¢, Sq°(f,) = f, follow from [19], so Sg¢'(e) = f,
since S¢°Sq¢* = Sq'Sq°. Now note that kel = hef, = him. Thus ef, =
hom and hym = hy # 0 since h.e,f, = h,e,g. Hence S¢*(h.f,) = hiSq*(f,) +
hSe*(fo) = hym + h* = h,m since Rt = 0. We have previously shown
S¢*(fo). Sq'(f.) = Sq¢'Sq'(c;) =0 by the Adém relation. Similarly
Sq’Sq*(c.) = h.e, = Sq*(Sq°c,) = Sg’(c,)-

This essentially completes the description of the Sg¢ operations in
the range t — s < 45. In particular we have

COROLLARY 6.5.2. d,(c,) = hyf,
d.(y) = hix .

This first differential was overlooked in [13] and to obtain the
second differential they had to work considerably harder. The first
differential also imples h,k? is nonzero as a homotopy element [vd, +=
0] since ¢, has Massey product representation < h,, hs, h? > which by
[24] would converge to the Toda bracket {o, vy, 6,} if this bracket
were defined. This in turn can be shown to imply another differential
overlooked in [13], namely d;(h.h;) = hyp. I should point out here
that Barratt, Mahowald and Tangora independently discovered this
error by investigating an apparent inconsistency in the 47 stem, and
tracing it back [5]. The error was also found at about the same
time by G.W. Whitehead wusing the semi-simplicial techniques of
Kan-Curtis.

7. The use of the symmetric groups in homotopy theory.

1. So far the constructions E, X X A .-+ A X, respectively
E,,X X A X, have been used by Toda [13], respectively Adams, Barratt
and Mahowald, to obtain much information on homotopy groups. Basi-
cally they use the retractions supplied by § 3 or other maps implied by
the E.H.P. sequence. However it is clear from §§1 and 2 that we can
also use £, DX X A --- A X to obtain information and it seems re-

n-times

asonable to assume that much remains to be done in this direction.

2. By way of an example we show how to use .54 to obtain a
particularly simple proof that 6, exists and is nonzero.

Consider o: S"— S° This induces a map

W0 Bor X oy SN v A S = B KA o A S = S

Now by the results of §2.4 we have H*(E. X, S A -+ A S is
H*(<Z)U U and Sq¢'U = CU, S¢*U = (B + C*)U. Consider now the
map Z, — &, by T — (13)(24). This induces a map f: E_, X ., S* A\ S"
—FE, X o, S"A +-- A S and it is easy to check f*(BU) = ¢’U’. Also
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there is a map Z, P Z, — 4 (T, — (12), T, — (34)) which induces a map
g: EZZ®22D<22®2287/\ b /\ S7'—>E/4D<S7/\ e /\ S70

g*(C) = (eR®1+1Re)U g*B) =eQRelU'.
This last shows C? is dual to (k; U »h,)h? while B is dual to A2 h, U 1k,
has filtration at least 2 so (h; U .h.)h2 has filtration 4 or more. Since
Sq¢*U = (B + C¥U it follows that both these dises 2, (h;U.hs)hi attach
to U by 7. Hence their difference represents a sphere which must
be called %} in the Adams spectral sequence.
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