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If S is an inverse semigroup and ¢ is the relation on the
lattice A(S) of congruences on S defined by saying that two
congruences o;,0. are f-equivalent if and only if they induce
the same partition of the idempotents then ¢ is a congruence
on A(S) and each f-class is a complete modular sublattice of
A(S). If X is a partially ordered set then Jx denotes the
inverse semigroup of one-to-one partial transformations of X
which are order isomorphisms of ideals of X onto ideals of X,
while if X is a semilattice, T'x denotes the inverse subsemigroup
of Jx consisting of those elements a whose domain 4(«) and
range J(a) are principal ideals. It is shown that any inverse
semigroup is isomorphic to an inverse subsemigroup of Jx for
some semilattice X.

For an inverse subsemigroup of Jy, 6(S) = 4(S)/6 is related to
certain equivalence relations on X. The weakest of these is a convex
congruence which is an equivalence relation on X, convex in the partial
ordering and compatible with the operation in S. It is shown that
there is a natural order preserving mapping « of 6(S) into the lattice
I'(X) of convex congruences. If X is a semilattice, the set of those
convex congruences which are also semilattice congruences on X is
denoted by I',(X). If S contains the idempotents of Ty, that is, if
S is full in J,, then a is a semilattice homomorphism of 6(S) onto
Ir'(X). If Sis full in T, then « is a lattice isomorphism of 6(S)
onto I'y(X). Conversely, there exists an order preserving mapping g
of I'y(X) into 6(S). If S is full in J,, then B is an order isomor-
phism into 4(S): if S is full in Ty, then @ is a lattice isomorphism
onto 4(S) and g = a™.

We adopt the notation and terminology of (2). In particular, a
semigroup S is called an inverse semigroup if a <€ aSa, for all ae S,
and the idempotents of S commute. Then there is a unique element
2 such that a = axa and a = wax. We call x the inverse of a and
write £ = a'. For any inverse semigroup S, we denote by E the
subsemigroup of idempotents of S. If we define a partial ordering
on Eg by saying that ¢ < f if ef = ¢ then S is a semilattice where,
by a semilattice, we mean a partially ordered set in which any two
elements have a greatest lower bound. For the basic results on
inverse semigroups the reader is referred to (2). All semigroups con-
sidered in this paper will be inverse semigroups.
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Denote by 4(S) the lattice of congruences on the inverse semi-
group S; that is, the lattice of equivalence relations o such that, for
a, b, ceSl, (a, b) € p implies that (ac, bc) € 0 and (ca, ¢b) € p. Define the
relation 0 (cf. 9) on A(S) by

(0, 0)e 0 if and only if o,|Es = p,|E;

where o;|E denotes the restriction of the congruence o; to Es. Then

LEMMA 1.1. ((9) Theorem 5.1). Let S be an inverse semigroup and
the relation 6 be defined as above.
Then

(i) 0 is a congruence on A(S);

(ii) each 0-class is a complete modular sublattice of A(S) (with
a greatest and least element).

We shall denote the lattice of f-classes of an inverse semigroup
S by 6(S).

Now each congruence on an inverse semigroup S determines a
normal partition of E; that is a partition P = {E,: « e J} such that

E(i) «a,BedJ implies that there exists a ve€.J such that E,E, S E;

E@{i)) aed and ae S implies that there exists a geJ such that
abB.a" S Fi.

Likewise we call an equivalence relation o on E a normal equiva-
lence if its classes constitute a normal partition of Ei.

Conversely, if P is a normal partition of E; then P is induced by
some congruence on S. Thus the lattice of normal partitions of Ej is,
clearly, just (isomorphic to) &(S).

The least and greatest congruence in the #-class corresponding to
the normal partition P can be characterized as follows:

LEMMA 1.2. ((9) Theorem 4.2) Let P = {E,.acJ) be a normal
partition of the semilattice of idempotents of S. Let 0 = {(a, b)) e SXS:
there exists an ae€J with aa™, bb~' € K, and, for some ec K, ea = eb}
and 0= {(a, b)eS X S: aecJ implies that, for some BeJ, a E.a7,
b EL S Es}. Then o and p are, respectively, the smallest and largest
congruences on S in the 0-class corresponding to the normal partition

P.

By a one-to-one partial transformation of a set X we mean a
one-to-one mapping « of a subset Y of X onto a subset Y’ = Ya of
X. We call Y the domain of a, Y’ the range of @ and write 4(a) =
Y,V(a) = Y'. If we denote by I, the set of all one-to-one partial
transformations of X then, with respect to the natural multiplication
of mappings, I, is an inverse semigroup called the symmetric inverse
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semigroup on X (2).

Let X be a partially ordered set. By an ideal of X we mean a
subset Y of X such that 2 < ye Y implies that xe Y. If X is trivi-
ally ordered, that is, if no two distinct elements are comparable, then
any subset of X will be an ideal. We consider the empty set @ as
being an ideal of X. By a principal ideal we mean an ideal of the
form {x: 2 < y} for some fixed element y. Then we call {x: x < y} the
(principal) ideal generated by y and denote it by <y >. For an
arbitrary subset A of X we write < A > = {xe X: 2 < a, for some a €
A},

If X is a partially ordered set, let J; denote the set of all ae I,
such that

(i) 4(a) and F(x) are ideals of X;

(ii) « is an order isomorphism of 4(a) onto V(w); that is, a one-
to-one mapping of 4(a) onto F/(a) such that, for z, ye d(a), v < y if
and only if ra < ya.

It is straightforward to verify that J, is an inverse subsemigroup
of I,. If X is trivially ordered then, of course J; = I,.

By the following theorem, any inverse semigroup S can be em-

bedded in I.

THEOREM 1.3. ((2) Theorem 1.20) Let S be an inverse semigroup
and for each ac S define the element a, of Is by

(i) d(a,) = Sa™;

(ii) for xe d(ay,), v, = xa.
Then the mapping o: a — a, is an isomorphism of S into Ig.

Considering S as a trivially ordered set we then have that S can
be embedded in J;. However, on any inverse semigroup S there exists
a partial ordering, called the natural partial ordering which can be
defined as follows: for any a, be S,

a=<b if and only if a'b=a'a.

For several equivalent definitions of this partial ordering see §7.1 of
(2). The natural partial ordering is compatible with the multiplica-
tion of S.

Suppose that y e Sa™ and that * < y. Then y = sa™, for some
seS and v7'y =2"'2. Hence v =axx7'v =22y =xx 'as € Sa~'. Thus
d(a,) is an ideal in the partially ordered set S. Moreover, for any
x =y, with 2, y € 4(a,), va, = za < ya = ya,, since the natural partial
ordering is compatible with the multiplication. Conversely, if za, <
Yo, for x, y e 4(a,) then za < ya and zaa™ < yaa™. Since 2, y € 4(«,) =
Sa™!, xaa™" = x and yaa™ = y. Thus 2 <y and «, is an order isomor-
phism of 4(a,) onto /(«,). Thus
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PrOPOSITION 1.4. Let S be an inverse semigroup. Then the em-
bedding a — a, of S into Is, of Theorem 1.3, also embeds S in Jg
where S is considered as a partially ordered set with respect to the
natural partial odering.

Let X be a partially ordered set and S & J, (we shall sometimes
just write S< J, for “S is an inverse subsemigroup of J,”). We
shall be interested in certain kinds of equivalence relations on X.
Consider the following conditions on an equivalence p on X:

(i) 2=y =2 (z 2) cp implies that (z, y) € o;

(i) (», ywep, o, yed(a), acS, implies that (za, ya) € o.

If o satisfies these conditions then we shall call o a convex congruence,
or just a c-congruence on X.

If X is actually a semilattice and we denote by a A y the greatest
lower bound of any two elements x, ¥ of X, then we can also con-
sider the conditions:

(iii) (=, y) € o implies that (x, x A y) € 0;

(iv) (=, y)€p, zc€ X implies that (xAz, y A 2)€p.

If o satisfies conditions (i), (ii) and (iii) we shall call o an s'-con-
gruence, while if o satisfies (ii) and (iv) then we shall call p a semi-
lattice congruence or just an s-congruence. Although these definitions
depend on S, S will generally be held fixed and so the terminology
should not lead to any confusion. If X is a semilattice and o satisfies
condition (iv), then clearly o satisfies conditions (i) and (iii). Thus
an s-congruence is an s’-congruence and an s’-congurence is a c-con-
gruence.

If X is totally ordered then the three types of congruence coincide.

By a complete sublattice A of a lattice B we mean a sublattice
such that for any nonempty subset C of A the least upper bound
(greatest lower bound) of C in A exists and is the least upper bound
(greatest lower bound) of C in B.

PROPOSITION 1.5. Let X be a partially ordered set and S & J.
Then the set I'(X) of c-congruences on X, partially ordered by set
wnclusion (as subsets of X x X) is a complete lattice.

If X is a semilattice then the set I'(X) of s'-congruences on X is
a complete lattice (but mot mecessarily a sublattice of I'(X)) and the
set I'y(X) of s-congruences is a complete sublattice of I'(X).

Proof. Let {0;: 1€ I} be a family of ¢c-congruences (s’-congruences,
s-congruences). Then clearly M);.;0:; is also a c-congruence (s’-con-
gruence, s-congruence). Since I'(X) (I"(X), I'(X)) has a largest ele-
ment, the universal congruence o = X x X, it follows from purely
lattice theoretic considerations that I'(X) (I'(X), I',(X)) is a complete
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lattice.
Now let C be a nonempty subset of I',(X). Clearly the greatest
lower bound of C in I'(X) and I'y(X) is just Neec 0. Now define a

relation » on X by

(x, y)en— for some © = x, ®, +++, 5, =y X,
(i, %) €Oyt =1, o+, m, for some p0;eC .

Then, from (1) Chapter 2, Theorem 4, # is an equivalence relation on
X such that, if (z, y) €% and z€ X then (z A 2, ¥y A 2) €%. Hence, to
show that ne I'y(X), it only remains to be shown that if (x, y) €7 and
(x, ¥) € 4(a) then (xa, ya)en. Letx =2, %, -+, 2, =yeXandp, ---,
0,€C be such that (v;_, x;)ep;, for =1, «--, n. Then (x, A @,
Xy A\ )€ Pyt =1 --+, nand, since x, A\ &; < %, %, A\ &; € 4(a), for ¢ =
1, ---n. Therefore, ((x, A %;_)a, (x,A%)a)€ 0;, for 1 =1,, .-+ n and
so (za, (x A ya) = (, A z)a, (2, A x,)a) €. Similarly, (ya, (x A y)a)e
7. Hence (za, ya) ey and 7ne I'(X).

But 7 is the least upper bound of C in the lattice of equivalence
relations on X and hence is the least upper bound of C in I'(X). Thus
I'y(X) is a complete sublattice of 7'(X); in fact, we proved that I',(X)
is a complete sublattice of the lattice of equivalence relations on X.

We now give an example to illustrate some of the points that
have arisen.

ExAamMpLE. Let X be the semilattice of Figure 1 and S = E, .

w

Y
FIGURE 1.

Let o, be the equivalence relation on X which partitions X as
X = {u} U {y} U {x, v}; let o, be the equivalence relation partitioning X
as X = {x, w} U {v} U {y} and let o, be the equivalence relation parti-
tioning X as X = {2} U {y} U {u, v}.

Now p, is a c-congruence but not an s’-congruence since (x, x A v)=
(%, y) € p.. Also p, is an s'-congruence but not an s-congruence since
(x, u)€ 0, but (x A v, w A v) = (y, v) € 0,. Similarly o, is an s'-con-
gruence, but not an s-congruence. Finally, the least upper bound of
0. and p; in I'(X) partitions X as X = {x, , v} U {y} which is not an
s’-congruence.

2. From normal equivalences to congruences. Throughout this
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section, let X be a partially ordered set and S be an inverse subsemi-
group of Jy. We now begin to relate the #-classes of S and the con-
gruences on X.

If A is a subset of S then we shall denote by Aw the set {seS:a <
s, for some a€ A}.

Let © be a normal equivalence on E and ze X. Let Vi) =
{e€ Es: we d(e)} and V.(x) = {U.crmeT}o.
Then we have

LemMA 2.1. V(x) S V.(y) implies that V.(x) S V.(y).

Proof. Let f,fie E, (f,f)etand f,€ V(x). Then f, € V.(y) and
so f1 = [y (f» f3) €T and fi€ V(y), for some f,, f;€ Es. Hence f = ffs
(ffy fif)er, fife =1y (fy i) €T and fy€ V(y); that is, f = ffs, (ffs fo) €
7 and f;€ V(y). Hence feV.(y). Thus U.crw et S V.(y) and so
Vie) & V().

THEOREM 2.2. Let X be a partially ordered set and S = Jy. Let
T be a normal equivalence on Es. Define the relation o = p. on X by

(x,y)epo if and only if V.() = V.(y).

Then o is a c-congruence on X. Moreover, if o is another nmormal
equivalence on Eg and © S o, then p. S 0,.

Proof. (i) Suppose that ® <y <z and (z, 2) € 0. Then V(z) =
Viyy < V(x) and so V.x) = V.(y) < V.(x) = V.(2)y by Lemma 2.1.
Hence V.(z) = V.(y) and so (z, ) € o.

(ii) Suppose that (x, y)ep,ae S and z, y<c 4(a). Let fe Viza).
Then wzac 4(fa™") and so x€ d(afa™). Hence afa'e V(z) S V.(y).
Therefore, for some f,, f,€ Es, we have afa™ = f, (f, f) €7 and f,€
V(y). Hence ya = yfiac d(a™'f,) = 4(a"'f,a) where (a~'f.a, a7'fia) €T,
a’fia < a'afa'a =< f. Thus fe V.(ya) and, by Lemma 2.1, V.(za) &
V.(ya). Similarly we have the converse inclusion and so V.(za) =
V.(ya) and (za, ya) € p. Hence p is a c-congruence. Now 7 & ¢ implies
that V.(x) & V,(x), for all x€ X, and so (, y) € p. implies that V(z) &
V.(y) € V,(y). Therefore V,(x) & V,(y), by Lemma 2.1, and similarly
the converse inclusion holds. Thus (z, )€ p, and p. E 0,.

In general, of course, this mapping from normal equivalences to
c-congruences is not one-to-one. However, in some circumstances, as
we now show, it will be.

For any sets A and B let A\B = {x:x€ A, x¢ B}. For ec E, let
0(e) = d(e)\Uj<. 4(f) = {x: € d(e), x ¢ 4(f) for any fe E; such that
f<el

By an order isomorphism « of one partially ordered set X into
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another Y, we mean a one-to-one mapping « of X into Y such that,
for x, ye X, x < y if and only if za < ya.

ProprosITION 2.3. Let X be a partially ordered set and S < J,.
Let the normal equivalence © on Eg induce the c-congruence o = p.
on X as in Theorem 2.2. Let e, f € Eg, x€0d(e) and yeo(f). Then

2.1) (x,y)ep if and only if (¢, feT.

Thus, if X = U,czs0(e), then the definition of o in Theorem 2.2
may be replaced by the statement (2.1).

Finally, if o(e) = @, for all ec Es, then the mapping T — p.
defines an order isomorphism of the lattice O(S) into I'(X).

Proof. Let e, f€ E, x€d(e), ycd(f). First suppose that (¢, )€
7. Then, for ge V(x) we have that, g=e, (¢, f)er and fe V(y).
Thus V(z) S V.(v), V.(x) S V.(y) and, by similarity, V.(x) = V.(y); that
is, (@, ) € p.

Now suppose that (x, y) € . Then V.(x)=V.(y). Henceec V(z) =
V-(y). Thus, for some ¢, e,€ E, e = ¢, (e, &) €T, ¢, = f. Similarly,
for some f, f,e E,, f = f, (f,f)€7 and f, = e. Then

e=ef, (ef, f) = (ef, eaf) €T

and
fzefy(ef, )= (ef, efdec.
Hence
(e.f, ef) = (eraif, ef) et
and

(ef,, ef) = (ef.i- f, ef) et .
Therefore (e.f, ef)) €7 and so (e, f) €.

The remainder of the theorem then follows easily.

A congruence 0 on an inverse semigroup S is called idempotent
separating if no two distinet idempotents of S lie in the same p-class.
There exists a unique maximal idempotent separating congruence p
on S which can be characterized as follows (Howie [4]):

(@, b)e pt=a""ea = b7'eb for all eec K.

If 1+ is the identity congruence, then we shall call S fundamental.
Although, for S & J, and X a semilattice, we shall be considering
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the general problem of defining a normal equivalence on E from an
s’-congruence on X in the next section and althought it appears essen-
tial in general to assume that X is a semilattice and that the con-
gruence on X is an s’-congruence, we can, at least, establish the
following theorem without these assumptions.

THEOREM 2.4. Let X be a partially ordered set and S < Jy. De-
fine the relation v on X by:

(xr,y)ev= V(@) = V(y) .
Then v is c-congruence on X. Define the relation & on S by

(a,b)e& = (i) {wv:av N d(a) # O} = {wv:av N 4(0b) = O} ;
(i) we d(a), ye 4(b), (v, y)ev
implies that (xa, yb)evy .

Then & = 1, the maximum idenpotent separating congruence on S.

Proof. Let (x,2z)ey and x <y <2 Then V(z) 2V(y) 2 V() =
V(x). Thus V(z) = V(y) and (x, y) € v.

Now let (v, y)ey and x, ye 4(a). Let e€ V(xa). Then aea'e
V() = V(y). Thus ee V(ya) and V(za) = V(ya). Similarly Viya) S
V(za) and so V(za) = V(ya). Thus (za, ya) €y and v is a c-congruence.

It is straightforward to see that & is an equivalence relation. To
show that & = g, we first show that ¢ = &|,, =¢. Let (¢, f) e and
xe d(e). Then axv N 4(f) = @ and so ye€xy N 4(f), for some y. Then
feV(y) = V(z). Thus ze€ 4(f) and 4{e) & 4(f). Conversely, 4(f) &
4(e) and so 4(e) = A(f) and e = f.

Let (a, b)e & Then, for any xe X, av N 4(a) = @ if and only if
xv N 4(0) = @. But 4(a) = 4(aa™) and 4(b) = 4(bdb™"). Hence zv N
d(aa™) = @ if and only if av N 4(bb~') = @. Moreover, for (z, y)e€
v, x € d(aa™), y € 4(bb7Y), (xaa™, ybb™)=(xz,y) € v. Hence (a, b) € & implies
that (aa™, bb™") €& and so aa™ = bb~* and A{a) = 4(b).

Now we show that & is a congruence on S. Let (a, b)eZ and
ceS. If xe Aac) then x € A(a) = 4(b) and xa € 4{c). However, (za, xb) e
v and so cc'e V(za) = V{xb). Thus xe 4(bc) and 4(ac) = A(be). By
similarity, 4(ac) = 4(be) and condition (i) is satisfied by ac and be.
If ze d(ac) = 4(be), then (xa, xb) € v, since (a, b) € &, and so (xac, xbc) €
v, since v is a c-congruence. Thus (ac, bc) € &.

Now we€ 4(ca) if and only if xe 4(c) and xce 4{a) = 4(b). Thus
A(ea) = 4(cb) and condition (i) is satisfied by ca and ¢b. Clearly ca and
¢b then satisfy condition (ii). Thus (ca, ¢b) € & and & is a congruence.

Since &|;; = ¢ we have that £ < p¢ and to complete the theorem
we need only show that ¢ = £, Suppose that (a, ) € . Then aa™ =
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bb™, d(aa™) = 4(bb~') and condition (i) is satisfied. Now let z € 4(a),
ye () and (x, y)eyv. Let fe V(xa). Then zaec 4(f) and so ze€
Ad(afa). But, since (a, b) ey, afa™ = bfb™'. Thus xe 4(bfb™"). Now
Vi(z) = V(y) and so ye 4(bfb~"). Hence ybe 4(f) and V(za) & V(yb).
By similarity, we have that V(za) = V(yb) and (xa, yb) € v. Thus con-
dition (ii) is also satisfied by @ and b and so (a, b)e & Hence & = p.

If, in Theorem 2.4, v is the identity relation on X, then clearly
(a, b)e & if and only if @ = b. Thus we have immediately:

COROLLARY 2.5. Let X be a partially ordered set and S < J,.
If v is the identity relation, then S is fundamental.

Let X be a partially ordered set and € X. Then we shall denote
by e, the idempotent of J, with domain equal to the principal ideal
<x>. Let S&Jy, then we say that S is full in J, or (if X is a
semilattice and S & T,) that S is full in T, if {e,: x€ X} S FE,, where
T, is as defined in §3.

COROLLARY 2.6. Let S be full inverse subsemigroup of Jy, then
S is fundamental.

Proof. If S is full then v must be the identity relation and then
so must &.

Corollary 2.6 is a slight generalization of a theorem ([6] Theorem
2.6) of Munn’s and could be established directly along the same lines
as Munn’s proof. Corollary 2.5 is a little stronger, however, as the
following example shows:

ExAMPLE. Let X be the set of real numbers under their natural
ordering. Let S = {a e Jy: 4(«) is not principal}. Then S is an inverse
subsemigroup of J,. Clearly v is the identity relation and hence S
is fundamental. However, S is not a full inverse subsemigroup of J,.

3. X a semilattice. Let X be a semilattice, then we can define
another subsemigroup of I, as follows. Let T, denote the set of a €
I, such that

(i) 4(a) and V() are principal ideals;

(i) « is an order isomorphism of A(a) onto s(a).

It is straightforward to verify that T, is an inverse subsemi-
group of I, and J,. For a discussion of T, and its importance in
connection with bisimple inverse semigroups see Munn [7].

PROPOSITION 3.1. Let X be a partially ordered set and let X
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denote _the set of all ideals of X, partially ordered by set imclusion.
Then X is a semilattice and there ewists an embedding k: J, — Ts.

Proof. Clearly X is a semilattice. For aecJ, define «,€ Tx by:

(i) dk) ={IeX: 1< 4)};

(ii) for Ie A(k,), Ik, = {wa: we I}.
Then £: a — £, is an isomophism of J, into Tx.

We now give several ways in which inverse semigroups might be
considered as subsemigroups of T, for some semilattice X. First, from
[7] Lemma 3.1,

PROPOSITION 3.2. Let S be an imverse semigroup and Es = E.
Define a mapping 0: S— Ty by the rule that af = 0, where

(1) 4(0.) = Eaa™;

(ii) for ee 4(,), ef, = a 'ea.
Then 6 is a homomorphism of S wnto T, inducing the maximum
idempotent separating congruence on S and hence is am isomorphism
if S is fundamental.

Combining either Theorem 1.3 (considering S as a trivially ordered
set) or Proposition 1.4 with Proposition 3.1 we have:

PROPOSITION 3.3 Let S be an inverse semigroup then there exists
a semilattice X and an tsomorphism £: S — Ty.

Presently we shall be considering inverse subsemigroups S of Jy,
where X is a semilattice, such that X = {J,.z, 0(e) or such that d(e) #
@, for all ee Es. In this connection, we have

PROPOSITION 3.4. Let S be an inverse semigroup then there exists
a semilattice X and an isomorphism k: S — Jy such that

(i) d(ek) = @ for all ec Ej:

(i) X = Usery 0(en).

Proof. Let 6:S— Js; be the embedding of Proposition 1.4. Let
X denote the set of all subsets of S which are inversely well ordered
with respect to the natural partial ordering of S, together with the
empty set. Partially order X by set inclusion. Then X is clearly a
semilattice. Define ¢: J;— J, as follows: for a e Jg,

(1) 4dag) = {Ae X: A = A)};

(ii) for Ae A(ag), Alag) = {aa: a € A}.
Then ¢ is an isomorphism and so £ = fo¢ is an isomorphism of S into
J

For ec E, ec 4(ef) and so {e} € d(ek). Clearly {e} € 4(fk), for fe
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E; if and only if ¢ < f in the natural partial order on S. Thus {e¢} €
o(ex) and o(ex) = @ for all ec Ej.

Let Ae X have greatest element a, in the natural partial order
on S. Then acd((@'a)r). Thus X = U,z 0(ek).

Finally, we give a representation of slightly less general applica-
bility which is interesting on account of the relationship that the set
X bears to the semigroup.

Before doing so, we need the following special case of Lemma 1.2.
due to Munn [5]:

LEMMA 3.5. Let S be an inverse semigroup and let a relation o
be defined on S by the rule that xoy if and only if there is an idem-
potent e in S such that ex = ey (or, equivalently, xe = ye). Then o is
a congruence on S and S/o is a group. Further, if T is any congru-
ence on S with the property that S/t is a group, then ¢ &t and so
S/t is isomorphic with some quotient group of Sjo.

Then o is called the minimum group congruence on S.

PROPOSITION 3.6. Let S be an inverse semigroup, let o be the
minimum group congruence on S, let p be the maximum tdempotent
separating congruence on S and let o N p = ¢, the identity congruence
on S. Let X = E;U S/o U {0}, where for x,ye X, we have x <y if
and only if

either (i) o, ye Es and x <y in the natural partial ordering

of Hg;
or (ii) ye Es and x€ S/o;
or (iii) 2= 0.

Then X 1s a semilattice and there exists an embedding k: S — Ty, such
that o(ek) = @ for all ec E.

Proof. Let 6:a—6, be the Munn representation of S of Proposi-
tion 3.2. Then, for a€ S, define ak € T, as follows:

(i) 4d(ak) = Esaa™ U Sjo U {0};

(ii) w(ak) = 20, if xe Es N d(ak);

(iii) «(ak) = x(ao) if x€ S/o;

(iv) a(ak) = x if x = 0.
Then it is clear that £ is a homomorphism of S into Ty inducing the
congruence ¢ (4, that is, the identity congruence. Thus £ is an
isomorphism.

We now turn to the problem of relating, for SEJ, and X a
semilattice, s’-congruences on X to normal equivalences or 6-classes
of S. For p an s'-congruence on X and a € S we shall denote by Ul(a)
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the set {zo:zo N 4(a) # @}. We suppress any indication of the de-
pendence of U(a) on p since this will not lead to any confusion.

THEOREM 3.7. Let X be a semilattice, S be an inverse subsemi-
group of Jy and 0 be an s’-congruence. For a€ S, define a, € Jy, as
follows:

(i) 4(a,) = Ula)

(ii) for xpe d(a,), (xp)a, = (®,0)0 where x, is any element in xoN
A(a).

Then a: a — a, is a homomorphism of S into Iy,,. Lf o is an s-con-
gruence then a partial ordering of X/po can be defined as follows:

o= yYo=u, =y, for some  €xP, Yy EYQO .

With respect to this partial ordering X/o is a semilattice and Sa =
JIx/00

Proof. Since p is a c-congruence, «, is clearly well defined and
it is straight forward to show that «, € I, that is, that a, is one-
to-one. Let a,be S and zp€ 4(a,;). Then there exists an z, €xzoN
A(ab). Hence x, €20 N 4(a) and z,a€ 4(b). Thus z0€ 4(a,) and z,0 €
(xo)a, N 4(b). Thus (z0)e, € 4(e;) and wpo€ 4d(x,a,). Conversely, let
20 € d(a,a;). Then there exists an x,€x0 N 4(e) and an x,€ (xp)a, N
4(b) = (w,a)p N 4(b). With x, = x, A 2,0, we have x;,€ 2,0 = (x0)a, and
2, € A(a™*) N 4(b), since z,a € 4(a™") and x,€ 4(b). Thus .07 € xo, x,a™' €
4(a) and (z,a )a = x5 € 4(b). Thus a0~ € xp N 4(ad). Hence zo € 4(a,;).
Thus 4(a,) = 4d(a,a). Now let wxoe d(a,) = 4(a,2), and 2z, €x0 N
A(ab). Then

(xo)ts, = (w,ab)p

and
(xo)a.o, = (v,a) 00, = (z,ab)p .

Hence a,, = a,, and « is a homomorphism.

If o is an s-congruence then X/o is clearly a semilattice and it
only remains to be shown that SaZ& Jy,.

So suppose that z0 < yo and ypo € 4(a,). Then there exists z, € o,
Y, Y.€yo such that z =<y, and y,<€4(a). Hence (x, 2, A\ Y) =
(@ ANy, 2. ANy)ep and so (x, % A y) €0 where z, N\ y, = ¥, € 4(a).
Thus @, A ¥, € 4(a) and xo€ 4(a,). Therefore 4(x,) is an ideal and it
is routine to verify that a, is order preserving. Thus Sa & Jy,-

To see the difficulty that arises if o is just a c-congruence, con-
sider the semilattice X of Figure 2.

Let S be the inverse subsemigroup of J, consisting of the idem-
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w
FIGURE 2.

potents e, e, e; where A(e) = {x, w}, 4(e;) = {u, v, w} and 4(e;) = {w}.

Let p be the c-congruence on X determined by the partition X =

{z, v} U{u} U{w}. Then there is no natural homomorphism of S into Jy/,.
From Theorem 3.7, we have

COROLLARY 3.8. Let X be a semilattice and S be an inverse sub-
semigroup of Jy. Let p be an s’-congruence on X and define the rela-
tton T =1, on Eg as follows: for e, f € K,

(e, flet = Ule) = U/) -
Then © is a mormal equivalence on Es. If o < o then T & ',

In certain circumstances we can give a more direct difinition of
the normal equivalence induced by an s-congruence.

LEMMA 3.9. Let X be a semilattice and S be an inverse subsemi-
group of Jy. Let o be an s-congruence on X and let o induce the
normal equivalence © on KEs. If e, e, € Eg then

(e 6) €T = (@, W) P .

In particular, if SE Ty then this defines t.

Proof. Let (z, y)€ 0 and zp N 4(e,) = . Without loss of gener-
ality, let ze 4(e,). Then z < 2, (2,2 A y) = A2, 2Ay)epand 2 A y€
A(e,). Thus zo N 4(e,) # @ and Ule,) < U(e,). By similarity, we have
the converse inclusion and so (e, ¢,) € 7.

Now suppose that (e, e,)e7. Then xex0N 4(e,) and so there
exists an x, such that (v, )€ o and x, € 4(e,), that is, x, < y. Simi-
larly, there exists a y, such that (y, v, € 0 and y, € 4{e,), that is, y, <
x. Then @Ay, x) = (x/\y’xl/\y)eto and @AY y) = @AYy, 2AY)E
0. Hence (z, y)€p and so (v, y) € o as required.

We conclude this section with an instance where the mapping o0 —
T is one-to-one.

THEOREM 3.10. Let X be a semilattice and S be a full inverse
subsemigroup of Jy. If T is a normal equivalence on Eg then T induces
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an s-congruence on X. On the other hand, if 0 is an s-congruence on
X, if o induces the mormal equivalence ¢ on Es and T, in turn, in-
duces the s-congruence 0 on X, then p = p'. In particular, the
mapping B:0— T defines an order isomorphism of I'\(X) into 6(S),
and the mapping T— 0 into I'y\(X) is wnto I'y(X). Thus, f S is full
in Ty then, by Proposition 2.3, the mapping T — 0 defines an order
isomorphism of O(S) onto I'y(X).

Proof. Let the normal equivalence ¢ on Ey induce the c-congru-
ence o on X. For any x, y€ X, we clearly have

A(e.e,) = 4(e.) N 4(e,)
=z} N{mz=<y)
=z Ay
= A(ez/\y)~

Hence ¢.e, = e,,,. Also, from Proposition 2.3, we have that (z, y) €
o if and only if (e,, ¢,) €7. So now suppose that (x, y) €0 and z¢€ X.
Then (e,, ¢,) € T and S0 (€.rs €yr.) = (€., €,6,) €ET. Hence (x A2z, y A2 €
© and o is an s-congruence.

Now suppose that o is an s-congruence, that p induces the normal
equivalence 7 and 7, in turn, induce p’. Let (x,%) € 0. Then, by Lemma
3.9, (e, e,)er. Hence, for ec V(x),e = e, (¢,, ¢,) €T and e, € V(y).
Thus e€ V.(y) and V(x) = V.(y). Similarly, V(y) S V.(x) and so V.(x)=
V.(y) and (z, y) € o’. Thus o = p'.

Conversely, let (x, y)€0’. Then V.(x) = V.(y). Hence e,c V.(y)
and ¢, € V.(x). Thus there exist e, e, f,, f:€ Es such that

3.1) e, =e, (e,e)et and e = e,
and

(3.2) e, =f, (fyf)er and fize,.
Therefore

e, = ee, (e, e,) = (ee, ee)ET,
and
ey = fil,, (fie,, e.) = (fie., fe,) €T .
Hence
(e.ey, €,6,) = (e,e00,, €,6,)ET

and
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(flezy ezey) = (eyflea:’ eyea:) €T.

Thus (ee,, fi¢,) €T and (e, e¢,)€7. Hence, by Lemma 3.9, (x, y)€
and o’ £ p. Thus p = p'.

Let the s-congruences o and o’ induce the normal equivalences 7
and 7'. If p < o' then 7 & 7/, by Corollary 3.8. Let 7 & 7’. Since,
by the above 7 and 7’ induce, in turn, o and o’ it follows from Theorem
2.2 that p & 0’. Hence g is an order isomorphism of I',(X) into 6(S).

4. The case d(¢) # @. Throughout this section we assume that
X is a semilattice, that S = J, and that d(e) = @ for all ec E;. The
representations of Propositions 3.2, 3.3, 3.4 and 3.6 all satisfy this
condition. However, for the main result of this section we shall require
further hypotheses.

LEMMA 4.1. Let X be a semilattice, SS J, and 0(e) = @, for
all ec Es. Let T be a normal equivalence on Es and suppose that T
induces an s'-congruence p on X. Let o, in turn, induce the normal
equivalence t' on Es. Then v’ & 7.

Proof. Let (¢, f)ez’. Then U(e) = U(f). Let x€d(e). Then
xo N 4(f) # @ and so there exists a y € xp such that ye 4(f) or fe
V(y). Thus fe V(y) S V.(y) = V.(x) and so there exist f,, f,€ E such
that

4.1) fzrf(f,f)er and fize,

since f,€ V(x) if and only if f, = e. Similarly, there exist e, e¢,€ Ejy
such that

4.2) e=e,(e,e)eET and e = f.

Now (4.1) and (4.2) are just the statements (3.1) and (3.2) with ¢ and
f replacing ¢, and e¢,. Hence, as in Theorem 3.10, we can deduce
that (e, f) €.

In the absence of the assumption that d(e) = @, for all ec K,
Lemma 4.1 need not hold.

ExampLE. Let I = [0, 1], the interval of real numbers from 0 to
1 under the natural ordering. Let I’ denote the half open interval
[0, 1). Let S be the subsemigroup {e;: 7€ I} of idempotents of .J,, where

_ ({relir <4} if 11,

A(e;) = cn
{frel:r <1} if ¢+=1.

Let 7 be the normal equivalence on S = E determined by the parti-



230 N. R. REILLY

tion S = {e;:¢ < 1} U {e)} of S. Then 7 induces the s-congruence p =
I' X I'" on I' and p, in turn, induces the normal equivalence 7/ = S %
S on S. Thus z c 7.

Even in the presence of the assumption that d(e) = @, for all
e€ E;, we may not have 7 = 7’.

ExAMPLE. Let X be the semilattice of Figure 2.

Let S be the subsemigroup of J, consisting of the idempotents
f> g, b where 4(f) = {u, v, w, x}, 4(g9) = {v, w}, 4(h) = {w}. If  is the
normal equivalence partitioning S as S = {f, g} U {k} then p. has classes
{u, v}, {w}, {x} and p. is an s-congruence.

However, if po. induces the normal equivalence 7’ then 7’ is the
identity equivalence and so 7/ C 7.

THEOREM 4.2. Let X be a semilattice, S be an inverse subsemi-
group of Jy and d(e) # @, for all e S. Let a normal equivalence T
on Eg induce an s'-congruence o0 on X. Let p, in turn, induce the
normal equivalence T’ on K. If any of the following conditions hold
then © = 7'

(1) X s totally ordered;

(2) p is an s'-congruence and X = U..z, 0(e); in particular, if S
s full im Ty;

(3) p is an s-congruence and S = Ty.

Note. If X is totally ordered or, by Theorem 3.10, if S is full
in Ty, then every normal equivalence induces an s-congruence.

Proof. We have from Lemma 4.1, that 7" & = in each case.

(1) Let (e, f) et and suppose that o N 4(e) + @. Without loss
of generality let x € 4(¢). Since X is totally ordered so also must Ej
be totally ordered. If f = e then 4(f) 2 4(e) and zp N 4(f) # @. So
suppose that f < e and that y € 6(f). If y = x then 2 € 4(f) and again
20 N 4(f) + @. Suppose that x > y. Then V(z) S V(y) and so V.(v)S
V.(y). Now let ge V(y). Then g = f, (f,e)e7 and e€ V(x). Hence
ge V.(x). Thus V(y) S V.(x), V.(y) = V.(x) and (z,y)ep. Thus we
again have xpoN 4(f) # @. Thus U(e) = U(f) and conversely, by
similarity. Thus (¢, f) €7’ and so 7 = 7.

(2) Let (¢, f)etr and xzo N 4(e) + @. Let xe d(e) and x€d(k).
Then k < e and (k, kf) = (ke, kf)et. Letyed(kf). Then, by Propo-
sition 2.8, (x, y) € 0 and ye 4(kf) = 4(f). Thus U(e) < U(f) and con-
versely, by similarity. Hence (e, f) €7’ and 7 = 7',

(3) Let (¢, f)er. Let 4d(e) = < x, > and 4(f) = < %, >. By
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Proposition 2.3, (z,, z;)€p. Let xoN 4(e) # @ and suppose that xe
d(e). Then z < x, and (x, 2 A %) = (® A 2, © A\ ;) €0, since o is an
s-congruence. Also x A xz,€ 4(f) and so xo N 4(f) +# @. Hence U(e)S
U(f) and conversely. Thus (¢, f) €7’ and 7 = 7.

5. Inducing congruences on S. Let X be a semilattice, S & J,
and o0 be an s-congruence on X. We have seen that o indhces a
normal equivalence on E and in this section we show how to define
two congruence relations on S in the corresponding #-class directly.
In certain circumstances these will be the smallest and largest con-
gruences in that #-classes.

PROPOSITION 5.1. Let X be a semilattice, S be an inverse subseni-
group of Jy and let p be an s'-congruence on X. Define the relation
E=¢&, on S by

(@,0)eé= (i) Ula) = U ;

(i) xed(a), ye 4(b) and (x, y)€po
implies that (xa, yb) € p.
Then & is a congruence on S, wn fact, the congruence induced on S
by the homomorphism « of Theorem 3.7. If o is induced by some
normal equivalence ¢ on Ejs, as in Theorem 2.2, if © = &|z, and d(e) +
@, for all ec Es, then & = p., the maximum congruence in the 6-
class containing &.

Proof. Since & is just the congruence on S induced by the homo-
morphism « of Theorem 3.7, the first part of the theorem requires no
verification.

For the final assertion, since we must have & & p., it suffices to
show that x S ¢&.

Let (a, b) € .. Then (aa™, bb™*) € 7, while 4(a) = 4(aa™) and 4(b) =
4(bb~Y). Hence, by the definition of 7z, ¢ and b satisfy condition (i).
Now let (z, y) €, x€ 4(a) and ye 4(b). We want (xa, yb)€p. Since
0 is induced from o we wish to show that V,(xa) = V,(yb).

Let e€ V(xa). Then zac 4(e) and x€ d(aea™). Hence aea'e
V(x) = V,(y) and so, for some f,, f,€ Es, we have

aea™ = f,, (f, f)€o and f.e V(y).

Hence yb = yf.be 4(b'f:b), where (b7'f.b, b7'f,b) € 0, since o is a normal
equivalence. Also (b7'f,b, a”'fia) €7, by Lemma 1.2, since (a, b) € ..
But, by Lemma 4.1, = < 6. Hence (a"'f.a, b7'f,b) € ¢ and

e = a'aea”'a = a”'fa, (@7fa, b7b)eoc and bifbe Vyd) .

Thus ee V,(yb) and V,(xa) S V,(yb). By similarity, we have equality
and so (xa, yb) € o, as required. Hence (a, b) €&, . = & and so g, = &.
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PROPOSITION 5.2. Let X be a semilattice and S be an inverse sub-
semigroup Jy. Let o be an s'-congruence on X. Define the relation
n on S by

(@, ben= (i) Ule) = Ub)

(i) If xoe(a) = U) then there exists a y€ x0 such
that ye 4(a) N 4(b) and za = zb, for all 2=y, z€
X.
Then 7 s a congruence on S. If 7|z, = T and either of the following
two conditions holds then 7 = 0., the minimum congruence in the 6-
class containing 7:
(1) S2E,,;
(2) p is an s-congruence and S 1s full in Ty.

Proof. Let (a,b)en. We first show that (a, b) € &, where ¢ is as
in Proposition 5.1. Then, for any ce€ S, we shall have (ac, bc) and
(ca, cb)e & and so, since & is a congruence, we shall have U(ac) =
U(bc) and U(eca) = Ulca) = Ulced).

Since the conditions (i) are identical, we need only verify that
a and b satisfy condition (ii) in Proposition 5.1. Let z¢€ 4(a), y € 4(b)
and (z,y) € p. Then there exists a y, such that (z,y,) € o and za ==zb,
for all 2<y,. Hence y,a=y,b, (xa, y,a) € o, (yb, y,b) € p and so (za, yb) €
0. Thus (a, b €é& Uac) = U(bc) and Ulca) = U(cd).

Now let xzpe U(ac) = U(bc). Then zpo N 4(a) # @ and xp N 4(b) +
@. Hence there is a y,€xo such that za = 2b for all z < y,. Let
y:€x0 N d(ac), ys€ w0 N 4(be) and y = y, A ¥: A ¥s.

Then yexoN d(ac) N 4(be) and for all z <y, zac = zbe. Thus
(ac, bec) € 7.

The proof that (ca, ¢b) € » is similar and so 7 is a congruence.

To show that » = 0., we need, by Lemma 1.2, to show that, for
any (a, b) €7,

(1) (aa™, 00 erz;

(2) there exists an ec E such that (¢, aa™) €7 and ea = eb.

The first requirement is satisfied since 7 is a congruence and
77’153 =T7.

Now suppose that S2 E;,. Let U(a) = U(b) = {w;0: 1€ I}. For
each i€ I, let y;€x,0 be such that za = 2b, for all z < y;. Let e be
the idempotent S with domain U,.; <%;>. Then clearly, by the de-
finition of e, U(aa™) = U(e) =< U(¢). On the other hand, we clearly
have e<aa™ and so U(e) S U(aa™"). Thus Ule) = U(aa™) and (¢, aa™) €
7. Also ea = eb and so (a, b)€o.. Thus 7 =o..

Finally suppose that p is an s-congruence and that S < T,. Let
ae™ = e, and bb™* = ¢,. Since (e, ¢,) €7, by Lemma 8.9, (z, y) € 0 and
so there exists a z such that (z,2)ep and za = 20 for all 2z, < z.
Then, again by Lemma 3.9, (e, ¢,) €t while clearly e,a = ¢,b. Thus
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(@, )€ o0, and n = 0..

COROLLARY 5.3. Let S be a full inverse subsemigroup of Ty. Let
T be a normal equivalence on Es and let T induce the s-congruence o
on X. Then the congruences & and 1 of Propositions 5.1 and 5.2 are
respectively p, the maximum congruence, and o., the minitmum con-
gruence in the 6-class determined by T.

Proof. That 7 induces an s-congruence o and that p, in turn
induces 7 follows from Proposition 3.10. The result then follows from
Propositions 5.1 and 5.2.

6. O(S) and I'y(X). By a lattice (semilattice) homomorphism «
of a lattice (semilattice) A into a lattice (semilattice) B we mean a
mapping « of A into B such that (x A y)a = 2a A ya and (* V y)a =
za \ ya((x A y)a = za A ya) for all x, ye A. A lattice (semilattice)
isomorphism is then a one-to-one lattice (semilattice) homomorphism.

In the next two theorems we essentially summarize some of the
previous results.

THEOREM 6.1. Let X be a semilattice. If X is a full inverse
subsemigroup of Jy, them the mapping a:tT— 0., of Theorem 2.2,
from O(S) into I'(X) is a semilattice homomorphism onto I'y(X).

If S is a full tnverse subsemigroup of Ty then « is a lattice iso-
morphism of O(S) onto I'y(X).

If X 1s totally ordered and o(e) # @, for all ec Ey, then « is an
order isomorphism of O(S) into I'y(X).

Proof. That @ maps O(S) onto I",(X), when S is full in J,, fol-
lows from Theorem 3.10. Let 7, and 7, be normal equivalences, let
,=7,N7, and p; = (t)a, © =1, 2,3. Then from Theorem 2.2, o, &
0. N 0. Let (z, y)€p,N 0., Then by Proposition 2.3, (e,, e,) €7, N T, =
7;. Hence, again by Proposition 2.3, (x, y) € 0,. Thus p, = o, N p, and
« is a semilattice homomorphism.

If S is full in T, then by Proposition 3.10, « is a one-to-one
semilattice homomorphism of @(S) onto I',(X) and hence is a lattice
isomorphism.

If X is totally ordered, then every c-congruence is an s-congruence
and so, by Proposition 2.3, a is an o-isomorphism of ©(S) into I,(X).

THEOREM 6.2. Let X be a semilattice and S be an inverse sub-
semigroup of Jy. Let @ denote the mapping o — 7, of Corollary 3.8.
If S is full in Jy then B is an o-isomorphism of I'y(X) into O(S).
If S is full in Ty then B = o™, where « 1is defined as in Theorem
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6.1.
If X s totally ordered and d(e) = @, for all ec Ky, then B is an
order preserving mapping of I'(X) onto O(S).

Proof. If S is full in J, then, from Theorem 3.10, 8 is an order
isomorphism of I',(X) into O(S).

If S is full in T, then, from Theorem 3.10, Ba = ¢, and,
from Theorem 4.2, aB = (o).

Hence g = a™.

Finally, if X is totally ordered and d(e) = &, for all ec Ej, then
B is order preserving, by Corollary 3.8, and 8 maps I'(S) onto 6(S)
by Theorem 4.2.
If S is a full inverse subsemigroup of J,, it is natural to ask to what
extent the properties of S are determined by those of SN T,. We
shall denote by SI,(X) the lattice of s-congruences under S to dis-
tinguish it from the lattice of s-congruences T7',(X) under some other
semigroup 7.

PROPOSITION 6.3. Let X be a semilattice and S be a full inverse
subsemigroup Jy. Let T= SN Ty. Then SIy(X) = TIryX).

Proof. Clearly SI'(X)STIr'(X). Letpe TryX), (x,y)ep, » ye
A(a), for some z, ye X, a€ S. Let e, denote the idempotent of T with
domain < x >. Since p€ TI(X), we have (x, s Ay)epand x, 2 A ye
A(a). Also x, x A ye d(e,). Hence z, v A\ ye d(e,a) and e,ac T. Hence
(we,a, (x A y)e,a) € p; that is, (za, (x A y)a) € p. Similarly (ya, (x A y)a) €
0 and so (za, ya)€ 0. Thus pe SI'y(X) and we have the result.

COROLLARY 6.4. Under the hypothesis of Proposition 6.3, there
exists a semilattice homomorphism of O(S) onto 6(T).

Proof. The result follows from Theorem 6.1 and Proposition 6.3.

REMARK. Let S be an inverse semigroup and # be the maximum
idempotent separating congruence on S. Since 6O(S) = O(S/¢) and
since, by Proposition 8.2, S/¢ is isomorphic to a full inverse subsemi-
group of T, one might question the need to study other kinds of
inverse subsemigroups of J, apart from those that are full subsemi-
groups of Ty. (If S is a full inverse subsemigroup of T, then it is
not difficult to see that the representation of S as a semigroup of
partial transformations of X is isomorphic in a natural way to the
repesentation of S given by Proposition 3.2. on E;.) However, this
assumes a prior knowledge of the semigroup sufficient to identify the
representation of S on E;. If the semigroup is known as a semi-
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group of partial transformations, it may be quite difficult to identify
the representation on E while it might be relatively simple to work
with the semigroup of partial transformations as given.
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