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The sums studied in this paper are defined as follows.
For any two arithmetical functions f and g, let

dl(m,k)

where the sum extends over the divisors of the greatest
common divisor (m, k) of the positive integers m and k. It
should be noted that m and % do not enter symmetrically in
(1) unless g is constant.

The sums S; ,(m, k) generalize the Dirichlet convolution
(2) (fg)(k) = 3, f(@)g(kid) ,

to which they reduce when (m, k) = k. Multiplicative properties and
finite Fourier expansions were obtained in [1]. A famous special case
is Ramanujan’s sum c¢.(m), the sum of the mth powers of the primi-
tive kth roots of unity, for which we have
(3) c(m) = >, exp 2mimh/k) = > de(k/d) ,

d)(m,k)

h mod k
(hyk)=1

where 2t is the Mobius function. The second sum in (3) is an example
of (1) with f(n) = n and g(n) = px(n) for all n. When (m, k) =1 we
have ¢,(m) = p(k), and when (m, k) = k we have ¢,(m) = @(m), Euler’s
totient.

In a study on cyclotomic polynomials, Holder [4] showed that
Ramanujan’s sum can also be expressed in closed form as follows:

P(m)
4 c,(m) = — 22— p(m/(k, m)) .
(4) k(M) ik, m))#( [(k, m))
The number on the right is called the Von Sterneck function and is
denoted by @(m, k). Thus, (4) states that

cp(m) = O(m, k) .

The function @(m, k) was encountered by Von Sterneck in 1902 [11] in
a study of restricted partitions with summands reduced to their least
residues module m. Its properties were also studied by Nicol and
Vandiver [7].

We derive further properties of the sums S; ,(m, k). Some of them
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generalize known properties of Ramanujan’s sum or Von Sterneck’s
function. Others, when specialized, give new properties of these num-
bers. The methods of this paper are simpler than those used by
earlier writers. In particular, roots of unity and restricted partitions
mod m play no role.

2. Properties of Dirichlet convolution. The Dirichlet convolu-
tion (2) provides a natural setting for the results of this paper. It
is well known that the operation * is commutative and associative and
has the identity element I, where

RO N

If g(1) = 0 we let g~* denote the Dirichlet inverse of g, defined by the
equation gxg~' = I. In particular, #*(n) = 1 for all =.

The set of all functions g with g(1) # 0 forms an abelian group
under the operation . The subset of multiplicative functions is a
subgroup. [A function ¢ is called multiplicative if g(1) =1 and if
g(mn) = g(m)g(n) whenever (m, n) = 1.]

If a is any arithmetical function and if g(1) = 0, the equation

S(n) = % a(d)g(n/d)
holds if, and only if,
a(n) = dZml S(d)g~(n/d) .

The special case with g = ¢ is the usual Mobius inversion formula.
By introducing the function

1 if dn

(5) =0 it dim,

we can rewrite the sum in (1) in two alternate forms:

(6) Sy,4(m, k) = dlZm a,qof (d)g(k/d) ,
and
(7) Sy ,o(m, k) = %“ Ao f (@) g(k/d) .

For fixed %k, Equation (6) expresses S;,(m, k) as a Dirichlet con-
volution,

(8) Sy,o(m, k) = (hyxp£™)(m) ,

where
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hi(d) = ay,q.f (d)g(k/d) .

For fixed m, Equation (7) expresses S, ,(m, k) as another Dirichlet con-
volution,

(9) Sy,o(m, k) = (wnxg)(k) ,
where

Wa(d) = A,af (d) .

3. Dirichlet convolutions involving S;,(m, k). This section
derives arithmetical identities in the form of divisor sums whose terms
contain the numbers S; ,(m, k).

NoTATION. The function a is defined by (5) and, unless other-
wise stated, the functions f and ¢ are arbitrary. For any arithmeti-
cal function a, we denote the Dirichlet convolution axt~ by a*. Thus,

a*(n) = d%‘:a(d) .

For example, we have pu* = uxp™' = I, and (#")* = o, where o(n) is
the sum of the divisors of «.

THEOREM 1. If n=1 k=1 we have
(10) 38040, B) = 3, F@gk/d)o(n/d) .

Proof. For fixed k, let S(m) = S;,,(m, k). Then by (8) we have
S(m) = (hxp™)(m), so

387,400, B) = 3 S@) = (S+)(w)

= (s 7)) = (huro) ()
= S e @aido(nid) = 3, F@glidom/d)

which proves Theorem 1.

ExXAMPLES. Theorem 1 has a number of interesting corollaries.
If (n, k) = » we obtain

dlzn S;,.(d, k) = dZM.L f(@g(k/d)o(n/d) .
If £ = n this gives

22 85,0(d, m) = 3, f(d)g(n/d)o(n/d) .

When g = ¢+ we can write this as
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1) 22 85.u(d, ) = 35 Ud)o(d) f (n]d) .

If f is completely multiplicative, that is, if f(ab) = f(a)f(b) for all
a, b, and if f(n) # 0, then f(n/d) = f(n)/f(d) and (11) gives us

3 85.40d, m) = f(n) 3, pd)o@)]F @)

=@ I (1-%8) = s 11 (1 - +0s)

where the product is taken over all prime divisors of n. The special

case f(n) = n gives a formula of Nicol and Vandiver ([7], Theorem
VIII),

(12) S 0, n)=nﬂ(1—~—2—-).
din pln p
We also have the following more general result.

THEOREM 2. Let a*(n) = >4, a(d), where a(n) is any arithmetical
Sunction. Then for n =1, k=1 we have

13) 2870, Ban/d) = >, f(d)g(k/d)a™(n/d) .

Proof. With the notation used in the proof of Theorem 1 we have
dIZn Sr.o(d, B)a(n/d) = (Sxa)(n) = (hxa)(n) = (hpxa™)(n)
= %‘, a,qf (d)g(k/d)a* (n/d) =, %Zdllkf (d)g(k/d)a*(n/d) ,

which proves Theorem 2.

ExAMPLES. When a = ¢! then a* = 0 and Theorem 2 reduces to
Theorem 1. When a = ¢ then a* = I and the second sum in (13) is

3, F@eeidarm)d) = 3, F@okiddin] = a.f mo(kin) .
Hence (13) becomes

_ (f(m)g(k/n) if nlk,
22 87.0(d, R)pe(nfd) = 1 it onyk .

This can also be deduced by Mobius inversion of (6) for fixed k.
When % = n, Equation (13) can be written as

22 81.4(d, maln/d) = 3, g(d)a™(@)f (n/d) .

If we take g = ¢ and assume that a is multiplicative and that f is
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completely multiplicative, with f(n) == 0, we obtain the following pro-
duct formula, a further generalization of (12):

B a*(p)
. 8,..(d, ma(n/d) = f(m) TI <1 - W> '

THEOREM 3. If n=1 m =1 we have

(14) 21 8,,(m, d) = 3. f(d)g*(n/d) ,

din dl(m,n

where g*(n) = >4, 9(d).

Proof. For fixed m, let S(k) = S;,(m, k). Then by (9) we have
S(k) = (w,=+g)(k), so

22 87,5(m, d) = 3, 8(d) = (S«p™)(m)

= (Wprgx ) (M) = (w,xg*)(n)
= %am,df(d)g*(%/d) ZMZ f(d)g*(n/d) ,

n,d|m

which proves Theorem 3.

ExamMpLES. For the special case g = ¢t we have ¢g* = I so (14)
becomes

(f(n) it nim,

(15) X Spum, d) = 3% f(@d)]d/n] = a,,.f(n) = .
din di(m,n) (O lf 7?//{/7721 .
When f(n) = n this gives a formula of Von Sterneck ([7], p. 825),

n if n|m,
D(m, d) =
d;zn (m, d) 0 if nfm.

The type of argument used to prove Theorem 3 also gives the
following more geneneral reseult.

THEOREM 4. For any arithmetical function a, let B = gxa. Then
for m=1,n=1 we have

(16) 1Sy (m, da(n/d) = 31 f(d)Bn/d) .
If g(1) = 0 and a = ¢!, then B = I and (16) reduces to

f(m) if njm,

> Srolm, d)g™(nfd) = . f(0) = 1 it nim

When ¢g = g this is the same as formula (15).



286 T. M. APOSTOL

ExaMpPLES. When g = ¢ and a(n) = n, then B = pxa = @ and (16)
implies

SdSp(m )= 5 f@Pm/d) .

When f(n) = n this gives the following identity for Von Sterneck’s
function,

>, dd(m, n/d) :d”;n) de(n/d) .

din

4, Partial sums involving the functions S;,(m, k). The theo-
rems of this section deal with sums whose terms include the numbers
S; ,(m, k) where one of m or k is fixed and the other ranges over
consecutive integers. First we introduce some notation.

As in the previous section we denote by a* the divisor sum

a*(n) = > a(d) ,
din
where a is any arithmetical function. For real x = 1 we also write

aMx) = > a(n),

nN=C

and we put a™zx) = 0 if © < 1. We shall make use of the following
lemma.

LEMMA. For any two arithmetical functions a and b we have

é(a*b)(n) = 1é‘;a(n)bA(m/n) .

Proof. We have
>, (axb)(n) = 3, 3 a(d)b(n/d) .

n=w n=x din

If d|n we can write n = qd and we obtain

2 2 (dbn/d) = 3, a(d) 3, b(9) = 3, a(d)b’(v/d) -

THEOREM 5. For k= 1,n =1, and any arithmetical function a
we have

") S 8ps(m, B (nfm) = 5 F(d)g(k/d)@*) (m/m) -

Proof. We use the lemma, then Equation (8), and then the lemma
once more to get
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gsf,g(m, k)a’ (njm) = él(hk*y“‘*a)(m) = mZ:(hk*a*)(m)
= 3 hu(m) (@) (nfm) = 3% @ f (Mgl m)(@)(nm)
which proves (17).

ExampLEs. If we take a = I, then a”(x) = 1 for all = 1 and
a*(n) = 1 for all », so (a*)"(x) = [»], and Theorem 5 becomes

(18) S Spum, 1) = 3 f@g(kidn/d] -

If k|n, say n = qk, then every divisor d of £ is <n and (18)
takes the form

ESram ) = ae 5 LD () -

For the special case f(n) = n this gives us

qk

Sy..(m, k) = qgkg™(k) .

m=1

In particular, when g = ¢ we obtain the following formula of Von
Sterneck ([7], p. 825):

q if k=1

ql
D(m, k) = gk S 1(d) =
200, k) = ak 3, @) =10 e o

THEOREM 6. For m =1, n = 1 and any arithmetical function a
we have

(19) 3 Spm, B (wll) = 5, Fd)(g+0)"(nfd) .

Proof. This time we use the lemma in conjunction with (9) to
obtain

ki:,le,g(m, k)a/\(n/k) = lé:l (’wm*g*a)(k) = é wm(k)(g*a)’\(n/k)
= éam,kf(k)(g*a)/\(n/k) :k)mg_s_nf(k)(g*a)/\(?l/k) .
This proves Theorem 6.

ExavpLEs. If a = g7 we have gxa = [ and I"(x) = 1 for all v =
1, so Theorem 6 gives us the formula
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(20) 3 Spo(m, WG /k) = 5, f(d) .

In particular, if ¢ = ¢ then (97)"(x) = [x] and (20) becomes

k=1

n n _
S 2 ]swm 0 =, 3 f@) .
When f(n) = » this gives a theorem of Nicol ([6], p. 965),

3 [%]@(m, W= 3 d=olmmn.

k=1

Here o(m, n) is the sum of the divisors of m which are < x.
If we take a = I, then g+a = g and Theorem 6 becomes

(21) 3 Spu0m ) = 5 Fd)grnd) -

In particular, if f(n) = n and g = ¢ we obtain the following formula
for the sum of the mth powers of all the primitive 4th roots of unity
for k=1,2, -, n:

Sem) = 3 dp(nfd) .

m,dEn

When n = m this becomes
(22) 3, cm) = 3 dge(m/d) .
The right-hand member of (22) has the form (fxu*)(m) where f(n) =

n. Since f~(n) = np(n), inversion of (22) gives us the following for-
mula for the partial sums of the Mobius function:

23) 3 un) = m 3 ED S o a)

THEOREM 7. For k=1, n =1 and any completely multiplicative
Sunction a we have

ga(m)sf,g(m, k) = > a(df@)gk/d)a’(n/d) .

1 k,dsn

Proof. We use formula (8) to obtain
3 a(m)Sy,,(m, k) = 3} a(m) 3 ufd) = 3 6dh(d) 3, ala)

= 3 o@h@)anfd) = 5, ad)f@Delk/d)a(n/d) .
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This proves Theorem 7.

ExAMPLES. If a(n) = n then a”(x) = [¢]([#] + 1)/2 and Theorem
T gives us

n

(24) , MS;,o(my k) = é— df(@)g(k/d)[n/di([n/d] + 1) .

m= dlk,d<n

If ik|n, say n = gk, then [n/d] = qk/d if d|k and (24) becomes

5 S,y (m, k) = % Y %ﬂgm/@ + 2ok 3, f@glk/d) -

m=1

When g = ¢ and f(n) = » we obtain the formula

,, Talg+1D) i k=1,
$ mom, k) = %q%zmc) + —;—qk@(k) =

m=)

%chp(k) i E>1.

When ¢ = 1 this gives Theorem III of Nicol and Vandiner ([7], p.
830).
In Theorem 5 of [1] it was shown that for R(s) > 1 we have

(25) 3 BB _ o) 5 r@gtk/d)d
where {(s) = >3-, n™°. Theorem 7 leads to another proof of this for-

mula and also gives an estimate for the growth of the partial sums
of the series on the left. Taking a(m) = m~*, and putting o = R(s),
we have (see [2], p. 618)

1 X

(26) @) =3 - == : L) + O@™) .

This formula is valid for all complex s 1 with ¢ > 0. Using this
in Theorem 7 and taking »n = ¢k, we obtain the formula

- $ Bl B _ 08" 5 pa)g(tidya
( m=1 — dlk

+808) 2, f(d)g(k/d)d™ +0(g™k™ 2, [ f(d)g(k/d)]) -

If ¢ > 1, the terms on the right which contain ¢ approach 0 as ¢ — <
and we obtain (25).
For the special case f(d) =d, g = 1, we have

d% f(@gk/d)d™" = ;Zm pk/d)y =0 if kE>1.
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In this case the first term on the right of (27) vanishes if £ > 1 and
the third term approaches 0 as ¢ —  when ¢ > 0. This gives a
celebrated formula of Ramanujan ([9], p. 199)

540 _ (o) 3 apesd)

valid for £ > 1 and all complex s % 1 with ¢ > 0.
For s =1 we have, instead of (26), the estimate

at(x) = 3 1 _togw+C+ O(i>,
msx M €
where C is Euler’s constant. Using this in Theorem 7 with n = ¢k
we obtain the formula
an Sf g('m’ k)

m=1

= (C +logk + log q) 3, f(d)d™g(k/d)
— 2. f(@d7g(k/d) log d + Olg™k™ 35 | f(d)g(k/d)]) -

This shows that the series >in_, S; (m, k)/m converges if and only if
the coefficient of log ¢ vanishes, that is, if and only if

(28) ME; f(dd g(k/d) =0,
in which case we obtain

3 Sf,v(::’ k) - _ > f@d~g(k/d) log d .

m=1

When f(d) =d and g = g, Equation (28) is satisfied for £ > 1 and we
obtain another formula of Ramanujan ([9], p. 199),

)y "k“”) = — 3 uk/d) log d = — A(K)

m=1

where k& > 1 and 4(k) is Mangoldt’s function.

THEOREM 8. For m =1, n =1 and any completely multiplica-
tive function a we have

3\ a(l)S.(m, B) = 5, a(d)f(@)(ag)(n/d) ,
where (ag)™(r) = Xasr a(d)9(d)-

Proof. We use formula (9) to obtain
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S a(l)S(m, ) = 3 a(b) 3, wa(do(k/d) = 3 a(dwa(d) 3, alg)g(a)

= 3} a(d)a, of (@) (a9)"(n/d) = 2 ad)f(@)(ag)(n/d) .

m,d=n

ExampLES. In Theorem 5 of [1] it was shown that

(29 550 B _ 6o 5 sy
for each s for which the Dirichlet series G(s) = 3=, g(r)r™° is con-

vergent. We ban derive this also from Theorem 8 and obtain a for-
mula for the partial sums of the series on the left.
Taking a(n) = n~° we have

(ag)(@) = 3, g(ryr— = G(s) — 3, gl
if the series for G(s) converges. Using this in Theorem 8 and taking

n = gm we find

k=1

ﬁﬁf_(l:n_k) = G() 3 f(@)d~ — 3 f@d)d= 3 g

Letting ¢ — - we obtain (29).
In the special case with f(d) =d, g = ¢, we have

G(s):gﬁqfsﬂ=$ for R(s)>1.

This series also converges for s = 1 and G(1) = 0. Also,

&(Zm f(d)d= = % A= =o0,_,(m) .

In this case (29) gives another formula of Ramanujan ([9], p. 185)

ick(m) _ 0,(m)

=Lk &(s)
valid for R(s) > 1 and also for s = 1.

5. An extension of Smith's determinant. For any arithmetical
function f, let

INCENOR
and let A = [f*(m, k)] be the » X n matrix whose m, k entry is the

value of f* at the greatest common divisor (m, k) of m and k. H. J. S.
Smith [10] proved the determinant formula
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(30) det A= f)f(2) -+ f(n) .

Dickson ([3], pp. 122-129) reports on several papers by Catalan, Cesaro,
Gegenbauer, Mansion, and others, devoted to proofs and extensions of
(30). D. H. Lehmer [5] also generalized (30) to higher-dimensional
determinants.

A simple proof of (30), suggested by Polya and Szego (see [8],
p. 330), is based on the observation that A = BC*!, where B and C
are lower triangular n X » matrices with det B = f(1)f(2) «-- f(n)
and det C = 1. This section extends this proof to provide the following
new generalization of (30).

THEOREM 9. Let A be the m X n matrix whose m, k entry is
Sr,.(m, k). Then we have

31) det A = fF(1)f(2) --- f(n)g1)" .

Proof. We express the n X n matrix A as a product, 4 =
B(f)C(g)!, where B(f) and C(g) are lower triangular » X n matrices
given by

B(f) = [@nif(m)],  C(9) = [anrg(m/k)] .
Then m, k& entry of B(f)C(g)t is equal to

3\ @ f (et 0k = 5 F@Igr) = Sy.0(m, B)

so A = B(f)C(g)’, as asserted. Since det B(f) = f(1)+-- f(n) and
det C(g) = g(1)*, we obtain (31).

ExAMPLE. When f(n) = n and g = g, we obtain the following
formula for the determinant of the » X » matrix whose m, k entry
is the Ramanujan sum c¢,(m):

det [c,(m)] = n! .
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