ON p-THETIC GROUPS

DAVID LEE ARMACOST AND WILLIAM LOUIS ARMACOST
ON \(p \)-THETIC GROUPS

D. L. ARMACOST AND W. L. ARMACOST

The subject of this paper is a class of locally compact abelian (LCA) groups. Let \(p \) be a prime and let \(\mathbb{Z}(p^\infty) \) denote the group of complex \(p \)-th roots of unity equipped with the discrete topology. An LCA group \(G \) is called \(p \)-thetic if it contains a dense subgroup algebraically isomorphic to \(\mathbb{Z}(p^\infty) \). It is shown that a \(p \)-thetic LCA group is either compact or is topologically isomorphic to \(\mathbb{Z}(p^\infty) \). This fact leads to the formulation of a property which characterizes the \(p \)-thetic, the monothetic, and the solenoidal groups. Applications to some purely algebraic questions are presented.

Let us take a paragraph to settle notation. Throughout, all groups are assumed to be LCA Hausdorff topological groups. Some LCA groups which we shall mention frequently are the integers \(\mathbb{Z} \) taken discrete, the additive group \(\mathbb{Q} \) of the rationals taken discrete, the additive group \(\mathbb{R} \) of the real numbers with the usual topology, the circle \(T \), the cyclic groups \(\mathbb{Z}(n) \) of order \(n \), and the quasicyclic groups \(\mathbb{Z}(p^\infty) \), where \(p \) is a prime. Probably the most important group which we shall use is the group of \(p \)-adic integers, where \(p \) is a prime (see [2, §1] or [7, §10] for the definition and notation). The group of \(p \)-adic integers with its usual compact topology is written \(\mathbb{J}_p \); we use \(I_p \) to stand for the \(p \)-adic integers with the discrete topology. If \(G \) is an LCA group, then \(\hat{G} \) stands for the character (or dual) group of \(G \). In [7, 25.2] it is shown that the dual of \(\mathbb{J}_p \) is \(\mathbb{Z}(p^\infty) \). If \(G \) is a group, we let \(B(G) \) denote the torsion subgroup of \(G \), while \(B_p(G) \) denotes the set of elements of \(G \) whose order is a power of a fixed prime \(p \). Topological isomorphism is denoted by \(\cong \).

THEOREM 1. Let \(G \) be a \(p \)-thetic LCA group. Then either \(G \) is compact or else \(G \) is topologically isomorphic to \(\mathbb{Z}(p^\infty) \).

Proof. Since \(G \) is \(p \)-thetic, there is a continuous homomorphism \(f: \mathbb{Z}(p^\infty) \rightarrow G \) having dense image. Hence the transpose map \(f^*: \hat{G} \rightarrow \mathbb{J}_p \) is one-one [7, 24.41]. We wish to show that either \(\hat{G} \) is discrete or \(\hat{G} \cong \mathbb{J}_p \). We first note that \(\hat{G} \) must be totally disconnected, since \(f^* \) is one-one and \(\mathbb{J}_p \) is totally disconnected. Thus \(\hat{G} \) contains a compact open subgroup \(U \). If \(U \) is trivial, then \(\hat{G} \) is discrete. Otherwise, \(f^*(U) \) is a nontrivial compact subgroup of \(\mathbb{J}_p \) and is hence open in \(\mathbb{J}_p \) [7, 10.16(a)]. Now the restriction of \(f^* \) to the compact subgroup \(U \) is a topological isomorphism from \(U \) onto the open subgroup \(f^*(U) \)
of J_p. Hence f^* is an open mapping, so that \hat{G} is topologically isomorphic to $f^*(\hat{G})$. Since every closed subgroup of J_p is topologically isomorphic to J_p itself, we conclude that $\hat{G} \cong J_p$. This completes the proof.

Now let G and H be LCA groups. We say that G is H-dense if there exists a continuous homomorphism $f: H \rightarrow G$ such that $f(H)$ is a dense subgroup of G. Thus the monothetic groups are the Z-dense groups, the solenoidal groups are the R-dense groups, and the p-thetic groups are just the $Z(p^\infty)$-dense groups. As is well known, the LCA monothetic and solenoidal groups are either compact, or else topologically isomorphic to Z and R, respectively [7, 9.1]. As we have just proved, a p-thetic LCA group is either compact or is topologically isomorphic with $Z(p^\infty)$. These facts lead us to the very natural question: For which LCA groups H is it the case that every H-dense LCA group G is either compact or is topologically isomorphic to H? Since every H-dense group G is automatically compact for compact H, the question is of interest only for noncompact H. It is not difficult to determine the answer to this question, and our answer will show that, in a sense, the study of the p-thetic groups complements the study of the monothetic and solenoidal groups.

Theorem 2. Let H be a non-compact LCA group. The following are equivalent:

1. Every H-dense LCA group G is either compact or is topologically isomorphic to H.
2. H is topologically isomorphic with either Z, R, or $Z(p^\infty)$, where p is a prime.

Proof. We have already shown that (2) → (1). For the converse, assume that (1) holds for H. We show that any strictly stronger topology on \hat{H} which makes \hat{H} into a locally compact group must be the discrete topology. To this end, let D denote \hat{H} with a strictly stronger locally compact topology. Then the identity map $i: D \rightarrow \hat{H}$ is continuous and one-one, so that the transpose map $i^*: D \rightarrow \hat{D}$ has dense image [7, 24.41]. Since (1) holds, either $\hat{D} \cong H$ or else \hat{D} is compact. Since the first alternative has been ruled out, we conclude that D is discrete, as we wished to show. We now invoke [9, Theorem 2] or [10, Theorem 2.1] to conclude that \hat{H} contains an open subgroup U which is topologically isomorphic with either T, R or J_p for some prime p. Hence \hat{U} is a quotient H by a closed subgroup. If $\pi: H \rightarrow \hat{U}$ is the projection of H onto \hat{U}, we conclude from (1) that either $H \cong \hat{U}$ or else \hat{U} is compact. Since \hat{U} is not compact, we conclude that $H \cong \hat{U}$, so that $H \cong Z$, $H \cong R$, or $H \cong Z(p^\infty)$. Thus (1) → (2), which completes the proof.
Since a compact group is p-thetic if and only if its discrete dual is isomorphic to a subgroup of the discrete group I_p of p-adic integers, we will do well, before mentioning some examples and simple properties of p-thetic groups, to recall a few basic properties of the group I_p, all of which may be found in [4] and [5]. The group I_p is a reduced, torsion-free group of cardinality (and hence rank) of the power of the continuum. It contains an isomorphic copy of the group Q_p consisting of all rational numbers with denominators prime to p. The group I_p contains no elements of infinite p-height, but every element has infinite q-height if q is a prime different from p (we say that an element x in an additively written group G has infinite p-height if the equation $p^ny = x$ can be solved for y in G for an arbitrary positive integer n).

We now mention a few examples of p-thetic groups. The circle T is p-thetic for all primes p. In fact, since I_p has rank the power of the continuum, it contains isomorphic copies of the free abelian group of rank M if M does not exceed the power of the continuum. Thus the torus T^n is p-thetic for all p if and only if M does not exceed the power of the continuum. Other examples of p-thetic groups are \hat{Q}_p and \hat{I}_p. These groups are p-thetic for only the one prime p.

The group \hat{I}_p (which is the Bohr compactification of $Z(p^\infty)$) is the “largest compact p-thetic group” in the sense that every compact p-thetic group (where p is a fixed prime) is a quotient of \hat{I}_p by a closed subgroup.

Every compact p-thetic group is a connected monothetic group [7, 25.13] and is hence solenoidal [7, 25.14]. Obviously, the torsion subgroup of a p-thetic group is dense in the group, but it is easy to give examples of compact solenoidal groups with dense torsion subgroup which are not p-thetic for any prime p. For example, let G be the dual of the direct sum (taken discrete) of the groups Q_p and Q_q, where p and q are distinct primes. It is easy to see that G could not be isomorphic to a subgroup of a p-adic integer group (see the remarks above about p-height), and the fact that G has dense torsion subgroup follows from [8, Theorem 2] or [1, Proposition 7].

Professor L. Fuchs has kindly informed one of the authors that, to the best of his knowledge, necessary and sufficient conditions for a group to be embeddable in \hat{I}_p are unknown. Therefore we are unable to give intrinsic characterizations of the p-thetic groups, as we can for the monothetic and solenoidal groups (in terms of weight, rank, etc.). The remainder of this paper will be concerned with certain special p-thetic groups and their application to the theory of infinite abelian groups.

Theorem 3. Let G be a compact connected group of dimension one. Then either $G \cong \hat{Q}$ or else G is p-thetic for some prime p.
Proof. If G is torsion-free it follows from [7, 24.28 and 25.8] that $G \cong \hat{Q}$. Otherwise G contains an isomorphic copy H of $Z(p^\infty)$ for some prime p, by the structure theorem for divisible groups [7, A. 14] and the fact that a connected LCA group is divisible [7, 24.24]. We shall show that the closure \bar{H} of H is dense in G. Since H is divisible, it follows that every non-trivial continuous character of \bar{H} has infinite range, so that (\bar{H}) is torsion-free. But $(\bar{H}) \cong \hat{G}/A(\hat{G}, H)$, where $A(\hat{G}, H)$ is the annihilator of H in \hat{G} (see [7, 24.5]). Since every proper quotient of a subgroup of Q is a torsion group, and since every group of rank one is isomorphic to a subgroup of Q [7, A.16], it follows that $A(\hat{G}, H) = \{1\}$, so that $\bar{H} = G$, and therefore G is p-thetic.

Remark 1. The group G in Theorem 3 may be p-thetic for all p, e.g. $G = T$. However, the circle is not the only one-dimensional compact group which is p-thetic for all p. For example, let us define a subgroup H of Q in the following way. Let p_n denote the nth prime and let H_n denote the set of rational numbers of the form $k/(p_1p_2\cdots p_n)$, where k is an integer. The sets H_n define an ascending sequence of subgroups of Q. If we let H be the union of the H_n, then we can show that H is isomorphic to a subgroup of Q_p for each p, but that H is not isomorphic to Z. Thus if we set $G = \hat{H}$, we have an example of a one-dimensional compact group which is p-thetic for all p but is not isomorphic to T.

Before proceeding to our next results, we review briefly the concepts of purity and p-purity. If G is a group and n a positive integer, we write nG for the set of elements of G of the form nx, where x is in G. A subgroup H of a group G is called pure if and only if $nH = H \cap nG$ for each positive integer n and p-pure if and only if $p^nH = H \cap p^nG$ for each positive integer n, where p is a prime. It is easy to see that if G is torsion-free, a subgroup H is pure (respectively, p-pure) if and only if G/H is torsion-free (respectively, $B_p(G/H) = \{0\}$).

Definition 1. Let G be a compact p-thetic group. We say that G is pure p-thetic if and only if $B(G) \cong Z(p^\infty)$ and that G is p-pure p-thetic if and only if $B_p(G) \cong Z(p^\infty)$.

Before proceeding to justify the use of the terminology of this definition, we need to state a lemma.

Lemma 1. Let H be a p-pure subgroup of I_p. Then the index of pH in H is p.

Proof. First note that since H has no elements of infinite p-
ON p-THETIC GROUPS 299

Let $x = (x_0, x_1, \cdots)$ be an element in H but not in pH. Note that $x_0 \neq 0$, since otherwise x would be in pI_p and hence in pH, since H is p-pure. We claim that the coset $x + pH$ is a generator of the quotient group H/pH, so that $H/pH \cong Z(p)$. To see this, let $w + pH$ be an element of H/pH, where $w = (w_0, w_1, \cdots)$ is in H. Let y_i denote the first coordinate of iw, for $0 \leq i \leq p - 1$. Then $w_0 = y_i$ for some i between 0 and $p - 1$. Hence $w - ix$ has 0 in its first coordinate, so that $w - ix$ is in pH. That is, $w + pH = i(x + pH)$, which completes the proof.

Theorem 4. Let G be compact and let p be a fixed prime. The following are equivalent:

1. G is pure p-thetic,
2. \hat{G} is isomorphic to a pure subgroup of I_p.

Proof. Assume (1). Since G is p-thetic, there is a subgroup H of I_p such that $\hat{G} \cong H$. Let G_n denote the subgroup of elements of G having order n. By (1) it follows that $G_p \cong Z(p)$ and that G_q is trivial for all primes $q \neq p$. We conclude from [7, 24. 22] that $H/pH \cong Z(p)$ and that $qH = H$ for all primes $q \neq p$. Let us assume, for the moment, that there is an element $x = (x_0, x_1, \cdots)$ in H with $x_0 \neq 0$. In this case, we show that H is pure in I_p. Clearly, it suffices to show that $H \cap p^nI_p = p^nH$. First, suppose that $py \in H$ for some y in I_p. Since $H/pH \cong Z(p)$, we have that the coset $x + pH$ is a generator of H/pH. Thus $py + pH = ix + pH$ for some i between 0 and $p - 1$. Hence there exists z in H such that $py = ix + pz$, so that $ix = p(y - z)$. This means that ix has 0 in its first coordinate. This can occur only if $i = 0$, so that $y = z$, and hence y is in H. This proves that $H \cap p^nI_p = pH$. That $H \cap p^nH = p^nH$ for all positive n follows by a simple induction argument. Thus, in this case, H is pure in I_p.

Finally, to show that the assumption about x may always be made, we need only consider an appropriate subgroup L_k of I_p, where L_k consists of all sequences $x = (x_0, x_1, \cdots)$ in I_p with $x_n = 0$ for n less than k, and use the fact that $L_k \cong I_p$. This completes the proof that (1) \implies (2).

Conversely, assume (2). Let H be a pure subgroup of I_p such that $\hat{G} \cong H$. Then G is p-thetic, and it remains only to show that $B(G) \cong Z(p^\infty)$. By Lemma 1, $H/pH \cong Z(p)$, since a pure subgroup is automatically p-pure. Hence $G_p \cong Z(p)$, by [7, 24. 22]. Similarly, since $qH = H$ for all primes $q \neq p$ (since H is pure in I_p), it follows that G_q is trivial for $q \neq p$. Hence $B(G) \cong Z(p^\infty)$, so that G is pure p-thetic, i.e. (2) \implies (1).

Remark 2. The authors of [6] (see [4, Exercise 24 on p. 202])
show, without use of duality, that a reduced torsion-free group H has a unique maximal subgroup if and only if H is isomorphic to a pure subgroup of some group I_p. This can be deduced from Theorem 4 above in the following way. Let H be as indicated. It follows from [8, Theorem 2] or [1, Proposition 7] that $B(G)$ is dense in G, where $G = \hat{H}$. Since G must have unique minimal closed subgroup, and since $B(G)$ is divisible, it follows that $B(G) \cong \mathbb{Z}(p^\infty)$ for some prime p, so that G is pure p-thetic. Hence H is isomorphic to a pure subgroup of I_p by Theorem 4. The converse is straightforward. Of course, it should be pointed out, going in the contrary direction, that our Theorem 4 can be deduced, via duality, from the result mentioned in [6].

Theorem 5. Let G be compact and let p be a fixed prime. The following are equivalent:

1. G is p-pure p-thetic,
2. G is isomorphic to a p-pure subgroup of I_p.

Proof. The proof of the implication $(1) \Rightarrow (2)$ follows along the same lines as the corresponding proof in Theorem 4, so that we omit it. Next, assume (2). Thus G is p-thetic, and it only remains to show that $B_p(G) \cong \mathbb{Z}(p^\infty)$. But this follows from Lemma 1, as in the proof of Theorem 4. Hence $(2) \Rightarrow (1)$, completing the proof.

Remark 3. In [2] Armstrong has shown, by a study of the extensibility of endomorphisms of p-pure subgroups of I_p, that a p-pure subgroup of I_p must be indecomposable. We can provide an altogether different proof of this fact by using Theorem 5 above. We need only observe that a p-pure p-thetic group G cannot be written as the the topological direct sum of two of its proper closed subgroups, since each summand would be p-thetic, whereas $B_p(G) \cong \mathbb{Z}(p^\infty)$.

In closing, we mention a criterion for a compact connected group to be p-pure p-thetic. This criterion is a direct translation, via duality, of a theorem due to Armstrong (see [3, Proposition 2]).

Proposition 1. Let G be compact and connected, and let p be a fixed prime. Then G is p-pure p-thetic if and only if

1. $B_p(G)$ is dense in G,
2. G is topologically indecomposable and G/H is topologically indecomposable for every closed subgroup H of G such that $pH = H$.

Proof. This follows by duality from Armstrong's result mentioned above and the fact that if H is a torsion-free abelian group, then a
subgroup \(U \) of \(H \) is \(p \)-pure if and only if its annihilator in \(\hat{H} \) is \(p \)-divisible.

Remark 4. It follows from the above proposition that the \(p \)-thetic group \(G \) defined in Remark 1 is \(p \)-pure \(p \)-thetic for each prime \(p \), since condition (1) holds, as shown in Remark 1, and condition (2) follows from the fact that \(G \) is of dimension one, so that it and all its quotients are topologically indecomposable.

References

Received February 25, 1971.

Amherst College

California State College at Dominguez Hills
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

C. R. HOBBY
University of Washington
Seattle, Washington 98106

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
Tom M. (Mike) Apostol, *Arithmetical properties of generalized Ramanujan sums* ... 281
Janet E. Mills, *Regular semigroups which are extensions of groups* 303
Gregory Frank Bachelis, *Homomorphisms of Banach algebras with minimal ideals* .. 307
John Allen Beachy, *A generalization of injectivity* .. 313
David Geoffrey Cantor, *On arithmetic properties of the Taylor series of rational functions. II* .. 329
Václav Chvátal and Frank Harary, *Generalized Ramsey theory for graphs. III. Small off-diagonal numbers* 335
Frank Rimi DeMeyer, *Irreducible characters and solvability of finite groups* ... 347
Robert P. Dickinson, *On right zero unions of commutative semigroups* 355
John Dustin Donald, *Non-openness and non-equidimensionality in algebraic quotients* .. 365
John D. Donaldson and Qazi Ibadur Rahman, *Inequalities for polynomials with a prescribed zero* .. 375
Robert E. Hall, *The translational hull of an N-semigroup* 379
John P. Holmes, *Differentiable power-associative groupoids* 391
Steven Kenyon Ingram, *Continuous dependence on parameters and boundary data for nonlinear two-point boundary value problems* 395
Robert Clarke James, *Super-reflexive spaces with bases* 409
Gary Douglas Jones, *The embedding of homeomorphisms of the plane in continuous flows* ... 421
Mary Joel Jordan, *Period H-semigroups and t-semisimple periodic H-semigroups* .. 437
Ronald Allen Knight, *Dynamical systems of characteristic 0* 447
Kwangil Koh, *On a representation of a strongly harmonic ring by sheaves* 459
Hui-Hsiung Kuo, *Stochastic integrals in abstract Wiener space* 469
Thomas Graham McLaughlin, *Supersimple sets and the problem of extending a retracing function* ... 485
William Nathan, *Open mappings on 2-manifolds* .. 495
M. J. O’Malley, *Isomorphic power series rings* ... 503
Sean B. O’Reilly, *Completely adequate neighborhood systems and metrization* ... 513
Qazi Ibadur Rahman, *On the zeros of a polynomial and its derivative* 525
Russell Daniel Rupp, Jr., *The Weierstrass excess function* 529
Hugo Teufel, *A note on second order differential inequalities and functional differential equations* .. 537
M. J. Wicks, *A general solution of binary homogeneous equations over free groups* 543