INEQUALITIES FOR POLYNOMIALS WITH A PRESCRIBED ZERO

JOHN D. DONALDSON AND QAZI IBADUR RAHMAN
INEQUALITIES FOR POLYNOMIALS WITH A PRESCRIBED ZERO

J. D. DONALDSON AND Q. I. RAHMAN

Let \mathcal{P}_n denote the linear space of polynomials $p(z) = \sum_{k=0}^{n} a_k z^k$ of degree at most n. There are various ways in which we can introduce norm $|| \cdot ||$ in \mathcal{P}_n. Given β let $\mathcal{P}_{n, \beta}$ denote the subspace consisting of those polynomials which vanish at β. Then how large can $|| p(z)/(z-\beta) ||$ be if $p(z) \in \mathcal{P}_{n, \beta}$ and $|| p(z) || = 1$? This general question does not seem to have received much attention. Here the problem is investigated when (i) $|| p(z) || = \max_{|z| \leq 1} |p(z)|$, (ii) $|| p(z) || = (1/2^n) \int_0^{2\pi} |p(e^{i\theta})|^2 d\theta^{1/2}$.

It was shown by Rahman and Mohammad [1] that if $p(z) \in \mathcal{P}_{n, 1}$ and $\max_{|z| \leq 1} |p(z)| \leq 1$ then

$$\max_{|z| \leq 1} |p(z)/(z-1)| \leq n/2.$$

We observe that if $p(z) \in \mathcal{P}_{n, \beta}$ and $\max_{|z| \leq 1} |p(z)| = 1$ then $\max_{|z| \leq 1} |p(z)/(z-\beta)|$ can be greater than $n/2$ if β is arbitrary. For $n = 1$ we may simply take $p(z) = z$. When $n > 1$ we consider the polynomial

$$p(z) = (n/2)(n^2 - 1)^{-1/2}(1 + z + z^2 + \cdots + z^{n-1})(z-1+2n^{-2}).$$

If $z = e^{i\theta}$ then for $\cos \theta \leq 1 - 2n^{-2}$

$$|p(z)| \leq (1/2) |(1 + z + z^2 + \cdots + z^{n-1})(z-1)| \leq 1,$$

and also for $\cos \theta \geq 1 - 2n^{-2}$

$$|p(z)| \leq n(n^2-1)^{-1/2}(n/2) |z-1+2n^{-2}| \leq 1$$

while

$$\max_{|z|=1} |p(z)/(z-1+2n^{-2})| = (n/2)(n^2 - 1)^{-1/2} > \frac{n}{2}.$$

We note however that if $p(z) \in \mathcal{P}_{n, \beta}$ and $\max_{|z| \leq 1} |p(z)| \leq 1$, then

$$\max_{|z|=1} |p(z)/(z-\beta)| \leq (n+1)/2.$$

Proof of inequality (2). Without loss of generality we may assume β to be real and nonnegative. Put $p(z) = (z-\beta)q(z)$ and write

$$p(z)/(z-\beta) = q(z).$$

If β is real, $q(z)$ is an even function of z and $q(z)$ is an odd function of z. Therefore

$$\max_{|z| \leq 1} |q(z)| = \max_{|z| \leq 1} |p(z)/(z-\beta)| \leq (n+1)/2.$$

If β is even, $p(z)$ is an even function of z and $q(z)$ is an odd function of z. Therefore

$$\max_{|z| \leq 1} |q(z)| = \max_{|z| \leq 1} |p(z)/(z-\beta)| \leq (n+1)/2.$$

If β is odd, $p(z)$ is an odd function of z and $q(z)$ is an even function of z. Therefore

$$\max_{|z| \leq 1} |q(z)| = \max_{|z| \leq 1} |p(z)/(z-\beta)| \leq (n+1)/2.$$

Therefore

$$\max_{|z| \leq 1} |q(z)| = \max_{|z| \leq 1} |p(z)/(z-\beta)| \leq (n+1)/2.$$

This completes the proof of inequality (2).
\(p^*(z) = (z-1)q(z) \). Then

\[
|p^*(e^{i\theta})| = |(e^{i\theta} - 1)/(e^{i\theta} - \beta)| \leq 2/(1+\beta)
\]
which gives us

\[
\max_{|z|=1} |p^*(z)| \leq 2(1+\beta)^{-1} \max_{|z|=1} |p(z)| .
\]

From inequalities (1) and (4) we obtain

\[
\max_{|z|=1} |q(z)| \leq (n/2) \max_{|z|=1} |p^*(z)| \leq n(1+\beta)^{-1} \max_{|z|=1} |p(z)|
\]
\[
\leq \frac{n+1}{2} \max_{|z|=1} |p(z)|
\]
provided \(\beta \geq (n-1)/(n+1) \).

For \(\beta \leq (n-1)/(n+1) \) we have

\[
|q(e^{i\theta})| = |p(e^{i\theta})/(e^{i\theta} - \beta)| \leq (1-\beta)^{-1} |p(e^{i\theta})| \leq \frac{n+1}{2} |p(e^{i\theta})|
\]
and hence

\[
\max_{|z|=1} |q(z)| \leq \frac{n+1}{2} \max_{|z|=1} |p(z)| .
\]

This completes the proof of inequality (2). Unfortunately, with the exception of \(n = 1 \) the bound \((n+1)/2\) does not appear to be sharp.

We now examine the \(L^2 \) analogue of the above problem. We prove the following theorem.

Theorem. If \(p(z) \) is a polynomial of degree \(n \) such that \(p(\beta) = 0 \) where \(\beta \) is an arbitrary nonnegative number then

\[
\int_0^{2\pi} |p(e^{i\theta})/(e^{i\theta} - \beta)|^2 \, d\theta \leq \left(1+\beta^2 - 2\beta \cos\left(\frac{\pi}{n+1}\right)\right)^{-1} \int_0^{2\pi} |p(e^{i\theta})|^2 \, d\theta .
\]

Proof of the theorem. Let us write

\[
p(z)/(z-\beta) = \alpha_{n-1} z^{n-1} + \alpha_{n-2} z^{n-2} + \cdots + \alpha_1 z + \alpha_0, \quad \alpha_{n-1} \neq 0 .
\]

Then

\[
p(z) = \alpha_{n-1} z^n + (\alpha_{n-2}-\beta\alpha_{n-1}) z^{n-1} + \cdots + (\alpha_0 - \beta \alpha_1) z - \beta \alpha_0 .
\]

We therefore have to consider the ratio

\[
R \equiv \left(\sum_{a=0}^{n-1} |\alpha_a|^2\right) / \left(|\alpha_{n-1}|^2 + \sum_{a=0}^{n-1} |\alpha_{a-1} - \beta \alpha_a|^2 + |\alpha_0|^2 \right) .
\]

Now
\[R \leq \left(\sum_{s=0}^{n-1} |\alpha_s|^2 \right) \left/ \left((1+\beta^2) \sum_{s=0}^{n-1} |\alpha_s|^2 - 2\beta \sum_{s=1}^{n-1} |\alpha_s| |\alpha_{s-1}| \right) \right. \]
\[= \frac{1}{1+\beta^2 - 2\beta \left(\sum_{s=1}^{n-1} |\alpha_s| |\alpha_{s-1}| \right) / \left(\sum_{s=0}^{n-1} |\alpha_s|^2 \right)}. \]

Thus we require the maximum of the function
\[f(|\alpha_0|, |\alpha_1|, \cdots, |\alpha_{n-1}|) = \left(\sum_{s=1}^{n-1} |\alpha_s|^2 \right)^{-1} \left(\sum_{s=1}^{n-1} |\alpha_s| |\alpha_{s-1}| \right) \]
with respect to \(|\alpha_0|, |\alpha_1|, \cdots, |\alpha_{n-1}|\). It is clear that the maximum is less than 1.

If for some \(v, \alpha_v = 0\) and \(j\) is the smallest positive integer such that \(\alpha_{-j}, \alpha_{+j}\) are not both zero (\(\alpha_{-1}, \alpha_{-2}, \text{etc...}\) are to be interpreted as zero) then
\[f(|\alpha_0|, |\alpha_1|, \cdots, |\alpha_{n-1}|, 0, |\alpha_{+1}|, \cdots, |\alpha_{n-1}|) \leq f(|\alpha_0|, |\alpha_1|, \cdots, |\alpha_{n-1}|, |\alpha_v|, |\alpha_{+1}|, \cdots, |\alpha_{n-1}|) \]
provided
\[|\alpha_v| \leq (|\alpha_{-j}| + |\alpha_{+j}|) / f(|\alpha_0|, |\alpha_1|, \cdots, |\alpha_{n-1}|, 0, |\alpha_{+1}|, \cdots, |\alpha_{n-1}|). \]

This implies that the maximum is not attained when one or more of the numbers \(|\alpha_v|\) are zero.

On the other hand if one or more of the numbers \(|\alpha_v|\) are allowed to be arbitrarily large the function \(f(|\alpha_0|, |\alpha_1|, \cdots, |\alpha_{n-1}|)\) is bounded above by \((n-1)/n\).

Consider now the partial derivatives of \(f\) with respect to the variables \(|\alpha_v|\). For a local maximum we have to find \(|\alpha_0|, |\alpha_1|, \cdots, |\alpha_{n-1}|\) such that
\[\left(\sum_{s=0}^{n-1} |\alpha_s|^2 \right) \left(\frac{\partial f}{\partial |\alpha_0|} \right) = |\alpha_1| - 2f |\alpha_0| = 0, \]
\[\left(\sum_{s=0}^{n-1} |\alpha_s|^2 \right) \left(\frac{\partial f}{\partial |\alpha_{s+1}|} \right) = |\alpha_{s+1}| + |\alpha_{s-1}| - 2f |\alpha_s| = 0, \quad \mu = 1, 2, \cdots, n-2, \]
\[\left(\sum_{s=0}^{n-1} |\alpha_s|^2 \right) \left(\frac{\partial f}{\partial |\alpha_{s-1}|} \right) = |\alpha_{s-1}| - 2f |\alpha_{s+1}| = 0. \]

Let us suppose that the required local maximum is \(\lambda\). Since \(\lambda < 1\) we write \(\lambda = \cos \gamma (\gamma \neq 0)\). Then from the first \(n-1\) equations of the system (14) we obtain
\[|\alpha_{\mu}| = U_{\mu}(\lambda) |\alpha_0|, \quad \mu = 1, 2, \cdots, n-1 \]
where \(U_{\mu}(\lambda) = (\sin (\mu+1)\gamma)/(\sin \gamma)\) is the Chebyshev polynomial of the second kind of degree \(\mu\) in \(\lambda\). Using equations (15) the last equation of the system (14) gives us
The only solution of (16) which is consistent with all the numbers $|\alpha_\tau|$ being nonnegative is $\gamma = \pi/(n+1)$. Hence

$$\lambda = \cos \left(\frac{\pi}{n+1} \right).$$

Since $\cos (\pi/(n+1)) \geq (n-1)/n$ the required maximum of the function $f(|\alpha_0|, |\alpha_1|, \cdots, |\alpha_{n-1}|)$ is $\cos (\pi/(n+1))$. This immediately leads to the inequality (8).

We note that the polynomial

$$p(z) = (z-\beta) \sum_{s=0}^{n-1} U_s \left(\cos \left(\frac{\pi}{n+1} \right) \right) z^s$$

is extremal.

REFERENCES

Received January 19, 1971.

UNIVERSITY OF MONTREAL
Tom M. (Mike) Apostol, *Arithmetical properties of generalized Ramanujan sums* .. 281
David Lee Armacost and William Louis Armacost, *On p-thetic groups* .. 295
Janet E. Mills, *Regular semigroups which are extensions of groups* .. 303
Gregory Frank Bachelis, *Homomorphisms of Banach algebras with minimal ideals* ... 307
John Allen Beachy, *A generalization of injectivity* .. 313
David Geoffrey Cantor, *On arithmetic properties of the Taylor series of rational functions. II* .. 329
Václav Chvátal and Frank Harary, *Generalized Ramsey theory for graphs. III. Small off-diagonal numbers* 335
Frank Rimi DeMeyer, *Irreducible characters and solvability of finite groups* .. 347
Robert P. Dickinson, *On right zero unions of commutative semigroups* .. 355
John Dustin Donald, *Non-openness and non-equidimensionality in algebraic quotients* .. 365
John D. Donaldson and Qazi Ibadur Rahman, *Inequalities for polynomials with a prescribed zero* .. 375
Robert E. Hall, *The translational hull of an N-semigroup* .. 379
John P. Holmes, *Differentiable power-associative groupoids* .. 391
Steven Kenyon Ingram, *Continuous dependence on parameters and boundary data for nonlinear two-point boundary value problems* .. 395
Robert Clarke James, *Super-reflexive spaces with bases* .. 409
Gary Douglas Jones, *The embedding of homeomorphisms of the plane in continuous flows* ... 421
Mary Joel Jordan, *Period H-semigroups and t-semisimple periodic H-semigroups* .. 437
Ronald Allen Knight, *Dynamical systems of characteristic 0* .. 447
Kwangil Koh, *On a representation of a strongly harmonic ring by sheaves* .. 459
Hui-Hsiung Kuo, *Stochastic integrals in abstract Wiener space* .. 469
Thomas Graham McLaughlin, *Supersimple sets and the problem of extending a retracing function* .. 485
William Nathan, *Open mappings on 2-manifolds* .. 495
M. J. O’Malley, *Isomorphic power series rings* .. 503
Sean B. O’Reilly, *Completely adequate neighborhood systems and metrization* .. 513
Qazi Ibadur Rahman, *On the zeros of a polynomial and its derivative* .. 525
Russell Daniel Rupp, Jr., *The Weierstrass excess function* .. 529
Hugo Teufel, *A note on second order differential inequalities and functional differential equations* .. 537
M. J. Wicks, *A general solution of binary homogeneous equations over free groups* .. 543