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Let <7, denote the linear space of polynomials p(z)=
>r_, ai?* of degree at most n. There are various ways in
which we can introduce norm (|| ||) in <7#,. Given 8 let 7,8
denote the subspace consisting of those polynomials which
vanish at 5. Then how large can || p(z)/(z—p)|] be if
p(z)e F,p and || p(2)|| =17 This general question does not
seem to have received much attention. Here the problem is
investigated when (i) || p(2)|| = max,; <. [p(2)], (ii) || p(2)|| =

(1/2x S“l plei®) |2 doye,

It was shown by Rahman and Mohammad [1] that if p(z) e &7,
and max, . | p(®) | <1 then

(1) I‘rg[agcl p(2)/(z—1) | < n/2.
We observe that if p(x)e &, and max, . |p(®) | =1 then
max,, «, | p()/(z—pB) | can be greater than %/2 if B is arbitrary. For

n =1 we may simply take p(2) = 2. When n > 1 we consider the
polynomial

p(R) = n2) (M=) (L+2+22+ - +2" ) (z—1+2n77)
If z = ¢ then for cosd =1 — 2n™*
Ip() | = 1/2) | A+2+22+---+2") -D | =1,
and also for cosd =1 — 2n™*
(@) | = n(n*=1)7" (n/2) [z—1+207*| £ 1

while

max | p(2)/(z=1+207) | = (n2) (u* — 17" > 2.

We note howevever that if p(z)e 7, , and max, .| p(k)| <1,
then

(2) max | p()/(z—p) | = (n+1)/2.

Proof of inequality (2), Without loss of generality we may as-
sume B to be real and nonnegative. Put p(z) = (2—5)q(z) and write
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p*(2) = (z—1)g(2). Then
(3) | p*(e”)/p(e)| = |(e“=1)/(”—B)| = 2/(1+p)
which gives us

(4) max | p*(z)| = 2 (1+6)™ max [ p(z)| .

From inequalities (1) and (4) we obtain

(5) max [9(z)| = (n/2) max [p*()| < n(l+8)"" max | p(2)|
< 21 max | (@) |
2 =t

provided B = (n—1)/(n-+1).
For p < (n—1)/(n+1) we have

(6) 19| = | pE)( ) < L-p) | pe)] = 2L | p(e”)]

and hence

(1) max | ¢@)| < 2 max | p@) | -
This completes the proof of inequality (2). Unfortunately, with the
exception of # = 1 the bound (n+1)/2 does not appear to be sharp.

We now examine the L? analogue of the above problem. We

prove the following theorem.

THEOREM. If p(2) is a polynomial of degree m such that p(B) =0
where B is an arbitrary nonnegative number then

®) {120 —p)1 a0 < (14828 cos(Z)) " [ 1 nte) Fas

Proof of the theorem. Let us write
(9) »p@/z—p) =a,_ 2"+ a, 2"+ o Lag+a,a,, = 0.
Then
(10) PR = A, 2" + (Ayes— L, _)2" "+ ov + (,—B)2 — B, .

We therefore have to consider the ratio

w  R=(Siar)/(lat+Slan—sar+glal.

Now
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Rz (Slar)/(a+mS ar- 263 lallal)
= y(1+p-28(Zlal 1) [(Elar)).

v =0

Thus we require the maximum of the function
1@ Sl e = (Slar) (Zlallan)

with respect to |a, |, | @], <+, |@,—|. It is clear that the maximum
is less than 1.

If for some v, @, = 0 and j is the smallest positive integer such
that «,_;, a,,; are not both zero (a_,, a_,, etc... are to be interpreted
as zero) then

f(,aol’ la',l,’ "'ylav——lly 0,lav+1]y ] Ian—ll)
éf(}aola IaI!S "'71“»-4'7[“1’«[’ Iav+1|’ "'ylan~1l)

(13)
provided

Ia;i = (Iav—i‘+[ay+j|)/f(| ao[r Iallr cc |C¥,_1|, 0) Iau+1 ', ] lan—ll) .

This implies that the maximum is not attained when one or more of
the numbers | «, | are zero.

On the other hand if one or more of the numbers |, | are allowed
to be arbitrarily large the function f(«,|, | .|, <+-, | @.—,|) is bound-
ed above by (n—1)/n.

Consider now the partial derivatives of f with respect to the
variables |«,|. For a local maximum we have to find |a,|, [a@,], -« -,
| a,_, | such that

n—1 . af _ .
(Elar) 5y =lal-2rlal=0,

19 AE1ar) 2 =l + 1@l - 27 @, =0,
B olal f=1,2 e, n—2

n—1

(Bl elt) 52 = jaw.| - 2f |a.| = 0.
v=0 alan—-ll

Let us suppose that the required local maximum is A. Since A <1

we write A = cosv (v %= 0). Then from the first n—1 equations of

the system (14) we obtain

(15) la,| = UN) ||, p=12 -, n—1

where U,(\) = (sin (#+1)7)/(sin~) is the Chebyshev polynomial of the
second kind of degree ¢ in \. Using equations (15) the last equation
of the system (14) gives us
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(16) sin(n+1)y=0.

The only solution of (16) which is consistent with all the numbers
| &, | being nonnegative is v = w/(n+1). Hence

A= .
cos <n+1>
Since cos (7/(n+1)) = (n—1)/n the required maximum of the function
Flaol, |a], «=+, @y ]) is cos (m/(n+1)). This immediately leads to
the inequality (8).
We note that the polynomial

3

p@) = (:~p) 3 U, (COS(nf_l» %

-

il

is extremal.
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