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An H-semigroup is a semigroup such that every right
and every left congruence is a two-sided congruence on the
semigroup. It is known that the set of idempotents of an
H-semigroup form a subsemigroup. A semigroup is t-semi-
simple provided the intersection of all its maximal modular
congruences is the identity relation. Let S be a periodic
H-semigroup such that the subsemigroup E of idempotents
of S is commutative. In this paper it is shown that S is a
semilattice of disjoint one-idempotent H-semigroups, and that
every subgroup of S is a Hamiltonian group. Moreover, if
S is t-semisimple, then S is an inverse semigroup such that
the one-idempotent FH-semigroups of the semilattice are the
maximal subgroups of S, and a complete characterization is
given.

If o is an equivalence relation on a semigroup S and a is
equivalent to b, then we shall write aob. The o-class containing a
will be denoted by ¢,. An equivalence relation ¢ on a semigroup S
is a right (left) congruence if «, b € S and acb imply (ac)o(be)((ca)o(ch)).
If an equivalence relation is both a right and a left congruence, we
shall call it a two-sided congruence, or, more briefly, a congruence.
We use the natural partial ordering on relations and say that ¢ < p
if and only if a,be S and acd imply aopb. Clearly the identity re-
lation ¢ and the universal relation v are congruences and ¢ < 0 < v,
for each congruence ¢ on S. A congruence o == v is called maximal
if, for each congruence ¢’ on S such that 0 < 0’ <y, either ¢ =0’
or 0/ =v. A congruence ¢ on S is called modular if there is an
element ¢ of S such that (ea)ca and (ae)oa for all ¢ in S. The
element ¢ is called an identity for ¢. The intersection of all the
maximal modular congruences on S is called the ¢-radical of S [4]
and it will be denoted by .

1. Preliminary definitions and results. In his initial paper on
H-semigroups, Oehmke [3] obtained several useful results. For
reference we summarize those results which are essential to this
work. The set E of idempotents of an H-semigroup S forms a sub-
semigroup. For each ae E, the subset R, of E is the set of all
be E such that ab = b and be = a. Similarly, the set L, of E is the
set of all be E such that bo = b and ab = a. The collection of all
R.(L,) induces a decomposition of E and the corresponding equivalence
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relation is a right (left) congruence. The set of all W,, where W, =
L.R,, ac E, is a semilattice where the commutative multiplication
operation (denoted by o) is defined as W, W, = W,,, and where the
partial ordering relation is defined by W,< W, if and only if
W,o Wy = W,. If there is a minimal W, in the set, then it is
unique. It follows that either W, =L, or W, = R, and, for all
ac E, either W, is trivial, that is, W, = {a}, or W, is minimal. If
W, is minimal and W, = R,, then R,c = {ac}, for all ceS. If W,
is minimal and W, = L,, then for any ¢ in S we have cL, = {ca}.
If there is no mimimal W,, then each W, contains a single element.
It then follows that E is commutative. These results yield the
following theorem.

THEOREM 1. Let W, be minimal and W, = {x;: 1€ I}. Then S =
U{S;: e I} where the S; are disjoint H-subsemigroups of S. If R, =
W, then S;S; = {x;}, for i+ j, and S; is the set of all b such that
Rb={z}. If L,= W, then S;S; = {z;}, for i+ 3, and S; 1s the set
of all b such that bL, = {x;}. For any 1, the set E; of idempotents
of S; is a commutative subsemigroup [3].

By Theorem 1, we can reduce the study of H-semigroups to the
study of those H-semigroups in which the idempotents form a com-
mutative subsemigroup.

An element b of a semigroup S is an inverse of an element a of
S provided aba = a and bab = b. Then e = ab is an idempotent of
S such that ea = a, and f = ba is an idempotent of S such that
af = a. S is an inverse semigroup provided every element of S has
a unique inverse. The inverse of an element a of an inverse semi-
group S will be denoted by a™' so that ae™'a = @ and a™'aa™ = a™%

A left (right) zero of a semigroup S is an element a of S such
that as = a (sa = a), for each se S.

An element a of a semigroup S is regular provided acaSa.
Then @ has at least one inverse in S, namely bab, where aba = a.

All of the definitions following Theorem 1 are taken from [1].

Let T be the set of regular elements of an H-semigroup S. Let
a,be T. Then there exist s, s, in S such that a = as,a, where as,,
s,ac B, and b = bs,b, where bs,, s,bc E. We assume that E is a
semilattice, that is, E is a commutative idempotent semigroup with
the induced ordering given by e¢ < f if and only if ¢f = e. Then

ab = a(s,a)(bs,)b = a(bs,)(s,a)b = ab(s.s,)ab .

Hence abe T and T is a subsemigroup of S. Since s,as, is an in-
verse of @ in S, then s,as, is in T and acaTa. Hence T is a regular
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semigroup. It follows that 7 is an inverse semigroup [1, p. 28].
Thus T is an inverse subsemigroup of S. Let ¢ be a left zero of S.
Then ¢ceT and ¢*'=¢c¢. Let se€S. Then cscc =c¢ and scesc = sc
imply sce T and ¢ = sc. Hence sc = ¢. Since s was arbitrary in
S, then ¢ is a right zero of S. Analogously, if ¢ is a right zero of
S, then ¢ is a left zero of S. Hence S has at most one (left, right)
Zero.

If S is an H-semigroup and I is a right (left) ideal of S, then
for be S, bI S I(Ib = I) or bl = {c¢}, where ¢ is a left zero (Ib = {c},
where ¢ is a right zero) [3]. Using this, we get that a right (left)
ideal of an H-semigroup S such that E is commutative is a two-
sided ideal, and it follows that, for each e in E, for each a in S,
ea = o if and only if ae = a.

THEOREM 2. Let S be an H-semigroup such that the subsemigroup
E of idempotents of S is a semilattice. Then the set T of regular
elements of S 1is an inverse semigroup which 1is a semilattice of
disjoint groups.

Proof. Let ae T. Then there exists a unique element a™ in T
such that aa™'a = a and a'aa™ = a~*. Since aa™, a'ac F, we have
a(aa™) = a and (¢'a)a = a. Hence

a’'a = a(aaa™) = (e faa)a™ = aa™t .

It follows that T is a union of disjoint groups [1, ex. 10, p. 34].
Let G, = {be T: b0 = ¢}. Then G, is a maximal subgroup of T and
T=U({G.:ecE}, where G, NG, = @ for e= f. As in [2], we get
that 7T is a semilattice of disjoint groups.

2. For the remainder of this work, unless otherwise indicated,
we assume not only that S is an H-semigroup such that the sub-
semigroup E of idempotents of S is a semilattice, but also that S
is a periodic semigroup [1, p. 20]. Let P, = {se S:s" = ¢ for some
positive integer n}. Let T be the inverse subsemigroup of regular
elements of S. Clearly PNT=G, & P,. Let P, — G, = W, and
let ae W,, where a® = e. Then

(ae)" = (@"*)" = ()" = e — aec P, ,
and
ae(ae)"'ae = (ae)(ae)” = ad® = ae == aee T .

Hence, a¢ = aa™ = a"a = ea € G, and, for each b in G,, ab = aebe G,
and ba = bea € G, so that G,, is an ideal in P,. Let T, = U{P;:e < f}.
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LEMMA 3.1. aee@G,=acT.

Proof. Let ae T,. Then there exists f = ¢ such that ae P, and
afe G;. Hence afec Gy,, that is, aee G,. Conversely, if aee G,, then
there exists be G, such that aeb = ab =e. Say ae P;, where a™ = f.
Then fb"e G, and

fbn — anbn — an—-labbn—-l — an—lebn——l

= Q""" = «ee = qabb = aeb = ab =¢.

Thus fb"eG,;N G.. But this implies ¢f = ¢ so that ¢ < f. Hence
acT.

LEMMA 3.2. For each e in E, T, is a subsemigroup of S, and
if a¢ T, and there exists be S such that abe T,, then b¢ T,.

Proof. Let a,be T, say ac P; and be P,, where ¢ < f, h. Then
afe G, and bhe G, imply that afbh = abfhe G so that abe T,
Now ef = e and eh = e imply that e¢fh = ¢ so that ¢ < fh. Hence
abe T, and T, is a subsemigroup of S. Let S — T, = T, and suppose
e is not minimum so that T/ = @. Let a¢ T, and suppose there
exists be S such that abe T,. Assume be 7T,. Then abec G, and
bee G, imply abe(be)™ = ae is in G, so that ae T,, contradiction.

LeEmMA 3.3. For each f in E, T, ts an H-semigroup of S, and
if f is mot minimum in E, then T;+ @ and T; is an ideal of S.

Proof. Let feE. Let U, = {beS:xbe T;}. Define ¢ on S by
ach — U, = U, .

Clearly o is a (right) congruence on S. Let a,be T,. Then, using
Lemma 3.2, we have

xe U, = axecT; xe T, bve Ty =—uxcU,.

Thus U, = U, and acb. Further, if aob and ae T, then, for each
¢ in Ty, xe U, = U, In particular, ac U, so that bac T, and, using
Lemma 3.2, be T;,. Thus T, is an equivalence class of 0. Since
fe Uf, Ufi . Let ae S.

relU,—arve Ty = faxe Tj == xe Uy, .

Then U, = U,, and (fa)oa, for each o in S. Let xe U,;. Then
afxe T;. Now (fx)ox implies (afx)o(ax), so that axe T, and xze U.,.
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Then U,,< U,. Let xe U,. Then axe T, and (faw)o(ax). As be-
fore, (fx)ox implies (afx)o(ax). Hence, (fax)o(afr) implies afxre T,
so that e U,;. Then U, & U,, and (af)oa, for each a in S. There-
fore f is an identity for ¢ and ¢ is modular. Let p be any con-
gruence on S such that T, is an equivalence class of p and assume
0 < p. Then there exist a, b in S such that aob and agd, that is,
there exists e U, such that x¢ U,, which implies that axe T; and
bere¢ T;. But apb implies (ax)o(bx) so that bxe T, contradiction.
Therefore, ¢ = p and ¢ is maximal with respect to having T as a
o-class. Let ae T} and assume ze U,. Then axe T;. Thus we
have

(ax)of == (a’x)o(af)oa =— (a’*x*)o(ax)
= (&’2*)0f =— (’2¥)o(af)oa — (a’z°)o(ax)
— (@%)Of — -
== (a"2z")of , for each positive integer = .

Let o' = h, where h¢ T;. Since axe T}, then xe T;. Let 2/ =k,
where k¢ T;. Then we have

(a"2Y)of == (hk)of = hke T, .

But &, k¢ T, implies hk ¢ T, contradiction. Hence, for each ac TY,
U,= @. It follows that T; is a o-class and 7T} is an ideal of S.
Let p be any right congruence on T;. Define o’ on S by

0p'b—=—a,beT;, and apb or a,be T;.

Clearly o’ is a congruence on S and the restriction of o’ to T, is p.
Thus p is a left congruence on 7T,. By analogous proof, any left
congruence on T, is a right congruence. Thus T, is an H-semigroup
of S.

With the preceding lemmas, we are now in a position to prove
the main results of this section.

THEOREM 3. If S is a periodic H-semigroup such that the sub-
semigroup K of idempotents of S is commutative, them S is a semi-
lattice of disjoint ome-idempotent H-semigroups. Moreover, every
subgroup of S is a Hamiltonian group.

Proof. First we show that for each ¢ in E, G, is a Hamiltonian
group. If e¢= 0, then G, is trivially Hamiltonian. Assume e = 0.
Let o be a right congruence on G,, let H, be the subgroup of G,
induced by o and let a,be T,. Write
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agb —= (ea)a(ed) .

By a straight-forward argument, ¢ is an equivalence relation on
T,, so we need only show right compatibility. Accordingly, assume
ac’b and ce T,. Then (ea)o(ed) and ece G, imply (eaec)o(ebec) so
that (eac)o(ebc) and (ac)o‘”(be). Clearly, o' restricted to G, is o.
Since T, is an H-semigroup, then ¢ is a congruence on T,. Hence
o is a congruence on G,. Similarly, any left congruence on G, is a
congruence so that G, is Hamiltonian.

We can now prove that, for each f in E, P, is an H-semigroup.
Let a,be P,. Since a,be T, then abe T;. Assume ab¢ P;. Then
abe P, & T,, where f < k, for some ke E, so that a,be T;. But
then abe Ty, since Ty is an ideal, contradiction. Therefore abec P;
and P; is a semigroup of S. Let o be any right congruence on P;.
Then ¢ induces a normal subgroup H; of G;. Define ¢’ on T, by

a0’b = a,be P; and aob or Hya = H;b.

A straight-forward argument shows that ¢’ is a congruence on 7.
Similarly, any left congruence on P; is a congruence. Therefore P;
is an H-semigroup.

Suppose there exists ae P,, be P, such that ab¢ P,;, say abe P,
for some ke E. Now ac P, implies aec G,, and be P; implies bf e G,
so that abefeG.; and abe T,;. Then ef < k. If acT{ or be T,
then abe Ty, since T, is an ideal. Thus we must have a,be T,.
But then k£ < ¢, f so that k < ef, contradiction. Thus abe P,;. Since,
for each ¢ in S, {a) has exactly one idempotent [1, p. 20], it follows
that P,N P; = @ for e+ f. This completes the proof of Theorem 3.

The obvious corollary follows from Theorem 1.

COROLLARY 3.1. If S 1is a periodic H-semigroup, them either
the idempotents of S are commutative and S is a semilattice of dis-
joint ome-idempotent H-semigroups; or the idempotents of S are mnot
commutative and S = U{S;:tel}, where the S; are disjoint, the
idempotents of each S; are commutative and each S; is a semilattice
of disjoint ome-idempotent H-semigroups. Moreover, every subgroup
of S is a Hamiltonian group.

3. In this section we examine the ¢-semisimple periodic H-
semigroups. However, our first result in this investigation is more
general.

THEOREM 4. If S 1is a t-semisimple H-semigroup, then the
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idempotents of S are commutative.

Proof. Let S be a t-semisimple H-semigroup and assume that
the idempotents of S are not commutative. Then S = UJ{S:: 7¢I},
as in Theorem 1. Let ¢ be a maximal modular congruence on S
with identity 2. Say xe S;,. Letse S, say s€S;, 2% j. Since either
S;S; = {x,}, where 2; is the zero of S;, or S;S; = {x;}, where x; is the
zero of S;, then (xs)oso(sx) implies x,0s0%; or x,0s0%;. In either case,
for every modular congruence ¢ on S, W, = {x;:te I} is contained
is a o-class. Since S is t-semisimple then W, must be a singleton
set. But then the idempotents of S are commutative, contrary to
the assumption.

In identifying the maximal modular congruences on a periodic
H-semigroup where E is a semilattice, we find the classification to
be quite similar to that of inverse H-semigroups [2].

LEMMA 5.1. If o is a maximal wmodular congruence on the
periodic H-semigroup S, where the idempotents of S are commuta-
tive, then either o 1is cancellative or o has exactly two equivalence
classes, one of which is an ideal of non-identities for o and the other
the semigroup of identities for o.

Proof. Let ¢ be a maximal modular congruence on the periodic
H-semigroup S where the idempotents of S form a semilattice. Let
a be an identity for o, say ae P;, where a" = f. Then, for each s
in S,

(as)os == (a’s)o(as)gs = +++ — (a"s)os =— (fs)os,

and similarly (sf)os. Hence f is an identity for o.
Suppose ¢ is cancellative. Let ¢, fe E, where ¢ is an identity

for 0. Then
(ef )of == (ef)o(ff) == eaf .

Hence F < o,, the o-class containing e. Conversely, suppose E < o,
and assume (ac)o(bc) where ce P;,. Since ¢ is an identity for ¢ and,
for each f in E, eaf, then (fs)osa(sf), for each s in S, so that each
idempotent is an identity for . Let ¢™ = f. Then (ac)o(bc) implies
(ac™)o(be™) so that (af)o(bf), and, since (af)oa and (bf)ob, then
acb and o is right cancellative. Similarly, o is left cancellative.
Suppose ¢ is not cancellative and let ee £ be an identity for o.
If h is an identity for ¢, where he E, then ho(eh)oe and heo,.
Since ¢ is not cancellative, there exists fe E such that f¢o,, so
that f is not an identity for ¢. Let I = {f e E:f is not an identity
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for o}. Let J=U{P,:fel}. It follows that I is an ideal in E, J
is an ideal in S and J’ is a semigroup of S. Oehmke [4] has shown
that if o is a maximal congruence on S and J is any ideal of S,
then either J is contained in a o-class S, (which is also an ideal of
S) or J contains an element of each o-class. If xeo,NJ then wxoe
and x e P, for some f in I, where 2™ = f. But

x0e — a’0(ve) and (ve)oe —— 2’0 —— ¥°0(we)

2’oe oo x"oe = foe .

Then f¢I, contradiction. Hence o,NJ =@ and JE& S,. Suppose
there exists be S, such that b¢J, say be P,, where hoe. Let fel <
S, Then bof implies (bh)a(fh) and (bf)of; and hoe implies (fh)of
so that (bh)o(bf). But then (b*'bh)o(db™*bf) and ho(hf). It follows
that hof and f¢ I, contradiction. Thus J = S,. Since J is an ideal
and J’ is a semigroup, the relation ¢*, defined by ac*b = a,beJ or
a,beJ’, is a maximal modular congruence on S [2]. Clearly ¢ < o*.
Hence o = 0*. Moreover, for each a in J’, say aec P,, and for each
s in S, aoe implies (as)oso(sa), so that J’ is the semigroup of iden-
tities for ¢. And for each b in J, say be P;, b cannot be an identity
for o, since then f would be an identity for o.

Using Lemma 5.1, we can establish the following characterization.

THEOREM 5. A periodic H-semigroup S is t-semisimple if and
only if S is an tnverse semigroup such that for each pair of groups
G., G; in the semilattice, with f = e, the homomorphism @;, on Gy
wmto G,, defined by aps, = ae, is a monomorphism; and, for each e
wn E, for each a =+ e in G., there exists a subsemigroup T, of S such
that a¢ T, and for each f wn E, T,N G; = H;, where H; = G; or H;
is a maximal subgroup of prime index p in Gy.

Proof. Define p on S by zpy if and only if there exists ¢ in F
such that ex = ey. Clearly, p is a congruence on S. If ¢ is any
maximal modular cancellative congruence on S and x, y € S such that
20y, then there exists e¢ in E such that ex = ey. Hence (ex)o(ey)
and xoy. Thus p < a where a is the intersection of all the maximal
modular cancellative congruences on S. In view of Lemma 3.3, it
is clear that the intersection B of all the maximal modular non-
cancellative congruences of S separates S into its subsemigroups Py,
where fe E. Let e < f and define +,, from P, into P, by ay,, =
ea. Clearly, +r;,. is a homomorphism from P; into G,. Suppose S is
t-semisimple, that is, 7 =¢ If +,, is not a monomorphism then
there exist @ # b in P, with ea = eb so that aob. This implies aob.
Since also aBb, then atb and 7 =+ ¢, contradiction. Thus if S is



PERIODIC H-SEMIGROUPS AND ¢-SEMISIMPLE PERIODIC H-SEMIGROUPS 445

t-semisimple, then every homomorphism +r;, is a monomorphism from
P, into G,. Suppose there exists e¢ in E such that G,C P,. Then
there exists be W, such that ¢b = ae G,, that is, ¢b = ea. Then, as
before, atb and 7 ¢, which is a contradiction. Hence, for each ¢
in B, P, = @G,and S is an inverse semigroup. Considering the charac-
terization of t-semisimple inverse H-semigroups in [2], the proof is
complete.
The corollaries parallel those in [2].

COROLLARY 5.1. S s a periodic H-semigroup all of whose maximal
modular congruences are cancellative if and only i+f S is a omne-
idempotent periodic H-semigroup.

COROLLARY 5.2. S is a t-semistmple periodic H-semigroup all
of whose nontrivial maximal modular congruences are not cancellative
if and only if S is a semilattice.

COROLLARY 5.3. If S is a t-semisimple periodic H-semigroup,
then S is a semilattice of disjoint t-semisimple Hamiltonian groups.

COROLLARY 5.4. If S 1is a t-semistmple periodic H-semigroup,
then S 1s commutative.

COROLLARY 5.5. If S is a pertodic H-semigroup with a mintmum
idempotent e, then S is t-semisimple if and only if for each semi-
group P; in the semilattice with f = e, the homomorphism s, on
P; into P,, defined by a+;, = ae, is a monomorphism and P, is t-
semistmple.

COROLLARY 5.6. If S s a t-semisimple periodic H-semigroup
with mo montriwial modular congruences, then S s either a cyclic
group of prime order or the unique semilattice of two elements.

COROLLARY 5.7. If S is a periodic H-semigroup with zero, then
S is t-semistmple if and only if S is a semilattice.
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