PERIOD H-SEMIGROUPS AND t-SEMISIMPLE PERIODIC H-SEMIGROUPS

MARY JOEL JORDAN
PERIODIC H-SEMIGROUPS AND t-SEMISIMPLE
PERIODIC H-SEMIGROUPS

MARY JOEL JORDAN, S. C.

An H-semigroup is a semigroup such that every right and every left congruence is a two-sided congruence on the semigroup. It is known that the set of idempotents of an H-semigroup form a subsemigroup. A semigroup is t-semisimple provided the intersection of all its maximal modular congruences is the identity relation. Let S be a periodic H-semigroup such that the subsemigroup E of idempotents of S is commutative. In this paper it is shown that S is a semilattice of disjoint one-idempotent H-semigroups, and that every subgroup of S is a Hamiltonian group. Moreover, if S is t-semisimple, then S is an inverse semigroup such that the one-idempotent H-semigroups of the semilattice are the maximal subgroups of S, and a complete characterization is given.

If σ is an equivalence relation on a semigroup S and a is equivalent to b, then we shall write $a\sigma b$. The σ-class containing a will be denoted by σa. An equivalence relation σ on a semigroup S is a right (left) congruence if $a, b \in S$ and $a\sigma b$ imply $(ac)\sigma (bc)$, $((ea)\sigma (eb))$. If an equivalence relation is both a right and a left congruence, we shall call it a two-sided congruence, or, more briefly, a congruence. We use the natural partial ordering on relations and say that $\sigma \leq \rho$ if and only if $a, b \in S$ and $a\sigma b$ imply $a\rho b$. Clearly the identity relation I and the universal relation V are congruences and $I \leq \sigma \leq V$, for each congruence σ on S. A congruence $\sigma \neq V$ is called maximal if, for each congruence σ' on S such that $\sigma \leq \sigma' \leq V$, either $\sigma = \sigma'$ or $\sigma' = V$. A congruence σ on S is called modular if there is an element e of S such that $(ea)\sigma a$ and $(ae)\sigma a$ for all a in S. The element e is called an identity for σ. The intersection of all the maximal modular congruences on S is called the t-radical of S [4] and it will be denoted by τ.

1. Preliminary definitions and results. In his initial paper on H-semigroups, Oehmke [3] obtained several useful results. For reference we summarize those results which are essential to this work. The set E of idempotents of an H-semigroup S forms a subsemigroup. For each $a \in E$, the subset R_a of E is the set of all $b \in E$ such that $ab = b$ and $ba = a$. Similarly, the set L_a of E is the set of all $b \in E$ such that $ba = b$ and $ab = a$. The collection of all $R_a(L_a)$ induces a decomposition of E and the corresponding equivalence
relation is a right (left) congruence. The set of all W_a, where $W_a = L_aR_a$, $a \in E$, is a semilattice where the commutative multiplication operation (denoted by \circ) is defined as $W_a \circ W_b = W_{ab}$, and where the partial ordering relation is defined by $W_a \leq W_b$ if and only if $W_a \circ W_b = W_a$. If there is a minimal W_a in the set, then it is unique. It follows that either $W_a = L_a$ or $W_a = R_a$ and, for all $a \in E$, either W_a is trivial, that is, $W_a = \{a\}$, or W_a is minimal. If W_a is minimal and $W_a = R_a$, then $R_a = \{ac\}$, for all $c \in S$. If W_a is minimal and $W_a = L_a$, then for any c in S we have $cL_a = \{ca\}$. If there is no minimal W_a, then each W_a contains a single element. It then follows that E is commutative. These results yield the following theorem.

Theorem 1. Let W_a be minimal and $W_a = \{x_i : i \in I\}$. Then $S = \bigcup\{S_i : i \in I\}$ where the S_i are disjoint H-subsemigroups of S. If $R_a = W_a$ then $S_iS_j = \{x_j\}$, for $i \neq j$, and S_i is the set of all b such that $R_ab = \{x_i\}$. If $L_a = W_a$ then $S_iS_j = \{x_i\}$, for $i \neq j$, and S_i is the set of all b such that $bL_a = \{x_j\}$. For any i, the set E_i of idempotents of S_i is a commutative subsemigroup [3].

By Theorem 1, we can reduce the study of H-semigroups to the study of those H-semigroups in which the idempotents form a commutative subsemigroup.

An element b of a semigroup S is an inverse of an element a of S provided $aba = a$ and $bab = b$. Then $e = ab$ is an idempotent of S such that $ea = a$, and $f = ba$ is an idempotent of S such that $af = a$. S is an inverse semigroup provided every element of S has a unique inverse. The inverse of an element a of an inverse semigroup S will be denoted by a^{-1} so that $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$.

A left (right) zero of a semigroup S is an element a of S such that $as = a$ ($sa = a$), for each $s \in S$.

An element a of a semigroup S is regular provided $a \in aSa$. Then a has at least one inverse in S, namely bab, where $aba = a$.

All of the definitions following Theorem 1 are taken from [1].

Let T be the set of regular elements of an H-semigroup S. Let $a, b \in T$. Then there exist s_1, s_2 in S such that $a = as_1a$, where $as_1, s_1a \in E$, and $b = bs_2b$, where $bs_2, s_2b \in E$. We assume that E is a semilattice, that is, E is a commutative idempotent semigroup with the induced ordering given by $e \leq f$ if and only if $ef = e$. Then

$$ab = a(s_1a)(bs_2)b = a(bs_2)(s_1a)b = ab(s_2s_1)ab.$$

Hence $ab \in T$ and T is a subsemigroup of S. Since s_1as_1 is an inverse of a in S, then s_1as_1 is in T and $a \in aTa$. Hence T is a regular
semigroup. It follows that T is an inverse semigroup [1, p. 28]. Thus T is an inverse subsemigroup of S. Let c be a left zero of S. Then $c \in T$ and $c^{-1} = c$. Let $s \in S$. Then $scc = c$ and $scsc = sc$ imply $sc \in T$ and $c^{-1} = sc$. Hence $sc = c$. Since s was arbitrary in S, then c is a right zero of S. Analogously, if c is a right zero of S, then c is a left zero of S. Hence S has at most one (left, right) zero.

If S is an H-semigroup and I is a right (left) ideal of S, then for $b \in S$, $bI \subseteq I(b \subseteq I)$ or $bI = \{c\}$, where c is a left zero ($Ib = \{c\}$, where c is a right zero) [3]. Using this, we get that a right (left) ideal of an H-semigroup S such that E is commutative is a two-sided ideal, and it follows that, for each e in E, for each a in S, $ea = a$ if and only if $ae = a$.

Theorem 2. Let S be an H-semigroup such that the subsemigroup E of idempotents of S is a semilattice. Then the set T of regular elements of S is an inverse semigroup which is a semilattice of disjoint groups.

Proof. Let $a \in T$. Then there exists a unique element a^{-1} in T such that $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$. Since aa^{-1}, $a^{-1}a \in E$, we have $a(aa^{-1}) = a$ and $(a^{-1}a)a = a$. Hence

$$a^{-1}a = a^{-1}(aaa^{-1}) = (a^{-1}aa)a^{-1} = aa^{-1}.$$

It follows that T is a union of disjoint groups [1, ex. 10, p. 34]. Let $G_e = \{b \in T: bb^{-1} = e\}$. Then G_e is a maximal subgroup of T and $T = \bigcup \{G_e: e \in E\}$, where $G_e \cap G_f = \emptyset$ for $e \neq f$. As in [2], we get that T is a semilattice of disjoint groups.

2. For the remainder of this work, unless otherwise indicated, we assume not only that S is an H-semigroup such that the subsemigroup E of idempotents of S is a semilattice, but also that S is a periodic semigroup [1, p. 20]. Let $P_e = \{s \in S: s^n = e\}$ for some positive integer n. Let T be the inverse subsemigroup of regular elements of S. Clearly $P_e \cap T = G_e \subseteq P_e$. Let $P_e - G_e = W_e$ and let $a \in W_e$, where $a^n = e$. Then

$$(ae)^n = (a^{n+1})^n = (a^n)^{n+1} = e \implies ae \in P_e,$$

and

$$ae(ae)^{n-1}ae = (ae)(ae)^n = ae^2 = ae \implies ae \in T.$$

Hence, $ae = aa^n = a^na = ea \in G_e$ and, for each b in G_e, $ab = aeb \in G_e$ and $ba = bea \in G_e$, so that G_e is an ideal in P_e. Let $T_e = \bigcup \{P_f: e \leq f\}$.
LEMMA 3.1. \(ae \in G_e \iff a \in T_e \).

Proof. Let \(a \in T_e \). Then there exists \(f \geq e \) such that \(a \in P_f \) and \(af \in G_f \). Hence \(afe \in G_{ef} \), that is, \(ae \in G_e \). Conversely, if \(ae \in G_e \), then there exists \(b \in G_e \) such that \(aeb = ab = e \). Say \(a \in P_f \), where \(ax = f \). Then \(fb^n \in G_{ef} \) and

\[
fb^n = a^n b^n = a^{n-1} a b b^{n-1} = a^{n-1} e b^{n-1} = \ldots = ab \cdot ab = ab = e .
\]

Thus \(fb^n \in G_{ef} \cap G_e \). But this implies \(ef = e \) so that \(e \leq f \). Hence \(a \in T_e \).

LEMMA 3.2. For each \(e \) in \(E \), \(T_e \) is a subsemigroup of \(S \), and if \(a \in T_e \) and there exists \(b \in S \) such that \(ab \in T_e \), then \(b \in T_e \).

Proof. Let \(a, b \in T_e \), say \(a \in P_f \) and \(b \in P_h \), where \(e \leq f, h \). Then \(af \in G_f \) and \(bh \in G_h \) imply that \(afbh = abf h \in G_{fh} \) so that \(ab \in T_{fh} \). Now \(ef = e \) and \(eh = e \) imply that \(efh = e \) so that \(e \leq f, h \). Hence \(ab \in T_e \) and \(T_e \) is a subsemigroup of \(S \). Let \(S - T_e = T' \) and suppose \(e \) is not minimum so that \(T'_e \neq \emptyset \). Let \(a \in T_e \) and suppose there exists \(b \in S \) such that \(ab \in T_e \). Assume \(b \in T_e \). Then \(abe \in G_e \) and \(be \in G_e \) imply \(abe(be)^{-1} = ae \) is in \(G_e \) so that \(a \in T_e \), contradiction.

LEMMA 3.3. For each \(f \) in \(E \), \(T_f \) is an H-semigroup of \(S \), and if \(f \) is not minimum in \(E \), then \(T'_f \neq \emptyset \) and \(T'_f \) is an ideal of \(S \).

Proof. Let \(f \in E \). Let \(U_a = \{ b \in S : xb \in T_f \} \). Define \(\sigma \) on \(S \) by

\[
\alpha \sigma b \iff U_a = U_b .
\]

Clearly \(\sigma \) is a (right) congruence on \(S \). Let \(a, b \in T_f \). Then, using Lemma 3.2, we have

\[
x \in U_a \iff ax \in T_f \iff x \in T_f \iff bx \in T_f \iff x \in U_b .
\]

Thus \(U_a = U_b \) and \(\alpha \sigma b \). Further, if \(\alpha \sigma b \) and \(a \in T_f \), then, for each \(x \) in \(T_f \), \(x \in U_a = U_b \). In particular, \(a \in U_b \) so that \(ba \in T_f \) and, using Lemma 3.2, \(b \in T_f \). Thus \(T_f \) is an equivalence class of \(\sigma \). Since \(f \in U_f, U_f \neq \emptyset \). Let \(a \in S \).

\[
x \in U_a \iff ax \in T_f \iff fax \in T_f \iff x \in U_{fa} .
\]

Then \(U_a = U_{fa} \) and \((fa) \sigma a \), for each \(a \) in \(S \). Let \(x \in U_{af} \). Then \(afx \in T_f \). Now \((fx) \sigma x \) implies \((afx) \sigma (ax) \), so that \(ax \in T_f \) and \(x \in U_a \).
Then $U_{af} \subseteq U_a$. Let $x \in U_a$. Then $ax \in T_f$ and $(fax)\sigma(ax)$. As before, $(fx)\sigma x$ implies $(afx)\sigma(ax)$. Hence, $(fax)\sigma(afx)$ implies $afx \in T_f$ so that $x \in U_{af}$. Then $U_a \subseteq U_{af}$ and $(af)\sigma a$, for each a in S. Therefore f is an identity for σ and σ is modular. Let ρ be any congruence on S such that T_f is an equivalence class of ρ and assume $\sigma < \rho$. Then there exist a, b in S such that $a\rho b$ and $a\rho b$, that is, there exists $x \in U_a$ such that $x \in U_b$, which implies that $ax \in T_f$ and $bx \in T_f$. But $a\rho b$ implies $(ax)\rho(bx)$ so that $bx \in T_f$, contradiction. Therefore, $\sigma = \rho$ and σ is maximal with respect to having T_f as a σ-class. Let $a \in T'_f$ and assume $x \in U_a$. Then $ax \in T_f$. Thus we have

$$
(ax)\sigma f \implies (a^2x)\sigma(af)\sigma a \implies (a^2x^2)\sigma(ax) \\
\implies (a^2x^2)\sigma f \implies (a^2x^2)\sigma(af)\sigma a \implies (a^2x^2)\sigma(ax) \\
\implies (a^2x^2)\sigma f \implies \cdots \\
\implies (a^2x^n)\sigma f, \text{ for each positive integer } n.
$$

Let $a^i = h$, where $h \in T_f$. Since $ax \in T'_f$, then $x \in T'_f$. Let $x^i = k$, where $k \in T_f$. Then we have

$$
(a^i x^i)\sigma f \implies (hk)\sigma f \implies hk \in T_f.
$$

But $h, k \in T_f$ implies $hk \in T_f$, contradiction. Hence, for each $a \in T'_f$, $U_a = \emptyset$. It follows that T'_f is a σ-class and T'_f is an ideal of S. Let ρ be any right congruence on T_f. Define ρ' on S by

$$
a \rho' b \iff a, b \in T_f \text{ and } a \rho b \text{ or } a, b \in T'_f.
$$

Clearly ρ' is a congruence on S and the restriction of ρ' to T_f is ρ. Thus ρ is a left congruence on T_f. By analogous proof, any left congruence on T_f is a right congruence. Thus T_f is an H-semigroup of S.

With the preceding lemmas, we are now in a position to prove the main results of this section.

Theorem 3. If S is a periodic H-semigroup such that the subsemigroup E of idempotents of S is commutative, then S is a semilattice of disjoint one-idempotent H-semigroups. Moreover, every subgroup of S is a Hamiltonian group.

Proof. First we show that for each e in E, G_e is a Hamiltonian group. If $e = 0$, then G_e is trivially Hamiltonian. Assume $e \neq 0$. Let σ be a right congruence on G_e, let H_e be the subgroup of G_e induced by σ and let $a, b \in T_e$. Write
By a straight-forward argument, \(\sigma^{(e)} \) is an equivalence relation on \(T_e \), so we need only show right compatibility. Accordingly, assume \(a \sigma^{(e)} b \) and \(c \in T_e \). Then \((ea) \sigma (eb) \) and \(ec \in G_e \) imply \((eac) \sigma (ebec) \) so that \((a) \sigma^{(e)} (b) \sigma^{(e)} (bc) \). Clearly, \(\sigma^{(e)} \) restricted to \(G_e \) is \(\sigma \). Since \(T_e \) is an \(H \)-semigroup, then \(\sigma^{(e)} \) is a congruence on \(T_e \). Hence \(\sigma \) is a congruence on \(G_e \). Similarly, any left congruence on \(G_e \) is a congruence so that \(G_e \) is Hamiltonian.

We can now prove that, for each \(f \in E \), \(P_f \) is an \(H \)-semigroup. Let \(a, b \in P_f \). Since \(a, b \in T_f \), then \(ab \in T_f \). Assume \(ab \in P_f \). Then \(ab \in P_k \subseteq T_k \), where \(f < k \), for some \(k \in E \), so that \(a, b \in T_k' \). But then \(ab \in T_k' \), since \(T_k' \) is an ideal, contradiction. Therefore \(ab \in P_f \) and \(P_f \) is a semigroup of \(S \). Let \(\sigma \) be any right congruence on \(P_f \). Then \(\sigma \) induces a normal subgroup \(H_f \) of \(G_f \). Define \(\sigma' \) on \(T_f \) by

\[
a \sigma' b \iff a, b \in P_f \quad \text{and} \quad a \sigma b \text{ or } H_f a = H_f b.
\]

A straight-forward argument shows that \(\sigma' \) is a congruence on \(T_f \). Similarly, any left congruence on \(P_f \) is a congruence. Therefore \(P_f \) is an \(H \)-semigroup.

Suppose there exists \(a \in P_e \), \(b \in P_f \) such that \(ab \in P_{ef} \), say \(ab \in P_k \), for some \(k \in E \). Now \(a \in P_e \) implies \(ae \in G_e \), and \(b \in P_f \) implies \(bf \in G_f \) so that \(abef \in G_{ef} \) and \(ab \in T_{ef} \). Then \(ef < k \). If \(a \in T_k' \) or \(b \in T_k' \), then \(ab \in T_k' \), since \(T_k' \) is an ideal. Thus we must have \(a, b \in T_k' \). But then \(k \leq e, f \) so that \(k \leq ef \), contradiction. Thus \(ab \in P_{ef} \). Since, for each \(a \) in \(S \), \(\langle a \rangle \) has exactly one idempotent [1, p. 20], it follows that \(P_e \cap P_f = \emptyset \) for \(e \neq f \). This completes the proof of Theorem 3.

The obvious corollary follows from Theorem 1.

Corollary 3.1. If \(S \) is a periodic \(H \)-semigroup, then either the idempotents of \(S \) are commutative and \(S \) is a semilattice of disjoint one-idempotent \(H \)-semigroups; or the idempotents of \(S \) are not commutative and \(S = \bigcup \{ S_i; i \in I \} \), where the \(S_i \) are disjoint, the idempotents of each \(S_i \) are commutative and each \(S_i \) is a semilattice of disjoint one-idempotent \(H \)-semigroups. Moreover, every subgroup of \(S \) is a Hamiltonian group.

3. In this section we examine the \(t \)-semisimple periodic \(H \)-semigroups. However, our first result in this investigation is more general.

Theorem 4. If \(S \) is a \(t \)-semisimple \(H \)-semigroup, then the
idempotents of S are commutative.

Proof. Let S be a t-semisimple H-semigroup and assume that the idempotents of S are not commutative. Then $S = \bigcup \{S_i; i \in I\}$, as in Theorem 1. Let σ be a maximal modular congruence on S with identity x. Say $x \in S_i$. Let $s \in S$, say $s \in S_j$, $i \neq j$. Since either $S_i S_j = \{x_j\}$, where x_j is the zero of S_j, or $S_i S_j = \{x_i\}$, where x_i is the zero of S_i, then $(xs)\sigma s \sigma (sx)$ implies $x_i \sigma x_j$ or $x_j \sigma x_i$. In either case, for every modular congruence σ on S, $W_{a} = \{x_i; i \in I\}$ is contained in a σ-class. Since S is t-semisimple then W_{a} must be a singleton set. But then the idempotents of S are commutative, contrary to the assumption.

In identifying the maximal modular congruences on a periodic H-semigroup where E is a semilattice, we find the classification to be quite similar to that of inverse H-semigroups [2].

Lemma 5.1. If σ is a maximal modular congruence on the periodic H-semigroup S, where the idempotents of S are commutative, then either σ is cancellative or σ has exactly two equivalence classes, one of which is an ideal of non-identities for σ and the other the semigroup of identities for σ.

Proof. Let σ be a maximal modular congruence on the periodic H-semigroup S where the idempotents of S form a semilattice. Let a be an identity for σ, say $a \in P_f$, where $a^* = f$. Then, for each s in S,

$$(as)\sigma s \implies (a^s)\sigma (as)\sigma s \implies \cdots \implies (a^s)\sigma s \implies (fs)\sigma s,$$

and similarly $(sf)\sigma s$. Hence f is an identity for σ.

Suppose σ is cancellative. Let $e, f \in E$, where e is an identity for σ. Then

$$(ef)\sigma f \implies (ef)\sigma (ff) \implies e\sigma f.$$

Hence $E \subseteq \sigma_e$, the σ-class containing e. Conversely, suppose $E \subseteq \sigma_e$ and assume $(ac)\sigma (bc)$ where $c \in P_f$. Since e is an identity for σ and, for each f in E, $e \sigma f'$, then $(fs)\sigma \sigma (sf')$, for each s in S, so that each idempotent is an identity for σ. Let $e^* = f$. Then $(ac)\sigma (bc)$ implies $(ae^*)\sigma (be^*)$ so that $(af)\sigma (bf)$, and, since $(af)\sigma a$ and $(bf)\sigma b$, then $a \sigma b$ and σ is right cancellative. Similarly, σ is left cancellative.

Suppose σ is not cancellative and let $e \in E$ be an identity for σ. If h is an identity for σ, where $h \in E$, then $h \sigma (eh) \sigma e$ and $h \in \sigma_e$. Since σ is not cancellative, there exists $f \in E$ such that $f \in \sigma_e$, so that f is not an identity for σ. Let $I = \{f \in E; f$ is not an identity
for \(\sigma \). Let \(J = \bigcup \{ P_f : f \in I \} \). It follows that \(I \) is an ideal in \(E \), \(J \) is an ideal in \(S \) and \(J' \) is a semigroup of \(S \). Oehmke [4] has shown that if \(\sigma \) is a maximal congruence on \(S \) and \(J \) is any ideal of \(S \), then either \(J \) is contained in a \(\sigma \)-class \(S_0 \) (which is also an ideal of \(S \)) or \(J \) contains an element of each \(\sigma \)-class. If \(x \in \sigma \cap J \) then \(x\sigma e \) and \(x \in P_f \) for some \(f \) in \(I \), where \(x = f \). But

\[
x\sigma e \rightarrow x^2 \sigma(xe) \quad \text{and} \quad (xe)\sigma e \rightarrow x^2 \sigma(xe) \\
\rightarrow x^2 \sigma e \rightarrow \cdots \rightarrow x^m \sigma e \rightarrow f \sigma e.
\]

Then \(f \not\in I \), contradiction. Hence \(\sigma_0 \cap J = \emptyset \) and \(J \subseteq S_0 \). Suppose there exists \(b \in S_0 \) such that \(b \in J \), say \(b \in P_h \), where \(h = e \). Let \(f \in I \subseteq S_0 \). Then \(b \sigma f \) implies \((bh)\sigma(fh)\) and \((bf)\sigma f\); and \(h \sigma e \) implies \((fh)\sigma(bf)\). But then \((b^m bh)\sigma(b^{m-1}bf)\) and \(h \sigma(hf) \). It follows that \(h \sigma f \) and \(f \not\in I \), contradiction. Thus \(J = S_0 \). Since \(J \) is an ideal and \(J' \) is a semigroup, the relation \(\sigma^* \), defined by \(a \sigma^* b = a, b \in J \) or \(a, b \in J' \), is a maximal modular congruence on \(S \) [2]. Clearly \(\sigma \subseteq \sigma^* \). Hence \(\sigma = \sigma^* \). Moreover, for each \(a \) in \(J' \), say \(a \in P_f \), and for each \(s \) in \(s \), \(a \sigma e \) implies \((as)\sigma \sigma(sa)\), so that \(J' \) is the semigroup of identities for \(\sigma \). And for each \(b \) in \(J \), say \(b \in P_f \), \(b \) cannot be an identity for \(\sigma \), since then \(f \) would be an identity for \(\sigma \).

Using Lemma 5.1, we can establish the following characterization.

Theorem 5. A periodic \(H \)-semigroup \(S \) is \(t \)-semisimple if and only if \(S \) is an inverse semigroup such that for each pair of groups \(G_e, G_f \) in the semilattice, with \(f \neq e \), the homomorphism \(\varphi_{f,e} \) on \(G_f \) into \(G_e \), defined by \(a \varphi_{f,e} = ae \), is a monomorphism; and, for each \(e \) in \(E \), for each \(a \neq e \) in \(G_e \), there exists a subsemigroup \(T_p \) of \(S \) such that \(a \in T_p \) and for each \(f \) in \(E \), \(T_p \cap G_f = H_f \), where \(H_f = G_f \) or \(H_f \) is a maximal subgroup of prime index \(p \) in \(G_f \).

Proof. Define \(\rho \) on \(S \) by \(x \rho y \) if and only if there exists \(e \) in \(E \) such that \(ex = ey \). Clearly, \(\rho \) is a congruence on \(S \). If \(\sigma \) is any maximal modular cancellative congruence on \(S \) and \(x, y \in S \) such that \(x \rho y \), then there exists \(e \) in \(E \) such that \(ex = ey \). Hence \((ex)\sigma(ey)\) and \(x\sigma e \). Thus \(\rho \leq \alpha \) where \(\alpha \) is the intersection of all the maximal modular cancellative congruences on \(S \). In view of Lemma 3.3, it is clear that the intersection \(\beta \) of all the maximal modular non-cancellative congruences of \(S \) separates \(S \) into its subsemigroups \(P_f \), where \(f \in E \). Let \(e < f \) and define \(\psi_{f,e} \) from \(P_f \) into \(P_e \) by \(a \psi_{f,e} = ea \). Clearly, \(\psi_{f,e} \) is a homomorphism from \(P_f \) into \(G_e \). Suppose \(S \) is \(t \)-semisimple, that is, \(\tau = \tau \). If \(\psi_{f,e} \) is not a monomorphism then there exist \(a \neq b \) in \(P_f \) with \(ea = eb \) so that \(a \sigma b \). This implies \(a \sigma b \). Since also \(a \sigma b \), then \(a \tau b \) and \(\tau \neq \tau \), contradiction. Thus if \(S \) is
t-semisimple, then every homomorphism $\psi_{f,e}$ is a monomorphism from P_f into G_e. Suppose there exists e in E such that $G_e \subseteq P_e$. Then there exists $b \in W_e$ such that $eb = a \in G_e$, that is, $eb = ea$. Then, as before, $a\tau b$ and $\tau \neq \iota$, which is a contradiction. Hence, for each e in E, $P_e = G_e$ and S is an inverse semigroup. Considering the characterization of t-semisimple inverse H-semigroups in [2], the proof is complete.

The corollaries parallel those in [2].

Corollary 5.1. S is a periodic H-semigroup all of whose maximal modular congruences are cancellative if and only if S is a one-idempotent periodic H-semigroup.

Corollary 5.2. S is a t-semisimple periodic H-semigroup all of whose nontrivial maximal modular congruences are not cancellative if and only if S is a semilattice.

Corollary 5.3. If S is a t-semisimple periodic H-semigroup, then S is a semilattice of disjoint t-semisimple Hamiltonian groups.

Corollary 5.4. If S is a t-semisimple periodic H-semigroup, then S is commutative.

Corollary 5.5. If S is a periodic H-semigroup with a minimum idempotent e, then S is t-semisimple if and only if for each semigroup P_f in the semilattice with $f \geq e$, the homomorphism $\psi_{f,e}$ on P_f into P_e, defined by $a\psi_{f,e} = ae$, is a monomorphism and P_e is t-semisimple.

Corollary 5.6. If S is a t-semisimple periodic H-semigroup with no nontrivial modular congruences, then S is either a cyclic group of prime order or the unique semilattice of two elements.

Corollary 5.7. If S is a periodic H-semigroup with zero, then S is t-semisimple if and only if S is a semilattice.

References

Received July 25, 1970 and in revised form June 16, 1971. These results are part of the author's doctoral dissertation written at the University of Iowa under the supervision of Professor Robert H. Oehmke. This research was partially supported by an NSF Science Faculty Fellowship and supported in part under ONR Contract N0014-68-A-0500.

Seton Hill College
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetical properties of generalized Ramanujan sums</td>
<td>281</td>
</tr>
<tr>
<td>On p-thetic groups</td>
<td>295</td>
</tr>
<tr>
<td>Regular semigroups which are extensions of groups</td>
<td>303</td>
</tr>
<tr>
<td>Homomorphisms of Banach algebras with minimal ideals</td>
<td>307</td>
</tr>
<tr>
<td>A generalization of injectivity</td>
<td>313</td>
</tr>
<tr>
<td>On arithmetic properties of the Taylor series of rational functions. II</td>
<td>329</td>
</tr>
<tr>
<td>Generalized Ramsey theory for graphs. III. Small off-diagonal numbers</td>
<td>335</td>
</tr>
<tr>
<td>Irreducible characters and solvability of finite groups</td>
<td>347</td>
</tr>
<tr>
<td>On right zero unions of commutative semigroups</td>
<td>355</td>
</tr>
<tr>
<td>Non-openness and non-equidimensionality in algebraic quotients</td>
<td>365</td>
</tr>
<tr>
<td>Inequalities for polynomials with a prescribed zero</td>
<td>375</td>
</tr>
<tr>
<td>The translational hull of an N-semigroup</td>
<td>379</td>
</tr>
<tr>
<td>Differentiable power-associative groupoids</td>
<td>391</td>
</tr>
<tr>
<td>Continuous dependence on parameters and boundary data for nonlinear two-point boundary value problems</td>
<td>395</td>
</tr>
<tr>
<td>Super-reflexive spaces with bases</td>
<td>409</td>
</tr>
<tr>
<td>The embedding of homeomorphisms of the plane in continuous flows</td>
<td>421</td>
</tr>
<tr>
<td>Period H-semigroups and t-semisimple periodic H-semigroups</td>
<td>437</td>
</tr>
<tr>
<td>Dynamical systems of characteristic 0</td>
<td>447</td>
</tr>
<tr>
<td>On a representation of a strongly harmonic ring by sheaves</td>
<td>459</td>
</tr>
<tr>
<td>Stochastic integrals in abstract Wiener space</td>
<td>469</td>
</tr>
<tr>
<td>Supersimple sets and the problem of extending a retracing function</td>
<td>485</td>
</tr>
<tr>
<td>Open mappings on 2-manifolds</td>
<td>495</td>
</tr>
<tr>
<td>Isomorphic power series rings</td>
<td>503</td>
</tr>
<tr>
<td>Completely adequate neighborhood systems and metrization</td>
<td>513</td>
</tr>
<tr>
<td>On the zeros of a polynomial and its derivative</td>
<td>525</td>
</tr>
<tr>
<td>The Weierstrass excess function</td>
<td>529</td>
</tr>
<tr>
<td>A note on second order differential inequalities and functional differential equations</td>
<td>537</td>
</tr>
<tr>
<td>A general solution of binary homogeneous equations over free groups</td>
<td>543</td>
</tr>
</tbody>
</table>