ON A REPRESENTATION OF A STRONGLY HARMONIC RING
BY SHEAVES

Kwangil Koh
ON A REPRESENTATION OF A STRONGLY HARMONIC RING BY SHEAVES

KWANGIL KOH

A ring R is strongly harmonic provided that if M_1, M_2 are a pair of distinct maximal modular ideals of R, then there exist ideals \mathfrak{A} and \mathfrak{B} such that $\mathfrak{A} \nsubseteq M_1$, $\mathfrak{B} \nsubseteq M_2$ and $\mathfrak{A} \mathfrak{B} = 0$. Let $\mathcal{M}(R)$ be the maximal modular ideal space of R. If $M \in \mathcal{M}(R)$, let $O(M) = \{ r \in R \mid \text{for some } y \in M, rxy = 0 \text{ for every } x \in R \}$. Define $\mathcal{B}(R) = \bigcup \{ R/O(M) \mid M \in \mathcal{M}(R) \}$.

If R is a strongly harmonic ring with 1, then R is isomorphic to the ring of global sections of the sheaf of local rings $\mathcal{B}(R)$ over $\mathcal{M}(R)$. Let $\Gamma(\mathcal{M}(R), \mathcal{B}(R))$ be the ring of global sections of $\mathcal{B}(R)$ over $\mathcal{M}(R)$. For every unitary (right) R-module A, let $A_M = \{ a \in A \mid aRx = 0 \text{ for some } x \in M \}$ and let $\widetilde{A} = \bigcup \{ A/M \mid M \in \mathcal{M}(R) \}$. Define $\delta(M) = a + A_M$ and $\rho(M) = r + O(M)$ for every $a \in A$, $r \in R$ and $m \in \mathcal{M}(R)$.

Then the mapping $\xi_A: a \mapsto \widetilde{a}$ is a semi-linear isomorphism of A onto $\Gamma(\mathcal{M}(R), \mathcal{B}(R))$—module $\Gamma(\mathcal{M}(R), \widetilde{A})$ in the sense that $\xi_A(aR) = \widetilde{a}r$ for every $a \in A$ and $r \in R$.

1. If R is a ring with 1, R is called harmonic (or regular) if the maximal modular ideal space, say $\mathcal{M}(R)$, with the hull-kernel topology, is a Hausdorff space (refer [5]). A ring R is strongly harmonic provided that for any pair of distinct maximal modular ideals M_1, M_2 there exist ideals \mathfrak{A}, \mathfrak{B} in R such that $\mathfrak{A} \nsubseteq M_1$, $\mathfrak{B} \nsubseteq M_2$ and $\mathfrak{A} \mathfrak{B} = 0$. For any nonempty subset S of a ring R define $(S) = \{ r \in R \mid sr = 0 \text{ for every } s \in S \}$ and if $a \in R$ let aR, be the principal right ideal generated by a. If M is a prime ideal of a ring R let $O(M) = \{ r \in R \mid (rR)^{-1} \nsubseteq M \}$. An ideal \mathfrak{A} of a ring R is called M-primary for some maximal modular ideal M of R provided that M/\mathfrak{A} is the unique maximal modular ideal of R/\mathfrak{A} and if \mathfrak{A}' is an ideal of R such that $\mathfrak{A}' \subseteq \mathfrak{A}$ and $\mathfrak{A}' \neq \mathfrak{A}$ then R/\mathfrak{A}' is no longer a local ring (here by a local ring we mean a ring with the unique maximal modular ideal). The principal results in this paper are as follows: Let R be a ring such that if R/S is a local ring for some ideal S of R then R/S has a unit. Then R is strongly harmonic if and only if $O(M)$ is M-primary for every maximal modular ideal M of R. If R is a strongly harmonic ring with 1 then R is isomorphic to $\Gamma(\mathcal{M}(R), \mathcal{B}(R))$ the ring of global sections of the sheaf of local rings $\mathcal{B}(R) = \bigcup \{ R/O(M) \mid M \in \mathcal{M}(R) \}$ over $\mathcal{M}(R)$ and if A is a unitary right R-module then the mapping $\xi_A: a \mapsto \widetilde{a}$ is a semi-linear isomorphism of A onto $\Gamma(\mathcal{M}(R), \mathcal{B}(R))$—
module $\Gamma(\mathcal{M}(R), \hat{A})$ in the sense that ξ_A is a group isomorphism satisfying $\xi_A(\alpha r) = \hat{a} \hat{r}$ for $\alpha \in A$, $r \in R$ where $\hat{a}(M) = a + A_M$, $\hat{r}(M) = r + O(M)$ for $M \in \mathcal{M}(R)$ and $\hat{A} = \bigcup \{A/A_M | M \in \mathcal{M}(R)\}$, the disjoint union of the family of right R-modules A/A_M indexed by $\mathcal{M}(R)$, and $A_M = \{a \in A | (aR)_1 \not\subseteq M\}$. If R is a ring with 1 such that it contains no nonzero nilpotent elements then R is biregular (see [2: p. 104] for definition) if and only if every prime ideal of R is a maximal ideal. Our results here generalize S. Teleman's result that in case $1 \in R$, a strongly semi-simple harmonic ring or a von Neumann algebra can be represented as a ring of global sections of the sheaf of local algebras over its maximal modular ideal space (refer [5], [6] and [7]). The author wishes to express his gratitude to Professors K. H. Hofmann and S. Teleman for their many invaluable suggestions for the preparation of this paper.

2. Let R be a ring and A be a right R-module. For each prime ideal M of R, define $A_M = \{a \in A | (aR)_1 \not\subseteq M\}$ where aR_i is the submodule of A which is generated by the element a and $(aR)_1 = \{r \in R | aRr = 0\}$.

Proposition 2.1. A_M is a submodule of A.

Proof. Let $a, b \in A_M$. Then $(a - b)R_1 \subseteq aR_1 + bR_1$ and $((a - b)R)_1 \supseteq (aR_1 + bR_1)_1 = (aR_1)_1 \cap (bR_1)_1 \supseteq (aR_1)_1 \cap (bR_1)_1$. Hence if $a - b \not\in A_M$ then $(aR_1)_1 \cap (bR_1)_1 \not\subseteq M$ and either $(aR_1)_1 \not\subseteq M$ or $(bR_1)_1 \not\subseteq M$ since M is a prime ideal of R. Hence either $a \not\in A_M$ or $b \not\in A_M$. This is impossible. Thus $a - b \in A_M$. Now if $r \in R$ and $a \in A_M$ then $arR_1 \subseteq aR_1$ and $(arR_1)_1 \supseteq (aR_1)_1$. Since $(aR_1)_1 \not\subseteq M$, $(arR_1)_1 \not\subseteq M$ and $ar \in A_M$.

Corollary 2.2. If A is R, whose module multiplication is given by the ring multiplication, then A_M is an ideal of R which is contained in M for any prime ideal M of R.

Proof. If $O(M)$ is already a right ideal of R by 2.2. Let $r \in R$ and $a \in O(M)$. Then $(raR)_1 \supseteq (aR)_1$. Since $(aR)_1 \not\subseteq M$, $(raR)_1 \not\subseteq M$ and $ra \in O(M)$.

Proposition 2.3. If A is a right R-module for some ring R then $AO(M) \subseteq A_M$ for any prime ideal M of R.

Proof. Since A_M is a submodule of A, it suffices to show that if $a \in A$ and $x \in O(M)$ then $ax \in A_M$. But this is immediate since $(axR)_1 \supseteq (xR)_1$ and $(xR)_1 \not\subseteq M$.

Theorem 2.4. Let \(R \) be a ring such that if \(\mathcal{P} \) is a proper ideal of \(R \) then there is a maximal modular ideal \(M \) in \(R \) such that \(\mathcal{P} \subseteq M \). Let \(A \) be a right \(R \)-module such that if \(aR = 0 \) for some \(a \in A \) then \(a = 0 \). Then \(\bigcap \{A_M | M \text{ is a maximal modular ideal of } R \} \) is zero.

Proof. Let \(a \in \bigcap \{A_M | M \text{ is a maximal modular ideal of } R \} \) such that \(a \neq 0 \). Then \((aR)^\perp \neq R\), for if \((aR)^\perp = R\) then \(aR = 0 \) and \(a = 0 \). Since \((aR)^\perp \neq R\), \((aR)^\perp \) is a proper ideal of \(R \). Hence there is a maximal modular ideal \(M \) in \(R \) such that \((aR)^\perp \subseteq M\). This means that \(a \in A_M \) and \(a \notin \bigcap \{A_M | M \text{ is a maximal modular ideal of } R \} \). This is a contradiction.

Corollary 2.5. If \(R \) is a ring with 1 and \(A \) is a unitary right \(R \)-module, then \(\bigcap \{A0(M) | M \text{ is a maximal ideal of } R \} \) is zero.

Proof. By 2.4, \(\bigcap \{A_M | M \text{ is a maximal ideal of } R \} = 0 \). Since \(A0(M) \subseteq A_M \) for any prime ideal of \(R \) by 2.3, the conclusion now follows.

Definition 2.6. We say that a ring \(R \) is **strong harmonic** provided that for any pair of distinct maximal modular ideals \(M_1, M_2 \) there exist ideals \(\mathcal{A}, \mathcal{B} \) in \(R \) such that \(\mathcal{A} \nsubseteq M_1, \mathcal{B} \nsubseteq M_2 \) and \(\mathcal{A} \mathcal{B} = 0 \).

Proposition 2.7. If \(R \) is strongly harmonic, then \(\mathcal{M}(R) \) is Hausdorff.

Proof. If \(M_1, M_2 \) are distinct maximal modular ideals of \(R \), then, by definition, there exist ideals \(\mathcal{A} \) and \(\mathcal{B} \) such that \(\mathcal{A} \nsubseteq M_1, \mathcal{B} \nsubseteq M_2 \) and \(\mathcal{A} \mathcal{B} = 0 \). Therefore, two open sets \(\{M \in \mathcal{M}(R) | \mathcal{A} \nsubseteq M \} \) and \(\{M \in \mathcal{M}(R) | \mathcal{B} \nsubseteq M \} \) are disjoint.

Example 2.8. Let \(R \) be a strongly semi-simple ring, that is a ring in which the intersection of maximal modular ideals is zero. If the maximal modular ideal space, \(\mathcal{M}(R) \) with the hull-kernel topology, is a Hausdorff space, then \(R \) is strongly harmonic.

Example 2.9. If \(R \) is a ring with 1 such that it is strongly harmonic then it is harmonic. However, if \(1 \in R \) then a strongly harmonic ring may not be harmonic. For example, let \(R \) be the algebra of sequences \((a_n)_{n \geq 0}\) of \(2 \times 2 \)-matrices over the field of complex numbers \(C \), such that \(a_n \to \begin{pmatrix} \lambda & 0 \\ 0 & 0 \end{pmatrix} \) for \(n \to \infty \) for some \(\lambda \in C \). Then...
the intersection of the maximal modular ideals of \(R \) is zero and \(\mathcal{M}(R) \) is Hausdorff. Hence \(R \) is strongly harmonic; however, it is not harmonic.

Example 2.10. Let \(R \) be a von Neumann algebra. Then for any distinct pair of maximal ideals \(M_i, M_j \) there exist central idempotents \(e_i, e_j \) in \(R \) such that \(e_i \notin M_j, e_j \notin M_i \) and such that \(e_i \cdot e_j = 0 \). Hence \(R \) is strongly harmonic.

Example 2.11. Let \(Q \) be the field of rational numbers and let \(p_1, p_2, \ldots, p_l \) be a finite number of distinct prime numbers. Let \(R = \{ m/n \in Q \mid n \) is not divisible by any \(p_i, 1 \leq i \leq l \} \). Then \(\mathcal{M}(R) \) consist of \(l \) points and it is a Hausdorff space. However, since \(R \) is an integral domain, \(R \) is not strongly harmonic if \(l > 1 \).

Definition 2.12. Let \(R \) be a ring and \(M \) be a maximal modular ideal of \(R \). An ideal \(\mathfrak{P} \) in \(R \) is said to be \(M \)-primary, for some maximal modular ideal \(M \) of \(R \), provided that \(\mathfrak{P} \subseteq M, R/\mathfrak{P} \) is a ring with a unique maximal modular ideal \(M/\mathfrak{P} \), and if \(P \) is an ideal of \(R \) such that \(P \subseteq \mathfrak{P} \) and \(P \neq \mathfrak{P} \), then \(R/P \) is not a local ring. Here, by a *local ring* we mean a ring with a unique maximal modular ideal.

Proposition 2.13. Let \(R \) be a ring and \(M \) be a maximal modular ideal of \(R \). If an \(M \)-primary ideal, say \(\mathfrak{P} \), exists, then it is unique.

Proof. Let \(\mathfrak{P} \) be a \(M \)-primary ideal of \(R \). If either \(\mathfrak{P} \subseteq \mathfrak{P} \) or \(\mathfrak{P} \subseteq \mathfrak{P} \) then, by definition, \(\mathfrak{P} = \mathfrak{P} \). So assume \(\mathfrak{P} \cap \mathfrak{P} \) is properly contained in \(\mathfrak{P} \) or \(\mathfrak{P} \). Then the ideal \(\mathfrak{P} \mathfrak{P} \) is properly contained in \(\mathfrak{P} \) and \(R/\mathfrak{P} \mathfrak{P} \) is not a local ring. Hence there is a maximal modular ideal \(N \) in \(R \) such that \(N \neq M \) and \(\mathfrak{P} \mathfrak{P} \subseteq N \). Since \(N \) is a prime ideal, this means that either \(\mathfrak{P} \subseteq N \) or \(\mathfrak{P} \subseteq N \). In either case, this means that \(\mathfrak{P} \) or \(\mathfrak{P} \) is not \(M \)-primary. This is a contradiction.

Proposition 2.14. Let \(R \) be a ring such that if \(R/\mathfrak{P} \) is a local ring for some ideal \(\mathfrak{P} \) in \(R \), then \(R/\mathfrak{P} \) has a unit. If \(R/\mathfrak{O}(M) \) is a local ring for some maximal modular ideal \(M \) in \(R \), then \(\mathfrak{O}(M) \) is \(M \)-primary.

Proof. Observe that \(\mathfrak{O}(M) \subseteq M \). Hence \(M/\mathfrak{O}(M) \) is the unique maximal modular ideal of the local ring \(R/\mathfrak{O}(M) \). Let \(\mathfrak{P} \) be an ideal of \(R \) such that \(\mathfrak{P} \subseteq \mathfrak{O}(M), \mathfrak{P} \neq \mathfrak{O}(M) \) and \(R/\mathfrak{P} \) is a local ring. Let \(t \in \mathfrak{O}(M) \) such that \(t \in \mathfrak{P} \). Then \((tR) \mathfrak{P} \subseteq M \). If \(\mathfrak{P} \mathfrak{P} \neq \mathfrak{P} \), then...
\textit{ON A REPRESENTATION OF A STRONGLY HARMONIC RING BY SHEAVES} 463

R then there is a maximal modular ideal N in R such that \(\mathcal{P} + (tR)^{\perp} \subseteq N \), since R/\mathcal{P} has a unit. Since $(tR)^{\perp} \nsubseteq M$, this means that $M \neq N$. This is impossible. Hence $R = \mathcal{P} + (tR)^{\perp}$. Let $e + \mathcal{P}$ be the identity of R/\mathcal{P} for some $e \in R$. Then $e = p + s$ for some $p \in \mathcal{P}$ and $s \in (tR)^{\perp}$. Hence $te = tp$ and $t - te = t - tp \in \mathcal{P}$. This means that $t \in \mathcal{P}$ and this is a contradiction. Thus $O(M)$ must be M-primary.

Theorem 2.15. Let R be a ring such that if R/\mathcal{P} is a local ring for some ideal \mathcal{P}, then it has a unit. Then R is strongly harmonic if, and only if, $O(M)$ is M-primary for every maximal modular ideal M in R.

\textit{Proof.} Assume R is strongly harmonic. By 2.14, it suffices to show that $R/O(M)$ is a local ring for each maximal modular ideal M of R. If $R/O(M)$ is not a local ring for some maximal modular ideal M, then there is a maximal modular ideal N in R such that $N \neq M$ and $O(M) \subseteq N$. Since R is strongly harmonic, there exist ideals \mathcal{A} and \mathcal{B} such that $\mathcal{A} \not\subseteq N$, $\mathcal{B} \not\subseteq M$ and $\mathcal{A} \mathcal{B} = 0$. This means that $\mathcal{A} \subseteq O(M)$. Since $O(M) \subseteq N$, $\mathcal{A} \subseteq N$. This is a contradiction. Conversely, assume $O(M)$ is M-primary for each maximal modular ideal M of R. Let M_1, M_2 be two distinct maximal modular ideals of R. Then $O(M_1) \nsubseteq M_2$ and $O(M_2) \nsubseteq M_1$. Hence there exist $a \in O(M_1)$ such that $a \notin M_2$ and $b \in O(M_2)$ such that $b \notin M_1$. Then (b), the ideal generated by b, is not contained in M. Let $\mathcal{A} = (b)$ and let $\mathcal{B} = (bR)^{\perp}$. Then $\mathcal{A} \nsubseteq M_1$, $\mathcal{B} \nsubseteq M_2$ and $\mathcal{A} \mathcal{B} = 0$.

Remark 2.16. If R is a strongly semi-simple ring with 1 such that $\mathcal{M}(R)$, the maximal modular ideal space of R, is a Hausdorff space, then by [5: Theorem 6.5] and [5: Theorem 6.15], the M-primary ideal exists for each maximal modular ideal M in R. In this case, the M-primary ideal $p(M)$ is given by the set $\{x \in R \mid \text{supp}(RxR) \cap \{M\} = \phi\}$, where $\text{supp}(RxR) = \{M \in \mathcal{M}(R) \mid RxR \nsubseteq M\}$ by [5: Theorem 6.14].

3. If \mathcal{A} is an ideal of a ring R, let

\[
\text{supp}(\mathcal{A}) = \{M \in \mathcal{M}(R) \mid \mathcal{A} \nsubseteq M\}, \quad h(\mathcal{A}) = \mathcal{M}(R) \setminus \text{supp}(\mathcal{A}), \quad k(\mathcal{A}) = \bigcap \{M \in \mathcal{M}(R) \mid M \in F\}.
\]

Theorem 3.1. Let R be a ring and let

\[
\mathcal{B}(R) = \bigcup \{R/O(M) \mid M \in \mathcal{M}(R)\},
\]

the disjoint union of a family of rings $\{R/O(M) \mid M \in \mathcal{M}(R)\}$. For
each \(r \in R \) define \(\hat{r} \) to be the function from \(\mathcal{A}(R) \) into \(\mathcal{B}(R) \) such that \(\hat{r}(M) = r + O(M) \) for each \(M \in \mathcal{A}(R) \). Let \(\tau = \{ \hat{r}(U) \mid r \in R \) and \(U \) is an open set in \(\mathcal{A}(R) \} \). Let \(\rho \) be a family of sets consisting of arbitrary unions of the members of \(\tau \). Then \((\mathcal{B}(R), \rho) \) is a topological space and each point \(\hat{r}(M) \) of \(\mathcal{B}(R) \), \(r \in R \) and \(M \in \mathcal{A}(R) \), is contained in an open set which is homeomorphic to an open set of \(\mathcal{A}(R) \) under the canonical projection: \(\hat{r}(M) \to M \), that is, \(\mathcal{B}(R) \) is a sheaf of rings over \(\mathcal{A}(R) \).

Proof. In \(\eta \in \hat{r}_1(U) \cap \hat{r}_2(V) \) for some \(r_1, r_2 \in R \) and some open sets \(U, V \) in \(\mathcal{A}(R) \) then there is \(M \in U \cap V \) such that \(r_1 - r_2 \in O(M) \). Hence \((r_1 - r_2)R_i \not\subseteq M \). Let \(W = U \cap V \cap \supp((r_1 - r_2)R_i) \). Then \(M \in W \) and \(\eta \in \hat{r}_1(W) \subseteq \hat{r}_1(U) \cap \hat{r}_2(V) \). Since \(W \) is an open set of \(\mathcal{A}(R) \), \(\hat{r}_1(W) \in \tau \) and hence \((\mathcal{B}(R), \rho) \) is a topological space. In view of [1: 2.2 p. 151], it suffices to show that if \(\hat{r}(M) = 0 \) for some \(r \in R \) and \(M \in \mathcal{A}(R) \) then there exists an open set \(U \) of \(M \) such that \(\hat{r}(U) = 0 \). But this is immediate since if \(\hat{r}(M) = 0 \) then \(r \in O(M) \) and \((rR_i) \not\subseteq M \). Therefore, if we let \(U = \supp((rR_i) \not\subseteq M) \) then \(\hat{r}(U) = 0 \) since \(r \in \bigcap \{ O(M) \mid M \in U \} \).

Theorem 3.2. Let \(R \) be a strongly harmonic ring. If \(F \) is a compact subset of \(\mathcal{A}(R) \) and \(M_0 \in F \) for some \(M_0 \in \mathcal{A}(R) \) then there exist ideals \(\mathcal{A} \) and \(\mathcal{B} \) such that \(\mathcal{A} \mathcal{B} = 0 \), \(M_0 \in \supp(\mathcal{A}) \) and \(F \subseteq \supp(\mathcal{B}) \).

Proof. Since \(R \) is strongly harmonic, for any \(M \in F \) there exist ideals \(\mathcal{A}', \mathcal{B}' \) in \(R \) such that \(M_0 \in \supp(\mathcal{A}') \), \(M \in \supp(\mathcal{B}') \) and \(\mathcal{A}' \mathcal{B}' = 0 \). Since \(F \) is compact, there exist a finite number of ideals, say \(\mathcal{A}, \mathcal{A}_1, \ldots, \mathcal{A}_n, \mathcal{B}, \mathcal{B}_1, \ldots, \mathcal{B}_n \) such that

\[
M_0 \in \bigcap_{i=1}^n \supp(\mathcal{A}_i) = \supp(\mathcal{A}_1 \mathcal{A}_2 \cdots \mathcal{A}_n)
\]

and \(F \subseteq \bigcup_{i=1}^n \supp(\mathcal{B}_i) = \supp(\sum_{i=1}^n \mathcal{B}_i) \) such that \(\mathcal{A}_i \mathcal{B}_i = 0 \) for all \(i = 1, 2, \ldots, n \), and \(\mathcal{A} \mathcal{B}_i \subseteq 0 \).

Theorem 3.3. Let \(R \) be a strongly harmonic ring. If \(F \) is a compact subset of \(\mathcal{A}(R) \) then \(F = h(\bigcap \{ O(M) \mid M \in F \}) \).

Proof. Since \(\bigcap_{M \in F} O(M) \subseteq k(F) \), \(F \subseteq h(\bigcap_{M \in F} O(M)) \). Suppose there is \(M_0 \in h(\bigcap_{M \in F} O(M)) \) such that \(M_0 \in F \). Then by 3.2 there exist ideals \(\mathcal{A}, \mathcal{B} \) in \(R \) such that \(M_0 \in \supp(\mathcal{A}) \), \(F \subseteq \supp(\mathcal{B}) \) and \(\mathcal{A} \mathcal{B} = 0 \). Hence if \(M \in F \) then \(\mathcal{B} \not\subseteq M \) and \(\mathcal{A} \subseteq O(M) \). Thus \(A \subseteq \bigcap_{M \in F} O(M) \). Since \(M_0 \in h(\bigcap_{M \in F} O(M)) \), this means that \(\mathcal{A} \subseteq M_0 \) and this is a contradiction.
THEOREM 3.4. Let R be a strongly harmonic ring with 1 and let $\mathcal{R}(R)$ be the sheaf of local rings over $\mathcal{M}(R)$, which is described in 3.1. If F_0 is a compact subset of $\mathcal{M}(R)$ and σ is a section from F_0 into $\mathcal{R}(R)$, then there is $r \in R$ such that $\hat{r} |_{F_0} = \sigma$.

Proof. If $M_0 \in F_0$ then there exists an open set U in $\mathcal{M}(R)$ which contains M_0 and $r \in R$ such that if $M \in U \cap F_0$ then $\sigma(M) = \hat{r}(M)$. Let $U_0 = \mathcal{M}(R) \setminus F_0$. Since $\mathcal{M}(R)$ is Hausdorff by 2.7, F_0 is a closed set. Hence U_0 is an open subset of $\mathcal{M}(R)$. There exist a finite number of points M_1, M_2, \ldots, M_n in F_0, open sets U_1, U_2, \ldots, U_n such that $M_i \in U_i$, $i = 1, 2, \ldots, n$, and r_1, r_2, \ldots, r_n in R such that $\sigma(M) = \hat{r}_i(M)$ for every $M \in U_i \cap F_0$ for every $i = 1, 2, \ldots, n$. Furthermore, $F_0 \subseteq \bigcup_{i=1}^{n} U_i$ and $\mathcal{M}(R) = \bigcup_{i=1}^{n} U_i$. Let $F_i = \mathcal{M}(R) \setminus U_i$ and let $I_i = \bigcap_{M \in F_i} O(M)$ for each $i = 0, 1, 2, \ldots, n$. Since F_i is a closed subset of a compact space, it is compact. Hence $F_i = h(I_i)$ for each $i = 0, 1, 2, \ldots, n$ by 3.3. Since $\phi = \bigcap_{i=0}^{n} F_i = \bigcap_{i=0}^{n} h(I_i) = h(\bigcap_{i=0}^{n} I_i)$, $R = \bigcup_{i=0}^{n} I_i$ and $1 = \sum_{i=0}^{n} e_i$ for some $e_i \in I_i$, $i = 0, 1, 2, \ldots, n$. If $M \in F_i \cap F_0$, then $\hat{r}_i(M)\hat{e}_i(M) = O(M) = \sigma(M)\hat{e}_i(M)$. If $M \in U_i \cap F_0$, then $\hat{r}_i(M)\hat{e}_i(M) = \sigma(M)\hat{e}_i(M)$. Hence, for every $M \in F_0$, $\hat{r}_i(M)\hat{e}_i(M) = \sigma(M)\hat{e}_i(M)$. Thus if we let $r = e_0 + \sum_{i=1}^{n} r_i e_i$, then for every $M \in F_0$:

$$\hat{r}(M) = \hat{e}_0(M) + \sum_{i=1}^{n} \hat{r}_i(M)\hat{e}_i(M) = \sigma(M)\hat{e}_0(M) + \sum_{i=1}^{n} \sigma(M)\hat{e}_i(M) = \sigma(M)\left(\sum_{i=0}^{n} \hat{e}_i(M)\right) = \sigma(M).$$

COROLLARY 3.5. If R is a strongly harmonic ring with 1 then $R \cong \Gamma(\mathcal{M}(R), \mathcal{R}(R))$.

Proof. By 2.5, $r \mapsto \hat{r}$ is a monomorphism from R into $\Gamma(\mathcal{M}(R), \mathcal{R}(R))$. Since $\mathcal{M}(R)$ is a compact space, by 3.4 if $\sigma \in \Gamma(\mathcal{M}(R), \mathcal{R}(R))$ then there is $r \in R$ such that $\sigma = \hat{r}$. Thus $r \mapsto \hat{r}$ is an isomorphism of R onto $\Gamma(\mathcal{M}(R), \mathcal{R}(R))$.

DEFINITION 3.6. We say that a sheaf \mathcal{R} over the space X is soft provided that if F is a compact subset of X and $\sigma \in \Gamma(F, \mathcal{R})$ then there is $\hat{\sigma} \in \Gamma(X, \mathcal{R})$ such that $\hat{\sigma} |_{F} = \sigma$.

THEOREM 3.7.1 Let R be a strongly harmonic ring with 1. Then the sheaf $\mathcal{R}(R)$ of local rings which is constructed in 3.1 is soft. Conversely, if \mathcal{R} is a soft sheaf of local rings over a Hausdorff compact space \mathcal{M}, then $\Gamma(\mathcal{M}, \mathcal{R})$ is a strongly harmonic ring.

1 The author is indebted to Professor S. Teleman for this theorem.
Proof. By 3.4, $R(R)$ is soft if R is a strongly harmonic ring with 1. Suppose now that R is a soft sheaf of local rings over a Hausdorff compact space \mathcal{M}. Let $R = \Gamma(\mathcal{M}, R)$. By Theorem 11 of [6: p. 712], \mathcal{M} is homeomorphic to $\mathcal{M}(R)$. Hence we may take $R = \Gamma(\mathcal{M}(R), R)$. Since \mathcal{M} is Hausdorff, if $M_i, M_j \in \mathcal{M}(R)$ such that $M_i \neq M_j$ then there exist open sets $U_i, i = 1, 2$, in $\mathcal{M}(R)$ such that $M_i \subseteq U_i$, $M_j \subseteq U_j$ and $U_i \cap U_j = \phi$. If $\sigma \in R$, define
\[|\sigma| = \{M \in \mathcal{M}(R) | \sigma(M) \neq 0\}. \]

Let $A_i = \{\sigma \in R | |\sigma| \subseteq U_i\}$, $i = 1, 2$. Clearly, A_1, A_2 are ideals of R and $A_1A_2 = 0 = A_2A_1$ since $U_1 \cap U_2 = \phi$. There exists compact sets K_1, K_2 such that $M_i \subseteq K_i$ and $K_i \subseteq U_i$, $i = 1, 2$. Let $F_i = \mathcal{M}(R) \setminus U_i$. Since R is soft there exist σ_i in $\Gamma(\mathcal{M}(R), R)$ such that $\sigma_i(K_i) = 1$ and $\sigma_i(F_i) = 0$, $i = 1, 2$. Hence $A_i \nsubseteq M_i$ for $i = 1, 2$. Thus R is strongly harmonic.

REMARK 3.8. Let R be a ring and A be a right R-module. We will associate with A a sheaf if $R(R)$-modules over $\mathcal{M}(R)$ (refer [4] for definition). For $M \in \mathcal{M}(R)$, denote $\tilde{A} = \bigcup \{A/A_M | M \in \mathcal{M}(R)\}$, the disjoint union of a family of R-modules A/A_M indexed by $\mathcal{M}(R)$. Let $\pi: \tilde{A} \to \mathcal{M}(R)$ be given by $\pi^{-1}(M) = A/A_M$. For $a \in A$ and $M \in \mathcal{M}(R)$, let $t_a(M)$ be the image of a, under the natural homomorphism of A onto A/A_M. Topologize \tilde{A} by taking all sets $t_a(U)$, with $a \in A$, U is an open set in $\mathcal{M}(R)$, as a basis for the open sets. Then \tilde{A} becomes a sheaf of $R(R)$-modules over $\mathcal{M}(R)$. The justification of this statement and proof of this result require only slight modifications of 3.1.

THEOREM 3.9. Let R be a strongly harmonic ring with 1 and let A be a unitary right R-module. Then the mapping $\tilde{\xi}_a: a \mapsto t_a$ is a semi-linear isomorphism of A onto the $\Gamma(\mathcal{M}(R), R(R))$-module $\Gamma(\mathcal{M}(R), \tilde{A})$ in the sense that $\tilde{\xi}_a$ is a group isomorphism satisfying $\tilde{\xi}_a(ar) = t_a \cdot \tilde{a}$ for $a \in A$, $r \in R$ where $t_a(M) = a + A_M$ for all $m \in \mathcal{M}(R)$.

Proof. We omit the proof because it is only a variant of the proof of 3.4. However, it is worth noting that the full strength of 2.4 is needed here to prove that $\tilde{\xi}_a$ is an injection.

4. A ring is called biregular if every principal ideal of the ring is generated by a central idempotent. In [2], Dauns and Hofmann proved that if R is a ring with 1 then R is biregular if and only if R is isomorphic to the ring of all global sections of a sheaf of simple rings over a Boolean space. By applying this theorem, we
will show that if R is a ring with 1 such that it contains no nonzero nilpotent elements then R is biregular if, and only if, every prime ideal of R is a maximal ideal of R.

Proposition 4.1. If R is a biregular ring then every prime ideal M of R is a maximal ideal of R.

Proof. If R is biregular then so is the ring R/M for any ideal M of R. Hence if M is a prime ideal then R/M is a prime biregular ring. Therefore, R/M contains no proper principal ideal for if R/M contains a proper principal ideal, then R/M would have two nonzero ideals whose product is zero. Thus R/M is a simple ring and M is a maximal ideal of R.

Proposition 4.2. Let R be a ring and M be a prime ideal of R. Define $O_M = \{x \in R \mid xy = 0$ for some $y \in M\}$. If R contains no nonzero nilpotent elements then $O_M = O(M)$.

Proof. Clearly $O(M) \subseteq O_M$. If x, y are elements of R such that $xy = 0$ then yx is zero since $yxy = 0$ and R contains no nonzero nilpotent elements. Furthermore, if $r \in R$, $xry = 0$ since $xryxry = 0$. Thus $O(M) = O_M$.

Proposition 4.3. Let R be a ring without nilpotent elements. If every prime ideal of R is maximal, then $M = O(M)$ for every prime ideal M of R.

Proof. If every prime ideal of R is maximal, then every prime ideal is a maximal prime ideal. Hence by [3: 2.4], $M = O_M$ for each prime ideal M of R. Thus by 4.2 $M = O(M)$.

Proposition 4.4. If R is a ring with 1 such that R contains no nonzero nilpotent elements and if every prime ideal of R is maximal, then $\mathcal{M}(R)$ is a Boolean space.

Proof. This is a direct consequence of [3: 2.5].

Theorem 4.5. Let R be a ring with 1 such that it contains no nonzero nilpotent elements. Then R is biregular if, every prime ideal of R is maximal.

Proof. If R is biregular then by 4.1, every prime ideal is maximal. Conversely, suppose that every prime ideal of R is maximal. Since R is a ring without nilpotent elements, the intersection of
prime ideals of R is zero. Since $\mathcal{M}(R)$ is a Hausdorff space by 4.4, if M_1, M_2 are two distinct elements in $\mathcal{M}(R)$, then there exist ideals \mathfrak{A} and \mathfrak{B} such that $\mathfrak{A} \not\subseteq M_1$, $\mathfrak{B} \not\subseteq M_2$ and $\mathfrak{A} \mathfrak{B} = 0$. Hence $O(M)$ is M-primary for every $M \in \mathcal{M}(R)$ by 2.13 and thus $R \cong \Gamma(\mathcal{M}(R), \mathcal{B}(R))$ by 3.5. Since $\mathcal{M}(R)$ is a Boolean space by 4.4 and $M = O(M)$ by 4.3, R is a biregular ring by [2: 2.19, p. 108].

REFERENCES

Received February 10, 1971.

TULANE UNIVERSITY
AND
NORTH CAROLINA STATE UNIVERSITY
Tom M. (Mike) Apostol, *Arithmetical properties of generalized Ramanujan sums* .. 281
Janet E. Mills, *Regular semigroups which are extensions of groups* 303
Gregory Frank Bachelis, *Homomorphisms of Banach algebras with minimal ideals* ... 307
John Allen Beachy, *A generalization of injectivity* .. 313
David Geoffrey Cantor, *On arithmetic properties of the Taylor series of rational functions. II* .. 329
Václav Chvátal and Frank Harary, *Generalized Ramsey theory for graphs. III. Small off-diagonal numbers* .. 335
Frank Rimi DeMeyer, *Irreducible characters and solvability of finite groups* 347
Robert P. Dickinson, *On right zero unions of commutative semigroups* 355
John Dustin Donald, *Non-openness and non-equidimensionality in algebraic quotients* .. 365
John D. Donaldson and Qazi Ibadur Rahman, *Inequalities for polynomials with a prescribed zero* ... 375
Robert E. Hall, *The translational hull of an N-semigroup* 379
John P. Holmes, *Differentiable power-associative groupoids* 391
Steven Kenyon Ingram, *Continuous dependence on parameters and boundary data for nonlinear two-point boundary value problems* 395
Robert Clarke James, *Super-reflexive spaces with bases* 409
Gary Douglas Jones, *The embedding of homeomorphisms of the plane in continuous flows* ... 421
Mary Joel Jordan, *Period H-semigroups and t-semisimple periodic H-semigroups* .. 437
Ronald Allen Knight, *Dynamical systems of characteristic 0* 447
Kwangil Koh, *On a representation of a strongly harmonic ring by sheaves* 459
Hui-Hsiung Kuo, *Stochastic integrals in abstract Wiener space* 469
Thomas Graham McLaughlin, *Supersimple sets and the problem of extending a retracing function* ... 485
William Nathan, *Open mappings on 2-manifolds* ... 495
M. J. O’Malley, *Isomorphic power series rings* .. 503
Sean B. O’Reilly, *Completely adequate neighborhood systems and metrization* .. 513
Qazi Ibadur Rahman, *On the zeros of a polynomial and its derivative* 525
Russell Daniel Rupp, Jr., *The Weierstrass excess function* 529
Hugo Teufel, *A note on second order differential inequalities and functional differential equations* .. 537
M. J. Wicks, *A general solution of binary homogeneous equations over free groups* ... 543