Pacific Journal of

Mathematics

DIFFERENTIABLE MAPS WITH 0-DIMENSIONAL CRITICAL
SET. I

PHILIP THROOP CHURCH AND JAMES TIMOURIAN




PACIFIC JOURNAL OF MATHEMATICS
Vol. 41, No. 3, 1972

DIFFERENTIABLE MAPS WITH 0-DIMENSIONAL
CRITICAL SET, I

P. T. CHuRcH AND J. G. TIMOURIAN

Let f: M»— N? be C*with n — p =0 or 1, let p = 2, and
let R,~:(f) be the critical set of f. If dim (R,—:«(f)) =0 and
dim ( f(Rp—1(f)) £ p — 2, then (1.1) at each xc M=, f is locally
topologically equivalent to one of the following maps:

(a) the projection map p: R* — R,

(b) a:C— C defined by o(z) =2 (d =2,8,...), where C
is the complex plane, or

(e) 7:CxXC—>CXR defined by <z, w) = (2z-w, |w|*—|z[?),
where @ is the complex conjugate of w.

In particular, either f is locally topologically equivalent
to o at each xe M, or (n,p)=(2,2) or (4,3).

In a sequel the hypothesis on dim f(R,_.,(f)) is eliminated.

For a C"(r = 1) map f: M"— N* let R,(f) be the set of points
x e M at which the rank of (the derivative map of) f is at most q.
The critical set of f is defined to be R,_,(f) (in case n < p, B,_,(f) =
M), and according to the Rank Theorem [2, p. 155] at each z € M" —
R,_.(f), f is locally C" equivalent (1.3) to the map p: R” — R” defined
by o(x, %, «--2,) = (X, % -+, #,). Thus (1.1) is a generalization of
the Rank Theorem for n — p =0 or 1, and p = 2; moreover for # — p =
1 it answers a question of Milnor (1.7).

Note that while f is only C*, the maps p, o, and 7 are real analytic.
Simple examples (1.4) show that “topologically” cannot be replaced by
“C™ and that no reasonable classification is possible if » = 1. Pro-
positions more general than (1.1) are also given ((4.7) and (4.9)).

Theorem (1.1) was announced in the talks [2] and [20]. For
n = p = 2 (1.1) was essentially proved by Stoilow [2, pp. 147 and 148]
and for » = p = 3 by Church [2, p. 155]. Both [6, p. 72, (1.5)] and
[2, p. 159] deal with maps having a small singular set, and [13, §11]
discusses maps with isolated critical points. The map 7 is due to N.
Kuiper [13, p. 102] and it is topologically equivalent to the cone map
c(+) of the Hopf fibration +: S°— S* (1.10).

Convention 1.2. A symbol such as M* denotes a separable n-
manifold, without boundary unless otherwise specified (except for obvi-
ous cases). A manifold with boundary may have empty boundary.

The boundary of a space X is denoted by X or 4X (in case
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X is a manifold), the interior of X by int X, and the closure of X
by X or Ci[X]. The distance between two points is d(z, ), and
Sw, ¢) = {y: d(x, y) < e}. The space of real (resp., complex) numbers
is denoted by R (resp., C), euclidean n-space by R", its origin by 0,
the closed ball CI[S(0, 1)] in R* by D", and the sphere ¢D by S* .

A map is a continuous function, the restriction of a function f
to X is denoted by f|X, and the composition of two functions by gf
or gof. Homeomorphism of topological spaces and isomorphism of groups
is denoted by ~. The map 7: X x Y — X is projection, and ¢ is used
for the identity map on a space.

Given maps ¢: X— Yand ¢: U— V, definey X : XX U—V X Y
by (v x¢)(®, u) = ((x), #{u)). Define the open cone ¢(X) as the identi-
fication space obtained from X x [0,1) by identifying X x {0} to a
point x*, and let the cone map c(y): ¢(X) —¢(Y) be the map induced
by 4 X ¢

DeriNiTION 1.3, If f: M"— N* and ¢g: K*— L* are C™ maps on
C” manifolds (» = 0,1, --+), then f and g are C" equivalent if and
only if there are C" diffeomorphisms a: M* — K" and 8: N* — L* such
that goax = Bof. The map f at x is locally C™ equivalent to g at u
if there are open neighborhoods U of z and V of f(x) such that.
flU. U— V is C" equivalent to g with a{x) = u. A C° diffeomor-
phism is a homeomorphism, and (locally) topologically equivalent means
(locallyy C° equivalent.

REMARK 1.4. Suppose that f is any one of p, g, or 7, and let
7. R*— R" be a C~ homeomorphism such that 7 fixes the origin,
ni(R* — A) is a C= diffeomorphism, where A is the closure of a sequ-
ence of points converging to the origin, and the rank of the Jacobian
matrix of » at points in A is zero. Since the rank of f at any point
in A away from the origin is not maximal, fo7 is not locally C* dif-
feomorphically equivalent at the origin to any of the maps in (1.1).
Thus in the statement of (1.1) “topologically” cannot be replaced by
“C». For examples to show that no reasonable classification is pos-
sible if p = 1 take height functions on compact manifolds which have
an infinite collection of local maxima.

DEFINITION 1.5. Given M" and N? manifolds with (possibly empty)
boundary, % = p, and a map f: M"— N*, we now define the branch
set B M". Let R = {xeR™ 2, =0}, let F=R"? or R?? and
let G = R? or R” (not respectively). Then x¢ B, if and only if f at
x is locally topologically equivalent to 7: FF x G — G at (0, 0). Occa-
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sionally the notation B(f) is used.

In (1.1) B, = ¢ while B, and B. (and thus By) are discrete.
With the definition of B, the Rank Theorem [2, p. 155] for n = p
becomes:

RANK THEOREM 1.6. Iff: M"—N?isC'(r =1), n = p, and oM™ =
ON? = ¢, then B; C R,_.(f).

Question 1.7. (Milnor [13, p. 100, first problem]). Let f: R*— R?
be a (real) polynomial map with an isolated critical point at 0. For
what dimensions n = p = 2 do nontrivial examples exist?

The topic of [13], except for § 11, is certain complex polynomial
maps f: C**'— C with 0 as the only critical point. These maps have
a deep and very interesting structure related to exotic spheres, and
their properties led Milnor to ask about real polynomial maps.

After posing this question Milnor says “It is not quite clear what
‘non-trivial’ should mean here. Certainly the projection --- is a trivial
example”. One natural definition is: f 4s montrivial at = if and
only if ®€ By, i.e. f is trivial at « if and only if f at x is locally
topologically equivalent to the projection map p.

In the complex polynomial case the study of a singularity employs
a certain fibration, and analogous fibration exists in the real poly-
nomial case. Milnor formulates his (“tentative”) definition of non-
trivial [13, p. 97 and p. 100] in terms of this fibration; we omit it
here because it is technical. While Milnor’s definition appears to be
quite different from the definition we have given above, Church and
Lamotke have shown [4] that they agree (at least for = = 4). With
our formulation we can ask Milnor’s question in other contexts.

Let f: M"— N* (n = p = 2) be continuous, C" (r = 1,2, -++; or o),
or real analytic. For what dimensions (%, p) can f have a nonempty
discrete (or 0-dimensional) branch set B,, and, up to local topological
equivalence, what are the examples? For # — »p =0 or 1 Theorem
(1.1) answers a C" version of this question, and a fortiori answers
Milnor’s question for these dimensions. A continuous version is dis-
cussed in (4.9).

In sequels [5] the hypothesis on dim f(R,_.(f)) is removed, and
analogous results for n — p = 2 are proved in both continuous and C*
contexts. At first glance it seems very special to consider only the
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cases 0 <= n — p <2 in these theorems, but for every (u, p) with
% —p=4 and p =2, Church and Lamotke constructed [4] a con-
tinuous counterexample with isolated branch point. Moreover, for
n— p=23 and p =6, the nonexistence of examples depends on the
Poincaré Conjecture. Thus our restriction 0 < % — p <2 in these
papers is reasonable.

DEerINITION 1.8. A map f: X— Y is proper if, for each compact
set KC Y, f4(K) is compact; f is light if, for each y € Y, dim (f(y)) =
0; and f is monotone if each f'(y) is connected. It is quasi-
monotone if, for each connected open set U C Y and component V of
S U), f(V)= U [23, p. 151].

THEOREM 1.9. (Cheeger and Kister [1, p. 151]; see also [2, p. 170]).
If f: M* — N” is a proper map, n = p, and B; = ¢, then f 1is the
projection map of a fiber bundle.

(While they assume that f is monotone, this hypothesis is not
used in their proof. The manifolds may have nonempty boundary.)

REMARK 1.10. If +:S®— S? is the Hopf fibration, then T in (1.1)
s topologically equivalent to the cone map ().

Proof. Let S*r) and S*(r) be the spheres about (0, 0) of radius
r in C x Cand C X R, respectively, and let & C x C — {(0, 0)} — C X
R — {(0, 0)} and C,: S°(r) — S*(r) be the restrictions of z. Then (, is
W [13, p. 102, (11.6)], & is proper, and since R,(z) = {(0,0)}, B: = ¢
(1.6). Thus (1.9) £ is a bundle map over S®> x (0, =), so that ¢ is
topologically equivalent to {, x ¢ [17, p. 53, (11.4)], and the conclu-
sion results.

Outline of the Proof of (1.1) 1.11. For almost all the proof we work
in a purely topological context, assuming topological analogs of the
hypotheses of (1.1) or less. The lemmas of § 2 show that for each z € M”
there is a manifold neighborhood U of 2 such that the restriction map
g = flU, g: U— f(U), is proper and B,NoU =¢. If B, = ¢, theng
is a bundle map (1.9); thus, in general, g can be viewed as a bundle map
with singularities. In § 3 we show that ¢ is open. In § 4 we suppose
that 2 is not a point component of ¢g~'(g(x)) and deduce (4.5) that g is a
bundle map near x, which implies that x¢ B;. (We use §3 and the
‘almost bundle property’ of § 2 here.) Hence for each € By, x is a
point component of f~'(f(x)); this is the situation of [6] and that
paper yields the desired conclusion. Differentiability is used only as
it is used in [6], i.e. to deduce in (1.1) that f(B;) is 0-dimensional
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and nicely embedded.

In several cases lemmas are stated and proved in somewhat greater
generality than needed here, for use in [5] and [7].

2. Extended embeddings.

DEFINITION 2.1. A map ¢g:J" ™ X R™— L™ x R™ is called a
layer map if for each te R™, g(J"™ X {t}) < L*™ x {t}. (In case g is
an embedding it is called an ¢sofopy.) The restriction map

gl x {th: J*™ x {t} — L7 x {t}

is denoted by g,, and its branch set by B(g,). Frequently it is con-
venient to view ¢, as a map of J"™™ into L*™™.

LEMMA 2.2. Let v;: D* — (int D"?) x D? be disjoint embeddings
with v;(t)=(a;(¢), t) (2 =1, 2, «++, k). Then there is an isotopy h: D" ? X
D? — D" x D? such that h agrees with the identity map on (D" 7 X
{0h) U @D"™* x D7), and h(%:(t)) = (a:(0), ?).

Proof. Let X = {a;(0):7=1,2, ---, k}. The v, define an isotopy
v: X X D* — (int D"?) x D*

by sending (a;(0), t) to (a;(t), t), which is readily extended to a neigh-
borhood of X by sending (u, t) to (v — a;(0) + a;(t), t) for u near a;(0).
The desired ambient isotopy h: D" 7 x D? — D" ?x D* extending 7 is
given by Lees’ Neighborhood #-Isotopy Extension Theorem [12, p.
530].

DEFINITION 2.3. Let f: M™— N?” be a map, let ye¢ Wc N?, and
let Q< f'(y). Define the embedding r\: @ X {y} — M" by Mg, v) = ¢
for each g€ @. An embedding v: Q x W — M" extending )\ with

Q x W5 M*
x !
P

commutative is called an extended embedding of @ over W. For each
we W let v,:Q — f~(w) be the embedding defined by v,(9) = v(q, w).

An extended embedding with @ a single point space is called a
cross-section over W. (In case f is a fiber bundle, it is a cross-sec-
tion in the usual sense.)
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LEMMA 2.4, Let f: M" — N? be a map, let n = p, let ye N?, and
let pC f(y) — By be a compact (n — p)-submanifold with bicollared
boundary (e.g. let P be a closed bicollar of a bicollared compact (n —
p — 1)-submanifold Q  f(y) — By).

(@) Then there is an open p-cell meighborhood D of y and an
extended embedding p: P X D — M* such that B, imag it = ¢ (in the
example let v = 1| Q X D).

(b) Given v and Q asin (a) (or @ = ¢), 0 > 0, and a family 7
of components of f~(y) — Q such that L = U{J:Je _Z} has compact
closure, L — L C Q, and either (i) _Z 1is finite or (ii) each diam J <
0/8, then there is a p-cell meighborhood E of y in D such that for each
Je _Z, the component K of f~(FE)-imag v containing J has (i) d(x, J)<
0/3 for each xe€ K, resp. (ii) diam K < .

Proof of (a). We will assume that the reader has read the proofs
of the Theorem and the Remark in [1] and has them at hand. Let
M=, N*, and y be denoted by W, Y, and y,, and let the (» — p)-mani-
fold P’ be the union of P and a bicollar of its boundary. For each
2z € P, there are closed neighborhoods U of y, in ¥ and V of & in W,
and a homeomorphism #4: B(2) x U— V such that foh is the projec-
tion map onto U (since x ¢ B;). In fact it is possible to choose the
closed neighborhood U and a collection of such embeddings {h;:7 =
1,2, ---,k} on B(2) x U such that Pc Y%, int 4;(B1)) and f~'(y,) N
hi(B@2)) < int P'. For ye U define M, = f~(y) — B; (so PC P'C M,)
and b, ;: B2) — M, by h, {t) = hi(y, t). The proofs of [1] now yield
the embedding required for (a).

Proof of (b). Let W < M” be compact with L < int W; we may
suppose that 6 < d(L, bdy W). Let P be a closed bicollar of @ (P =
¢ if @ =¢) and p: P x D— M" be as in (a); we may suppose that D
is sufficiently small and P is a sufficiently small bicollar of @ that
d(z, Q) < 6/3 for each xcimag ¢ (remember that @ = ¢(Q, v)). Let L’
be L — int P (since L — L < Q, L is compact). Each component K of
L (resp. of f~*(D) — imag v) contains one and only one component K’ of
L’ (resp., of f4(D) —int imag p. Let E.c N” (r =1,2, ---) be closed
p-cells such that K., E, and N, E, = {y}. Then it suffices to prove
that (*) there exists an integer » such that, for each Je¢ 7, the com-
ponent H of f~'(E,)—int imag ¢ containing J—int P has d(z, J—int P)<
0/3 for each x ¢ H.

Suppose the contrary. Then there are components J, of L', com-
ponents H, of f~(K,) —int imag ¢ with J, < H,, 4. € H, with d(J,, y,) =
6/3, and paths I, C H, joining some point z,¢J, to y,. We may sup-
pose that I', < W, that x, -—x, and that y, — vy, Thus 2,e L, I" =
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lim sup I", is connected [23, p. 14, (9.1)], and diam I" = §/3. Now I
is contained in some component J’ of L’. In case (i) there are only
a finite number of components of L’, and since they are compact, all
but a finite number of the J, are in fact J’; since d(J’, y,) < 6/3, a
contradiction results. In case (ii), since diam J’ < 6/3 and diam I" >
0/3, a contradiction results also.

LEMMA 2.5. Let f: M"— N" be a map with 0 < n — p and n —
p#4or 5 let ye N?, let dim (B, N f~(y) =0, let X< BN f(y)
be compact, and let € > 0. Then there is a compact (n — p — 1)-mani-
fold Q (or @), an open p-cell meighborhood D of y in N?, and an
extended embedding v: Q X D — M" such that each component K of
fYD) — imagy meeting X has diam K < &, their union has compact
closure, and imagy N By = ¢.

Proof. Let T, T' C f~'(y) be compact with X Cint 7’, 7' Cint T
(interior relative to f~'(y)), and let » > 0 be less than both d(X, bdy 7”)
and d(T’, bdy T). We may suppose that ¢ <. Let X'= T'nN By,
and let U, ={xe T:d(x, X))k} (k=1,2, ---).

We will first prove that (1) for k sufficiently large, each component
of U, has diameter less than ¢. Suppose the contrary. Then there
are a subsequence {m(k)}, components 7", of U, and points x, ¥, €
I, with d(x;, ¥.) =¢. We may suppose that 2z, —2, and ¥y, — v,.
Thus I" = limsup I", is connected [23, p. 14, (9.1)], and since d(z,, y,) =
g, diam I" = e. If k is fixed, then for each 7=k, I'; CU,; € Unuys
so that I' T U,p. Thus I' © N Unw = X, contradicting the fact that
X is totally disconnected (since X < B, N f'(y)). Thus (1) is true.

If a generalized continuum fails to be locally connected, it fails at
(at least) a subcontinuum of points [23, p. 19, (12.3)]. Since f~'(y) —
B, is an (n — p)-manifold (or ¢) and B, N f~'(y) is totally disconnected,
each component 4 of f~'(y) is locally connected. Hence (2) if U is
open in 4, then each component of U is open in 4.

Let k& be the number given by (1), and (3) let V be a component
of U, meeting X. Then diam V <¢, so that Vc 7', Let bdy V
refer to the boundary of V in the component A, of f~'(y) containing
V, and let xebdy V. Since Vc U, d(z, X') < 1/k; suppose d(z, X') =
a < 1/k. The component W of {ue 4,:d(x, w) < 1/k — a} containing «
is open in 4, (by (2)), Wc U,, and thus W C intV (relative to 4,),
contradicting the choice of x; thus (4) d(x; X) = 1/k for each xe
bdy V.

Let 4 be the closure of the union of bdy V for V satisfying (3)
(actually the union is closed). For each x € 4, d(z, X’) = 1/k, and since
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4T and "N By = X', 4N B; = ¢. Let L be the (n — p)-manifold
int T — B, (possibly empty). Siebenmann and Kirby have shown (see
[15, p. 949] that a topological manifold with dimension not 4 or 5
has a handle decomposition, so in particular there are compact (n — p)-
manifolds with boundary {L;} 4 =1,2, -+, %k or j=1,2,---) such
that L;cint L;;, and L = J; L;. Since 4 is compact, there is a j
such that 4 ¢ int L;. Since 0L; is collared, there is a compact (n —
p)-manifold P” with boundary (or ¢) such that 4 C int P*, P" C int L;,
(and so P"c L), and 0P" is bicollared in L. Let Q = oP".

Since each component Y of f(p) — @ meeting X is contained
in some V satisfying (3), diam Y < e. Let ¢ and v be the extended
embeddings given by (2.4a and b); the conclusion results.

COROLLARY 2.6. Let f: M"— N? be a map with 0 <n — p and
n = 4,5, let x€ M", and let dim (B; N f~(f(x))) £ 0. Then there is a
connected (not neccessarily compact) manifold K* < M™ with boundary
such that x¢int K"(= K" — 0K"), the closure K" of K" in M" is
compact, there is an open p-cell D N* with f(K") < D, and the
restriction map g: K™ — D is proper with B, N 0K" = ¢.

For example, let f: R* — R be projection on the first factor, let
2 =(0,0), and let K* = (—-1,1) x [-1,1].

Proof. We may suppose that x€ B;. Apply (2.5) where X = {z},
and let K" be the closure in f~%(D) of K. Thus K" is a manifold
with boundary, and K™ C imagy (which may be empty). Let Y be
a compact subset of the open 2-cell D. Since bdy K" (bdy taken rela-
tive to M™) is the disjoint union of dK" and a subset of f~'(bdy D),
g (Y)=fY)N K*= f(Y)N K" (closure in M"), and so is compact;
thus g is proper.

3. Open maps.

DerFINITION 3.1. For f: M"— N” and xzeM", let I'(x) = I";(x)
be the component of f~!(f(x)) containing x. If, for every neighbor-
hood U of z, f(») €int f(U), then f is open at x.

LeEMmMA 3.2. Let f: M"— N? be a map with n = p, and let xe M*
with dim (f~(f(x)) N By) =0 and ['(x) = {x}. Then f is open at x.

Proof. Let U be an open neighborhood of x in M". For n = p,
fYy) — By is discrete, so the hypotheses cannot be satisfied. Thus
n > p, and there is ze (I'(x) N U) — By, so that f(z) = f(z) €int f(U).
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Since U is arbitrary, f is open at z.

LemmA 8.8. Let f: M™ - N? be a map, and let x € M™ with I'(z) =
{x}. Then there is an open p-cell D about f(x) such that, if K s the
component of f(D) containing x, f: K— D is a proper map.

Proof. Use the proof of [6, p. 74, (1.14)].

LeMMA 3.4. Let f: M"— N* be a map with n = p and dim(f*(y) N
B;) < 0 for every ye N*, and let E; be the set of points at which f
fails to be open.

(@) Then either E, = ¢ (so that f is open) or dim f(E; = p — 1.

() In particular, if dim f(B;) < p — 2, then f is open.

Proof. Let veE,. By (3.2) we may as well assume that (1)
I'(z) = {x}; let gt K— D be the proper map given by (3.3). (In case
n — p # 4,5, we could use (2.6) instead.) Then E, = E;N K.

We observe that (2) if V< K is open, then int g(V) = ¢, i.e.
dim g(V) = p [11, p. 46]. If V& B,, the conclusion is immediate. If
V< B,, let UC V be a closed n-cell. The map ¢g|U: U— g(U) is light
(from the dimension hypothesis), so that [11, p. 91, VL. 7] dim ¢g(U) =
n. Since n = p, dim g(V) = dim g(U) = n = p.

Now suppose that ¢(K) = D and dimg(E,) < p — 2. Since ¢ is
proper, g(K) is closed, so that D — ¢g(K) is a nonempty open subset
of D. By (2) int g(K) # 6. Thus D — bdy g(K) is not connected, and
hence [11, p. 48] dim bdy ¢(K) = p — 1. There is a z€ K with ¢(z)
(bdy 9(K)) — g(E,), and since ¢ is open at z, g(z) € int g(K), so a con-
tradiction results. Thus (8) dim g(E,) < p — 2 implies g(K) = D.

It is immediate from (2) that (4) dim g(E,) £ p — 2 implies CI[K—
97 (9(E)] = K.

From (1), (3), and (4) if dim g(E,) < p — 2, then ¢ satisfies the
hypotheses of [23, p. 149, (7.81)] at =, and so g(&,) locally separates
D at x. A contradiction of [11, p. 48] results, and hence dim g(E,) =
p — 1, yielding conclusion (a).

Since E; C By, conclusion (b) follows from (a).

4, O-regular maps.

DEFINITION 4.1. Let X and Y be metric spaces, let f: X — Y be
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open, and let x ¢ X. The map f is 0-regular at x if, for every ¢ > 0,
there is a & > 0 such that if ye Y and u, ve S, 6) N f(y), then
there is an arc from % to v in S(z, ) N f~*(y). If f is proper, onto,
and O-regular at each ze X, then f is 0-regular.

LEMMA 4.2. If M" and N® are manifolds with boundary, f: M"—
N? is a map, and € M™ — By, then f is O-regular at x.

The proof is immediate from (1.5).

LEMMA 4.3. Let X be a separable metric space, let A C X be
closed, let X — A = M" and N* be manifolds with boundary, let n > p,
let f+ X — N? be proper, open, and onto, and let B= B(f|M") U A (1.5).
Suppose that f(B) is mowhere dense, dim (BN f~'(y)) <0 for each
y € N7, and f7'(2) is connected for each ze€ N* — f(B).

(@) Then f'(y) is path comnected for each y e N?.

(by If f 1s O-regular, F ~ S' or [0, 1], and f~'(z) ~ F for each
ze N° — f(B), then f is a bundle map with fiber F.

Proof. Each y<c N* has a compact neighborhood V, and f~(V)
is compact. There are z,€ V — f(B) with z,— vy, and f'(z)) — f'(y)
[23, p. 10, and p. 130, (4.32)], so that f~'(y) is connected [23, p. 14].
Since f~'(y) is locally connected except possibly at most 0-dimen-
sional set BN f~(y), it is locally connected [23, p.19, (12.3)], and so
path connected [23, p. 38, (5.2)].

Under the hypotheses of (b) f~%(z,) — f(y) O-regularly [21, p-
482], and thus ([21, p. 484, Theorem 2] and [22, p. 341, Theorem 5.1])
f(y) ~ F. By [8, p. 115, Theorem 7] f|f~%(V) is bundle map, and
(b) results. This lemma is used in (4.5) and [7], and its considerable
generality is required for the latter applications.

DEFINITION 4.4. Given f: M™ — N?, the singular set A, (see [6])
is defined as follows: x € M™ — A, if and only if there are open neigh-
borhoods U of I'(x) and V of f(x) such that f|U: U— V is topologi-
cally equivalent to the projection map 7:V x I'(x#) — V. Thus (1.5)
B;c A;. See (4.6).

LEMMA 4.5. Let f: M™— N® be a proper map with n = p, oM"
possibly monempty, By C int M", dim f(B;) < p — 2, and dim (f~(y) N
B;) <0 for each ye N*.

@) If I'(®) =+ {Z} (see (3.1)), then there are open neighborhoods U
of I'() and V of f(@) such that f|U:U—V is a proper, open, mono-
tone (omto) map.
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(b) If, in addition, n — p + 4,5, then f|U is O-regular.

(¢) If, in addition, n = p + 1, then f|U is a bundle map (thus
A, NU = g¢).

(d) If I'x) = {x} for every xe M" and M" and N*® are connected,
then f = g, where ¢ s monotone and + is a k-to-one covering map.

Proof. By (3.4) f is open. The hypotheses that I'(Z) = {Z} and
dim (f~%(f(@)) N B;) < 0 imply that » > p. If p <1, then B; = ¢, and
the conclusions follow from (4.2), [18, p. 63, (2.3)], and [19, p. 661,
(2.1)]. Thus we may suppose that n > p = 2.

Let xe I'(®X) — B;. There is a cross section ¢ at x over an open
p-cell Vc N*. Let U be the component of f~(V) containing I'(%)
and let g: U— V be the restriction of f. Since dim (g7'(y) N (B,) <0,
each dim¢'(y) <n— p; thus by [11, p. 91, Theorem VI 7] dim (97 (9B,)) <
n — 2, so that U’ = U — ¢g7'(¢(B,)) is path connected.

Let a: U' —V — g(B,) be the restriction of g; since a is a proper
map with B, = ¢, @ can be factored o = v-@, where 8 is a monotone
map and 7 is a covering map {18, p. 63, (2.3)]. Now Bou|(V — g(B,))
is a global cross-section of v, so that [16, p. 77 (6) and (7)] v is a
homeomorphism. Thus « is monotone, and by [18, p. 64, (2.5); the
proof is still valid for 0M" + ¢ and B, C int M"] ¢g is monotone onto.
Conclusion (a) results.

Now suppose that I'(x) == {x} for every x e M". Since f is open,
and thus quasi-monotone, there is a natural number % such that each
S '(y) has at most k£ components, and for ye N* — f(By), f'(y) has
exactly % components [18, p. 64, (2.5)]. Let ye N?, and let I"; ( =
1,2, --+, h = k) be the components of f(y). Let U; and V; be as
given by (a) for I';, and let V be a p-cell neighborhood of % such
that V< N:;V: and the I'; are in distinct components of fF—(V).
Since f is quasi-monotone, each component of f~}(V) meets some I,
so there are exactly h components W;, where I";C W,. Since f|W;: W;—
V is monotone, for each ze V — f(B;), f(2) has h components; thus
h =k. From [18, p. 63, (2.1)] (d) follows.

For xe U — B,, g is O-regular at = (4.2). Thus, to prove (b) it
suffices to prove that g (or equivalently f) is O-regular at each x ¢ B,.
For xe B, and ¢ > 0, let K be as given in (2.5) for ¢ and X = {a},
and let {: K — D be the restriction of g. Thus K < S(z, ¢) c U. Since
¢ has a global cross-section, I'j(w) = {u} for every we U; thus I';(u) #
{u}, and by (d) { = o, where ¢ is monotone and ++ is a covering
map. Since D is simply connected, +» is a homeomorphism, so that {
is monotone.
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By (4.8) (a) {"*(y) is path connected for each y € D. Choose 6 >0
such that S(x, ) < int K. Since

S, 0) N fT(y) <) < S, & N (),

f is O-regular at z. Conclusion (b) results.

If w=p+ 1, then g|(U— g7'(9(B,))) is bundle map (1.9) with fiber
a compact, connected 1-manifold F, i.e., E~ S' or [0, 1], and conclu-
sion (c) follows from (4.3(b)).

LEMMA 4.6. Let f: M — N?” be a proper map with I'(x) C B, (3.1)
Sfor every v € B;. Then B, = A; (4.4).

Proof. If x¢ A, then x¢ B,. If x¢ B,, then from the hypothesis
I'(x) N By = ¢. There is an open p-cell neighborhood ¥V of f(x) such
that the component U of f~(V) containing [I'(x) is disjoint from B;.
Since f|U: U—V is also proper, it is a bundle map (1.9), and since V
is contractible, the bundle is trivial. Thus z¢ A,.

ProprosiTION 4.7. Let f: M”— N® be C" with n = por p -+ 1, B, #
¢, dim f(By) £ p — 2, and dim (f~(y) N By < 0 for each y< N*. Then
dim B, = 2p — n — 2 and there is a closed subset X C B, such that
dim X < 2p — » — 2 and, for each x€ B, — X, f at x is locally topolo-
gically equivalent to the layer map

o() X ¢z DFrED s RInE o, Drepet o Rivmed

(see (1.2)), where ¢(yy) = o (see (1.1)) ¢f n = p, and c(y) = 7, i.e. (1.10)
the core map of the Hopf fibration : S*— 8% if n = p + 1.

Proof. Let X be the set of all xe B, such that f at z is not
locally equivalent to c(y); then X is closed.

Let 2z ¢ B, and let K be the neighborhood of x and g: K — D be
the proper map given by (2.6). If m = p, then for each y< D, g7\ (y) —
B; is discrete and dim (¢7(y) N By) < 0, so that g is light, i.e. each
I'(w) = {u}. If n = p + 1it follows from (4.5(c)) that for each u ¢ B,,
I'(w) = {u}. There is an open p-cell neighborhood UcC D of f()
sufficiently small that the component V of f~(U) containing & has
V cint K. Since K is compact, the restriction map h: V — U is proper,
so that (4.6) B, = A,.

Since dim f(B;) < p— 2 and B; # ¢, p= 2. In case n = p, h is
light, and since dim 4(B,) < p — 2, the Jacobian determinant of A is
(locally) nonnegative or nonpositive [3, p. 94, (2.8) and p. 98, (1.7)].



DIFFERENTIABLE MAPS WITH 0-DIMENSIONAL CRITICAL SET, I 627

In both cases by [6, p. 83, (4.1)] there is a closed set Y, < h(4,)
such that dim Y, < dim 2(4,) and, for each xe 4, — h"(Y,), h at « is
locally topologically equivalent to c¢(y) x ¢. Thus dim k(4,) = 2p —
n—2 and dimA4,=2p —n — 2. Since h|A, is light, dim 4, =<
dim A(4,) [11, p. 91, Theorem VI 7], so that dim A, =2p — #n — 2, and
dimA4,c YY) £dimY,<2p—n —2. Since A, = B, and Vn
Xc A NAY(Y,dim (VN X) < 2p—n— 2; since x € B, was arbitrary
and V is a neighborhood of z, dim X < 2p — n — 2.

REMARK 4.8. Theorem (1.1) is a Corollary of (4.7). (Use the
Rank Theorem (1.6).)

The next result (4.9) is a topological analog of (1.1). If f: M —
N? ig continuous with p = 2 and B, discrete, then f satisfies the
hypotheses of (4.9); in this case the result was proved by Timourian

[19].

PROPOSITION 4.9. Let f: M™— N” be a map with n = p or p+ 1
and p = 2, let dim B, £ 0, and let dim f(By) <0. If p =3 suppose
i addition that for each ye f(B;) and neighborhood W of vy, there is
an open p-cell U such that ye UCW and U — f(B)) is simply con-
nected. Then at each x € M", f s locally topologically equivalent to
one of the maps p,a, or © of (1.1).

Proof. By the first two paragraphs of the proof of (4.7), for each
x € B, there is a neighborhood V of « such that the restriction 2: V —
U of f is proper and B, = A,. By [6, p. 75, (2.3)] at each u€ B, h
at u is locally topologically equivalent to ¢ or to ¢(+), where 4 is the
Hopf map, i.e. to o or = by (1.10).

PROPOSITION 4.10. Let f: JJ*™ x R™— L*™™ X R™ be a C***! layer
map with n —p =0, 1, or 2, and dim (B; N f~(y, t)) < 0 for each
te R™. Then B, = CIU.B(f)): t € R"].

By Sard’s Theorem (e.g. [2, p. 156]) dim (f(Rp (S ) < » —
m — 1, and by the Rank Theorem (1.6) (L*™™ x {t}) — f(B)) is dense
in L*™™ x {t} for each te R* ™. Our proof uses only this last state-
ment, rather than C=7+,

Proof. If (x, s) € By, then there is a layer embedding \: (D"? x
D™ x D" —J* ™ x R™ witn (x, s) € intimagx, D™ C L™, w: D"™* X
(D™ x D™) — L*™™ x R™ projection, and fox = z. For each (v, t)¢€
int imag A, At D"? X DP™™ — J"™™ is an embedding with » € int imag ),
and f,on, = m,. Thus (v, t) ¢ B(f,), so that (z, s) ¢ Cl[{U.B(f)].
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Suppose that (zx, s) ¢ CI[U; B(f,)], but (x,s)e B;. Choose 7 >0
such that S((z, s), ) N ClJU. B(f.)] = ¢, and let K be the set given
by (2.5) for f, X = {(z, s)}, and & = 7, over (we may suppose) D = U x
V, where U and V are open (p — m) — and m-cells, respectively. Let
K be the closure of Kin f~(U x V), and let f: K - U x Vand g,: K N
(J*™ x {t}) — U x {t} be restrictions of f. HKach is a proper map.
Since B(g,) = ¢, each g, is a bundle map (1.9): call its fiber F.,.

For uwe V there exists y with (y, w) e (U x {u}) — g(B,). Choose
open k-cell I' and m-cell 4 neighborhoods of ¥ and wu, respectively,
such that (I" x 4) N g(B,) = ¢. Since g¢g|g~'(I" x 4) is a bundle map
(1.9), F, is independent of ¢ for t€ 4. Since u is arbitrary and V is
connected, F, is independent of ¢ for ¢t € V, i.e., g~(y, t) is independent
of y and ¢.

By (3.2) g is open, and thus [23, p. 152, (8.1) and (8.11)] quasi-
monotone. Since the number of components of ¢ '(y, t) is independent
of y and ¢, g = +og, where ¢ is monotone and ~+ is a covering map
[18, p. 63, (2.1)]. Since U x V is simply connected, « is a homeo-
morphism, so that ¢ is monotone, i.e., F’, is connected. In case n —p=
0 each g, is a homeomorphism, so that the open map ¢ is also one-to-
one and onto—thus ¢ is a homeomorphism, contradicting the choice of
(®,8). In case n — p = 1 or 2 to obtain a contradiction it suffices [10,
p. 527, Theorem B and p. 530, Corollary 2] to prove that ¢ is 0-regular.

Given (2, w) e B, and ¢ >0, let T < g7 (g(z, w)) — 0K be a closed
(n — p)-cell with (z, w)eint T,0T N B, = ¢, and dim T < e. Let M" =
K, Q =0T, and let v: @ x D— K be the extended embedding given
by (2.4 (a)); we may suppose (2.4 (b)) that the component X of g~(D) —
imag v containing int 7" has dim X < ¢ and X NoK = ¢. Since each
gy, t) is a compact connected (n — p) — manifold with nonempty
boundary (n — p =1 or 2) and »(Q x {t})) ~ T~ S"*', it follows
from the cohomology sequence with compact supports of this pair that
g (y, t) — v(Q x {t}) has either one or two components. Since g~*(y, t) N
X contains any component it meets, there are two and ¢7'(y, ) N X
is one of them. Choose 6 > 0 such that S({z, w), 6) € X. Then for
every (y,t)e U x V,

g7y, ) N S((z, w), 6) C g™y, )N X < g7(y, ) N Sz, w), ¢,

so that g is O-regular at (z, #). Since g is O-regular at each X ¢ B,
(4.2), g is O-regular.

While (4.10) is not used in this paper, [7] refers to (4.10) and
(4.11), they will be used elsewhere, and the proof of (4.10) fits natu-



DIFFERENTIABLE MAPS WITH 0-DIMENSIONAIL CRITICAL SET, I 629
rally into this section. For these reasons, they are given here.

REMARK 4.11. The hypothesis dim (B, N f~'(y, t)) £ 0 is (surpri-
singly) essential. There is a proper layer map f: ([—2, 2] X B) X R—
R x R such that each f, is topologically equivalent to the projection
map, f, is the projection map, and B,=([—1, 1] x R) x {0}. For example
each f7'(0,t) (¢t = 0) might be the union of the three subsets of
([—2, 2] X R) x {t} defined by:

1) z =sint™'y for |y| £ 3xt/2, (2) y = 3nt/2 for —2<2x < —1
and 3) ¥y = —3xt/2 for 1 < 2 < 2. Open maps similar to this have
been defined in [14, p. 9] and [9, p. 341].
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