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Elementary methods are used to locate the perfect squares
in certain sequences of integers defined by three term recur-
rence relations.

We consider for n = 0 the polynomials P,(z), Q.(%), p.(x) and g,(x)
defined by

(1) Py(2) = py(x) = 0; P(z) = p(x) =1
(2) Q@) = q,(%) = 2; Q@) = ¢,(v) = @
(3) P, y(¥) = P, () + P(x)
(4) Qur2() = 2Q, (%) + Q.()
(5) Pui2() = TD,(B) — D,(2)
(6) Qo) = 0qusi(T) — ¢u() -

These polynomials arose in a natural way in the course of previous
work [2, 3] and using the result of [1] the complete solutions of the
Diophantine equations y* = P,(x), 2y = P,(x) and the six similar ones
obtained by substituting Q.(¢), p.(x) and gq,(x) for P,(x) in positive
integers «, y and n, with x restricted to odd values, have been found.
The method, although fairly long, was elementary.

The same problems for even values of x seem to be far harder,
although in certain cases they may be trivial. For x = 2, the only
significant problem is %* = P,(2). Ljunggren [5] has shown that n =
0,1, 7 yield the only solutions in this case, but the method is non-
elementary and involves much computation. It is unlikely that method
could be applied to provide a complete solution in # and x. The main
object of the present note is to consider an infinite set of even values
of # for which an elementary method is available for the determina-
tion of n. Use is then made of these results to prove some theorems
on Diophantine equations of the form X* = DY*'+1 X*=DY"'+ 4.

Using (1)-(6) we find easily that

(LG Oy (2o @y

_ 2 2
( 7 ) Pn(x) - (xz + 4)1/2

_(x+ @+ 4\ x — (2 + 4)*\"
(8) Qo) = (LREF DTN (2o @r D)

631
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(W) - (26_—(&2;&'1)

(9) p”(x) = (xz _ 4)1/2

(10) ao) = (ST (2=

For convenience we may use (3) and (5) to extend the definitions
of P,(x) and p,(x) to negative values of n, yielding

(11) P_.(@) = (=1)"7"P,(2)

(12) P-a(®) = —pu(®) .

We also obtain

(13) Qu(x) — (@ + 4)Pi(x) = (—1)"4
(14) 2:(@) — (@ — Ypi(x) = 4
whence

(15) (Q.(x), P,(x)) =1 or 2
(16) (9.(2), p.(x)) =1 or 2.

Also using (7)-(10) with (13) and (14) we obtain

(17) if mis odd, P,(Qu(@) = LY 0 (Qu(@) = Qu.(@)
P.()
(18)  if m is even, p,(Qu(@) = L22D 0 (Q.(0) = Qui(@)
P.(a)
(19) Puln(@) = 22® g (@) = gun() -
Pn(a)

Now suppose that m = 3 (mod 6) and that x = Q,.(a) with a odd.
Then from (17) we see that Q.(x) = Q..(a) and so using [2; Theorem
7] we find that ¢* = Q,(x) is possible only for mn = 3, with a =1 or
3. This the only solutions are provided by » = 1, with © = 4 or 36.
Similarly 24* = Q,.(x) gives mn = 0, or mn = 6 with a =1 or 5 (in
view of [1]) or m = 3, n = 2, 2 = 4 or 140. Thus we have proved

THEOREM 1. If x = Q,(a) with a odd, m = 3 (mod 6), then y* =
Q.(x) is possible only for n =1 with x = 4 or 36, and 2y = Q,(x) is
posstble only for m = 0, and for n = 2 with © = 4 or 140.

We next consider P,(x) under the same conditions. We have
P(x) =1, andif n =1 (mod 4), n = 1, we write n = 1 + 2hk, where
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k=2,r=1and h is odd. Then using [2; (22)] we obtain by (17)

P.(a)P,(x) = P,.(a)
= (—1)™P,(a) (mod Q.(a))
= —P,(a) (mod Q.(a)) ,

since mh is odd. Now it is easily verified that P,(a) and Q,(a) have
no factor in common and so we obtain

P,(x) = —1 (mod Q.(a))

from which it follows that P,(x) # ¥? since @.(a) = 3 (mod 4) in vir-
ture of [2; (16)]. Since, by (11), for n odd P,(x) = P_.(x) it follows
that P,(x) = ¢ is possible with # odd, % > 0 only for n = 1.

Now for n even we have using (7) and (8) that

P,(x) = P5u(%)Quza(®)

and so in view of (15) y* = P,(x) implies

either Qup.(®) = ¥4 Puwm.(x) = 93 the former implies 1/2n = 1 with
x = 4 or 36, both of which satisfy the latter,
or Quuma(x) = 2y} Pyy.(x) = 2¢% the former implies 1/2n = 0 which
satisfies the latter, or 1/2n = 2 with « = 4 or 140, but neither of these
satisfies the later.

Finally, considering 2¢* = P,(x) we see easily that since x is even,
n must also be even, and we obtain as before Q,,.(%) = ¥} or 2¢,
yielding # = 0 or n = 4, * = 4. Thus we have

THEOREM 2. If 2 = Q.(a) with a odd, m = 3 (mod 6), then y* =
P,(x) possible only for m = 0 and n =1 and for n = 2 with x = 4 or
36; 2y* = P,(x) is possible only for n =0 and for n = 4 with x = 4.

An exactly parallel treatment for x = ¢,(a) with 3|m leads to
the following results, whose proofs are omitted.

THEOREM 3. If x = q,(a) with a odd, 3|m, then y* = q, (%) is im-
possible, and 2y* = q,(x) is posstble only for n = 0, and for n = 1 with
x = 18 or 19,602.

THEOREM 4. If x = q,(a) with a odd, 3|m, then ¥* = p,(x) is
possible only for m =0 and 1, and 2y = p,(x) is possible only for
n =0, and for n =2 with x = 18 or 19,602,

We now prove

THEOREM 5. The equation y* = P,(a)P,(a) where a s odd and
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m=n >0 has only the trivial solution m = n, except for a = A2,
m=2,n=La=1lm=12n=La=1,m=12,n=2;a=1m =
6,n=3a=3m=6n=3.

Proof. Let r = (m, n). Then as is well known
(Pu(@), P(a)) = P,.(a)
and so if m = Mr, n = Nr we must have

_ Py(a). _ Py.(a) .

"I P@ " P

We consider four cases:

(a). 2%r 3yr; then using (17) we have ¥} = P,(Q.(a)). Since Q.(a)
is odd, we have using [2; Theorem 5] that M =1 or 2 or 12. Now
M =1 always satisfies this; M = 2 implies % = Q.(a) and so » =1,
a=y5 M =12 implies 1 = Q.(a) or » = ¢ = 1.

(b). 2|r, 3 fr; then using (18) 4} = p,(Q.(a)). Since Q.(a) is odd,
we have using [3; Theorem 5] that M =1 or 2 or 6. M = 1 always
satisfies this; M = 2 impiles y* = Q.(a) which is impossible for » even;
M = 6 implies 3 = Q.(a) and so » = 2, a = 1.

(). 2/fr, 3|r; then 3! = Py(Q.(a)) and so Theorem 2 is applicable
yielding M =1 and M =2 with »r =3 and a =1 or 3.

(d). 6{r; then o} = py(Q.(a)) = py(x) where x = Q.(a) = ¢(12-(Q:(a))
using (18). Now Q.(a) is odd, and so using Theorem 4 we obtain only
M =1.

Combining the four cases we find that M = 1, except if

r=1a=y,M=2
r=1a=1 M= 12
r=38,a=1M=2
r=8,a=1M=2
r=2,a=1,M=6.
Similar results hold for N, and so we obtain M = N =1, or m = =,
except for
r=la=y¥,M=2 N=1 ie.m=2n=1
r=1,a=1,M=12 N=1 ie. m =12, n =1
r=38,a=1,M=2 N=1 ie.m=6n=23
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r=8a=3,M=2,N=1 ie.m=6n=3
r=2,a=1,M=6,N=1 ie. m=12,n=2,

and this is the required result.

THEOREM 6. The equation 2y = P,(a)P,a), where a ts odd and
m > n >0 has no solutions, the following cases only excepted,

a=1, with m,n =3,2;3,1;6,1;6,2;12, 3 or 12, 6
¢ =5, with m, n = 12,6
a=1, with o =24*— 1 and m,n =3,1.

Proof. As in the proof of the previous theorem let r = (m, n),
m = Mr,n = Nr and we find that

Wy = PMr(a); 2 = Py, (a) ,
P,(a) P,(a)

or vice-versa. The former yields (since M = 0) M = 1, except if a =
1 when also *r =2 M =6 or =1 and M =2 or 12, and if a = 3
when also r =3, M =2 and if a = A* with r =1, M = 2.

Consider now the latter with N = 0. As before we distinguish
four cases.

(a). 2/f7, 3 f7; then 22 = Py(Q,(a)). Since @,(a) is odd, we may
use [2; Theorem 6] and we see that the only possibilities are N = 6
with Q.(a) =1, i.e. » = a = 1, and perhaps N = 3. But N = 3 would
require 2y = (Q.(a))* + 1, and we shall show that this is impossible
except for r = 1.

Since r is odd, it follows from [2; (11)] that we require Q,,(a) =
292 + 1. If we allow the possibility of negative », we can assume that
r=1 {mod 4), since we can show just as in (11) that Q_,(z)=(—1)"Q..(x).
Then if r== 1, let » =1 + hk, where % is odd and %k = 2%, with R =
2. Thus

2y; + 1 = Qy(a)
= Quonil@)
= —Qya) (mod Q,(a)) using [2; (23)]
= —(a*+2)  (mod Qia)) .
From [2; (16), (17)] we see that @.,(a) =7 (mod8) since R =2, and
so we should have to have

1 = (4| Q@)

= (-2(Qua)(“L2) )
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= —1 in view of [2; (27), (28)] since Q.(a) =7 (mod 8),

and this contradiction shows that we can have only » = 1.

For this to occur we must have r =1, N = 3, & = 24} — 1.
(). 2|7, 3} r; then 2y = py(Q,{a)) with Q,(a) odd. Thus using [3;
Theorem 6] we see that the only possibility is N = 3, whence 2y} =
(Q.(a@))*—1, or since r is even, we have with b=Q,,.(a), 2yi=(D*+2)*—1,
or 2y = (b* = 1)(b* = 3). It is easily seen that the only possibility for
these last equations is b =1 = Q5.(a), i.e. a =1, =2 N = 3.
(). 247 8|r; then 2y = Py(Q.(a)), where now Q,(a) is even. Thus
Theorem 2 applies and we find that we can only have N = 4, Q,(a) =
4, ie.a=11r=3 N =4.
(d). 6|r; then 2y; = py(Q.(a)) = py(x) where z = Q,(a) = gu.(Q:(a))
as before. Thus Theorem 4 may be used, and we find that we can
have only N = 2 with # = @Q.(a) = 18 or 19,602, i.e. » = 6 with a =
1 or 5.

Thus in all we have the following solutions to our equation:—

Ifa=1. Then r=1gives N=3, M=2o0or N=3, M=1 or N =
6, M=1,r=2gives N=3, M=1; r =8 gives N=4, M =1, and
r==06 gives N =2, M = 1.

If a =5. Then M =1, N =2, r = 6.

If a+1, a®=2y; — 1, then »r=1, N=3, M =1. The other case
does not occur since it would require & = 2y — 1, a = %:. But this
is impossible for we should have to have (y: — 1)* = i — ¥!, and this
cannot occur if a = 1.

This concludes the proof of the theorem.

THEOREM 7. Let D = dN*® where d is such that X* — dY? = —4
possesses solutions with both X and Y odd; then no one of the four
equations X* = DY* + 1, X* = DY" & 4 possesses more than one solu-
tion im positive integers, and between them they have at most two such
solutions, the following cases only excepted

(i) D =5 when there are in all five solutions, viz. Y =1 for
X*=5Y*—1 X*=5Y'+4, Y=2 for X’=5Y"'+1, Y =12 for
X*=5Y"+14

(ii)) D = 20 when there are tn all three solutions, viz. Y =1 for
X*=20Y*—4, Y=2for X*=20Y"+4and ¥ =6 for X*=20Y*+ 1.

Proof. We are given that X* — dY*? = —4, possesses solutions
with both X and Y odd, and so if X = q, Y = b is the fundamental
solution it is easily seen that both «¢ and b must be odd, for the
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general solution is given by X + Yd'* = 2{(a + bd"?)/2}**"'. Then we
find without difficulty that, considering only positive values, the gen-
eral solution of X* — dY* = —4 is Y = bP,,_.(a), the general solution
of X* - dY*=41is Y = bP,,(a), the general solution of X* — dY* =
—11is Y = (1/2)bP,_.(a), the general solution of X* —dY*=11is Y=
(1/2)0P,,(a).

Consider first X* — DY* = —4; by the above remarks, we see that
for a solution we must have NY*? = bP,,_,(a), and so if there were
two solutions we should have, with m = n, P,,_,(a)P,._.(a) = %, but
that is impossible by Theorem 5. The same applies to the equation
X*=DY*—1.

Similarly for X®? — dY* =4 we find that for a solution we must
have NY* = bP,,(a), and so two different solutions require m # n and
P,.(a)P,,(a) = . Theorem 5 shows that this can occur only for a =
1,2m =12, 2n = 2, from which we find d =5, NY? =1 and 144 and
so we get only D=5 Y =1 and 12. Similarly we find that X* =
DY* 4+ 1 never has more than one solution.

This shows that no one of the equations has more than one solu-
tion (D # 5); to complete the proof we must consider how often two
different equations of the set can have solutions. Whenever this
occurs we find that P.(a)P,(a) = * or 2y*. These cases are all easily
identified using Theorems 5 and 6, and we obtain the required result;
for we see that unless ¢ = 1, there are in all at most two solutions
and examination of a = 1 yields all the exceptional cases.

This concludes the proof. In just the same way as above, we
may prove the following three results, the proofs of which are omitted.

THEOREM 8. The equation y* = pu(@)p,.(a) where a ts odd, a = 3
and m = n >0 has only the trivial solution m = n except for a = 3,
m==6n=1and for a = A m=2,n =1.

THEOREM 9. The equation 2y = p,(@)p.(a) where a is odd, a = 3,
and m > n > 0 has nwo solutions except for the following cases

a=3, m=6,n=3;a=27T, m=6,n=3 and & =24°+1, m=3, n=1.

THEOREM 10. Let D = dN?* where d is such that X* —dY*® = 4 pos-
sesses soluttons with both X and Y odd, although the equation X* —
dY?® = —4 does not; then the equations X*=DY*+1and X*=DY*+ 4
possess between them at most two solutions in positive integers, the
former having at most one such solution.

It may be seen from the last theorem, that the equation X*® =
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189Y* + 1 possesses only the solution X = 55, Y = 2 in positive inte-
gers, although 189 is not a value to which the methods of [2] or [3]
apply; similarly for D = 325, using Theorem 7, we find that X* =
325Y* 4+ 1 has only the solution ¥ = 6, and X* = 325Y* — 1 has only
the solution Y =1, while X* = 325Y* & 4 have no positive solutions,
although again 325 is not a value of D to which the methods of [2]
or [3] apply.

We now prove similar results for @,(a) and ¢,(a), where we suppose
throughout that a is odd, and in the case of the latter that a = 3.
We recall that in the reference [2] we designated Q,(a) by v,, and
in [3] we designated ¢,(a) by v,. Where no confusion arises, we shall
write simply @, and g¢,.

LemMaA 1. (Q., Q.) = 2%, where

r=Q, if r=(m, n) and m/r, n/r are both odd ,
=1, otherwise;
and ©=0 unless z=1,3|r
=1 f x=13]|r.

Proof. If X =(Q,, @, then since P, = P,Q, we find that X
divides (P, Pew) = Pomyowy = Py = P,Q,.. Now P,|P, and so no odd
factor of P, divides @, in view of (15). Also, if m/r is even we find
in view of [2; (19)] that 2Q,, = +4 (mod Q,), and so no odd factor of
Q, divides Q,. Similarly if n/r is even. On the other hand if M =
m/r is odd, then Q,(a) = Q,(Q.(a)) by (17) if » is odd, and Q,(a) =
7./(Q.(a)) if r is even by (18), and in either case, Q,(a) is divisible by
Q.(a). Thus if we define x as in the statement of the lemma, we
find that X = 2'z for some suitable 2. If 3.}/ », then 2}/ X and 7 = 0.
If 6|~ then 2//Q,, 2/|Q, and 2|/@, and so i =0 if 2 =Q, and i =1
if o =1. If r =3 (mod 6), then if x = 1, 22/Q,, 2*||Q.., 2*||Q, and 7 = 0,
whereas if ¥ = 1, then one of m and n must be even, and again 7 = 1.

In exactly the same way we may prove

LEMMA 2. (., ¢.) = 22 where

x=4q, tf r=(m,n) and m/r, n/r are both odd ,
=1 otherwise ;
and =0 wunless z=1,3j|r
=1 1if x=13]|r.

The proof is exactly similar, and is omitted.
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LemMA 3. Q, = ay® implies n = 1, except for a =1, n = 3.

Proof. By [2] a =1 occurs only for » =1,3. In what follows
we suppose that a > 1. Then a|Q, implies that = is odd.

(i) Suppose n =1 (mod 4), n = 1. Then we may write n = 1 + 2hk,
where £ is odd, and £ = 2%, R = 1. Thus using [2; (23)] we obtain
from the equation,

Qlyz = a?f = Q'n = Q1+2hk
= —Q, (mod @) .

Thus in view of Lemma 1, we see that we should have y*= —1 (mod @,)
which is impossible, since by [2; (16)] @, = 3 (mod 4).

(i) Suppose n = 3 (mod 4). Then n = 3 would give ¥* = ¢ 4 3, im-
possible if a # 1, while if n # 3 we write n» = 3 + 2hk as before, and
obtain

ay® = Qsions

=—-Q, (mod@Qy),

whence (a| Q) = —(Q,] Q.), which is impossible in view of [2; (27), (28)].
This concludes the proof.

LEMMA 4. q, = ay® implies n = +1.

Proof. As before n must be odd. If » =1 (mod4) and n = 1
then n = 1 + 2hk gives as before

o =¢,= —¢,= —a  (modg,)
which is impossible.
If » =3 (mod4), then ¢_, = g, in view of [3; (7)] and —n =1
(mod 4), and the result follows.

LEMMA 5. Q, = 2ay® 1s impossible, except for a = 1 with n = 0,
n = 6.

Proof. By [2], a =1 gives only n = 0, » = 6 and so we suppose
that ¢ > 1. As before a|Q, then implies that » is odd, and 2|Q,
implies that 3|/n. Thus » = 3 (mod 6) from which we find that @, =
4 (mod 8), which makes 2ay* = @, impossible.

LEMMA 6. q, = 2ay* is tmpossible for a > 1.
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Proof. As before we find # = 3N with N odd, and so

o =L1g,=1g  (mod )
a a
=6 (mod 8) ,

using [3; (17)], and this is impossible.

THEOREM 11. The equation ¥ = @,(a)Q.(a) where a 1s odd and
m = n = 0 has only the trivial solution m = n, except for a =1, m =
6,n=0a=1,m=3,n=1and a=5 m=6,n=0.

Proof. In view of Lemma 1, we find three possibilities, where
r = (m, n):—
(@) Qula) = ¥ Qu(a) = ¥
(b)  Qu(a) = 24 Qu(a) = 2y3;
() Qn(a) = Q()y}; Qu(a) = Q.(A)y:.
Cases (a) and (b) are easily dealt with, using [2], and we find just
the three exceptions stated in the statement of the theorem. Con-
sider case (c).

(i) If = 41 (mod6), then write 4 = Q.(a) where A is odd,
and then in view of (17) we find, where M = m/r, Ay’ = Q,(A). Using
Lemma 3, we find that we must have M = 1, or m = r = n (similarly)
except if A = 1, when we find also m = 3r, n = » with 4 =1 = Q,(a).
But this is possible only for ¢ = » =1, a case we have dealt with
already.

(ii) If » = +2 (mod 6), then similarly 4 = Q,(a) is odd and using
(18) we find Ay = q,(A) which in view of Lemma 4 yields only m =
r =M.

(iiiy If 3|r, then M = m/r is odd. Suppose first that M =1
(mod 4). Then if M = 1, we find that m = » + 2hk where h is odd
and k& = 2%, Thus as before we find

Q@)Y = Qu(a) = —Q.(a) (mod Q(a)) -

But by Lemma 1, (Q,, @, = 1, and again we see that this is impossible.
If » is even, and M = 3 (mod 4), we find that m is even and then
in view of [2; (T)] Q_.(a) = Q,.(a) where now —m/r =1 (mod 4), and
the result follows from the last part.
Finally, if » is odd, 3|» and M = 3 (mod 4), we find if X = Q,(a)
that 4/ X. But then Xy = Q,(X), and then using (8) we obtain
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: o L
Y = XQM(X)
=M (mod X?) .

Thus 3% = 3 (mod 4), clearly impossible.
This concludes the proof of the theorem.

THEOREM 12. The equation 2% = Q..(a)Q.(a) where a is odd and
m >n =0, has no solutions, except for

a=1 with m,n=3,00r6,10r63 orl 0;
a=3 with mn=3,0
a=A" with m,n=1,0.

Proof. In view of Lemma 1, 2¢° = Q,(a)@Q.(a) implies

either Q.(a) = ¥ Q.(a) = 292, or vice-versa ;
or Q.(2) = Q.(0)¥ Q.(a) = 2Q.(a)y: or vice-versa .

The former gives the exceptions of the theorem, using [2] with [1].
We consider therefore the latter.

As we have seen in the proof of the last theorem, @Q,.(a) = @,(a)y?
is possible only for m = 7, except for r = @« = 1, m = 8 and again this
gives only some of the exceptions found already.

Consider therefore Q,(a¢) =2Q,(a)y;, where N =n/r is odd, Q,(a) + 1.

(i) If »r = £1 (mod6), then A = Q.(a) yields as before Q,(A) = 243,
impossible by Lemma 5, since A = Q,(a) = 1.

(ii) If » = &2 (mod 6), then A = Q,.(a) yields as before ¢,(4) = 2443,
impossible in view of Lemma 6.

(iii) If 3|7, then we find since N = n/r is odd that Q.(a) and @Q,(a)
are divisible by the same power of 2, and so @,(a) = 2Q,.(a)y: is im-
possible in this case.

This concludes the proof.

THEOREM 13. Let d be such that X*® — dY® = —4 has solutions
with both X and Y odd. Then for any positive integer N, the four
equations N*X* —dY? = + 1, =+ 4 have between them at most one
solution in positive integers X, Y, with the two exceptions

(i) d=5,N=1 when we obtain precisely three solutions, wviz.



642 J. H. E. COHN
X=1o0r2 for X*—-5Y*= —4and X=3 for X* —5Y*=1

(ii)) d =5, N=2 when we obtain precisely two solutions, viz.
X=1for 4X* —5Y*= -1 and X =3 for 4X* — 5Y* = 4.

Proof. Since X*®* — dY? = —4 has solutions with both X and Y
odd, it follows that d = 5 (mod 8), and that every factor of d =1
(mod 4). Thus d has at least one prime factor p, with p = 5 (mod 8).
If p|N, then clearly no one of the equations N*X* — dY* = +1, +4
has a solution. If pt N, then since both —1 and 4 are quartic-non-
residues modulo p we see that it is impossible that one equation of
the pair N*X* — dY* =1, —4 and one of the pair N*°X* — dY*= —1,4
should have solutions.

As in the proof of Theorem 7, we find that the general solution
of X* —dY*=4is given by X = Q;.(a), Y = bP,,(a) (with analogous
results for X* —dY*= —4,1, —1), and so if any one of the four
equations had more than one solution we should obtain Q,.(a)Q.(a) =
y* with m > n > 0, if we restrict our attention to positive solutions
for both X and Y. In view of Theorem 11, this cannot occur, with
the sole exception of a =1, m =8, n =1, when wefind d =5, N =1
with X =1 or 2 satisfying X* — 5Y* = —4. Similarly, if both equa-
tions of a pair have solutions, then we should have Q.(a)Q.(a) = 2%*
with m >n >0, and in view of Theorem 12, this occurs only for
a =1, with m =6 and » = 1 or 3. These easily yield the remaining
exceptions, mentioned in the statement of the theorem. This concludes
the proof.

In exactly the same way we may prove

THEOREM 14. The equation y* = q,(a)q.(a), where a = 3, and a s
odd, and m = n = 0 has only the trivial solution m = n, except for
a =3 or 27 when also m = 3, n = 0.

THEOREM 15. The equation 2y = q,(a)q.(a), where a =3, and a s
odd, and m> n = 0 has no solutions except in the case a = A%, when
only m =1, n = 0.

THEOREM 16. Suppose that d is such that X* — dY* =4 has a
solution with both X and Y odd, but that X* — dY* = —4 does not;
then for any positive integer N, the equations N°X*—dY*=1 and
N2Y* — dY? = 4 have between them at most one solution in positive
integers.

The details of the proofs are similar to the previous ones, and
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are omitted.

We now consider for a given odd a and given N the problem of
determining all positive integers » such that P,(a) = Ny®. Without
loss of generality we may assume that N is square-free. The cases
N =1, 2 have been completely dealt with in [2] and so we assume
that N = 3. In view of Theorem 5 we see that there is at most one
such value of n, with the sole exception N = 10, a = 3 when we can
have n = 3 or » = 6. In other cases the problem of determining the
single value of =, if it exists, remains. For convenience we treat
separately P,(a) = Ny* and P,(a) = 2Ny* where N is odd, square-free,
and N = 1.

We see that in view of (3) the residues modulo N of the sequence
P,(a) form a periodic sequence (with period < N?) and since Py(a) = 0
there exists a least positive integer o = o(N, a), say, such that N|P,(a).
It is then easily seen that N|P,(a) if and only if po|n.

(a) Suppose p = +1 (mod 6).

We have using (13) that with d = (a¢* + 4)N? the equation X* —
dy* = —4is satisfied by X = A = Q,(a) and Y = B = N7'P,(a). Since
3 ), both A and B are odd and since the general solution of X?* —
(@ + 4)Y* = —4 is given by X = Q,—i(a), Y = P,,_,(a), it is clear that
A + Bd'* is the fundamental solution of X2 — dY? = —4. Thus the
methods of [2] apply for this value of d, and we find in the notation
employed there that, in view of (7) and (8)

A _|_ Bdl/Z}r _ {A _ Bdl/z}’r

d'y, = {

2 2

- {Qp(a) + (@* + 4)"P,(a) } _ {Qp(a) — (@* + 9"°Py(a) }
2 2

_ {a + (a;+ 4)1/2}~) _ {a — (a;+ 4)1/2}w

= (@’ + 4)"P,,(a) .

Thus P,,(a) = Nu,. Accordingly we see that P,,(a) = Ny’ implies
u, = 9%, and using [2; Theorem 3] this is possible for positive r only
with » =1,2 and for d = 5 with » = 12. But d =5 is impossible
since N = 1. Also » =2 would require A = Q,(a) to be a square,
and using [2; Theorem 7] this would require p <3, that is p = 1.
But p =1 is impossible, since then N}t P.(a).

Similarly P,(a) = 2Ny* implies » = ro with w, = 2y’. Using [2;
Theorem 4] we see that since d = 5, we need consider only » = 3.
But this too is impossible, for we should obtain 2y* = B(A* + 1). Since
A*— dB*= —4,A*+ 1= —3 (mod B) and so since 3/} (4*+ 1) we
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should have A® + 1 = 2¢; B = 9. But then P,(a) = NB = Ny whence
P,(a)P,,(a) = 293, impossible in view of Theorem 6, since in this case
0 =5.

Thus in case (a) P,(a) = Ny* can occur only for n = p;
P,(a) = 2Ny* cannot occur at all for n > 0.

(b) Suppose p = +2 (mod 6).

We now find in analogous fashion that if d = (a® + 4)N?, then
X? — dY* = —4 has no solution, but that the fundamental solution of
X*—dY*=4is A= Q. a), B= N"'P,(a) with both A and B odd.
Thus we use the notation and methods of [3], finding as before that
P, () = Nu, and so P,,(a) = Ny’ implies u, = y*. For positive r this
can occur [3; Theorem 3] only for » =1, 2 or 8. But » =2 is im-
possible for it would require y* = N7'P,(a) = (N'P,(a))Q.(a) whence
Q.(a) = v, impossible for even p by [2; Theorem 1]. Also » = 8 would
require 4* = u, = B(A? — 1), whence B = 3y’ A* — 1 = 3y3. Now since
A is odd, A* — 1 =0 (mod8) and so we must have A4° =1 (mod 16).
Thus A = #1 (mod 8) and this leads to p = 0 (mod 4). Thus if ¢ =
Quus(a) we find using [2; (11)] that

3Y: = {Qupe(®))” — 2" — 1
= (Qzulz)p - 1)(Q2<1/2)p —3)
= (¢ £ 2 — D((¢* = 2)* — 3)
= (¢* = 4¢ + 3)(¢* £ 4 + 1),

where ¢ is odd. Now both expressions in brackets are positive except
for ¢ = 1; otherwise since ¢* + 4¢* + 1 = 6 (mod 8) we must have

¢t &+ 4¢ + 1 = 6y
4t + 3 =24 .

Now we reject the lower sign sinee 3[(¢* — 4¢*) for every ¢, con-
tradicting the former. The upper sign gives

(€ +3) =ui.

¢+ 1
2

This requires ¢ + 3 = 9% and this is possible only for ¢ = 1. But
¢ =1= Quuo{a) can occur only for a =1, o =4. But this would
require N = 8, since P,(1) = 3, but P,(1) = 144 = 3¢

Finally, P,,(¢) = 2Ny* implies u, = 23% possible in view of [3;
Theorem 4] only for » = 3, with B = 4?. But then P,(a) = NB = Ny..
Thus P.(a)P,,(a) = 2y possible in view of Theorem 6 only for a =1,
0 = 2. But again this cannot occur since P,(1) = 1.
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Thus in case (b) , P,(a) = Ny* can occur only for m = p;
P.(a) = 2Ny* 1is impossible for n > 0.

(c) Suppose p =3 (mod 6).
Then P,.,(a) = Ny* compels = to be even. For if r is odd, then
2| P,{a), 4t P,,(a). Thus we write » = 2s, and then

yz - N_l 2sp(a) = {N_lpsp(a)}{Qsp(a)} .
Thus in view of (15) we have

either P,(a) = Ny; Q,.(a) = v
or P, (a) = 2Ny2; Q..(a) = 2y3 .

Now using [2; Theorem 7] we find that the former requires s =
3, with @ =1 or 3, but then P,,(a) = 2 or 10, neither of which gives
a value for N. Using [2; Theorem 8], with [1] gives sp = 6 with
a =1 or 5, whence 2Ny = 8 or 3640. The former gives no value,
the latter p =8, = 4, a = 5, N = 455; but 455 } P,(5) and so we find
that this cannot occur.

Thus in case (¢), P,(a) = Ny* cannot occur for n > 0.

Unfortunately, there does not seem to be a similar method avail-
able for handling P,(a) = 2Ny* in this case.

(d) Suppose p = 0 (mod 6).

This case is slightly more complicated; suppose 2'|[o. Then it
may be shown that 2'*%|| P,(a) and so if ¢ is odd, we find that Ny’ =
P,(a) implies n = ro with » even, and then just as in the above case
we find no value for n > 0, except in the case a =5, p = 6, N = 455,
n = 12. On the other hand, if ¢ is even, we find that 2Ny = P,(a)
implies # = r0 with r even, and then there is no value for n > 0.

Thus in case (d), &f 2|/ p, then P,(a) = 2Ny*
has no solution, and if 2% o, then
P.(a) = Ny* has no solution, except in the single case
a =5 N=455n =12, all for n > 0.

We see however, that in the cases in which 3|o(N, a), we have
not succeeded in determining possible values of n. This problem
remains open. A similar situation exists for equations of the type
p.(a) = Ny’

In conclusion, we observe that as far as Theorems 1-4 are con-
cerned, although the method applies to infinite sets of values of x in
each case, many values are not covered; thus considering values <6,000
the only values covered are 4, 36, 76, 140, 364, 756, 1364, 2236, 3420



646 J. H. E. COHN

and 4964 in the case of Theorems 1 and 2, and 18, 110, 322, 702,
1298, 2158, 3330, 4862 and 5778 in the case of Theorems 3 and 4.
For such values it is also clear that a method similar to that used
in [4] will be available for handling any sequence of integers satisfying
a recurrence relationship of the form (3) or (5) respectively.
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