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The locally equiconnected spaces (LEC spaces) can be
characterized as the spaces X with the property that if
fo, f1: Z— X are mappings which are “sufficiently close to-
gether” and which agree on a subspace A of Z, then f; is
homotopic to f; relative to A (f, = firel A); i.e., there is a
morphism F:Z X I > X with F|Z X 0= fo, F|Z X 1= f; and
Fla,t) = foa for all ac A and tel.

The notion of “close” is measured by a morphism ¢: X X
X — I with ¢(x, z’) =0 if and only if £ =2’. We then require
that o fof, f1£) < 1 for all £ € Z implies that f, = firel A.

There is a universal test pair (u, D): let u = ¢~ 1[0,1>
and D= ¢"0. Let f, and f: be the restrictions to « of the
projections X X X — X onto the first and second coordinates.
Then f, and f; agree precisely on D. A homotopy fo = firel D
exists if and only if D is a strong deformation retract of u
in X x X.

We note two things. First, the existence of a homotopy
fo = firel D implies the existence of the homotopies in the
general case described in the first paragraph. Second, the
existence of a map ¢ and homotopy f, = firel D is equivalent
to the diagonal map

4 X— XX X

being a cofibration.

We say more on this point below.

The class of LEC spaces has been the subject of considerable
investigation (see Dugundji [1] for background) and such spaces have
a number of convenient homotopy theoretic properties. To establish
contact with a more familiar class of spaces, we recall that every
metric absolute neighborhood retract (ANR) is LEC and that every
finite dimensional metric LEC space is an ANR. (See [1]).

One of the beautiful results on ANR’s is the Whitehead Adjunc-
tion Theorem for compact ANR’s [7]. This has been the subject of
several generalizations [3] and [4]. The object of this paper is to
present an adjunction theorem for LEC spaces analogous to White-
head’s but with no restriction on the LEC spaces involved. A corol-
lary is that every cell-complex is locally equiconnected.

I. Preliminaries. We do not wish to be too specific about the
category of spaces under consideration. Specific categories for which
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670 E. DYER AND S. EILENBERG

all of the ensuing arguments are valid are the category of compactly
generated Hausdorff spaces [6] (which includes metrizable spaces and
locally compact Hausdorff spaces) and the category of quasi-topological
spaces [5]. A third category in which they are valid is the category
of compactly generated weakly Hausdorff spaces; i.e., spaces in which
the topology is generated by continuous maps of compact Hausdorff
spaces; there appears to be no material in print on this category.

The terms continuous mapping and morphism will be used inter-
changeably. A morphism f: A — X is an injection provided it is one-
to-one into and has the property that a sufficient condition for a
function g: Y— A to be a continuous mapping is that the composition
fg be one. If f is an inclusion and an injection, then A is said to
have the subspace topology or the induced topology. Dually, a mor-
phism p: X — B is a projection provided it is onto and has the pro-
perty that a sufficient condition for a function ¢: B— Y to be a con-
tinuous mapping is that the composition ¢gp be one. In this case B
is said to have the quotient or decomposition topology determined
by p.

A subset A of the space X has a halo in X if there is a morphism
q: X — I such that A = ¢7'0. Such a morphism is called a haloing
function for A. Note that only G, closed subsets can have haloes.
If, in addition to having a halo in X, A is also a retract of X, then
A is said to be a halo retract of X.

A morphism k: X — I is a numeration of an open set U in X
provided U = X — k™'1. An open set U is numerable if there exists
a numeration of it.

In each of the above categories, there are arbitrary function spaces
M(X, Y) in which the exponential law is valid and the evaluation map
is a morphism.

For a space X the path space PX is the subspace of M(R-, X) x
R+, where R* is the half-line of nonnegative real numbers, of all
pairs (¢, I) with a(t) = a(l) for all ¢t = 1. A path is a point (a, I) of
PX; the number [ is said to be the length of the path (a, ). We
define two morphisms

Nyt PX —— X
and

V.. PX— X

by 7i«a, 1) = a0 and 7.(a, l) = al.
We next state several lemmas and propositions to be used later.
We omit proofs of the more routine of these.

LemMMA 1.1. Let ¢: X — I be a morphism and «: X — I be a func-
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tion such that
(i) +lu is a morphism, v = @' < 0, 1], and
(i) + =o.

Then + ts a morphism.

LEMMA 1.2, Let ¢: X — I : Y—1, and h: X x I— Z be mor-
phisms such that

h(x, t) s independent of t if @(z) =0.
Let W be the subspace of X X Y x I
W= {x,yte X X Y X I|tyy < pa}
and l: W— Z be the function

[l tp(w)fpr) i pa# 0

U, y, £) —
R PY if pr=0.

Then 1 is a morphism.
Proof. Let v: C— W be a morphism, where C is compact Haus-
dorff. The map v is given by coordinates
7 C— X, 7:C—>Y and v,:C—1.
The definition of W requires that
Vo (P72) = PV,

Let a: C x I —1I x I be defined by afe, t) = (tpv.e, , Vse-pv.c) and D =
a {4 U0 < I}. Since « is continuous, D is compact; and so, 7,: D—C
is a projection since it is onto. The composition

c.w-z

T1

D

is
vz (e, t) = lve = U(ve, v, V)

h(%c, %em> if @ve =0
- Pv.C

h(v.c, 0} if Pve=20
_ {h(%c, t) if Pve=+#0

h{v.c, 0) if Peve=0
= h(ve, t),

which is a morphism. Since 7,: D — C is a projection, this implies I
is a morphism. But since this is true for every morphism v: C — W,
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it follows that ! is a morphism.

LEMMA 1.3. For C compact Hausdorff, the function
sup: M(C, R)— R

defined by sup f = sup {fc|ce C} is a morphism.

PropoSITION 1.4. The function
J:PY— M, Y) x R*

defined by j(a, 1) = (@, 1), where &t = a(t-1), is an injection.

Proof. It is clear that j is a morphism and is a set-theoretic
injection. We have only to show that if f: C — PY is a function,
where C is compact Hausdorff, such that jf is a morphism, then f is

a morphism.
We assume jf is a morphism. This implies both xjf and mjf

are morphisms.
If supz,jf = 0, then Im f is contained in the subspace of PY of

paths of length 0. This subspace is homeomorphic to Y and is mapped
by w7 homeomorphically onto the subspace of constant paths in
M, Y). Thus, since 7,jf is a morphism, so is f.

Otherwise, let

p:C—— 1 be @c = mjfe/sup m,jf .

Let Dc C x I be {¢, t|t < oc}. The composition

D—sCxI-toy

is a morphism, where f(c, t) = fe(tmjfe) is adjoint to m,jf and the first
morphism is defined by (¢, t) — (¢, t/®c).

Let E be the subspace of C x R* of all pairs (¢, s) with s < m,jfe
and map E to D by sending (¢, s) to (¢, s/sup 7,jf). Finally, define
v:C x Rt — E by

¢, U, if u < mife

e, w) = . . .
(©w ¢, mife, if mife=u.

The composition

Cx R - FE D Y

is a morphism taking (¢, w) to (fe)(u). Its adjoint is =, f: C — M(R*, Y),
which is thus a morphism. Since 7./ is the morphism =,jf, it follows
that f is a morphism.
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LEMMA 1.5. Let g: X— PY and f: X— R* be morphisms such
that f70 C (7,9)7'0. Then the function
g: X— PY

defined by ga(t- fr) = gu(t-mgx), te I, with . = f, is a morphism.

Proof. § is well-defined since f7'0C (m9)'0. m,J9 = mJjg and
7,J0 = f are morphisms; thus, j§ is a morphism. Since j is an injec-
tion, it follows that § is a morphism.

The following companion theorems are proved by variants of a
method of G. S. Young in [8]. We recall that a morphism f: 4 — X
is a cofibration provided the diagram

A 1. x

L
AxIS x w1

is a weak pushout; i.e., given F: 4 x I — Y and ¢g: X — Y with Fe, =
gf, there exists a G: X x I — Y (not necessary unique) such that Ge, =
gand Gf x I = F.

THEOREM 1.6. Ewery cofibration f: A — X is an injection of A on
a closed subset of X which has a halo.

THEOREM 1.7. Let A be a closed subset of X and i: A — X be the
injection. Then the following properties are equivalent:

(i) t %s a cofibration.

(iiy AXIUX x 0 is a retract of X x I,

(ili) there exist a halo U of A and a morphism

hiXxI—X
such that
Mz, 0) = x, ha, t) = a, W(u, 1)e A

Sfor xeX acA,tel, and we U,
(iv) there ewist a halo V of A and a morphism

h: VxI— X
such that
kv, 0) = v, k(a, t) = a, k(v, 1) e A
for ve V,ac A, and tel, and
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(v) there exist a haloing function @ for A in X and a mor-
phism
hV— PX, where V=90, 1>,
such that
nh =1, n.h(v) C A, 1h =®|V.

1I. Properties of LEC spaces. We shall define a space X to be
locally equiconmected (abbreviated LEC) provided the diagonal map

4: X— X x X
is a cofibration. This is in agreement with earlier usage [1].
THEOREM II.1. The space X is LEC if and only if there exist
morphisms
b X x X—b1T
9. V— PX, for V=FK"01>,

such that

(i) k70 = D, the diagonal in X x X and

(i) ng =m ]|V, 0.9 = 7|V and lg = k, where w, and 7w, are the
projections of X x X onto its first and second factors and for a path
a, la is the length of the path.

We shall refer to a pair of morphisms (%, ¢g) having the properties
of this theorem as LEC-data for X.

Proof of Theorem. If 4: X — X x X is a cofibration, then by
condition (v) of Theorem 1.6 there exist morphisms

p: X x X—>I1, with D=0, and
h: V—> P(X x X), where V=70 1>,

such that hv is a path from » to D of length ®v. Let &k = 2 and
define

g V— PX

to be g = mh — wh. Since hv0 = v, gv is a path in X from 7,v to m,v.
Its length is 29pv = kv.
Suppose (k, g) are LEC-data for X. Let @ = k and define

he V—s P(X x X), V=970, 1>,

to be (g, m,). Since gv is a path from 7 to mw, hv is a path from



AN ADJUNCTION THEOREM FOR LOCALLY EQUICONNECTED SPACES 675
v to (mw, mwye D. Its length is kv = ov.

TaeorEM I1.2. If X, X,, -+, X, are LEC, then X = [[~, X, s
LEC.

Proof. Since 4;: X; — X, x X, is a cofibration for each %,

is a cofibration. This morphism composed with the twisting homeo-
morphism

is the diagonal map for X. Thus, 4, is a cofibration and X is LEC.

THEOREM I1.3. A LEC space X can be covered by numerated open
sets contractible in X. Also, X is Hausdorff.

Proof. Let k, g be LEC-data for X and V = k70, 1>.

Forze X, let V, = {ye X|(», y) e V}. Definek,: X—1 by k.(y) =
k(xz, ). Then the open set V, is numerated by k,. Define

CoV,xI—X

by C.(y, t) = g(z, y)t. This is a deformation in X of V, into =.

As in §4, number 4 of page 253 of [2], it follows that if X is
also compact, then it is metrizable.

For x=#y, let S, = {¢ € X|k.(§) < k,(&)} and S, = {¢ € X|£,(§) < k.(9)}.
The sets S, and S, are disjoint open sets in X containing & and vy,
respectively.

THEOREM 1I.4. In a LEC space the path components of a numer-
ated open set are open.

Proof. Let k, g be LEC-data for X and V, be as in the previous
proof.
For +»: X — I, U = Support +» and x ¢ U, define

v V,— 1

by ¥y = inf {yg(x, w)t|te I}. Then 0 < +(x) = ¥(z). If 0 < 4y, then
g(x, yI < U. Thus, the path component of  in U contains the support
of +, which is open.

CorOLLARY II.5. If X ¢s LEC, the decomposition space 11X of
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path components of X is discrete.

Proof. The function 1: X — I has support X. By the previous
theorem the path components of X are open.

For a compact space C, a closed subset A of C and a map ¢: A — X,
denote by (C, X, ) the subspace of the space M(C, X) of maps of C
into X of those functions f: C — X such that f|A = &.

THEOREM II.6. If X ¢s LEC, then so is (C, X, ).

Proof. Let k, g be LEC-data for X. For f, f'e M(C, X), let
k(f, f) = sup {k(fe, f'c)|ce C} .
The function k& is a morphism since it is the composition of the mor-

phism
sup: M(C,I)— 1

with the adjoint of the composition

X1, 0% € x M(C, X) x M(C, X)

IXTXL 6w MC, X) x C x M(C, X)

e&XXXLI,

C x M(C, X) x M(C, X)

where e¢: C x M(C, X) — X is the evaluation map.

For f, f'e M(C, X), k(f, f') = 0 is equivalent to fc = f’c¢ for all
ceC; i.e., k(f,f) = 0 if and only if f = f.

For k(f, f') < 1, define g((f, ') e PM(C, X) by

g(f, f))e) = g(fe, fre)(®) .

Letting U = k[0, 1>, we conclude that g: U — PM(C, X) is a mor-
phism from the diagram

Cx UxXR — VxR —sPXXxR-—X

l -
Cx M(C, X)x M(C, X) xR — Xx XxR.

We define kE:(C, X, ®) x (C, X, ) — I to be the restriction of %
and §: £7'[0, 1> — P(C, X, ®) to be the restriction of g. We note that
for f, f' e (C, X, @) such that k(f, /") < 1, g(f, f)(t)Na) = g(Pa, Pa)(t) =
®a. Thus, the restriction of g to £7'[0, 1> factors as asserted in de-
fining §g.

THEOREM I1.7. If X is LEC and A is a halo retract of X, then
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A is LEC and the map A— X is a cofibration.

Proof. Let (k, g) be LEC-data for X, n: X — I be a halo function
for A, and r: U— A be a retraction, where U = 77'[0, 1>.
Define +: X X X — 1 by

§@WW%@%M&W}%rMﬁw<1

(@, y) =
for k(x,y) =1.

Then 1 — 4 is a morphism on Support (1 — %) and 1 — <1 — k.
Thus, 1 — 4 and 4 are morphisms. If (x, y) < 1, the path g(z, %)
is defined and lies in U. Also, (%, ¥) = 0 if and only if v = ye A.

Let k = |A x A. Then .0 is the diagonal in A4 x A. Let
W = k7[0,1> and define §: W— PA by

g\ = (’I"g, ic\) M

This new parametrization is a morphism by Lemma 1.5 since the zeroes
of k are the same as those of k|A x A. Thus, (k, §) is LEC-data for

A.
To verify that A — X is a cofibration define y: X — 1 by

sup {7z, k(z, re)} for 7nr <1
x@) =
1 for nz=1.

Exactly as before, y is a morphism. A = y7'0 and if yx < 1, then
ne < 1, re is defined and k(z, rx) < 1. Let T = %[0, 1> and define
h: T— PX to be the composition
Ty . px,

where V =k7'[0,1>. Then y is haloing for A, T = y'[0, 1> and
h: T— PX is a morphism such that nh = 1, Im(n.h) € A, and L|A =
1,4, where i, A — PA injects each point to the path of zero length at
that point. Since for te T, y(t) = 0 if and only if kht = 0, we can
reparametrize the paths it to have length x(¢). Then y, T, h satisfy
condition (v) of the cofibration Theorem I.7.

COorROLLARY II.8. If X is LEC and x is a point of X, then the
injection x— X is a cofibration.

Proof. By the previous theorem, it suffices to show « is a halo
retract of X. Since a point is a retract of any set containing it, it
suffices to show 2 has a halo in X.

Let %, g be LEC-data for X. The function X X 2 — X x X de-
fined by (2/, ) — (¢, ) is a morphism which composed with k& defines
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a halo for z.

III. The adjunction theorem. J. H. C. Whitehead gave the
first proof of this type result for compact, metric ANRs in [7].
Several generalizations have since been made (see [3] and [4]).

ADJUNCTION THEOREM. If X and Y are LEC, A is a halo retract
in X and f: A — Y is a morphism, then any LEC-data for Y can be
extended to LEC-data for XU, Y.

We note this result states not only that XU, Y is LEC but also
relates a LEC structure on it to one on Y.

Proof. The proof of this theorem follows from five construections,
stated here. We let &k, g be LEC-data for X and 7n: X—1I be a
haloing funection for 4 in X.

Step 1. Tklere exists a moryhism k: X x X — I such that
(1) 7o = k(z, y) and 1y < k(z, v),
(i) 44 =k"0
(iliy for T = k7'[0, 1>, the function G: T x I* - X given by
G(z, y)(s, t) = §(g(x, y)s, rg(x, y)s)t
is defined and a morphism, where § is the composition 7jg, j being

the injection j: PX — M(I, X) x R*.

Step 2. There exists a morphism k: X x X — I such that
(i) k<k

(ii) k£7'0 = 4X

(ii) k=1 and ¢ = 0 implies ¥ = 1, where ¢ = inf (7, 77,).

~We note that (ii) implNieS paths ¢ can be linearly reparametrized
by k to Ngive LEC-data ¢, k£ for X. Condition (i) implies ¢ is defined
on S = k0, 1>.

Step 3. In S, let
S,=(c=ku(r=1-k and
S=C=Z=knET=z1-k.
There exists a function f: S— [0, 1] such that
SIS =0,

Flz7'0—44)nS=1, and
f|1S — 4A is a morphism .
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Step 4. There exist morphisms k&, k.: S— [0, 1] such that

(i) k+k=Fk and k, =k, on S,

(i) k +k, <k on S, and

(iii) %, = 0 if and only if »z, = 0 or £ = 0 and k, = 0 if and only
if 91, =0 or k = 0.

Step 5. There exist morphisms g, ¢,: S— PX and closed sets M
and N in S, such that

(1) lg, = kyy lg, = Ky,

(ii) ¢, +9.=g on §,

(111) NGy = 7T, and 7.gs = Ty

(iv) if »z, = 0, then 7,9, = rm, and if »7, = 0, then 9.9, = rx,, and

(v) SSNnS,.cM,n.g, =19, on M,7ng9¢€A and 79.€ A on N, and
77'0 < N.

Before proving these five assertions, let us prove that the Adjunec-
tion Theorem is implied by them.

Extensions of LEC-data k,, g, for ¥ to XUJ,; ¥ will be defined
on (X1 Y)x (XU Y)soas to agree under the identifications imposed
by the pushout diagram

Ixf
AxA YXY

fxa
ixXf
YxX
X1

Xx Y\\

XxX (XU, Y)X(XU,Y) .

FIGURE 1

Define &’ by the following:

on X x X,
i on k'1US,
B =k +Fk on M
k, + kv(f7.9, fﬁogz) +%k on N,

on X x Y, kK = k(r,rr) + k(fro, m),
on Y x X, kK = ky(n, frm,) + ky(rm,, 7) , and
on YXY, K=EF.

On the set £'7'[0, 1>, define ¢’ by:
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on X x X,
g on S,
9 =19+ 9. on M
9 + 0:(f9:95, f1092) + 9. on N,
on X X Y, 9 = gdm, ry) + g (frm, 7w,
on Y x X, 9 = gy(m, frm,) + g,(rm,, @), and
on Y x X, 9 =gy .

Checking the conditions as stated in Steps 1 through 5 when relevant
shows the functions as defined are morphisms, agree as required on
A x A, and define LEC-data on X, Y.

We next establish the constructions asserted in Steps 1 through 5.

Step 1. Let k, g be LEC-data for X, 7 a halo for A in X and
r: U— A a retraction, U = 77'[0, 1>.
Define k: X x X — 1 by

- sup {k(w, y), ng(®, ys} for kiw, y) <1
k({l’?, y) = {°%¢f
1 for Kz, y) =1.
The 1 —k<1l—Fkand1—Fkisa morphism on the support of 1 — k.

Thus, kis a morphism.
Define k: X x X— 1 by

. {Sup {(k(w, v), k(g(x, w)s, rg(w, )s)} for kv, y) <1
F(z, y) = ¢ ~
for kz,y) =1.

As above, kis a morphism.
Finally, define k: X x X— I by

ke, y) = sup {k(x, v), kglg(x, )s, rg(x, ws)t,
s,s’,t,t’el4
g9z, y)s', rg(x, y)s)t')}

for : < 1 and k(x,y) =1 for lAc(:v, y) = 1. As before k is a morphism.

Observe that 7na < k(z, ) and 7y < k(x, y); also, k0 = 44. The
conditions imposed by k being less than 1 are sufficient to establish
G has the asserted properties.

Step 2. Let k = sup {k, k/1 + © + k — k}. The denominator 1 +
T+ k—F%k=+0since k=1 and = 0 imply k£ > 0. Thus, % is a mor-
phism. By definition, & < k. Also, ¥ = 0 if and only if k¥ = 0; and
so, k70 = 4X. Clearly, for k =1and =0,k = 1.
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Step 3. For S = k7[0,1>, let

S,={rc=ku@=1-k}nS and
S,={c<kn@E=1-k}nSs.

Define the function d: S— I by d|S, = 0 (note that 44 C S,)
d=(k -1 -k —7)k-1—k) on S, — 4A.

The two definitions agree on (S, — 44) N (S, — 44). These two sets
are closed in S — 44. To check that d|S — 44 is a morphism it
suffices to check that d|S, — 44 is one.

Since k < 1, either k<1 or ¢ >0. In S,k =1 implies 7 = 0.
Thus, k< 1. If k=0, then ¢ = 0, and the point is in 44. Hence,
in S — 44,k-(1 — k) > 0; and so, d|S, — 44 is a morphism.

Since (770 - 4A)NScC S — 4,d[(z70—-44)n S = 1.

Step 4. Define &: S— I by

inf{k, 1 — d)-k + d-(yz, + nm,)} on Support %
0 on k0.

&1

Then % < % and k is a morphism on Support . Thus % is a morphim
on S.
Let » = inf (1, »z, + »z,) and define ki: S— I by

k,_{%-m/a for § >0
o for ©# =0.

That %] is a morphism follows from Lemma 1.2 by the following
argument:

p: X x X—— 1 is a morphism,
p=4g: X—1 is a morphism, and
h: X x XxI——>1 by h = (790([01 X 0:))* 05 5
the p,’s being projections, is a morphism. If @ = 0, then E=0 or
d = 1. In either case k = 0; and so, 4 is independent of te [l if & =

0.
Let W X x X x X x I be

W - {(‘ﬁcl’ 3;2)7 €, t lt"‘t/’}x é @(ml, xZ)} °
By Lemma 1.2 ¢: W—1I defined by

k(, @) -t-n2/@(@, ) for & >0

e((@), ), (%, t) = for =0
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is a morphism. Define j: S— W by i(z, ) = ((x, x.), ©,, 1). Then
k(w,, @) 73,/3(@, w) for P(@, @) ~ 0

0 for &z, 2) =0

=k

c'j(xn 002) = {

is a morphism on S.
Define v: X x X — 1 by

B {1/7771:1 + 9r, for 1= nm + 9m,
1 for ym + 9T, £ 1.

Since v is a morphism, so is %, = k/-v. Thus,

P }707]7‘51/777'51 + ym, for 0 < nm, + x,
o for 0 =z, + 7,

and

P {E-nm/nnl + pm, for 0 < pm, + 7,
o for 0 =z, + 9m,

are morphisms on S. Clearly, B+ k,= k where 0 < N, + N, If
0 = 07, + N, then either ¥ = 0 or 7 = 0 and d = 1. In either case
k=0. Thus, k + k, = kon S;and so, &, + k, =k < k for all(m y)e
S. For (=, yeS,d=0and k==F%; thus, on S, &, + ko = k. k&, =0
1mphes k = 0 or 7, = 0, which 1mp11es kE=0or N, = 0, which implies
k=0 or yr, = 0, which 1mphes kE,=0. Thus, k, = 0 if and only if
k=0 or yr, = 0. Similarly, %, = 0 if and only if £ = 0 or 7x, = 0.

Let k, = (k, — (1/2)k)-d + (1/2)k and k, = (k, — (1/2)k)-d + (1/2)k.
Sinee k;, ¢ = 1, 2, is a morphism on Support 2k and k; < 21?, k; is a
morphism on S. Also, 0 < k; < 1. Furthermore,

b+ k=(+k—Ihkd+kE<k.

On S, d =0 and so, k, = k, = (1/2)k. Finally, k, = 0 if and only if
Ed = ((1/2)d — 1/2)k. But the latter is true if and only if %, = 0 and
EF=0ork=0andd=1ord=0and £ =0. This is true if and
only if £, = 0. Thus, k, = 0 ifand only if y7, =0 or £ = 0 and %, =

0 if and only if 7, = 0 or k = 0.
Step 5. Let M = d7'[0, 2/rarctan2] N S, and

={y'[2/rarctan2, 1] N S} U 4A .

Then S,NS,c M and S,N N = 4A. Define ¢ and b mapping I in PI*
by
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(is, —1—3 tan 7rt/2) for 0 7t/2 < arctan2

2 2
(s cot t/2, s) for arctan2 < 7t/2 < 7/2,

a(t)s = {

and

(% + —é—s, (% - —21~s>tan 7rt/2> 0 < 7mt/2 < arctan 2

1+ (s —1)cotmt/2,1 — sjarctan2 < wt/2 < w/2,

b(t)s =

The following assertions are easily verified:
(1) for 0 < 7t/2 < arctan 2, a(t)1l = b(2)0,
(2) for arctan2=xt/2<1, ma(t)l = 1 = 7,b(¢)0, and
(8) a()(0) = (0, 0) and b(t)(1) = (1, 0) for all ¢.
Define g,: S— PX by
(@, ) g(x, x') | with length &, for (=, 2')e S,
L, &) = .
g G(x, ') |acd(z, ') with length k, for (z,2')e S, .

On S;NS,7=k=1—1k,d=0and k = (1/2)k. acd is the interval
[(0, 0), (1/2, 0)]. The composition

G(z, o) |asd = §(d(x, o')s, 7Gx, 2)s)0, 0=<s< -3;-
= §(x, &')s Oésé—é—
= §(x, ) ?

= mig(w, o) 2R
= mJg(w, &) [ .
Thus, the definitions of g, on S, and S, agree on S,N S,. Clearly,
9:1S, is a morphism. To check that g,|S, is also, it suffices to check
7Jg|S,. On S,k < 1. Define a morphism h: T x M(I,I?) x I - X
by the following function space adjointness applications:
GTxI'—X,
G: I*— M(T, X) ,
M(I, G): M(I, I)) — M(I, M(T, X)) = M(T, M(I, X)) ,
MI, G)~: T x M(I, IY) — M(I, X), and finally
h=MIG~TxMII)xI— X.

Define po: T— M(I, I*) by

ad(x, x') if k(x a) >0
[0, 0), (0, )] if k(2',2) =0.

Then k, h, p satisfy the hypotheses of Lemma I.2. Thus,

o, o) =
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k(z, o', t) = h(@, o', (@, '), 1)

is a morphism. But this is 7.j¢,]S..
Similarly,

_ |{g(=, x’)lff?;f;’,) with length ki, ) on S,

gZ(x’ xl) - » » . ,
G(x, )| bd(x, ") with length k. z, ') on S,

is a morphism.

Verification of (i) and (ii) of Step 5 is immediate. Condition (v)
follows from (1) and (2) above and condition (iii) follows from (3).
To check condition (iv), observe that 7z, = 0 implies d = 1 or k = 0.
In the latter case g, is the 0-path at = 2’ = r& = v&’. In the former,

T3¢ = @(@G(x, )1, rg(z, ) 1)1 —5) 0<s<1.
and so,

g, = 7,99,0 = ra’ = rx, .
CorOLLARY III.2. Ewery cell-complex 1s LEC.

Proof. A cell-complex X is the colimit of a sequence of morphisms
X LX””*“, where X° is a discrete space and for each =, f, is
defined by the push-out diagram

11 S: LI g« X

e |

H Dn*—l X('n 1)
« .

I D*** is LEC and as [] 4. is a cofibration, [[ S; is a halo retract in
11 D**'. Thus, by the Adjunction Theorem LEC-data for X' extends
to LEC-data for X", XY, being discrete, is LEC. Inductively, a
sequence {g", k'™} of LEC-data is formed for the {X '} such that each
extends its predecessor. The functions g, & defined on the colimit X
are thus morphisms and are LEC-data for X.
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