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Contraction semigroups of linear operators on a Banach
space appear in a wide variety of physical and mathematical
situations, and for this reason there has been much interest
attached to studying the properties of such semigroups and
their infinitesimal generators. In this paper we examine in
some detail the question of when one can (left or right) mul-
tiply the infinitesimal generator A by another (bounded or
unbounded) operator B and still preserve the generator pro-
perty. Also, we state when polynomials in a generator retain
the generator property. Our treatment is not exhaustive but
is meant to be representative of the type of results which
may be obtained.

Section 2 contains a brief background of material necessary to
our presentation, including the relevant previous results; since there
have been many recent developments in the theory of linear (and
nonlinear) equations of evolution while this paper was in preparation,
in §2 we have added a few comments pointing out some of those
results as they pertain to this paper. In §3 we employ the approach
that was used in Gustafson [8] for bounded left multipliers; the two
principal ingredients are the index theory of (unbounded) operators
and the dissipativeness of the operator products involved. The main
idea here is to arrive at multiplicative perturbation results by using
additive perturbation results. Another approach to the multiplicative
perturbation question is to use direct semi-group methods to solve the
initial value problem with generator BA, as was done for example in
the recent paper Calvert and Gustafson [1]. In §4 we develop some
other methods, give some examples, and obtain a criterion for a
polynomial of a generator to be a generator. Although we do not
attempt to treat specific applications per se in this paper, let us men-
tion at this point (see also § 4) the descriptive situation in which the
semigroup is induced by a Markov process and the left multiplication
is induced by a stochastic time change.

An implicit corollary to this paper is that after the operator
theoretic considerations are taken care of, the basic requirement on
the perturbed operator governing whether or not it retains the gen-
erator property is that it remain dissipative. This point was mentioned
earlier in [8] as concerns bounded left multiplicative perturbation, but
deserves emphasis since it pertains as well to any multiplicative, ad-
ditive, or "polynomial" perturbation, and would apply as well to any
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functional calculus developed for generators. We do not here consider
criteria for perturbed dissipativeness; some results in that direction
may be found in [9, 10, 12, 17, 22]. Of course often the perturbed
operator may be verified to be dissipative directly (e.g., by integra-
tion by parts), or by choice of a special semi-inner product as in
Dorroh [3], by commutativity properties of A and the perturbation
of A, or by other methods motivated by the particular application
involved.

The authors would like to thank the referee for several useful
suggestions yielding more general statements of some of the results
of §4.

2* Previous and current results* We will have need to refer
to a certain background of previous results. Throughout this paper
X will denote an arbitrary complex Banach space, and all operators
T will have dense domain D(T) and range R{T) in X; [x, y] will denote
a semi-inner product as defined by Lumer [19]. Every Banach space
possesses at least one semi-inner product compatible with the norm
(see [5, 19, 20, 21]).

We will restrict our attention to contraction semigroups, although
the results can be extended to bounded semigroups by translation of
the infinitesimal generator. Let G(l, 0) denote the class of all linear
operators A which are the infinitesimal generators of strongly con-
tinuous (class Co) semigroups of contraction operators on X; see [16,
18] for more details. In Lumer and Phillips [21] the following ver-
sion of the Hille-Yosida Theorem characterizing G(l, 0) was obtained.
Let 0(A) = sup Re [Ax, x], \\x\\ = 1, xe D(A); A is called dissipative if
Θ{A) ^ 0.

THEOREM 2A. A necessary and sufficient condition for a linear
operator A with dense domain to generate a strongly continuous semi-
group of contraction operators is that A be dissipative and that
R[I- A] = X.

In particular, A e G(l, 0) if A is closed, dissipative, densely defined,
and R[X — A] is dense for some λ > 0.

In [3] Dorroh showed that when X was a space of bounded func-
tions and i e G(l, 0), then pAeG(l, 0) when p was the operator on
X given by multiplication by a positive bounded function, bounded
below above zero. In [8, 9] the following general result along these
lines was obtained. An operator B is called strongly accretive if there
exists m > 0 such that Re [Bx, x] ^ m, | |# | | = 1, Vxe D(B); in the
following statement B is to be bounded and everywhere defined.
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THEOREM 2B. For any Banach space X, let A e G(l, 0) and either
of the following (disjoint) conditions hold for B:

(i) B is strongly accretive;
(ii) 3 τ > θ G τ | | β - 1 | ! - 1 > \\τB- I | | ^ 1, Θ{-B) ^ 0.

Then BA e G(l, 0) if and only if BA is dissipative.

We will use the following results concerning additive perturbation
of G(l, 0) and preservation of operator indices which may be found
in [7, 11].

THEOREM 2C. Let Ae G(l, 0), A + B dissipative, \\Bx\\ ^ a\\x\\ +

b\\Ax\\ with b < 1 for all xeD(A). Then A + BeG(l, 0).

THEOREM 2D. Let \\Bx\\ ^ α| |α; | | + b\\Tx\\for all xe D(T), where

b < 1 - α| | T~l\\. Then β{T) = β(T + 5 ) .

Here β{T) = dim X/R(T) is the deficiency index of Γ; since in
Theorem 2D the operators T and T + B are 1 — 1, β = —tc, where
fc is the index of the operators; in general, fc = a — β, where a is
the nullity of the operator. Theorem 2D holds for arbitrary operators
in a normed linear space [11] but for semi-Fredholm operators in a
Banach space it is due to Kato (see [18]); sometimes (e.g., see [6])
β(T) is used to denote the deficiency of R{T) rather than R{T), but
all of our ranges will turn out to be closed, so the distinction will
vanish.

We use the term invertible to mean that an operator possesses
a bounded everywhere defined inverse.

For use in §4 let us state the following lemma.

LEMMA 2E. Let T be dissipative] then either R(B — T) = X holds
for all strongly accretive bounded operators B on X, or for no such
operators B.

Proof. Lemma 2E is a generalization of the fact that the defi-
ciency β(X — T) is constant in the right half plane for dissipative T,
and can be similarly shown; a semigroup proof is as follows. If
R(B, - T) = X, then R[δ - (T - (Bι - $))] = X for δ < mBl, so that
by Theorem 2A one has A = T - (BL - δ) e G(l, 0); for ε < mFj2 one
has the (dissipative) T - (B2 - ε) = A + (B, - 3 - B2 + ε) in G(l, 0)
by Theorem 2C, so that R[B2 - Γ] = R[ε - (T - (B2 - s))] - X.

As seen in the next section (Proposition 3.1), one has a simple
proof of Theorem 2B(i) if one uses Theorem 2C, where it is assumed
only that A + B is dissipative, rather than using (as was done in the
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original proof of Theorem 2B(i) in [8]) the additive result of [7],
where it was assumed that A and B are separately dissipative. Lemma
2E offers another simple proof of Theorem 2B(i) as follows; for dis-
sipative BA and bounded strongly accretive B, R[I—BA]—R[B — BA] =
BR[I - A] = X.

While this paper was in progress, several results concerning ad-
ditive perturbation of the nonlinear versions of (?(1, 0) have been
obtained; let us mention in particular the paper Crandall and Pazy
[2] where Theorem 2C is generalized to nonlinear A and B. For
further references to additive perturbation of nonlinear equations of
evolution, let us simply refer to the bibliography listed in the recent
paper [1]; also in the latter paper the multiplicative perturbation
theory is extended to the nonlinear case.

3* Unbounded multiplicative perturbation* One immediately
has the following unbounded version of Theorem 2B(i).

PROPOSITION 3.1. Let AeG(l, 0), BA dissipative,

3 r > 09 \\(τB - I)Ax\\ ^ a\\x\\ + b\\Ax\\,VxeD(A), b < 1 .

Then BA e G(l, 0).

Proof. Using the decomposition TBA = A + (TB — I)A, we see
that (TB — I)A is an acceptable additive perturbation via Theorem
2C.

The assumptions of Proposition 3.1 imply that D[(τB — I)A] =
D{A). In fact one has the general situation

(3.1) D[(τB - I)A] = D{A) « R(A) c D(B) « D(BA) = D(A) ,

which we mention at this point only to emphasize that domain con-
siderations play an elementary but intrinsic role in determining when
decompositions which were automatically valid in the bounded (every-
where defined) case can still be performed. Also, these domain require-
ments serve to indicate what kind of B can be permitted; for example,
according to (3.1), in Proposition 3.1 in those instances (which occur
frequently) when R(A) = X one is permitted from among the class
of closed operators B only the bounded ones.

Let us recall that for bounded strongly accretive B one knows
(see [10]) that \\τB — I\\ < 1 for all sufficiently small positive τ, so
that Proposition 3.1 extends Theorem 2B(i); in this connection let us
remark that although clearly (for τ > 0) BAe G(l, 0) <=* τBA e G(l, 0),
we include the τ parameter in our hypotheses since for only a certain
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interval of τ values will the perturbation inequalities be satisfied (see
[9, 10]).

We now state a somewhat technical but general result.

THEOREM 3.2. The following four conditions are sufficient for
BA e G(l, 0) if A e G(l, 0) and BA is dissipative:

(1) BA is closed and densely defined, and
( 2 ) B(I - A)D(BA) is dense, and
(3) 3r > 0 9 \\{τB- I)x\\ ^ α | | α | | + b\\(I - τBA)x\\, VxeD(BA),

where b < 1 — a\\(I — τBA)~ι\\, and
( 4 ) D(B)ZDD(BA); (4) is inherent in (3).

Proof. By (1) and Theorem 2A, justifying the above reduces to
showing R(I — TBA) dense in X. For this purpose the identity

(3.2) (I - τBA) + (TB - I) = τB(I - A)

is useful; that (3.2) is valid on D{BA) is implicit in (3) due to (4).
Conditions (2), (3), and Theorem 2D then guarantee that

β{I - τBA) = β(B(I - A) I D{BA)) = 0 ,

so that R(I — τBA) = X (the closed range appearing because I — τBA
is closed and has a bounded inverse).

Let us now examine the conditions (1), (2), (3), (4) under which
Theorem 3.2 applies.

If (2) is replaced by the weaker (2;): β{B) — 0, then it is sufficient
to replace (4) by either of the stronger conditions: (4') R((I —
A){D{BA)) z> D{B) Z) D{BA), or (4") D{B) z> D{BA) z> D(B(I - A)), both
of which imply that in fact (4'"): D{B{I - A)) = D(BA); or more
particularly, by (4""): D{B) z> [R{A) U D(BA)], which holds iff (4'""):
D{B) z> [R(A) U ΰ(A)]. The latter condition, although mathematically
the most convenient class of B if both additive and multiplicative
perturbations are to be simultaneously involved (as they are in our
decomposition arguments), is highly restrictive, and relates to the
following type of situation: if A takes derivatives, B cannot take
derivatives. On the other hand, the less restrictive (4) could arise
in cases such as those in which both A and B differentiate.

As special cases of (3) due to the dissipativeness of BA, either
(3'): b < 1 — a, or (3"): b < 1, a = 0, are sufficient; the latter condi-
tion is equivalent to (3"'): IK*- τB){I - τBA)~ι\\ < 1.

Turning now (1), we see that the "natural" left-multiplicative
assumption D(B)z)R(A) mentioned above (in (3.1)) is clearly sufficient
to guarantee D{BA) dense. If that is not the case (e.g., B and A
both differential operators) but A is such that R(A) is closed and
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β{A) < oo, then (see [6]) D{BA) is dense if D{B) is dense. If β(A) = ^
but A~ι is bounded, again (for densely defined B) D{BA) is dense.
Concerning when BA is closed, one has by the Fredholm Theory that
BA will be closed if B is closed, R(B) is closed, and a(B) = dim
N(B) < co. To determine when BA is closed from domain considera-
tions alone, one can verify (assuming JD(JB) Z> D(BA)) that B(I — A) —
B - BA<^> D(B(I - A)) = D{BA) i.e., (4'") is satisfied; in that case it
may be seen that (3) then implies that

(3.3) BA closed <=> I - BA closed -=> B(I - A) closed .

This is somewhat advantageous because it is easier in principle to
conlcude that B(I — A) is closed rather than that BA is closed, since
I — A is a better (invertible) operator than A. To continue, assum-
ing for the moment that R{B) is closed, than R(B(I — A)) is closed
and thus (using (3) and the dissipativeness of BA to show B(I — A)
to have a bounded inverse) BA is closed by (3.3). That this is true
is of some interest in view of the fact that there exist B closed,
R{B) closed, A closed, R{A) closed, a{A) < oo? β(A) < oo, but BA not
closed. Under the (4'") assumption made above it also follows that
D{BA) is dense whenever D(B) is dense due to the invertibility of
I - A.

The arguments for the following special instances of Theorem 3.2
are contained in the above discussion.

COROLLARY 3.3. Let Ae G(l, 0), BA dissipative, (3) holding, D(B)
dense, R(B) = X. Then BA e G(l, 0) under either of the following
domain conditions:

(a) D(B(I - A)) = D(BA).
(b) D(B) Z) R(A).

COROLLARY 3.4. Let A e G(l, 0), BA dissipative, B densely defined
and invertible, D(B) ZD D{BA) Z) D(B(I - A)), and

3τ >0 3\\(τB - I){I- τBA)-ι\\ < 1 .

Then BAeG(l, 0).

In a similar way extensions of Theorem 2B (ii) to unbounded left
multipliers B may be obtained. Since for nonaccretive B this case
does not seem to occur as frequently (see [9]), we omit the proof
(which is similar to the above) of the following.

PROPOSITION 3.5. Let AeG(l, 0), BA closed, densely defined, and
dissipative, R(B) = X, D(B(I - A)) = D(BA). If
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3τ > O 9 | | ( r J B - I)x\\ ^ α | | g | | + b\\τB(I - A)x\\ ,

Vx e D(BA), b < 1 - a\\ (τB(I - A))~ι\\, then BA e G(l, 0).

We remark that one may obtain an alternative to Proposition 3.1
by using the decomposition I — τBA = (I — zA) — τ(B — I)A, which
is always valid and holds on D(BA), as follows. If A e G(l, 0), D(BA) =
D(A), BA dissipative, and either of the following conditions (i) or (ii)
holds on D(A), then BAeG(l, 0):

(i) τ\\(B- I)Ax\\ ^a\\x\\ + b\\(I - τBA)x\\,

b< 1 - a\\(I - τBA)-ι\\, or

(ii) r | | ( B - I ) A α ? | | ^ α | | s | | + b \\ \I - τA)x\\, b<l - a\\ (I - zA)~%

for some z > 0. The demonstration consists of noting, in both cases,
that β(I - τBA) = β(I - τA) = 0, D{BA) is dense, and all things
needed closed are closed.

We now consider right multiplicative perturbation of AeG(l, 0),
using the same type of decompositions that were used for the left
multiplicative questions.

PROPOSITION 3.6. Let AeG(l, 0) and B satisfy \\A(I - τB)x\\ ^
α| |α| | + b\\Ax\\, b < 1, some τ > 0, VxeD(A), D(AB)z)D(A); then
AB e G(l, 0) if AB is dissipative.

Proof. Since A(I - B) =) A - AB, we note that here D{B) =)
D{AB) =) D{A). By Theorem 2C, T = A - A(I - τB) e G(l, 0) if it is
dissipative, and that is the case because D(T) = D(A) and ABZD T.
It remains to show that AB = T, but this is automatic since it is easily
verified that any operator Te G(l, 0) is necessarily maximal dissipative.

THEOREM 3.7. Let A e G(l, 0), AB densely defined and dissipative,
R[(A — I)B\ = X. Then AB e G(l, 0) under either of the following
conditions:

(i) | | ( τ £ - J ) B | | ^ α | | α | | + 6| | ( / - zAB)x\\, b< 1 - a\\ (I-

VxeD(AB);
(ii) | | ( τ ΰ - / ) a ; | | ^ α | | α ; | | + 6
D(AB); some z > 0.

Proof. The decomposition (I - zAB) = (I - zB) - z(A - I)B holds
identically on D{AB), and thus by Theorem 2D β(I - zAB) =
β{{A - I)B) = 0 in either of cases (i) and (ii). Since R[(A - I)B] is
closed and (A — I)B is invertible in case (ii), (A — I)B and therefore
I — zAB are closed, and since the latter also has a bounded inverse,
R[I- zAB] = X and ABeG(l, 0) in case (ii). Due to the stability
of bounded inverses, the inequality in (i) implies that (A — I)B has
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a bounded inverse, and is thus closed, so that / — τAB, and thus
R[I — τAB]; is closed.

Since right multiplication was not considered in the previous
multiplicative perturbation papers [8, 9], we now isolate the special
case in which B is bounded.

COROLLARY 3.8. Let AeG(l, 0), B bounded, everywhere defined,
and strongly accretive. Then if AB is dissipative, ABeG(l, 0).

Proof. Since there exists τ > 0 such t h a t \\τB — I\\ < 1, condi-

tion (i) of Theorem 3.7 is met; B is invertible so R[(A - I)B] = X

and D(AB) = D[(A - I)B] is dense.
A version of Corollary 3.8 with condition (ii) of Theorem 2B may

be similarly justified.
As a final alternative, we remark that under the following condi-

tions ABe G(l, 0): A e G(l, 0), AB dissipative and densely defined,
3r > 0 3 either of the following holds:

(i) τ\\A(I-B)x\\^a\\x\\ + b\\(I-τAB)x\\J b<l-a\\{I-τAB)~ι\\,oτ
(ii) τ\\A(I - B)x\\^a\\x\\ + b\\(I -τA)x\\, b < 1 - a\\(I - τA^ll.

The demonstration, the details of which are similar to the others in
this paper, utilizes the decomposition I — τAB = (I — τA) + zA(I — B),
which holds on D{AB).

One can combine left and right multiplication, as was done in
[13], where the setting was a (real) Banach lattice and the negativity
condition is one of (weak) dispersiveness rather than dissipativeness.

THEOREM 3.9. Let A e G ( l , 0), let D{B2) = R(B2) = X, let
be dense and either: (i) Brι bounded and R{B^) z> D(A); or (ii) Bγ closed
and R{B^} ~ X. Suppose B2Bι is bounded and strongly accretive) then
B2ABX e G(l, 0) iff it is dissipative.

Proof. Similar to [13, Thm. 3.3], verifying that dissipativeness
possesses analogously those properties of dispersiveness needed in the
demonstration in [13].

4* Alternate methods and applications of the previous results*
In the previous section we utilized operator decompositions and the
application of index theory to conclude that the multiplicatively per-
turbed operator remained in G(l, 0); in so doing we were considering
the general case in which the operators B and A were not necessarily
commutative, invertible, etc.. In the present section we discuss some
alternate methods, some applications of the results of §3, and also
we state (Theorem 4.5) when a polynomial in a generator is itself a
generator, a result which in turn will be applicable to a number of
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concrete situations (e.g., problems involving higher order differential
operators).

Even when the perturbed operator is no longer dissipative one
can sometimes prove that it generates a Co semigroup, not necessarily
of contractions. We give a result of that type below. Let G(M, 0)
denote the infinitesimal generators of Co semigroups T(t) satisfying

THEOREM 4.1. Let AeG(l, 0); B bounded, invertίble, and every-
where defined, B2 strongly accretive, B~xAB~ι dissipative) then B~2A e
G(M, 0) for some M ^ 1.

Proof. Let Xι be X renormed by \\x\\i = \\Bx\\, with semi-inner
product [x, y], = [B~% B~ιy] corresponding to the particular semi-inner
product for which B~ιAB~ι is dissipative. Then [B~2Ax, x\± =
[B~ιAB~\Bx), (Bx)] so that B~2A is dissipative in Xιy and by Lemma
2E one has R{I-B~2A) = R{B~\B2 -A)) = R(B2-A) = R(T-A) = Xlm

Thus B~~2A e G(l, 0) in X19 so that B~2A e G(M, 0) for some M.

A class of examples of Theorem 4.1 is provided by any Ae G(l, 0)
in a Hubert space; then CA e G(M, 0) for any strongly positive bounded
self-adjoint operator C, since B = C~1/2 satisfies the conditions of
Theorem 4.1.

In order to illustrate how one can apply the criteria of §3, let us
establish the following lemma, which is certainly known.

LEMMA 4.2. Let Ae G(l, 0); then A has a bounded inverse iff
R(A) = X; in particular, A is invertible if Θ(A) < 0.

Proof. This follows, for example, immediately from the ergodic
limit theorem [16, Thm. 18.6.2] which states that X = R(A)(&N(A).

Now let us consider Corollary 3.4 and let us suppose that A e G(l, 0),
BA dissipative, B and A invertible, D(B) ZD D(BA) Z) D(B(I -A)), A
commuting with B (i.e., BA c AB). Then for any x e D(BA), x = B~ιy
for some y e X, so that for large enough τ > 0,

l j(l-g)alj _ \\(I-B-ι)y\\ ^ l + l l ^ Ί I < 1

\\{I-τBA)x\\ \\B^y-τAy\\ ~ τ\\A^\r - H^ίί

which is the relative boundedness condition (3'") required in Corollary
3.4; thus BAeG(l,0).

In particular, let AeG(l, 0) be invertible, and let B = — A; then
if —A2 is dissipative, it is in G(l, 0). The accretiveness of A2 can



740 K. GUSTAFSON AND G. LUMER

often be verified directly in specific examples (e.g., where A is a
second order differential operator with zero boundary conditions). If
— A is a bounded strongly accretive operator on a Hubert space one
can deduce from extensions of the results of [7] that cos ( — A) > 2~1/2

is sufficient for A2 to be accretive.
Our intent in this paper has been to perturb Ae G(l, 0); however,

one can sometimes obtain perturbed results without A a generator to
begin with, e.g., as follows.

PROPOSITION 4.3. Let A be invertible; then — A2eG(l, 0) if it is
dissipative.

Proof. For small d2, R(δ2 - {-A2)) = R((δi + A)(-δi + A)) = X.

An extension of the above proposition to unbounded right multi-
plication is the following.

PROPOSITION 4.4. Let A and B be invertible, AB dissipative and
densely defined', then ABeG(l, 0).

Proof. For small δ, SJ5"1 - A is invertible so that R(δ - AB) =
R(δB~ι -A) = X.

Let us now give a rather general theorem covering polynomials
p(A) of arbitrary order, without A necessarily invertible, etc.

THEOREM 4.5. Let AeG(l, 0), p(A) dissipative, in a complex
Banach space. Suppose there exists μ, Re μ > 0, such that the zeros
\ of q = μ — p all lie in the resolvent p{A). The p(A) e G(l, 0).

Proof. We use the index notation for convenience; since the zeros
\. of q — μ — p are in the resolvent set ρ(A), and since p(A) is closed,
densely defined, and κ(μ — p{A)) = Σi=M\ — A)) = 0, by the dissi-
pativeness of p(A) and Re μ > 0 one has β(μ — p(A)) = —fc(μ — p(A)) = 0
and thus μep(p(A)). It can be verified that β(X — p{A)) is constant
in the right half (open) plane, so p(A) e G(l, 0). Actually it would
clearly suffice in Theorem 4.5 to know that the λ̂  are in the Fredholm
resolvent set (of index zero).

A little experimentation reveals that Theorem 4.5, due to the
freedom of choice of μ, has wide applicability except in the case that
the spectrum of A is the whole left half-plane.

It has come to our attention that other investigators have recently
obtained results for when p(A) is a generator, from different view-
points. In papers by Hersh and Griego [14, 15], it is assumed that
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A is a group generator, and then, using Fourier transform techniques,
it is shown that certain higher order parabolic and hyperbolic Cauchy
problems are solvable. In Strang [23], also by Fourier transform
methods, followed by an analysis of the numerical ranges of the
transformed system, it is shown that operators which are parabolic
in the sense of Petrowsky generate holomorphic semigroups.

As an example of multiplicative perturbation in probability ques-
tions, let P(t, x, dy) be a temporally homogeneous transition probability
for a Markov process, so that P induces (e.g., see [25]) a generator

Ae 6r(l, 0) of a contraction semigroup (Ttf)(x) = 1 P(t, x, dy)f{y) on
Jo

X = 5(0, co). Letting w be the Markov random function correspond-
ing to P, let B be the operator given by multiplication by p~\ where
p e l is a strongly positive function; then Pi 1 p(w(s))ds\ , x, dy

corresponds to a Markov process with semigroup generator BA, and
B corresponds to a random time change. For further references and
discussion of this application, see [24].

The papers [3, 4] were motivated by application of multiplicative
perturbation to differential equations, with B a bounded multiplication
operator. As a simple example of an unbounded multiplication operator
in that type of situation, let X be C[0, 1] functions vanishing at 0
and 1, An — u", D(A) = {ue XB U" e X}, semi-inner product [u, v] =
u(xo)v(xQ), where v(xQ) = \\v\\ = sup \v(x)\, and let B be given by multi-
plication by p, where peC(0, 1), possibly unbounded as x —» 0, 1, but
strongly positive, i.e., p(x)~Ξ>m>0. Then BA — εBe G(l, 0) for any posi-
tive ε, by Proposition 4.4. Other examples can be similarly constructed
with B a strongly positive multiplication operator and A a differential
operator of local type in a Banach space of continuous functions, but
we shall not go into the details here.
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