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Consider any fibration p: E-+B, any finite C.W. — pair
(K, L), and any maps f:K->B and h:L->E such that
p o h = f \ L. A map g: K-> E such that p ° g — f and
g I L = h we call a lifting of f rel h.

In this paper single obstruction Γ(f) e Hf (K, L, f i f ) is
defined, ί? is a so-called Z?-spectrum, and H* ( i f ) is
cohomology in that spectrum. If a lifting of / rel h exists,
Γ{f) = 0; this condition is also sufficient if the fiber of p is
/^-connected and dim (K/L) ^ 2k + 1.

If g0 and #i are liftings of / rel h, a single obstruction
<5(#o, #i; h)eH(K, L, f: i f ) is also defined; if #0 and #i are
connected by a homotopy of liftings of / rel h δ(g0, g^ h)=0;
this condition is, also sufficient if p is /^-connected and
dim (K/L) ^ 2k.

In § 4, a spectral sequence is constructed for cohomology
in a i?-spectrum, based on the Postnikov tower of that spec-
trum, and the relationship between the single obstruction and
the classical obstructions is defined.

For similar treatments, see Becker [1], [2], and Meyer [5].
Throughout this paper, let (K, L) be a finite C W. pair, B any

space, and f:K~+B any map. All spaces and maps shall be in the
category CG of compactly generated spaces and maps, as described
by Steenrod [7], and all constructions (i.e., function spaces, quotient
space, Cartesian products) shall be as defined in that paper. When
possible without confusion, we shall allow /1 L and f \ K \J L to be
denoted simply as F. A map π: X—> Y we call a fibration if it has
a local product structure; the polyhedral covering homotopy extension
property [4] is then satisfied.

2* Basic concepts* We define a B-bundle to be an ordered pair
(E, e) such that e : £ - ^ δ ί s a fibration. A J5-bundle map from a 5-
bundle e — (E, e) to another 5-bundle a — (A, a) is defined to be a
commutative diagram:

E 1 >A
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We denote this map a: e —• α. A pointed 2?-bundle is an ordered
triple (E, e, e') such that e: E —> B is a fibration and e': B-+E is a
pointing, i.e., e © e' = 1, the identity on B. We call e' a pointing
because it chooses a base-point for each fiber of e. A bi-pointed B-
bundle is an ordered quadruple (E, e, e', e") such that (E, e) is a B-
bundle and e' and e" are both pointings. If e = (JE7, e, e') and α =
(A, α, a') are pointed S-bundles, a S-bundle map α: e —> a is a pointed
map if α o e' = α'. Similarly, we can define bi-pointed maps between
bi-pointed bundles. Two bundle maps (or pointed bundle maps, or
bi-pointed bundle maps) are said to be homotopic if there exists a
homotopy of bundle maps (or pointed bundle maps, or bi-pointed
bundle maps) connecting them.

If e = (E, e) is a 5-bundle, e~ι b is called the fiber of e over b,
for any be B. If e = (E, e, er) is a pointed 2?-bundle, each fiber,
{e~~ι δ, e'b) is a pointed space. If e = (E, e, ef, e") is bi-pointed, we
say that e'b is the South pole of e~ι δ, while e"b is the North pole.

Let £?B be the category of 5-bundles and 5-bundle maps. Let 3fB*
and ^ * * be the categories of pointed and bi-pointed β-bundles and
maps, respectively. We obviously have forgetful functors a: 3fB** —•
JgS* and β: Jgf^* -» £fB where a(E, e, e', e") = (E, e, e') and β{E, e, er) =
(E, e). We shall, whenever convenient, identify any object with its
image under a, β, or β © a. We also define functors as follows:

S: ^B-*^** two-point suspension

Σ: <^B*—> ^B* one-point suspension

Ω: ^ * - ^ ^ * looping

P : ^ J * * - ^ ^ paths from the South pole to the North pole
S(E, e) = (SBE, s, s\ s") where SBE is the quotient space of E x I
obtained by identifying (x, 0) with (y, 0) and (x, 1) with (y, 1) for any
x, y e e~ιb for any be B. For all [#, ί] e SBE, s [x, t] = ex, while
s'6 = [α;, 0] and s"6 = [x, 1] for all 6 e B, where x is any element in
the fiber of e over b. Σ (Ey e, e) = (ΣBE, s, sf) where ΣBE is the
quotient space of E x I obtained by identifying (x, 0) with ({er o e)x, t)
(x, 1) for any x e E and any te I. Then s [x, t] = ex for all [x, t] e ΣBE
and s'δ = [e'b, 0] for any be B.

Ω(E, e, e') = (ΩBE, σ, σr) where ΩBE is the space of all loops in E
based on e'(B) which lie in a single fiber of e; σa = (e o a) (0) for all
aeΩBE, and (σ'b)t = e'b for all beB, and all tel. P(E, e, e\ e") =
(PBE,p) where PBE is the space of all paths from e'(B) to e"(B)
which lie in a single fiber, and pa = (e © a) (0) for all a e PBE.

We give two adjoint constructions. First, let e = (E, e, er) and
a = (A, a, a') be two pointed S-bundles. If a: e —*Ωa and β; Σe—>a
are pointed j?-bundle maps, we say that a and β are adjoints of each
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other if, for any xeE and any tel, β[x, t] = (ax)t. Second, let e =
(E, e) be a jB-bundle and a = (A, a, α', a") a bi-pointed β-bundles. We
say that maps a: e-^Pa and β: Se—>a (where β is bi-pointed) are
adjoίnts of each other if β[x, t] = (ax)t for all xeE and all t e /.

Let [K, L, h; e]f denote the set of rel L fiber-homotopy classes
of liftings of / to E rel h, where e= (E, e) is a S-bundle and
h: L —> E is a lifting of / | L. If L is empty, write [K: e]f. If e =
(E, e, er) is pointed, write [K, L; e]f for [K, L, eτ \ L; e]f. If a: e—>α
is a jB-bundle map, let af [K, L, h; e]f —» [K, L, a ° h; a]f be the
function where a% [g] = [α: <> #], where [̂ ] is the fiber-homotopy rel L
class of any lifting g oί f rel A. If r: (J5Γ', I/) —* (K, L) is a map of
C. W. pairs, let r*: [iΓ, L, A; e]/ —> [if', L, h o r; e]for be the function
where r*[(7] = [g ° r]. We omit the proof (based in part on the
PCHEP of e) of the following lemma:

LEMMA 2.1. // r: (ϋΓ', L') —> (K, L) is a homotopy equivalence of
pairs, then r*: [K, L, h; e]f = [if', I/, ^ r ; β]/ o r.

Let e = (J57, e) be a jB-bundle. If each fiber of e is connected,
we say that e is connected. Similarly, if each fiber of e is n-
connected, or ^-simple, for some integer n > 1, we say that e is n-
connected, or ^-simple. If e is ^-simple, define πne to be the local
system of Abelian groups over B such that, for every be B, (πne)b =
πn(e~ιb). We call πne the nth homotopy group system of e. Similarly,
if e is pointed, we can define πne whether e is 7 -̂simple or not, since
every fiber has a base-point. Note that e is ^-connected if and only
if e is connected and πke = 0 for all k < n. If a: e —> a is any B-
bundle map, where e and a are both ^-simple or both pointed (and
a is pointed) or e is pointed and a is ^-simple, a induces a homo-
morphism a%\ πne —> τr%α in the obvious way.

Let a: e —•> α be any J3-bundle map, where e = (ϋ7, β) and α =
(A, α, α') We define the fiber of α to be the β-bundle c = (C, c)
where C is the space of all ordered pairs (x, σ) such that xeE and
σ is a path in A such that σ(0) e a'{B), σ(l) = ax, and (α o (y)ί = ^
for all t e I; and where c(x, σ) = ex for all (x, σ) e C. If e = (E, e, er)
is pointed, then c'b = (e'b, σ) gives a pointing of c, where σt = α'δ
for all ί e J. The reader will note that for any be B, c~λb is precisely
the fiber of a: e~ιb —> a-16. The following sequence is thus exact, if
a: e —> α is pointed:

• > πn(Ωe) > πn(Ωa) • πnc > πne > πna

where i(x, σ) = σ(ΐ) for all (x, σ) e C, and j(τ) = (c'b, τ) for all τ e ΩBA,
where b = (a, τ) (1).
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Now if a: e —> a is a J3-bundle map, we say that α is ^-connected
for any n > 0 if, for all be B and 7/e α"1^, the space

{(x, σ) e e-ιbx{a"ιbY: σ(0) = 3/, <τ(l) - ra}

is ^-connected. If a is a connected pointed I?-bundle, a is connected
if and only if the fiber of a is ^-connected.

Suppose now that a: e —> a is a S-bundle map. Consider

αs: [if, L, /&; e)f > [K, L, a ° h; a]f .

LEMMA 2.2. Suppose a is n-connected for some n > 0. TΛew:
( i) a% is onto if dim (K/L) < w. (ii) α:# is one-to-one if dim(K/L) <
w - 1.

Proof. The connectivity of a equals the connectivity of the fiber
of α: E—+A, considered as a map of spaces. Simple application of
ordinary obstruction theory enables us to complete the proof in a
routine manner; we omit the details.

Suppose now that g0, g^ K-+ E are both liftings of / rel h.

LEMMA 2.3. If a is n-connected for some n > 1, then g0 and gι

are homotopic rel h if and only if a ° g0 and a © gx are homotopic,
rel L; provided dim (K/L) < n — 1.

Proof. We have a bi-pointed if-bundle map f~ι a: f~ι e —• f~ι α,
where /- 1 e = ( / - ^ /^β, /-^ 0, / - ^ and

and Pf~ιa; Pf~γe-^Pf~~ιa is (n — l)-connected. A section of Pf~~ιe is
equivalent to a fiber homotopy, rel L, of #0 with &, while a section
of P/" 1 a is equivalent to a fiber homotopy, rel L, of α ° #0 with a © ^1#

Apply Lemma 2.2, and we are done.

3. ΰ-Spectra* Suppose e = (E, e, ef) is a pointed β-bundle. We
define an operation " + " on [K, L, Ωe]f as follows: for any two lift-
ings of / rel e' \ L, g and gr, let g + gr: K-+ ΩBE be the map where
((9 + gr)x)t = (gx)(2t) if 0 ̂  ί ^ 1/2, 0'(α?)(2ί-l) if 1/2 ̂  t ^ 1, for all
xe K. Then g + g' is also a lifting of / rel e' \ L. We define
[9] + [#Ί = [̂  + ̂ ] r; it is trivial to verify that the operation is well-
defined.

THEOREM 3.1. [K, L; Ωe\f is a group under the operation " + "
with identity [e'\.
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Proof. Let [g]'1 = [g~ι] for any lifting g of / rel e' | L, where

(g~ιx)t — (gx)(l — t) for all xeK and all te I; it is routine to check

t h a t the group axioms are satisfied.

THEOREM 3.2. [K, L; Ω2e]f is an Abelian group.

Proof. We omit the details; if g and gf are both liftings of /
rel e' \ L, a fiber homotopy rel L of g + gf with g' + g can easily be
constructed in the same manner as the proof that [X; Ω2Y] is Abelian
for pointed spaces X and Y, but the construction is done fiberwise
over B.

DEFINITION 3.1. A 5-spectrum is an ordered pair

for some integer m such that:

( i ) For each i ^ m, ^ is a pointed 5-bundle.

(ii) For each ΐ Ξ> m, ε^ β̂  —>ei+1 is a pointed ^-bundle map.

Furthermore, we say that if is a ίS^-spectrum if ε* is a homotopy
equivalence (in the category J%%*) for each i, and we say that ε is
a weak /^-spectrum if ε̂  is infinitely connected for all i ^> m. We
say that ε is stabilizing if, for each integer n, there exists an integer
N^m such that e* is (π + ΐ)-connected for all i }> N. The ^ are
called the elements of the spectrum, the ε̂  are called the connection
maps, and m is called the starting value. If the first finitely many
elements of a spectrum are altered, no change occurs in cohomology
with coefficients in that spectrum; in that sense, the starting value
is arbitrary. We define the homotopy of a spectrum 7rw(ίf) for any
integer n, to be the direct limit L i m ^ πn+iei9 under the system of
homomorphisms

(ε) i #: πn+iβi > πn+iΩei+ί = πn+i+ιei+ι

thus τrn(ζf) is a local system of Abelian groups on B. Note that πn(%?)
need not be zero for negative values of n.

Henceforth, we shall assume that if = ({ej^m, {εJ^J is a B-
spectrum.

DEFINITION 3.2. For any integer n, let Hn(K, L, / ; g7) be the
direct limit of the system of groups {[K, L; Ωi~nei\f) and homo-
morphisms {(β*-^),}. (If L is empty, we write Hn(K, f ϊf).) For
any i ^ min (n, m), let

[if, L; We*], > Hn(K, L, f; &)



760 LAWRENCE L. LARMORE

be called the representation. If g7 is stabilizing, the direct limit is
achieved eventually, i.e., beyond some point, all representations are
bijective; if gf is a weak ί^-spectrum, the direct limit is achieved
immediately, i.e., all representations are bijective. We call
H*(K, L, f; gf) the cohomology of the triple (K, L, f) with coefficients
in the spectrum gf. If (K\ U) is another C. W. pair, and

r: (K'f U) > (K, L)

is a map, an induced homomorphism

r*: H*(K, L, f; gf) > H*(K', L', f o r; gf)

can be defined in the obvious way.
Henceforth, let (K", L") be the pair (K x {l}{jLxI, Lx{0}), and

let p; (K", L") —> (K, L) be projection onto the first factor. The
reader can easily verify that p is a relative homotopy equivalence,
and hence by the direct limit version of Lemma 2.1,

p*: H*(K, L, f; if) > H*(K", L", f o p; gf)

is an isomorphism.
For any integer n, we define a connecting homomorphism

δ: Hn(L, f; &) > H^\K, L, /; &)

as follows. For any ae Hn(L, f; g7), pick i ^ m and [g] e [L; Ωi~nei]f

representing α. Consider Ωί~nei = ί2£?i"~n~~1ei. Let p*δa be the image,
in the direct limit, of [G] e [K", Ln',Ωi~n~ιe%\f^ where G(x, t) = (gx)t
for all x e L and tel, and where G(x, 1) = a'{fx) for all x e K, where
σ! is the pointing of Ωi~n"ιei\ δa is well-defined since p* is an
isomorphisms.

The following remarks (analogous to some of the Eilenberg
Steenrod axioms for a cohomology theory [3]) we state without proof:

REMARK 3.3. The following long sequence is exact, where i and
j are inclusions:

> H^(Lf f; gf) -^-> Hn(K, L, f; ί?) - ^ Hn(K, /; gf)

-ϊ-> iϊ%(L, /; gf) - ^ H*+1(ίΓ, L, g7)

REMARK 3.5. If rt: (K\ U) -> (ίΓ, L), 0 £ t ^ 1, is a homotopy of
maps, where (K\ Lf) is another C. W. pair, such that f °rt = f o r0

for all £, then r* = r*.
Suppose now that ft: K-+B, 0 ^ ί ^ 1, is a homotopy such that

/o = / . Let î 7: if x I-+B be the map where F (x, t) = ftx for all
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(x, t)e K x I. Let i0, v (K, L) —> (K x I, L x I) be the inclusions
along 0 and 1, respectively. According to Lemma 2.1., (iy)# is an
isomorphism for j" = 0 or 1. Let

F* = (iλ o (ί0)-: # * ( # , L, / ; gf) > H*(K, L, f; gf) ,

clearly an isomorphism. Again without proof, we state:

REMARK 3.6. F$ depends only on the homotopy class of F,
relKx {0,1}.

REMARK 3.7. If G is a homotopy of f, with /2, then

G# o F, = (F+G),: ίί*(iΓ, L, / ; gf) > # * ( # , L, /,; gf)

where (F+G)(x, t) = F(x, 2t) if 0 ^ ί ^ 1/2; G(a, 2ί) if 1/2 ^ ί ^ 1,
for all x e K.

An immediate question one may ask is: if ft = /, is F$ the
identity? The answer is generally no.

4* The associated spectrum and the single obstruction* Let
e = (E, e) be a S-bundle and h: L-+ E a lifting of / | L. Let

be the S-spectrum where e{ — ̂ j ι Se for all i Ξ> 1, and ε̂ : ê  —• Ωei+1

is adjoint to the identity on ei+1 — Σ β* We call g7 the B-spectrum
associated to e. We shall write eλ — Se = (SBE, s, s', s").

Recall ( # " , L") = {K x {1} \J L x I, L{j {0}). We define Γ(f; h) e
Hι(K, L, / ; gf) (or simply /"(/) when L is empty, or when h is under-
stood), the single obstruction to lifting f rel h, to be (p*)'1 of the
representation of [H]e[K", L"; Se]fop, where H:K"->SBE is the
map such that H(x, t) = [hx, t] for all (x, t) e L x I, and H(x, 1) =
(e" o /).τ, the North pole of e~fx, for all xe K. We leave it to the
reader to verify that if ft: K-^B, for 0 ^ t ^ 1, is a homotopy, and
if ht: L—>E is a homotopy such that e o ht = ft \ L for all t, and if
F(x, t) = ftx for all (x, t) e K x J, then F$Γ(f0; h0) = AΛ; h,); i.e.,
/"(/; A) is a homotopy invariant.

THEOREM 4.2. If f has a lifting to E rel h, Γ(f; h) = 0.

Proof. Let g: K-+E be such a lifting. Let Hu: K" -+SBE, for
0 ^ % ̂  1, be the rel L" lifting of / o p where Hu(x, t) = [gx, tu] for
all 0 ^ t, u ^ 1. Then ϋ^ = H, while Ho — s' °/ ° p, and we are done.

THEOREM 4.3. // e is (n — l)-connected for some n^l, and if
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dim (K/L) ^ 2n — 1, then f has a lifting to E rel h if and only if
Γ(f; h) - 0.

Proof. "Only if" is the previous theorem. Suppose then that
Γ(f; h) = 0. Without loss of generality, we may assume that L has
empty interior, whence dim K" ^2n — 1. By a Serre spectral sequence
argument, (0*"%): Ωi~^ιei-^Ωiei^γ is (2n + ί — reconnected for all i ^ 1,
whence, by Lemma 2.2, the representation

[K", L"; ei]fop > H\K", L", fop Z?)

is one-to-one and onto. Thus [H] = [s' °/° p]. Let Ht: K" -+SBE be
a ίiber-homotopy rel L" such that Hλ = H and Ho = s' o f o p; define
G: K" — P 5 S B JE; to be the map where (Gy)u = Huy for all y e K".
Let ΐ: e—>PSe be adjoint to the identity on Se = elβ Again, by a
Serre spectral sequence argument, i is (2π —2)-connected. Since
[JK7', I/", io fc PSβ]/oί) is nonempty, [if, L, A; e]/ is nonempty by
Lemmas 2.1 and 2.2, and we are done.

Suppose now that f^g^K—^E are liftings of / rel h. We
define Λ(gQ, gλ; h) e H°(K, L, f; if), the single obstruction to fiber
homotopy, rel L, of g0 with glt to be (p*)"1 of the representation in
H\Kf\ L",foP; %>) of [G] G [if", L"; flSe]/βP, where for all (x, t) K"
and all 0 ^ u ^ 1:

'[g.x, 2u] if t = 0 and 0 ^ w ̂  1/2

[gox, 2-2u] if ί = 0 and 1/2 ^ % ̂  1
(.τ, t)u = •<

[te, 2^(1-ί)] if xe L and 0 ^ % ̂  1/2

w?, (2-2u)(l-)] if a e L and 1/2 £ u ^ 1 .

We leave it to the reader to check that J(g0, g^ h) is a homotopy
invariant in the same sense that Γ(f; h) is.

Hence forth, we shall write ΩSe = (ΩBSBE, c, c').

THEOREM 4.4. If g0 and gγ are fiber-homotopic rel h, then

Λ(g0, 9i'f h) = 0 .

Proof. Let ^4 be a fiber homotopy rel L. Let Gv: K"-+ ΩBSBE,
0 ^ v ^ 1, be the rel L" fiber homotopy, where for all 0 <; u, v ^ 1:

[fc_ltτ, 2M] if ί = 1, 0 ^ % ̂  1/2, and 1/2 ^ v £ 1 .

a;, 2 - 2 M ] if t = 1, 1/2 ^ 6̂ ̂  1, and 1/2 ^ ^ ^ 1 .

^ 7 N [to, 2^(1-0] if x e L, 0 ^ u ^ 1/2, and 1/2 ^ v ^ 1 .
Gv(x, t)u = -̂

[te (2-2^)(l-ί)] if a; e L, 1/2 ̂  ^ ̂  1, and 1/2 ̂  v ̂  1 .

[gox, 4uv(l-t)] if 0 ̂  u ^ 1/2 and 0 ̂  v ^ 1/2 .

α;, 4 ( l - φ ( l - ί ) ] if 1/2 ̂  % ̂  1 and 0 ̂  v ^ 1/2 .
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Note that G, = G and G0 = c Ό / o p , and we are done.

THEOREM 4.5. If e is (n — ΐ)-connected for some n > 1, and if
dim (K/L) ^ 2n — 2, then g0 and gx are fiber homotopic if and only if

, Qi\ h) = 0.

Proof. "Only if" is the previous theorem. Suppose, then, that
, gΰ h) = 0. Then G is fiber homotopic, rel L", to c', since by

Lemma 2.2, [K", L"\ ΩSe]fop -> H\K", L", f o p; gf) is onto. A routine
argument using Lemma 2.1 then shows that iog0 is fiber homotopic,
rel i © h, to i o g19 where i: e —• PSe is adjoint to the identity on Se.
Our result follows immediately from Lemma 2.3.

THEOREM 4.6. If g is any lifting of f rel h, and if
de H°(K, L, f; If), then there exists some lifting gr of f rel h, such
that A(g, g'; h) — d, provided e is (n — l)-connected for some % > 1 and
dim (K/L) ^2n - 1.

Proof. The representation [K, L; ΩSe]f -> H°(K, L, / ; if) is onto
by Lemma 2.2; pick a lifting, H, of / rel c° o /1 L which represents
d. Let s be the lifting of / to PBSBE:

[(Hx)(2t) if 0 ^ ί ^ 1/2

l((ΐ ° flr)»)(2ί-l) if 1/2 ^ ί ^ 1

where i: e —> P*Sβ is adjoint to the identity map of Se. Now by the
PC HEP of PSe, s is fiber homotopic to a lifting s' where s\L' = i°h.
Now v [IT, L, h; e]f —> [if, L, i o h; PSe]f is onto by Lemma 2.2. Choose
#' to be any rel h lifting of / such that i$[gf] — [sf]. We leave it to
the reader to verify that Δ{g, gr\ h) = d.

The proof of the next theorem we omit; it is a routine homotopy
argument of the type the reader should by now be familiar with.

THEOREM 4.7. If g0, glf and g2 are liftings of f rel h, then

Q, #2; h) = J(g0, gL; h) + A{gu g2; h) .

COROLLARY 4.8. (Becker) If e is (n — l)-connected for some n^l,
and if dim(K/L) ^ 2n — 2, then [K, L, h; e]f has the structure of an
affine group, and, if nonempty, is isomorphic to H°(K, L, f; gf).

Proof. See Becker [1] for the definition of an affine group. Pick
any [g0] e [K, L, h; e]f. Let c: [K, L, h; e]f -> H°(K, L, f; gf) be given
by t[g] = A(g0, g; h). This function is well-defined, one-to-one, and
onto, and induces an affine group structure on [K, L, h; e]f which is



764 LAWRENCE L. LARMORE

independent of the choice of gQ, by Theorems 4.4, 4.5, 4.6, and 4.7.
We leave the details to the reader.

5* i?-sρectrum maps and a spectral sequence for H*(K, L, f; c£).
Let g" = ({ejί>m, {εj) and S^f — ({αjί>%, {αj) be J5-spectra. We define a
B-spectrum map /\ g" —• Szf of degree d to be an indexed collection
{fi}i>p of pointed 5-bundle maps, where p > max (m, n — d), such that
for any i> p, /*: e;—>αί+d and the following diagram is commutative:

-> e,4

fi+l

We can define A : # * ( # , L, / ; gf) -> Hk+d(K, L, f; sf) for any integer
k to be the direct limit of the (/*)$; similarly we can define

/f:
for any integer k.

Let ^ = ({di}i>p, {δi}) be the yϊ&er of / , defined as follows. For
any i > p, d{ = (D{, dif d[) where

A = {(x, σ)eEix AUd\ σ(0) = {a'i+d oβi)x,

= fax, & ai+d(σt) = βiX for all t e 1} ,

di(x, σ) = βiX for all (x, σ) e Ώ{ and d\b = (e 6, <δ» for all be B, where
(byt = a'i+db for all t e I. Let <̂ : cf —> Ωdi+1 be defined as follows:
For any (x, σ) e D{ and any tel, (di(x, σ))t = ((e^t, τ), where τu —
(ai+d(σu))t for all ue I. Consider the sequence of β-spectra and B-
spectrum maps (called the fibration sequence of /')\

(5-1) S$? > ̂  —> g7 > SX?

where y = {gi}^p has degree 0 and A, = {AJ^p+d-i has degree — d + 1;
defined as follows: For any (x, σ) e Diy h^x, σ) = x; and for any
ye Aiy g{y — ((βi_d+1 ° a{)y, a^). The sequence (5-1) is analogous to the
fibration sequence for any map of pointed spaces (where F is the
fiber of / ) :

Y >F >X - ^ Y .

As in that case, we may, in a straightforward manner, verify the
exactness of the long sequences:
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^ π{^f) ^U π(&) — πk_

>Hk+d~\K, L, f; JV) — Hk(K, L, /; &) — Hk(K, L, f;

- ^ Hk+d(K, L,f;

We say that /\ c£ -+Stf is Zc-connected if Sf is ^-connected,
and we say that / is Λ-coconnected if & is fc-coconnected, i.e.,
ττ r(^) = 0 for all r ^ k.

Henceforth in this section, let ^ = ({ej^m, {εj) be a 5-spectrum.
We define a resolution of g7 to be a commutative diagram of S-spectra,
where each map has degree 0:

such that for any integer r, there exists an integer N such that /*h

is r-connected for all k ^ N, and an integer M such that g^ is r-
coconnected for all k ^ M. We are thus assured that H*(K, L, f: g7)
is isomorphic to the inverse limit Lim*.^ H(K, L, f; c£k) under the
homomorphisms (^)#. An important special case of a resolution of
έf is a Postnikov resolution: that is where (/•*)$: πvίg7)—*7rr(g

7

A.) is
an isomorphism for all r ^ fe, and where each g^ is (A; + l)-coconnected.
In § 6, we shall show that every jB-spectrum has a Postnikov resolu-
tion.

Using a resolution of g7, (5-2), we construct a spectral sequence
for H*(K, L, f; gf). For any integer r, we have a filtration of
#'(*:, L, /; gf):

0 c c Gr+g'9 c G^9"1'9"1 c Hr{K, L, f; &)

where Gp>q is the kernel of

(A)>: H^(K, L, f; &) > H*-<(K, L, f: <έ\) .

(The conditions that /^ is highlj^ connected for large k and g\ is
highly coconnected for small k insures that the filtration has only
finitely many distinct terms.) For any k, consider the fibration
sequence of ?k\
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& k—i

Recall that -^ and ?k have degree 0, and »fc has degree 1. For any
integers p and g, define Etq = Hp~q(K9 L, f; STq) and

Let ( Λ ) f = i2: Dr-+Di-ltq-\ (*ff+i)# - W Dr-+Er*«+\ and

(-,), = k2:Er = •DJ^.

Using general spectral sequence arguments, we can verify that

<Z r : j ^ 2

p ' f f > Ep+r,q+r-i f o r a l l r ^ 2 ,

and that #<£•* = Gp~^q"ιIGPtq for all p and g.
In the special case that (5-2) is a Postnikov resolution, we can

construct an Eι term of the spectral sequence as follows. Let Kr be
the r-skeleton of K, for any r: Kr = 0 if r < 0. For any p and q9

let Dr = IΓ^^ίΓ' U I/, / ; g7) and ̂ ^ = CP(K, L, f~%(&)), the group
of cochains with coefficients in the local system f~ιτίq{

c^) over K. Let
\\ Dp>q —> Df-1^-1 and ^ : J^^5 —> Df»9 be the homomorphisms induced
by the appropriate inclusions, and let j \ : Dp>q —>E?+ltq be the connect-
ing homomorphism of the pair (Kp+1 (j L, Kp U i ) . The differential
dx: C'ίJE', L; f-1πq(&))-+C*+1(K, L; f~ιπq{^)) is then the usual co-
boundary on cochains with local coefficients, hence

Er = Hp(K, L; /-%(&)) .

We leave the rather routine verification that the above Eu Di9 iu j \ ,
and kγ yield the correct E2, D2, etc., to the reader. (Hint: If g" is
fc-connected, HP{K, L, / ; g3) = 0 for all p ^ n — A, where w =

We now explore the relation between the single obstruction and
the classical obstructions. Let us suppose that e = (E, e) is a k-
connected β-bundle, for some k >̂ 1, and that diagram (5-2) is a
Postnikov system for g7 = g7(e). For any integer r, let ^r: ττre —• ^ (
be the composition

πrβ > πrPSe ~ πrΩSe ~ πr+ιeι >

an isomorphism if r <s 2A. Now suppose that /1 Km Π L has a rel h
lifting, gm, for some integer m. Then

i*Γ(/, h) = Γ(f \K™{jL;h) = 0

by Theorem 4.2. Consider the commutative diagram of groups and
homomorphisms:
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ΓL \Ά9 JU, J, ^/ιm) > Jti ( i l , JUy j , & m) > ±1 \J\., ±j9 J, e> )

/

H^\K, L, /-1ττm(^)) H^K, L, f; gf..,)

Since <gm-ι is m-coconnected,

%*: H\K, L, f; gf._0 > H\K* U L, L, f; gf._0

is an isomorphism. Thus {/-m-d%Γ{f; h) = 0. Since J%Γm is the fiber
of ?m, {/'m)tΓ{f\h)£{«m\Hι{K,L,jyίQ. The classical obstruction to
extending gm over Km+1 U L, Ί{gm) e Hk+1(K, L; f~ιπme) up to some
indeterminacy. It is a routine matter of checking definitions to verify
that (O t(0*7(ίΓ) = O.),Γ(/; h).

6* Construction of the Postnikov resolution of if* For every
integer, w, we define a functor Kn: ^ * —> <^S* as follows. If n < 0,
let Kn be the identity. Otherwise, if e = (E, e, e') is a pointed B-
bundle, let Bn+1 be a (topological) (n + l)-ball with boundary Sn and
basepoint * e S%. Let J57i% be the space of all continuous maps
h: Sn-+E such that h(*) e e'(B) and e o h \s constant. Let e: E§n-+E
be the evaluation map, and let {Kn)BE = E \J t(E§* x Bn+1). We
define Kne to be the pointed J5-bundle ((Kn)BE> k, A;'), where &' = e',
k\E = e, and jfc(λ, 6) = (β o Λ) (*) for all (Λ, 6) e ( £ T x Bn+1). If α:
e —> α is any pointed B-bundle map, we define iΓTOα:: Kne —> Kna in
the obvious way: Kna \ = α, and (Kna)(h, b) = (a o h, b) for all
(fe, 6) G -K|n x B n + 1 . A very simple homotopy argument shows:

REMARK 6.1. ( i ) For all k < n, %: πke—>πk(Kke) is an iso-
morphism, where i: e —> Kne is the inclusion. (ii) πn(Kne) = 0.

We define functors Kr

n\ <%fB* —• ^ 5 * for all integers n ^ r, induc-
tively, as follows: K; = Kn, and K:+ι = Kr+1Kζ for all n <: r. It is
very simple to see that the "union" \J?=nKζ, is also a functor, which
we call K~: £?B* -* £fB*. We call Kn, Kζ, and K? homotopy-killing
functors. The following remark is an immediate Corollary of 6.1:
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REMARK 6.2. ( i ) if πke —> πk(KΓe) is an isomorphism for all
k < n, where i: e —> ifwe is the inclusion. (ii) πk(Kne) = 0 for all
k ^ n.

Thus ifΓ is the analogue of the (n — l ) t b stage in the Postnikov
tower of a space. In order to pass to spectra, we must examine the
relationship between the homotopy-killing functors and the looping
functor. We define a pointed j?-bundle map Tn: KnΩe —• ΩKn+1e for
all integers n as follows: If n ^ — 2, Tw is the identity. If n = — 1,
Γn = ί2i: £e —> fli^e, where i: e —> iΓoβ is the inclusion. Otherwise, let
ΓΛ: β £ # U β (( f l^) s w x Bn+1)->ΩB(E U ε(Ef+1 x £ n + 1 )) be the identity
on ΩBE, and for any (h, b) e (ΩBE)s

B

n x Bn+1, and any tel, let
(Γn(λ, 6))ί = (h, [b, t]). Note: Bn+2 = X 5^+ 1 and (ΩBE)s

B

n = Ef+\
We leave it to the reader to verify that (Γn)#: πk(KnΩe) —> πk(ΩKn+ιe)
is an isomorphism for all k ^ n.

Similarly, we define Tr

n\ Kr

nΩe —•> i^ ί ίe inductively for all n ^ r
as follows: T£ = ΓΛ, and TV1 = Tr+1 o {Kr+ιT

r

n) for all r ^ w. In an
obvious way we can then define Tn: K™Ωe —• ΩK™+ίe. We leave the
proof of the following to the reader:

REMARK 6.3. The 5-bundle map Tn: K~Ωe —> ΩK~+1e is a weak

homotopy equivalence.

We are now ready to define the Postnikov resolution of Z?-spectrum

^ = (Wt^w, {s<}). For each integer w, let

Let/'Λ: gf —> ifTO = {#»}<;*„, where p^: e< —» if%+ί+1ei is the inclusion, and
let ?n: i?w—> g"%_! = {g }̂̂ ™, where #Λfi = K?+i+1j: KZA+^I —> Kn-i+iβi,
where j : e{ —• Kn+iei is the inclusion. The resolution of if described
above (see diagram (5-2)) is a Postnikov resolution, by Remarks 6.2
and 6.3.

I wish to thank the referee for many helpful suggestions.
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