Vol. 42, No. 1, 1972

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Strong heredity in radical classes

Richard Tangeman

Vol. 42 (1972), No. 1, 259–265
Abstract

In a recent paper, W. G. Leavitt has called a radical class 𝒫 in a universal class 𝒲 of not necessarily associative rings strongly hereditary if 𝒫(I) = I ∩𝒫(R) for all ideals I of any ring R ∈𝒲. In this paper, strongly hereditary radicals are investigated and a new construction is provided for the minimal strongly hereditary radical containing a given class in 𝒲. Nonassociative versions of some results of E. P. Armendariz on semisimple classes are proved, including a characterization of semisimple classes corresponding to strongly hereditary radicals.

Mathematical Subject Classification 2000
Primary: 17A99
Secondary: 08A25
Milestones
Received: 12 April 1971
Published: 1 July 1972
Authors
Richard Tangeman