INTERPOLATION SETS FOR ANALYTIC FUNCTIONS

A. M. Davie and A. Stray

Let \(U \) be a bounded open subset of the complex plane \(\mathbb{C} \).
Criteria are obtained for a subset \(E \) of \(\overline{U} \) to be an interpolation set for the algebra of all bounded analytic functions on \(U \) extending continuously to \(E \).

In the case where \(U \) is the open unit disc \(\Delta \), this problem was treated by Detraz [3]. She showed that if \(E \) is a subset of the unit circle \(T \) then every bounded continuous function on \(E \) is the restriction of a bounded analytic function on \(\Delta \), extending continuously to \(E \cup (T \cup \mathbb{E}) \), if and only if \(E \) has measure zero. We extend this result to any \(U \) with connected complement, replacing linear measure on \(T \) by harmonic measure (Theorem 1). For the general case the same method yields a criterion in terms of representing measures for \(A(U) \) (Theorem 2). Finally in Theorem 3 we use a localization argument to sharpen Theorem 1 and also treat the case where \(E \) contains points of \(U \) as well as \(\partial U \).

NOTATION. If \(S \) is a plane set then \(\overline{S} \) denotes its closure and \(\partial S \) its boundary. \(A(U) \) denotes the algebra of all continuous functions on \(\overline{U} \), analytic on \(U \); \(H^\infty(U) \) denotes the algebra of all bounded analytic functions on \(U \); \(H^\infty_E(U) \) denotes the algebra of all bounded continuous functions on \(U \cup E \) which are analytic on \(U \). If \(y \in \overline{U} \), a representing measure for \(y \) with respect to \(A(U) \) is a positive borel measure \(\mu \) on \(\overline{U} \) such that \(f(y) = \int f \, d\mu \) for all \(f \in A(U) \). We denote by \(\|f\| \) the supremum of the function \(f \) over its domain of definition. \(\Delta(z, \delta) \) denotes the disc with center \(z \) and radius \(\delta \).

We say that a set \(S \subseteq U \cup E \) is an interpolation set for \(H^\infty_E(U) \) if for any bounded continuous \(f \) on \(S \) we can find \(g \in H^\infty_E(U) \) with \(g|S = f \). We say \(S \) is a peak interpolation set for \(H^\infty_E(U) \) if for any bounded continuous \(f \) on \(S \), and open set \(V \supseteq S \), and any \(\varepsilon > 0 \), we can find \(g \in H^\infty_E(U) \) with \(g|S = f \), \(\|g\| \leq \|f\| \), and \(|g| < \varepsilon \) on \(U \setminus V \).

Theorem 1. Suppose \(C \setminus U \) is connected. Let \(F \) be a subset of \(\partial U \) with zero harmonic measure for each point of \(U \) (with respect to \(U \)). Then \(F \) is a peak interpolation set for \(H^\infty_E(U) \).

The proof follows from the following lemma.

Lemma. With \(U \) and \(F \) as in the theorem, let \(X \) be a compact
subset of \bar{U}, W a neighborhood of X, and $\varepsilon > 0$. Then we can find $f \in H^\omega$ with $\|f\| \leq 2, |1 - f| < \varepsilon$ on $F \cap X$, and $|f| < \varepsilon$ on $U \setminus W$.

Proof. We can find a positive harmonic function σ on U such that $\sigma(\zeta) \to \infty$ as $\zeta \to z, \zeta \in U$, for each $z \in F$. Let τ be a harmonic conjugate to σ on U, and let $\theta = \sigma + i\tau$, an analytic function on U. Put $h = \theta/(\theta + 1)$. Since θ has positive real part, $h \in H^\omega(U)$ with $\|h\| \leq 1$. Moreover $h(\zeta) \to 1$ as $\zeta \to z, \zeta \in U$, for each $z \in F$; hence we can regard h as an element of $H^\omega_F(U)$, with $h = 1$ on F.

Now let φ be a continuously differentiable function which is 1 on a neighborhood of X and zero outside W, with $\|\varphi\| = 1$. Then the function

$$g_n(\zeta) = \varphi(\zeta) h^\omega(\zeta) + \frac{1}{\pi} \int_{\partial U} \frac{h^\omega(z)}{z - \zeta} \frac{\partial \varphi}{\partial z} dm(z)$$

is in $H^\omega_F(U)$. (See [4], p. 210.) Moreover

$$\|g_n - \varphi h^\omega\| \leq \frac{1}{\pi} \left\| \frac{\partial \varphi}{\partial z} \right\| \|h^\omega\|_{L^2(U)} \sup_{\zeta} \left| \frac{1}{\pi} \frac{1}{|z - \zeta|^{1/2}} \right|.$$

The last term is bounded by a constant depending only on U, and $\|h^\omega\|_{L^2} \to 0$ as $n \to \infty$ since $|h| < 1$ in U. Choose n so that $\|g_n - \varphi h^\omega\| < \varepsilon$ and put $f = g_n$. Then f satisfies the requirements of the lemma.

Theorem 1 follows from the lemma in exactly the same way as Theorem 1 follows from Lemma 2 in [2]. (For an alternative approach see the proof of Theorem 4.3 of [3]).

We observe that if $A(U)$ is pointwise boundedly dense in $H^\omega(U)$ then using Theorem 2.1 of [5] we can modify the function f in the lemma so that it is in $H^\omega_F(U)$. Then we can prove that F is a peak interpolation set for $H^\omega_F(U)$. In the general situation (where $C \setminus U$ need not be connected) the same method yields the following result. If $y \in U$ we denote by M_y the set of all (positive) representing measures for y with respect to $A(U)$ on \bar{U}. We assume U is connected.

Theorem 2. Let $y \in U$ and $F \subseteq \partial U$. Suppose there is a decreasing sequence $\{V_n\}$ of open sets containing F, such that $\mu(V_n) \to 0$ uniformly for $\mu \in M_y$.

Then F is a peak interpolation set for $H^\omega(U)$.

Proof. We may suppose $\mu(V_n) < 2^{-n}$ for each $\mu \in M_y$. For each n let $\{g_{n,k}\}$ be an increasing sequence of nonnegative continuous functions converging to the characteristic function of V_n. Then $\int g_{n,k} d\mu < 2^{-n}$.
for \(\mu \in M_y \) and so by Theorem II 2.1 of [4], we can find \(h_{nk} \in A(U) \) with \(\text{Re}\ h_{nk} \geq g_{nk} \) on \(\bar{U} \), \(\text{Re}\ h_{nk}(y) < 2^{-n} \), and we can also suppose \(\text{Im}\ h_{nk}(y) = 0 \). Passing to a subsequence we have \(h_{nk} \rightharpoonup h_* \) as \(k \to \infty \), pointwise in \(U \), where \(h_* \) is analytic in \(U \) with \(\text{Re}\ h_* \geq 1 \) on \(V_n \cap U \) and \(|h_n(y)| \leq 2^{-n} \), \(\text{Re}\ h_n \geq 0 \) on \(U \), \(\text{Im}\ h_n = 0 \). By Harnack's inequalities the series \(\sum_{n=1}^{\infty} h_n \) converges pointwise on \(U \) to an analytic function \(h \) such that \(\text{Re}\ h \geq 0 \) on \(U \) and \(\text{Re}\ h(\zeta) \to \infty \) as \(\zeta \to z, \zeta \in U \), for each \(\zeta \in F \).

The rest of the proof follows Theorem 1.

Again we observe that if \(A(U) \) is pointwise boundedly dense in \(H^\alpha(U) \) then the interpolation can be achieved by functions in \(H^\alpha_{F \setminus \{0\}}(U) \). Moreover under the same assumption the converse to Theorem 2 holds, for if \(f \) is as in the definition of peak interpolation set, with \(V \) chosen so that \(y \not\in V \), and \(g = 1 \), then we can choose a neighborhood \(W \) of \(F \) so that \(|1 - f| < \epsilon \) on \(U \cap W \); by Theorem 5.1 of [1] we can approximate \(f \) to within \(\epsilon \) on compact subsets of \(W \) by a sequence \(\{f_n\} \) in \(A(U) \) with \(\|f_n\| \leq 1 \), so that \(\mu(W) \) is small for all \(\mu \in M_y \).

The question naturally arises: suppose \(\mu(F) = 0 \) for all \(\mu \in M_y \). Must there exist open sets \(V_n \supseteq F \) such that \(\mu(V_n) \to 0 \) uniformly for \(\mu \in M_y \)? This is easily verified if \(F \) is \(\sigma \)-compact (in this case the conclusion of Theorem 2 can be deduced from the fact that each compact subset of \(F \) is a peak interpolation set for \(A(U) \)). We have no information of the general case.

Lemma 2. Let \(F \) be a subset of \(\partial U \) such that for each \(z \in F \) there exists \(\delta > 0 \) such that \(F_z = F \cap \{w: |w - z| \leq \delta/2\} \) is a peak interpolation set for \(H^\alpha_{F \setminus \Delta(z, \delta)}(U \cap \Delta(z, \delta)) \), then \(F \) is a peak interpolation set for \(H^\alpha(U) \).

Proof. First we show that \(F_z \) is a peak interpolation set for \(H^\alpha_F(U) \). Let \(g \) be a bounded continuous function on \(F_z \), let \(\epsilon > 0 \), and let \(V \) be an open neighborhood of \(F_z \). Choose \(f \in H^\alpha_{F \setminus \Delta(z, \delta)}(U \cap \Delta(z, \delta)) \) such that \(f = g \) on \(F_z \), \(\|f\| = \|g\| \), and \(|f| < \epsilon \) outside \(V \cap \{w: |w - z| < 3\delta/4\} \).

Choose a continuously differentiable function \(\varphi \) such that \(\varphi = 1 \) in a neighborhood of \(\{w: |w - z| \leq 3\delta/4\} \) and \(\text{supp}\ \varphi \subseteq \{w: |w - z| < \delta\} \). Define

\[
 f_\varphi(w) = f(w)\varphi(w) + \frac{1}{\pi} \int_{U \cap \Delta(z, \delta)} \frac{f(f)}{\zeta - w} \frac{f(\zeta)}{\zeta - w} dm(\zeta)
\]
where $f(w)$ is defined to be zero outside $(F \cup U) \cap \Delta(z, \delta)$. Then $f_i \in H^\infty_{\Delta S}(U)$ and given $t > 0$ we can choose $\varepsilon > 0$ so that $\|f_i - f\| < t$. Moreover $\|f_i\| \leq A\|f\|$, where A is an absolute constant. (See [4], p. 210.) Then we have $|f_i - f| < \varepsilon$ on F_i and $|f_i| < \varepsilon$ on $U \setminus V$. It now follows by a standard argument (see e.g. [2], Theorem 1), that F_i is a peak interpolation set for $H^\infty_{\Delta S}(U)$.

Now let V be an open set containing F. Shrinking V if necessary we may suppose that V is contained in the union of the discs $\Delta(z, \delta)$, $z \in F$, constructed above. This implies that for any compact set $K \subseteq V$, we have $K \cap F \subseteq \bigcup_{i=1}^n F_i$, for some $z_i, \ldots, z_n \in F$, which easily implies that $K \cap F$ is a peak interpolation set for $H^\infty_{\Delta S}(U)$. The lemma now follows by the argument used to deduce Theorem 1 from Lemma 3 in [2].

We say that U is locally simple connected at a point $z \in \partial U$ if there exists $\delta > 0$ such that $C \setminus (U \cap \Delta(z, \delta))$ is connected. For example, if the diameters of the components of $C \setminus U$ are bounded away from zero then U is locally simply connected at each point of ∂U. (Note that $U \cap \Delta(z, \delta)$ is not required to be connected; we only require that each component be simply connected.)

Theorem 3. Let S be a subset of \overline{U} such that U is locally simply connected at each point of $S \cap \partial U$. Then S is an interpolation set for $H^\infty_{\Delta S}(U)$ if and only if:

(i) $U \cap S$ is an interpolating sequence for $H^\infty(U)$,

(ii) $S \cap \partial U$ has zero harmonic measure for each point of U, with respect to U.

Proof. Assume first that S is an interpolation set for $H^\infty_{\Delta S}(U)$. A simple normal family argument shows that (i) holds.

Now let $y \in U$ and choose $f \in H^\infty_{\Delta S}(U)$ such that $\|f\| \leq 1$, $f = 0$ on $S \cap \partial U$, and $f(y) \neq 0$. Then $- \log |f|$ is a positive superharmonic function on U, tending to ∞ at each point of $S \cap \partial U$, and finite at y. Thus $S \cap \partial U$ has zero harmonic measure for y with respect to U which proves (ii).

Now assume (i) and (ii) hold, and let f be a bounded continuous function on S with $\|f\| \leq 1$. By Lemma 2 and Theorem 1, $\partial U \cap S$ is a peak interpolation set for $H^\infty_{\Delta S}(U)$ so we can find $h \in H^\infty_{\Delta S}(U)$ with $\|h\| \leq 1$ and $h = f$ on $\partial U \cap S$. Let $g_i = f - h$ on S, then $g_i = 0$ on $\partial U \cap S$ so that for any $\varepsilon > 0$ we can find $F \in H^\infty_{\Delta S}(U)$ so that $F = 0$ on $\partial U \cap S$, $|1 - F| < \varepsilon$ on $S \cap M$, $|F| \leq 2$. Then $|F_i - g_i| \leq 3\varepsilon$ on S. Choose $G \in H^\infty(U)$ so that $\|G\| \leq M |g_i| \leq 2M$ and $G = g_i$ on $S \cap M$, where M is the interpolation constant of $S \cap M$; then $FG \in H^\infty_{\Delta S}(U)$ and satisfies $|FG - g_i| \leq 3\varepsilon$ on S. Let $\tilde{f} = FG + h \in H^\infty_{\Delta S}(U)$, then $\|\tilde{f} - f\| \leq 3\varepsilon$ on S and $\|\tilde{f}\| \leq 4M + 1$, so the theorem.
follows by choosing ε with $3\varepsilon < 1$.

References

Received June 7, 1971. The preparation of this paper was supported in part by NSF Grant #GP-19067.

University of California, Los Angeles
and
University of Oslo, Oslo, Norway
Tage Bai Andersen, *On Banach space valued extensions from split faces* .. 1
David Marion Arnold, *A duality for quotient divisible abelian groups of finite rank* .. 11
Donald Pollard Ballou, *Shock sets for first order nonlinear hyperbolic equations* .. 17
Leon Brown and Lowell J. Hansen, *On the range sets of H^p functions* .. 27
Alexander Munro Davie and Arne Stray, *Interpolation sets for analytic functions* .. 33
M. G. Deshpande, *Structure of right subdirectly irreducible rings. II* ... 39
Barry J. Gardner, *Some closure properties for torsion classes of abelian groups* .. 45
Paul Daniel Hill, *Primary groups whose subgroups of smaller cardinality are direct sums of cyclic groups* 63
Richard Allan Holzsager, *When certain natural maps are equivalences* .. 69
Donald William Kahn, *A note on H-equivalences* .. 77
Joong Ho Kim, *R-automorphisms of $R[t][X]$* .. 81
Shin’ichi Kinoshita, *On elementary ideals of polyhedra in the 3-sphere* .. 89
Andrew T. Kitchen, *Watts cohomology and separability* ... 99
Vadim Komkov, *A technique for the detection of oscillation of second order ordinary differential equations* 105
Charles Philip Lanski and Susan Montgomery, *Lie structure of prime rings of characteristic 2* 117
Andrew Lenard, *Some remarks on large Toeplitz determinants* ... 137
Kathleen B. Levitz, *A characterization of general Z.P.L.-rings. II* .. 147
Donald A. Lutz, *On the reduction of rank of linear differential systems* .. 153
David G. Mead, *Determinantal ideals, identities, and the Wronskian* ... 165
Arunava Mukherjea, *A remark on Tonelli’s theorem on integration in product spaces* .. 177
Hyo Chul Myung, *A generalization of the prime radical in nonassociative rings* ... 187
John Piepenbrink, *Rellich densities and an application to unconditionally nonoscillatory elliptic equations* 195
Michael J. Powers, *Lefschetz fixed point theorems for a new class of multi-valued maps* .. 211
Aribindi Satyanarayan Rao, *On the absolute matrix summability of a Fourier series* ... 221
T. S. Ravisankar, *On Malcev algebras* .. 227
William Henry Ruckle, *Topologies on sequences spaces* .. 235
Robert C. Shock, *Polynomial rings over finite dimensional rings* .. 251
Richard Tangeman, *Strong heredity in radical classes* .. 259
B. R. Wenner, *Finite-dimensional properties of infinite-dimensional spaces* ... 267