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In an earlier paper (B. J. Gardner, Pacific J. Math., 33
(1970), 109-116) the torsion classes of abelian groups which
are closed under pure subgroups were characterized, and
§§ 3-6 of the present paper are devoted to generalizations of
results appearing there. If & is a homomorphically closed
class of objects in an abelian category, a subobject A of an
object B is called ^-pure if it is a direct summand of every
intermediate subobject X for which XIA e <g>. (This termi-
nology is due to C. P. Walker). In particular, ^ may be a
torsion class. The following question is investigated: If
and Ήf are torsion classes of abelian groups, when is
closed under ^f-pure subgroups? Although ordinary purity
is not ^/-purity for any torsion class %f, a torsion class ^7~~
is closed under pure subgroups if and only if it is closed
under ^Hrpure subgroups, where ^l is the class of all
torsion groups.

In §5, for an arbitrary torsion theory (*g/, ^ ) a rank
function (^/-rank) is defined for nonzero groups in ^ . It is
shown that every torsion class closed under ^/-pure subgroups
is determined by its intersection with ^ and the groups of
^/-rank 1 it contains. When ^ = ̂ , the groups with ^ -
rank 1 are the rational groups, so the earlier results for
ordinary purity suggest that in general some refinement of
the representation should he possible.

A further special case of the general problem is also
solved: Let X and Y be rational groups, T(X), T(Y) the
smallest torsion classes containing them. If X is a subring
of the rationale then T(X) is always closed under T(Γ)-pure
subgroups; if not, the condition is satisfied if and only if X
has a greater type than Y.

§ 7 is devoted to proving the following result: A torsion
class is closed under countable direct products, i.e. direct
products of countable sets of groups, if and only if it is
determined by torsion-free groups.

1* Preliminaries, The basic ideas on torsion classes and theo-
ries are contained in Diekson's papers [2], [3], [4]. Every class ^
or object A is contained in a smallest torsion class (denoted T{^)
or T(A) respectively). This torsion class is said to be determined
by the class or object in question.

We shall use the notation of [14] for subfunctors of the identity;
thus such a functor r is called a radical if r(A/r(A)) = 0 for every
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46 B. J. GARDNER

A and an idempotent radical if in addition r(r(A)) = r(A) for every
A. Each torsion class ^~ is associated with an idempotent radical
r which assigns to each object its largest subobject from S~. Con-
versely the class of objects fixed by an idempotent radical is a torsion
class. The assertion in [3] that a subfunctor of the identity is an
idempotent radical if and only if its class of fixed objects is a torsion
class is false — the functor need only be a radical, e.g. if r(G) =
Π nG> n = 1, 2, 3, * for every abelian group G, then r(G) = G if
and only if G is divisible, but r is not idempotent.

The notion of generalized purity we shall be using was introduced
in [I?].

2* Notation*
Jz?& category of abelian groups
Z group of integers
Q group of rational numbers
Q(p) group {m/pn | m, ne Z] where p is a prime
Q(P) group {mjn \me Z, ne Z with prime factors in P)

where P is a set of primes
I(p) group (or ring) of p-adic integers
Z(n) cyclic group of order n
Z(p°°) quasicyclic p-group (p prime)
[xχ I λ e A] group generated by set {xλ | λ e A]
[x\* smallest pure subgroup containing x, where x is

an element of a torsion-free group
τ(x) type of an element a; of a torsion-free group
τ(X) type of a rational group X
τ(hlf h2, •) type of a height (hl9 h2, •)
A 0 5 , ®Aλ direct sum (= coproduct = discrete direct sum)
Π Aλ direct product (= product = complete direct sum)
(aλ) element of ©4^ or Π Aλ

[Af B] group of homomorphism (morphisms) from A to B
class of torsion groups
class of torsion-free groups

3ϊ class of divisible groups
SPp class of p-divisible groups, where p is a prime
2?P class of P-divisible groups, where P is a set of

primes.

A torsion class of abelian groups is called a t-torsion class if it
contains only torsion groups. Throughout the paper, "group" means
"abelian group".

For unexplained terms see [7] or [15].
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3* Products of idempotent radicals* It is shown in [2] that
a group A belongs to a torsion class ^ if and only if both At and
A/At do. In this section we shall discuss some generalizations of this
result. We shall work in a locally small abelian category 3tΓ satis-
fying the conditions of [3], i.e. if {Kλ\XeΛ} is a set of subobjects
of some Ke J%^ the direct s u m φ i ^ and the direct product Π K/Kλ

both exist in 3ίΓ. ^ 7 and ̂ l are torsion classes, r1 and r2 the as-
sociated idempotent radicals.

PROPOSITION 3.1. The statement

K/r^K) e j ^ 2

holds for every Ke^Γ if and only if rγr2 is idempotent.

Proof. If (*) holds, then for every Ke JZΪ r2(K) belongs to
so rγr2{K) does also, i.e. r2rxr2(K) = rxr2(K), or since K is arbitrary,
r2r,r2 = nr2, so that rir2rxr2) = rj.r^) = r.r^ i.e. {r^f = r ^ . Con-
versely, let (nn)2 = r ^ . Then for any Ke

rλr2{K) = r^r.rlK) S r.r^K) S r

i.e. r ^ = r2r!r2. Thus if iΓe^J, we have

rγ{K) = r,r2{K) = r2rxr2{K)

which is also in ̂ 7 . Since ^"2 is closed under homomorphic images
and extensions, the proof is complete.

COROLLARY 3.2. If rxr2 = r2rt then

and

Proof. If rγr2 — r2rly then

(nn)2 = r far Jr 2 = rfar2)r2 = (^^

and similarly {r2rtf = r2r ie

Let r be the idempotent radical for the torsion class ^

PROPOSITION 3.3. rxr2 is idempotent if and only if rγr2 — r.

Proof. Let rλr2 be idempotent with torsion class ^ . Then for
every Ke ̂  Π ̂ 7 , we have ^^(1?) = r^ίΓ) = K, so j^7 n ̂ 7 S ^ .
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Since nr 2 = r]τ2τιτ2 g τ2τγτ2 £ 7Ίr2, we have τ2τγτ2 — rγr2, so r2(L) = L
for each Le^S, i.e. ^f g ^\. Since also for every Le ^ ,

= n2r2(L) = ^ ( L ) = L ,

we have ^ £ J^7, so ^ = ^ 7 Π ̂ 7 and r ^ — r. The converse is
obvious.

Using Corollary 3.2, we obtain

COROLLARY 3.4. rιr2 — r2rL if and only if rιr2 and r2τι are both
idempotent, in which case τιτ2 — r2rι = r.

We now give an example (for j^T = s$f&) to show that rxrz

and τ2τx need not be equal. Note that by Corollary 3.4 this is suf-
ficient to show that idempotence is not preserved by products in
general.

EXAMPLE 3.5. We consider a group which has been discussed by
Erdos [6] and de Groot [11], [12]. Let {x, y} be a basis for a 2-
dimensional rational vector space, and let

G = [p~nx, q~ιny, t~n(x + y) \ n = 1, 2, 3, •]

where p, q and t are distinct primes. Let rx and r2 be the idempotent
radicals for &p and T(G) respectively. From an examination of the
type set of G (see [11] p. 295), it is clear that

n(G) = [p~*x I n - 1, 2, 3, •] = Q(p) .

Let / be any homomorphism from G to rL(G). Since rλ(G) has no
nonzero elements of infinite g-height or ί-height, we have f(y) — 0 =
f(x + y) = /(a?) + /(ί/). But then f(x) = 0 and thus / = 0. Hence
[G, n((?)] = 0, so r2n(G) = 0. But nniG) = Q(p).

4. A simplification of the problem* In this section we shall
work in an abelian category J%Γ satisfying the conditions of § 3 and
in addition having enough projectives and global dimension 1. The
extra conditions are necessary for some results from [17] which will
be used.

LEMMA 4.1. An exact sequence

(*) 0 > A > B > C > 0

is 1&-pure, for a torsion class Ήf if and only if the induced sequence
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(**) o >[K, A) > [K, B] > [K, C] ,0

is exact for every

Proof. By Theorem 2.7 of [17], (*) is ^-pure if and only if
the induced sequence

0 > [L, A] > [L, B] > [L, C] > 0

is exact whenever L is ^-pure protective. Theorem 2.6 of [17], the
closure properties of ^ and our assumption concernig the global
dimension of 3ίf jointly imply that the 1^-pure projectives are the
objects of the form ikfφiΓ, where M is projective and Ke^S. For
such objects, (*) induces a homomorphism

[M, B] 0 [K, B] - / ® ί - [M, C] 0 [K, C]

where / is an epimorphism, so if (**) is assumed exact for every
Ke%S, f 0 g is an epimorphism, so (*) is ^-pure. The converse is
obvious.

COROLLARY 4.2. Let s be the idempotent radical for <2S. Then s(K)
is %f-pure in K for every Ke

COROLLARY 4.3. Let (^, g^) be a torsion theory for
K' g iΓe 5f. Then K' is %S-pure if and only if K\Kr e gf.

The principal result of this section is a generalization of Theorem
3.2 of [9], in which ^-purity replaces purity. Proof of this requires

PROPOSITION 4.4. Let (^7 «-̂ r) and (^, &) be torsion theories
for 3^ with associated idempotent radicals r and s. If J7~ is closed
under ^f-pure subobjects, then sr is idempotent.

Proof. Since for any Ke 3ίΓ, s{K) is a ^-pure subobject, in
particular sr(K) is always ^-pure in r(K). By assumption on
therefore, we have rsr(K) = sr{K) for each K. But then

(sr)2 — s(rsr) = s(sr) = s2r = sr .

THEOREM 4.5. Let (^ &~) and (^, ^ ) be torsion theories for
with associated idempotent radicals r, s respectively. Then ^~ is-

closed under Ήί-pure subobjects if and only if sr is idempotent and
Π & is closed under ^-pure subobjects.

Proof. We first show that ^" D ^ is always closed under
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subobjects. If Kr is ^-pure in Ke^ Π ̂ Λ then K/K' e ^ and the
sequence

0 > K' > K > K/K' > 0

is split, by definition of ^-purity. Hence K' e ^~ Π Ήf.
Now suppose J7~ Π 5^ is closed under ^/-pure subobjects and sr

is idempotent. If M' is ^-pure in i l ί e ^ we have a commutative
diagram

0 > s(Mr) > Mf > MΊs(M') > 0s(M') >

I
s(M) *

M —

1
M —

-> M'KM')

\'
0 > s(M) > M > Mls(M) > 0

with exact rows.
/ is a monomorphism, having kernel M'/s(M') Π N, where N is

the kernel of the natural map from M/s(M') to M/s(M), i.e. N =
s(Λί)/s(M') and thus

{M'ls{M')) Π ΛΓ = (M' Π s(ΛΓ))/a(Λf') - 0 ,

by Corollary 3.5 of [17], which also says that (s(M) + M')/M' =
8{MIM'), so

Af/(s(ΛΓ) + ikf') ~ (M/M')/((s(M) + M W ) = (M/M')/s(M/M') e Sf

Hence the sequence

0 > (s(Λf) + M')/s(M) > ikf/s(ikf) > M/(s(M) + M') • 0

is ^ - p u r e exact, whence as M/s(M) e ^ Π ^ , it follows t h a t

(s(ΛΓ) + M')/s(M> G ^ - Π Sf .

But as

fr Π s(ilf)) = (M' +

thi s means t h a t M'/s(M') e jT~ Π ^ .
Also, s ( i l i ) G ^ " n ^ (Proposition 3.1). Since s(ikΓ) is ^ - p u r e in

ikP and t h e ^ - p u r e short exact sequences form a proper class, s(ilί')
is ^ - p u r e in M and hence in s{M), so s(Λf') e ^ " Π ^/. I f ' is there-
fore in ^ 7 as both s(M') and M'/s(M') are, i.e. ^ " is closed under
^ - p u r e subobjects.

By Proposition 4,4 the converse is obvious.

Corollary 4.3 shows t h a t in ^ , p u r i t y and ^ - p u r i t y coincide,
so as a consequence of Theorem 3.2 of [9] and t h e last result , we
see t h a t in j ^ ^ , a torsion class is closed under ^ - p u r e subgroups
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exactly when it is closed under pure subgroups, which raises the
question: if ^ is homomorphically closed, when is closure of a torsion
class under ^-pure subobjects equivalent to that for ^-pure sub-
objects for a torsion class ^ ? This question is related to the pro-
blem of determining projective closures, for ^ and ^ satisfy the
condition in particular when ^-purity coincides with ^-purity, i.e.
^ and ^ have the same projective closure, e.g. if ^ is the class
of homomorphic images of Q and ^ = @r (see [16] or [17]).

5* Groups of generalized rank 1. For the remainder of the
paper we shall restrict attention to torsion classes of abelian groups.
We note however that the concept we introduce in this section is
meaningful for modules over any hereditary ring.

Hereditary torsion classes are determined by the cyclic groups
they contain, while torsion classes closed under pure subgroups (or
equivalently ^ - p u r e subgroups) are determined by cyclic, quasicyclic
and rational groups. We now introduce, for an arbitrary torsion
theory (^, 5^), a class of groups in & whose members, together
with those of ^ , determine all torsion classes J7~ closed under ^/-
pure subgroups. When *2S — j^Γ^ the groups in question are the
rational groups, so the results of [9] indicate that in general a smal-
ler class will suffice. The groups are defined in terms of a rank
function associated with (^, ̂ ) .

To justify the definition of this rank function the following
result is needed:

PROPOSITION 5.1. Let {&,<&) be a torsion theory. If Geg?,
then the intersection of any family of ^-pure subgroups of G is im-
pure.

Proof. By Corollary 4.3, it suffices to show that G/Γi Gλe^f
λeΛ

for any set {Gλ | λ e A) of ^-pure subgroups of G. Suppose

Π f t i G ' g G and G'/Γl Gλ e Ψ/ .
λeΛ λeΛ

Then for each μeΛ9 we have a diagram

0 >(G'Π Gμ)/Π Gλ > G'/n Gλ > "G'/(G' Π(?,) > 0
λeΛ λeΛ

0 >(G' + Gμ)IGμ > G/Gμ

with exact rows. (G' + Gμ)/Gμ e g?, but by assumption on G'/Π Gλ,

G)



52 B. J. GARDNER

Hence G'/(G' Π G
μ
) = 0. But this means that G' £ G

μ
 for each μ, so

G'/ΠG ^ O , i.e.

Every element or subset of a group G e & is therefore contained
in a smallest ^-pure subgroup.

The generalized rank for a torsion theory (^, ^ ) is introduced
in the following definitions.

DEFINITION 5.2. If I7 is a subset of a group G e ^ , [2]^ denotes
the smallest ^-pure subgroup of G containing Σ. If 21 has a single
element x, we write \x\?/ for [2']^.

DEFINITION 5.3. A nonzero group G e g 7 has ^-rank Wl if it
has a subset i? with [J]^ = G and | 2*| = SW and there is no set Σr

with [Σ% = G and | J ' | < SW. We denote this by writing

) = Tt .

is then called a ^-basis for G.

If (^, ^ ) = {^l, &l) this definition gives the standard rank for
nonzero torsion-free groups.

Obviously for every nonzero xeGe&, [x]?/ has ^-rank 1, so
since G is generated by such subgroups, we have

PROPOSITION 5.4. If (^, ^ ) is a torsion theory then every
is a homomorphic image of a direct sum of groups in & with %ί-
rank 1.

Using Theorem 4.5 and Proposition 5.4 and reasoning as in the
proof of Theorem 3.3 of [9], we obtain

THEOREM 5.5. Let {j?~, J^) and (^, 5 )̂ be torsion theories suck
that j?~ is closed under Ifc-pure subgroups. Then

n %r) U {Ge JT- n gf | ^/-rank(G) - 1}) .

The groups with ^ - r a n k 1 are the rational groups. Also there
is a rank function associated with the trivial torsion theory ({0},
J&&), with {0}-rank (A) = 1 if and only if A is cyclic. Since the
hereditary torsion classes are those closed under {0}-pure subgroups.
Theorem 5.5 is a generalization of both Theorem 3.1 of [2] and
Theorem 3.3 of [9].

An alternative description of generalized rank is given by
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PROPOSITION 5 6 G e ^ has %S-rank Wl if and only if it has a
subset Σ with ]\ Σ | = ffll and G/[Σ] e ̂  (here [Σ] is the subgroup
generated by Σ) and if Wl is th smallest such cardinal number.

Proof. It is clearly sufficient to show that [Σ]^ — G if and only
if G/[Σ] e%S. If G = \Σ\V and / : G/[Σ] -* He %? is a homomorphism,
then fg [Σ] = 0, where g: G-+ G/[Σ] is the natural map. But fg has
a ^/-pure kernel, so fg = 0, whence / = 0 and G/[Σ] e ̂ . Conversely,
if G/[Σ] e %f, then Gj[Σ]w is both a homomorphic image of G/[Σ] and
a member of &, so G/[Σ]^ = 0.

Groups of generalized rank 1 may be decomposable:

EXAMPLE 5.7. Q(2) © Q(3) has ^ 2 , 3 Γ rank 1, for if a? and # are
nonzero elements of Q(2), Q(3), then Q(2) 0 Q(S)/[x + y] = Q({2, 3}).

A group of ^/-rank 1 cannot be a direct sum of infinitely many
subgroups, since factoring out a cyclic subgroup leaves almost all
summands intact. Infinite direct products may have ^-rank 1,
however:

EXAMPLE 5.8. The cotorsion completion Ext (Q/Z, Z) of Z> which
is isomorphic to Π I(p) (all p) has i^-rank 1.

If a group of generalized rank 1 is decomposable, the correspond-
ing rank of all nonzero summands is also 1. This follows from

PROPOSITION 5.9. Let (%s, &) be a torsion theory,
^-rank(Gr) = 1. Then any nonzero homomorphic image of G which
belongs to ^also has ^-rank 1.

Proof. Let {x} be a ^-basis for G, Gf a proper subgroup of G
with G/G'e g .̂ Then G' is a ^-pure subgroup, so a ί G'. Let
4/G' = [x + G%. Then G/G' is ^-pure in G/G', so since ^-purity
defines a proper class ([17] Theorem 2.1), G is ^/-pure in G and con-
tains x, so that G = G and {# + G'} is a ^-basis for G/G'.

This result, with Theorem 7.2 below shows that the groups of
generalized rank 1 in Examples 5.7 and 5.8 may be replaced by inde-
composable groups with the same rank 1 in representations of torsion
classes.

The torsion groups with generalized rank 1 are characterized by
the following result.
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PROPOSITION 5.10. Let (^, &) be a torsion theory, A torsion
group in & has ^-rank 1 if and only if it is nonzero cyclic.

Proof. Let Ge^ΌΠ^ have a ^-basis {x}. Taking primary
decompositions, we have, for every prime p, Gp/[x]p ~ (G/[x])p e ^ , so
it may be assumed that G is a reduced #>-group and G/[x] is divi-
sible. If G/[x] Φ 0, there is induced an exact sequence

0 > [x] > G' > Z(p~) > 0

with Gf S G. As Gr has rank <£ 2 and is reduced, it is bounded and
so has no homomorphic image Z(p°°). Thus G = [x] is cyclic. The
converse is obvious.

We conclude the discussion of the groups of generalized rank 1
by describing the groups with ^,-rank 1, for a prime p. As a first
step we prove

LEMMA 5.11. If a group G is such that there is an exact
sequence

0 > Z-^ G -£-> Z(p") > 0

then the p-socle G[p] of G is cyclic (possibly zero).

Proof. Suppose G [p] contains linearly independent elements x
and y. If there are integers m, n such that mg(x) + ng(y) — 0, then
mx + ny = f(k) for some ke Z. But p(mx + ny) — 0, so mx + ny = 0
whence mx — 0 = ny and mg(x) = 0 = ng(y), i.e. g(x), g(y) are linearly
independent and this is impossible.

PROPOSITION 5.12. Let G have ^,-rank 1 and &v-basis {x}. Then
G/[x] has no summand Z(pco).

Proof. Proposition 5.10 takes care of the torsion case. If xeGt.
(the torsion subgroup), then Gt/[x] is pure in G/[x] and therefore in
{Gl[x])u so by Theorem 5.2 of [2] and Proposition 3.1 of [9],
Gt/[x] e 2$v. Proposition 5.10 then implies that Gt is cyclic, so G is
split, and this is not possible, since factoring out [x] does not affect
a summand complementary to Gt. Thus x has infinite order.

Suppose G/[x] has a summand Z(p°°). Then there is an exact,
sequence

0 > [x] > G' > Z(p~) > 0

for some subgroup Gr of G and since Gf is p-reduced, Lemma 5.11
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says that G[ is a (possibly zero) cyclic p-group. Thus G' = G[ 0 H,
where H is torsion-free. G'/(H + [x]) is a homomorphic image of
both G'/[x] =; Z(p~) and the cyclic G'/H = G[. Thus G'/(H + [x]) = 0,
whence H/Hf] [x] ~(H+ [x])f[x] = G'/M = % w ) . Since i ϊ is torsion-
free and HΠ [x] is cyclic, this means that H = Q(p), which is impos-
sible as G is assumed to be p-reduced.

COROLLARY 5.13. If ^,-rank (G) = 1 ίΛew G cannot be mixed.

Proof. If G is mixed, it contains elements of order p. Since
for every i^-basis {x}, a? is of infinite order, G/[x] must also have
elements of order p. But as G/[x] is p-divisible, this would require
the existence of summands

COROLLARY 5.14. // {x} is a 2&v-hasis for G then [x] is a p-pure
subgroup of G.

Proof. If G is torsion then G — [x], while if G is torsion-free,
G/[x] has no elements of order p.

Thus every single-element ^,-basis generates a p-basic subgroup.
Clearly also a generator of a cyclic #>-basic subgroup of a ^-reduced
group determines a ϋ%,-basis.

PROPOSITION 5.15. 1/ ^ - r a n k (G) = 1 αwd α; e G, then {x} is a
3iv-basi§ if and only if [x] is a p-basic subgroup.

A p-reduced torsion group must be a p-group, and it is shown
in [1] that a torsion-free p-reduced group has a cyclic p-basic sub-
group if and only if it is isomorphic to a p-pure subgroup of I(p).
These observations, with Proposition 5.15, give a proof of

THEOREM 5.16. A group G has 2$v-rank 1 if and only if it is
isomorphic to either a nonzero p-pure subgroup of I{p) or Z{pn)f

n = 1,2, . . . .

6. An example* Finally we solve the following special case of
the generalized pure subgroup closure problem: to find necessary and
sufficient conditions on rational groups X and Y for the closure of
T(X) under Γ(Γ)-pure subgroups.

Our notation for heights, types etc. largely conforms to that of
[7], Chapter VII. In particular, pu p2, is the natural enumeration
of the primes, and in a height (hl9 h2, •••, hn, -••), hn denotes height
at pn.
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THEOREM 6.1. Let X, Y be rational such that τ{X) is the type
of a height (hL, h2, , hn, •) with 0 < hn < °o for infinitely many
values of n. Then T{X) is closed under T(Y)-pure subgroups if and
only if τ(Y) ^

Proof. Let (T(Y), ^~) be the torsion theory for T(Y) and let
{Qu #2, •••,£», •") be a height with the same type as Y.

If τ(Y) ̂  τ(X), then Xe T(Y), so T(Y)-pure subgroups are
T(X)-pure. For groups in T(X), such subgroups are direct sum-
mands, and so belong to T(X) themselves.

For the converse we need to consider two cases:
( i ) r(Γ) £ 7(^ + 1, Λ. + 1, . . . , λ# + l, . . . ) . Let J l f={n |^=oo} .

Let (fex, fc2, , kn, •) be the subsequence of positive finite terms of
(hί9 h2, •••,/&«•••) and re-label the associated primes as qu q2, . Let
{x, y) be a basis for a 2-dimensional rational vector space and

G = [p~nx, p~ny, qnk*x, q^{q-n

ιx + y) \ p e M, n = 1, 2, •] .

A routine argument using the linear independence of x and y shows
that x has height (hl9 h2, •••, Λ̂  ) in (?. Suppose 7/ is divisible by
•qin for some ^. Since the same is true of q^x + y, x has qn-height
kn + 1 at least, which is impossible. Thus τ(y) < τ(x) — τ(X) (in G).
Denoting the coset of y mod. [x]* by y, we have

G/M* - [p~*y, qήκV I p e Af, w = 1, 2, •]

so G/Iα;]̂  is rational with type τ(X). From the exact sequence

0 >X= [xU >G >G/[xU = X >0

it is clear that Ge T(X).
Observing that [y]* $ T(X), we now show that [y]* is T( Y)-pure

in G. Let x denote the coset of x mod. [y]*. Then

G/[yU = lP~*x, Qnik^x I P e M, n - 1, 2, . . . ]

which is rational of type ^ r ( ^ + 1, h2 + 1, , hn + 1, •)> s o

GUyUeJf and M^ is T(Γ)-pure in G.
(ii) r (Y)^τ(Aj + l, fe + 1, . . . , A . + 1, •••)• Let

U={pn\pnY=Y) and S - {pn \ K < 9n} .

Note that the our assumption concerning τ( Y) requires that pX = X
for all pe U, S is infinite and #% is finite for each pn e S. Let

V= {pn\K^ gn; gn< oo} .

a n d re- labe l t h e e n t r i e s of (hl9 h2, * " , h n , •••) a s fol lows: d e n o t e t h e
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primes pneS by sly s2, •••, their heights by k19 k2, ••• and denote the

primes in V by vl9 v2, wi th heights j \ , j 2 , . Finally let

H = [p~*x, s~knx, v-j*x, p~ny, s^l^y, v~J'ny, s2fa{s^x + y)\peU,

As in case (i), τ(y) < τ{x) = τ(X), [x]* ~ X ^ H/[xU and He T(X).
Also,

fi/fol* = \P-*X, 87nirlX9 S7n(k^+1)X} V~jnχ \ p G U, U = 1, 2, ]

which is rational with type ^ τ(F), since it has lower height at in-
finitely many primes, namely s2n_ί9 n = 1, 2, •••. Hence [7/]̂  is Γ(3Γ)-
pure in H, but [3/]* ί Γ ( I ) .

The group G of case (i) was used in [10]. Only the case X =
Q(P) now remains. Here we prove a more general result.

PROPOSITION 6.2. For a set P of primes, let ^ P Π Z2ί be the
class of all divisible P-groups. Then 2&P — T(Q(P)) is closed under

ΓΊ 3ί-pure subgroups.

Proof. The idempotent radical associated wi th J7~P Π & is easily

seen to commute, and therefore have idempotent products, wi th all

o thers . Thus by Theorem 4.5 we need only consider P-divisible

groups wi thout direct summands Zip"), peP. If in the exact

sequence

<*) 0 > A > A > A" > 0

A and A " are such groups (and t h u s (*) is ^~P Π ̂ - p u r e ) , then A "

has zero p-component for every pe P. But then A* is P-pure in A,

so A! e 3ίP.

THEOREM 6.3. &P — T(Q(P)) is closed under ^-pure subgroups,
for a torsion class *%f, if and only if ^/ contains Z(p°°) for every
peP.

Proof. Since for ^ 2 {Zip") \peP}, ^SΛpure subgroups are
^P Π £^-pure, "if" follows from Proposition 6.2. Conversely, if
Z(p°°) £ ̂ , for some p e P, then ^ is a ί-torsion class, and Zip00) e 5f9

where (^, <&) is the torsion theory of ^ . The natural exact
sequence

0 >Q(P- {p}) > Q(P) > Z(p~) > 0

is accordingly ^-pure, but Q(P —
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If *%S is not a ί-torsion class, then Z(pco) e ̂  for every prime p
([9], Proposition 2.1). Thus we have

COROLLARY 6.4. If a torsion class % contains torsion-free
groups, (in particular if %f = T(Y) for some rational Y), then £^P

is closed under ^-pure subgroups.

7* Torsion classes closed under countable direct products*
We now turn our attention to closure under direct products. The
following result will be needed.

LEMMA 7.1. Let <^Γ be a torsion class containing a torsion-free
group A which is not p-divisible, for some prime p. Then

Proof. [A, I(p)] Φ 0 ([5] p. 52) so let / : A -* I(p) be nonzero and
consider B = I(p)/Im{f). B/Bt as a torsion-free proper homomorphic
image of I(p) is divisible, (see [5]) and so belongs to ^ . T(I{p))
contains B and therefore Bt, whence Bq is divisible for all primes
q Φ p. Since in addition Bp belongs to T(A) £ J7~ ([2], Lemma 5.1),
JΞ7~ contains Bt and therefore B. Since also Im(f) belongs to j7~, so
does I(p).

The principal result of this section is

THEOREM 7.2O A torsion class ^~ is closed under countable
direct products if and only if it is determined by torsion-free groups*

Most of the proof of Theorem 7.2 is contained in the proofs of
the next two results.

PROPOSITION 7.3. Let An, n = 1, 2, 3, be torsion-free groups.
Then

Proof. The first equality obviously holds; since also Am e T(Π An)
for each m, we have T(@An) C T(Π_An).

Let / : J[An—+Y be a nonzero epimorphism. If Yp Φ 0 for
some prime p, then if Yp is reduced, we have pJl AnΦ ]J An so
pAm Φ Am, for some m, and thus Yp e T(Am) Q ^ 7 while if Yp is
not reduced, then [An, Yp] Φ 0 for each n.

If Y is torsion-free, then either f(Am) Φ 0 for some m or
/(Θ An) = 0, in which case / factorizes as
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where all maps are epimorphisms. Π A.J Θ A* i s algebraically com-
pact (see [13]). Thus ΐlAJφA* is the direct sum of a divisible
group and a (reduced) cotorsion group [8]; so therefore, is Y, which
being torsion-free is algebraically compact [8]. Thus Y = D 0 Π W
where D is divisible and R(p) is inter alia a reduced /(p)-module.
If D Φ 0, then [An, Y] Φ 0 for each ra. If D = 0, let i? (j>) ^ 0.
Then jp Π ^ ^ Π 4 and thus #>AW =£ Am for some value of m. By
Lemma 7.1, I(p) e T(Am). Since there is an epimorphism (actually
an I(p)-epimorphism) from a direct sum of copies of I{p) to R(p)y

we have R(p)e T{Am).
Thus in all cases [Amy Y] Φ 0 for at least one value of m, whence

ΐ[An belongs to T(@An). This completes the proof.

PROPOSITION 7.4. Let ^~ — T({Aλ \ XeΛ}), where each Aλ is tor-
sion-free and let Bn, n = 1, 2, 3, be torsion groups in ^~. Then

contains Πn=i Bn.

Proof. Let / : Π Bn —> G be a nonzero epimorphism. If for some
prime p, Gp is nonzero and divisible, then [Aλ, Gp] Φ 0 for each λ e Λ,
while if Gp is nonzero but not divisible, then PΪ[BnΦ J[ Bn, so
pBm Φ Bm for some m which means that p(Bm)p Φ (Bm)p. Since (Bm)p,
belongs to ^ 7 so do all ^-groups; in particular Gp is in ^Z

If G is torsion-free, then /(© J?J = 0, so / factorizes as

Π Bn

 J- > G

/

where all maps are epimorphisms. As in Proposition 7.3, G =
D®JlR{p),p prime, and we need only consider the case where
D = 0. If this is so, and R{p) Φ 0, then p ΐl Bn Φ JJ Bn, and as in.
the first part of the proof, ^ contains all p-groups. Hence at
least one Aλ is not p-divisible, so as in Proposition 7.3, I(p) belongs
to ^~ whence R(p) does also. This proves that JlBn
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Proof of Theorem 7.2. If J7~ is determined by torsion-free
groups and if {An \ n = 1, 2, 3, •} £ ^ 7 then (An)t and AJ(An)t e jr~
for each n. By Proposition 7.3, Π AJ(An)t e Γ ( © AJ{An)t) g ^ and
by Proposition 7.4, Π Ĉ -*)* e ̂ 7 so from the short exact sequence

0 > Π (ΛΛ >UΛn > Π ̂ /(i l j , > 0

clearly ΐ[Ane
Conversely, suppose J7~ is closed under countable direct products.

Clearly ^~ is not a t-torsion class. If it is not determined by torsion-
free groups, then for some prime p, Z(p)e^" but all groups in

.^~ Π &l are p-divisible. Let [xn] = Z(pn), n = 1, 2, . Then
Π [ s j e y s o Π K1/(Π M)t 6 ̂ " ΓΊ ̂ . Suppose

P t e ) - (»•) e (Π [»•])*, α e

Then for some positive ke Z, pk(p(anxn) — (xn)) = 0, so pk(pan — l)xn = 0 for
all n, i.e. p% |p f e(pα% —1). For n>k, this means t h a t pn~k\(pan — 1), which
is impossible. Thus (a?Λ) + (Π [xn])t has zero p-height in Π [^]/(Π [ ] )
contradicting the required p-divisibility of Π [ ] / ( Π ί ] )

If {Â  \Xe Λ} S 2?p for any set P of primes, then Π ^ ^ Aλ e £&P,
without any restriction on the size of Λ. Whether any other torsion
classes have this property, or the corresponding one for | A \ < SW,
where $R > V̂o> is not known. A related result is

PROPOSITION 7.5. Let ^ be a class of slender groups and

= {G I [G, C] = 0 for all Ce £f} .

Π ̂ 7 is closed under direct products for which the number
of components does not exceed the first cardinal number of nonzero
measure.

Proof. Let {Gλ\XeA}S^T\ J^l, where A has appropriate
cardinality. Then for any C e ^ , [© Gh C] = 0 and consequently for
any homomorphism / : Π f t ^ C e g 7 , / ( 0 (?;) = 0. By a theorem of
Los ([7] p. 170), / = 0, so Π Gλ e

In [2] the problem of classifying all torsion classes (of abelian
groups) was reduced to the problem for torsion classes determined
by torsion-free groups. Theorem 7.2 therefore says that "all inter-
esting torsion classes are closed under countable direct products".
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