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TOPOLOGIES ON SEQUENCE SPACES

WiLLiaM H. RUCKLE

A study is made of two means to topologize a space of
sequences. The first method rests upon the duality of every
sequence space S with the sequence space ¢ (finitely = 0) by
means of the form

(@7, (b)) = 3, ab; (@) € S, (b€ ¢.

The second method is a generalization of the Kéthe-Toeplitz
duality theory. The Kothe dual S* of a sequence space S
consists of all (b;) such that (a;b;) € [* (absolutely convergent
series) for (a;) € S. Other spaces may take the role of I! in
the above definition. A means to construct a topology on S
is determined using this generalized dual. Finally, a parti-
cularly suitable type of space (the sum space) te play the role
of [! is defined.

Our motivation is primarily the inexact but nevertheless meaningful
question: what is the “natural” topology for an arbitrary space of
sequences S. We consider two classes of topologies on S. Both classes
include the topologies studied by Kothe and Toeplitz [10] and Garling
[3, 4]. Our most important result is Theorem 4.10 which establishes .
a relationship between these two classes.

The first method of topologizing a space of sequences is based
upon the observation that every sequence space S is in duality with
the space @ of finitely nonzero sequences by means of the natural
pairing

((@s), (b)) = Ziab; (a) € S, (bj) € @

It is thus possible to define upon S topologies having a neighborhood
base at 0 consisting of polars of a subfamily of the collection of all
S-bounded subsets of @. A few basis observations are made concerning
this topology in § 3.

The second method is a direct extension of the Kothe-Toeplitz
duality theory [10]. The Kothe-Toeplitz dual, S* of a sequence space
S consists of all sequences (b;) such that 37, |a;b;| < o for each (a;)
in S. In other words, S* consists of all (b;) such that (a;b;) € I!
(absolutely convergent series) for each (a;) € S. It is easy to see how
S and S* are in duality. In §4 we examine the consequences of
allowing other spaces to play the role of I* in the above alternative
definition. Thus for S a sequence space and T a sequence space with
a linear topological structure S” consists of all sequences (b;) such that
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236 WILLIAM H. RUCKLE

(a;b;) € T for each (a;) € S. Although S and S” may not be in duality
there is a very natural way to determine topologies on S using S7
and 7. Many of the results of §4 are generalizations of the results
of Kothe and Toeplitz to this new setting.

A vparticularly suitable type of space to use for 7T is the sum
space which is related to the summation of series. The spaces o, I!
and cs (convergent series) are all sum spaces, but there are many
other examples. Examples of sum spaces and ways to generate them
are presented in [13].

2. Notation and algebraic preliminaries. The results of this
paper apply to both complex and real spaces of sequences. No further
distinctions regarding the scalar field will be made. The letters,
s, t, u, v with or without subscripts will denote sequences. For s the
sequence {a,, a,, -++} s(j) means a; the jth coordinate of s. If A is any
subset of {1, 2, -+-} then s[A] is the sequence for which

s() jed

D=1 jea.

In particular, if Ais the set {1, 2, +--, n}, s[4] is written s[< n]. The
sequence s[{j}] will always be written s[j]. The sequence consisting
entirely of one’s is denoted by e.

The operations of addition, scalar multiplication, and multiplication
of sequences are defined coordinatewise. Thus, for instance, u = st
means u(j) = s(j)t(j) for each j. The set of all sequences, which will
be denoted by ®, is a linear algebra under these operations. A
sequence space is a set of sequences which is closed under addition
and scalar multiplication. If in addition a set is closed under multi-
plication it is called a sequence algebra.

For A and B, sets of sequences, A + B is the set of all s +¢
with s € A,t € B; ABis the set of all st with s € A and ¢ € B;adA
is the set of all as with s ¢ A. For s and ¢ sequences such that st
is summable the linear form

(5 1) = 3 sG)U0)

is defined.
The following statement is not difficult to verify.

ProposiTioON 2.1. If {S,:a € A} is a family of sequence spaces
(algebras) N.S. is a sequence space (algebra). The set of all finite
SUMS 8, + 8, + =+ + 8, with {s, s, *++, 8.} & U.S. and n arbitrary
18 a sequence space (not mecessarily am algebra) which is equal to
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N{T: T is a sequence space containing each S}.

For B a set of sequences and ¢ a sequence tB is the set of all
sequences ts as s ranges over B. The set of all sequences s for which
ts € B is denoted by ¢B. If () % 0 for each j and t'(j) = 1/t(9)
for each j then t™'B = ¢'B so that t(t*'B) = B. If t(j) is not different
from 0 for each j it is still true that ¢(¢*B) c B and ¢~*(tB) D B.

If A and B are sets of sequences A? is the set of all s such that
ts € B for each £t € A. In other words

(2.1) AP = 0 {t7B: te A)

which may be the empty set. However, if S is a sequence space t'S
and ¢S are clearly sequence spaces. Hence A° at least contains the
zero sequence, and is in fact a sequence space which will be called
the S-dual of A.

If S is the space I' of all sequences s such that 35, |s())] < o
and T is any sequence space, T° is the Kothe-Toeplitz (a¢—) dual of
T introduced in [10], §2, Definition 1. If S is the space c¢s of all
sequences s such that 37, s{j) converges, T° is the space called the
“g-dual” of T by Chillingworth in [2] and the g-dual of T by Kothe
and others [9], p. 427. For S and T arbitrary sequence spaces T% is
the space called (T'— S) by G. Goes [5, p. 137 and elsewhere]. For
S equal to bs, the space of all sequences s for which sup, | 3,7, ()] <
o, and T arbitrary, T° corresponds to the v-dual of T of Garling
[4] and others. In relation to a-duality (2.1) corresponds to Satz 1
of [8].

For S and T, sequence spaces, T is called S-perfect if T5% (i.e.
(T5)" is equal to T (cf. [10], § 2, Definition 2).

PrOPOSITION 2.2. Let A, B and C be sets of sequences and S, T
and U sequence spaces.

(a) @ = w.
(b) A < B vmplies A° D B°.
(c) A A°°.

(d) A° is C-perfect.

(e) If A and B both contain 0, (A + B)Y = A” N BY.
(f) Bc C implies A* C A°.

(g) APNC = A% A°.

(h) (SN TY D (SY + TV and equality need not hold.
(1) If S and T are U-perfect (SN T)Y = (SY + T")V".
(3) If S and T are U-perfect so is S N T.

k) A is always A-perfect.

(1) (AB)° = A% = Bu%,
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Proof. Statements (a), (b), (¢) and (f) follow immediately from
the relevant definitions so we omit their proof. We also omit the
proofs of statements (d), (e), (g), (i) and (k) which are not hard.

(h) By (b), SNT)Y>D(S” + TY so by (b) applied twice (SN
TP 5 (SY + TY)Y. But (SN THY7 = (SN T) by (d).

Let @ be the space of all sequences which are finitely nonzero,
and let S =@ + [¢]. That is, S consists of all sequences which are
eventually constant. If s(j) = (—1)¢ for each j,

(SN sS=9" =w
while
(Sll + (Ss)ll)llll — (ll + ll)llll — ll .

() By @), (SN T = (8Y + T%)"%Y and by (d) (S” + TY)""7 =
(S” + T%)Y which is 87 N TV" = SN T by (e) because S and T are
U-perfect.

1 If ve(AB) and sec A, vse B® since for te B, vstc C. Thus
ve A¥. On the other hand if ve A%" se A and te B, vste C since
vse B°. Hence ve (AB)°.

The set A“ is called the set of multipliers of A and written M(A).
If Sis a sequence space M(S) is a sequence algebra called the multi-
plier algebra of S [11].

ProPOSITION 2.3. (a) If S is a sequence algebra M(S)DS. If A
contains e, M(A) C A. Thus if S is a sequence algebra containing e,
M(S) = S.

(b) For A and B sets of sequences M(A®) = (AA®)” and is thus
B-perfect.

(¢} M(A”) contains both M(A) and M{(B).

Proof. (a) Obvious.

(b) By 2.2 (b), (AA®)? = {A®}4"" which is M(A?).

(¢) If ve M(A) and te A, vte A so that uvte B forue A”. Thus
vu e A? for we A® which implies ve M(A®).

If se M(B), sute B for wc A% and te A. Hence suc A® for ue A*
which implies se M(A?).

For A an arbitrary subset of @, A“, the polar of A in ® is the
set of all sequences s such that

sup{|(s,?)|:tc A} = 1.

If S is an arbitrary sequence space the polar of A in S, A® is A“ N
S. For B an arbitrary subset of w, B, the polar of B in @ is the
set of all te ® such that



TOPOLOGIES ON SEQUENCE SPACES 239

sup{[(s,t):se B} < 1.

If A and B are sets of sequences such that BAC A, A is called
B-invariant. It is clear that A is B-invariant if and only if Bc M(4)
so that M(A) is the maximal set under which A is invariant.

ProprosiTION 2.4. (a) If A is o subset of ® which is B-invariant
then A is B-invariant. If S is a sequence space which is B-invariont
then A is B-invariant.

(b) If A is a subset of @ which is B-invariant, then A'“ 1is
invariant under B.

(¢) If B is a semigroup of sequences AB is B-invariant.

Proof. (a) Let A denote the set of all s € ® such that [>};s()| <
1. Then it is easy to see that A* = A, If A is B-invariant BC
M{A) and by 2.3(¢c), M(A)c M(A%). The second assertion of (a) is
an immediate consequence of the fact that if 4, and A, are B-invariant
so is A, N A,

The proofs of (b) and (c¢) are obvious.

3. @-Topologies on sequence spaces. The coordinate functionals
are defined by Ej(s) = s(j). A K-space is a sequence space S with a
locally convex topology on which each F; is continuous. For S a
locally convex sequence space containing @, S° denotes the closure of
® in S, and S’ denotes the space of all sequence {f(¢[j])} as f ranges
over S*, the topological dual space of S.

ProrosiTioN 3.1. If Sis a locally convex sequence space containing
@, S = (8%, and (S° is algebraically isomorphic to (S°)* under the
correspondence of fe€ (S°* to {f(e]7]} in (S°).

Proof. The first assertion is a direct consequence of the Hahn-
Banach theorem. The second results from the fact that if f e (S9*
is such that f(e[j]) = 0 for each j then f = 0.

PrROPOSITION 3.2. Let S be a locally convex sequence space contain-
ng P, and let P be the family of all continuous seminorms on S.
If for each p in P, A, consists of all s in @ such that p(s) < 1 then
S’ is precisely equal to

U{AL: pe Z) .

Proof. Denote the above union by 7. If fe S* there is pe &
such that



240 WILLIAM H. RUCKLE

[f(8)] = p(s)

for each s€ S and hence for each se . If ¢; is the sequence defined
by ¢,(3) = flel[j]) for each j then f(s) = (s, t;) for each s ¢ ». Thus
t;e A which implies that S"c T.

Conversely, if te A\ for some pe &7 then the linear functional

fs) ={t,s) sep

is continuous on @ given the relative topology of S. This functional
can be extended to all of S by the Hahn-Banach theorem. For the
extension of f, to S,

fuelsl) = ()

for each j so that te S”.

In 3.2 the hypothesis can be weakened by requiring only that 7
be a family of continuous seminorms on S which is directed by the
relation < and determines the topology of S.

The bilinear form (s, t),tec @, se S provides a duality between
% and each sequence space S. A locally convex topology on a sequence
space S is called a @-topology if there is a fundamental system of
neighborhoods of 0 in S having the form {A": Aec ®} where ® is a
family of S-bounded subsets of ®. Note that A®’ is the absolute
polar of A with respect to the aforementioned duality.

If S is a sequence space and <7 is a family of S-bounded subsets
of @, the <#-topology on S is defined to be the coarsest locally convex
topology on S for which each B*', Be <& is a neighborhood of 0. A
collection .<# of S-bounded subsets of @ is called T-saturated for T
an arbitrary sequence space if (1) Be <% and B, C B implies B, €.%;
(2) Be =% implies aBec <% for each scalar a; (8) B, B,, +++, B, in
27 implies (U=, B;)"¥ isin <. By the bipolar theorem (3., B;)™*
consists of the o(@, T) closure of I'(IJ}-, B;) in @ where I" denotes
absolutely convex hull. Thus if <% is T-saturated and T, C T, then
% is Tysaturated. The T-saturated hull of <Z is by definition the
smallest T-saturated collection of subsets of @ containing <%. If ST
then each B is the saturated hull of <% is S-bounded. Hence if @
contains <Z and is contained in the S-saturated hull of <, the .-
topology and @-topology coincide on S. The .<Zp-topology on S is the
7 -topology for which <7 is the (S-saturated) family of all S-bounded
subsets of .

The following statement is a direct consequence of 3.2 and its
proof need not be given.

ProprosITION 3.3. If a sequence space S containing @ has the
7 -tepology where <7 1is an S-saturated family of S-bounded subsets
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of @ them S’ is precisely equal to

U {B“): Be c#} .

The hypothesis of 3.3 can be weakened by requiring only that <%
have the property that for each B in the S-saturated hull of <& there
is B, in &# with B, D B.

We mension the following theorem and its corollary since they
are analogous to the uniqueness and inclusion theorems of Zeller [15]
for FK-spaces which have proven very useful. In the work of Zeller
the Closed Graph Theorem is essential while the present results rest
upon the Uniform Boundedness Principle. Since there are (pathelogical)
FK-spaces which do not have a @-topology the present work does not
include that of Zeller. Conversely since there are K-spaces which have
barrelled @-topologies but are not FK-spaces (e.g. @ with its Mackey
topology) the work of Zeller is not more general than this. It is easy
to show that if {e[n]:n =1, 2, --+} is a basis for a sequence space S
then S has a <Z@-topology. Thus the results of Jones and Retherford
[6] on bases in barrelled spaces can be derived from Theorem 3.4.

The proofs of both Theorem 3.4 and its corollary are very easy
and we omit them.

THEOREM 3.4. For a sequence space S there is at most one barrelled
@-topology for which S is a K-space, namely, the <& p-topology.

COROLLARY. If S and T are both barrelled K-spaces hoaving a
@-topology and S < T then the inclusion map of S into T is continuous.

4. Duality of a sequence space with respect to a sum space.
Let S be a sequence space with a locally convex topology and T an
arbitrary spaces of sequences. For U a subspace of 7%, a locally
convex topology is determined on 7 by the collection of seminorms

0.(8) = p(us) we U

where p ranges over the family of continuous seminorms on S (or
over a fundamental subfamily). This topology will be called the
oS(T, U) topology on T. If S is a K-space and ® C U, then T with
the ¢S(T, U) topology is K-space. Throughout this section it is always
assumed that these conditions are fulfilled. The oS(T, U) is thus
the projective topology on T with respect to the linear maps f,(¢) =
ut as % ranges over U. See [14] p. 51. A net {t.} in T converges
to ¢t in 6S(T, U) if and only if {ut,} converges to ut in S for each u
in 7%,
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ExamMpPLES. (a) If S=10, T° is the a-dual of T in the sense
of Kothe and Toeplitz [10]. They defined a sequence {t,} in T to be
convergent (to t) if lim, (¢,, u) exists (=t) for each % in T°. This
definition does not explicitly define the intended topology on T because
by a well known theorem [1], p. 137 a sequence in I' converges weakly
if and only if it converges strongly. Thus the topology on T which
provides such convergent sequences could have arisen from either the
weak or normed topology on !'. In later work Kothe discussed a
variety of topologies on T based upon the natural duality between
T and T". See for instance [7] or [8].

(b) Chillingworth [2] studied sequential convergence in T with
respect to T°° where ¢s has its weak topology. The complications
involved in such an approach were observed by Kothe and Toeplitz
at the end of [10]. They arise primarily because ¢s with its weak
topology is not sequentially complete.

(¢) If S=bs with the BK-topology given by the norm

lsll = sup {| 33 69|}

then the ¢S(T, U) topology is determined by the means of the semi-
norms

pu®) = sup {| 3 u0)t0) | |

where % ranges over U. Thus the obs(T, T*) topology on T coincides
with the o¥(T, T")-topology studied by Garling [4].

PROPOSITION 4.1. Let S have AK and o c UC T5. Then with
the topology oS(T, U), T has AK. If T is sequentially complete with
the topology oS(T, U) then T is S-perfect and in fact equal to US.
(cf. [10] §38, Satz 2, §4, Satz 1; [8], Satz 3, p. 74).

Proof. If teT and ue U then tu[=n] ={[Zn]Ju—tu in S so
that ¢{[<n] —¢ in T. Thus T has AK.

Let T be oS(T, U) sequentially complete. Since Uc T%, US>
T5>T. If te U t[<n] is in T for each n and {t[<n]} is Cauchy
since t[<n]u — tu for each we U. Thus lim,t[<n] =te T so that
UscT.

PROPOSITION 4.2. Let S D @ be (sequentially) complete. (a) If
T 1is S-perfect then T is (sequentially) complete in the topology
oS(T, T%. (b) TS is (sequentially) complete in the topology oS(T*, T).
(cf. [10] 83, Satz 5; §4, Satz 2; [8] Satz 4, p. 74.)
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Proof. Let {s,} be a Cauchy net (sequence) in T. Then since
oS(T, T%) makes T a K-space {s,(j)} converges, say to a;, for each j.
If s is the sequence with s{j) = a; for each j and te T, then ts, ¢ S
for each v and {¢s,} converges necessarily to ¢s. Hence ¢se S so
se T = T, and {t,} converges in ¢S(T, T%) to s. A similar argument
establishes (b).

It is clear that a subset 4 of T is ¢S(T, T%)-bounded if and only
if wA is bounded in S for each uwe T°. A subset A of T is said to
be completely bounded if AB is bounded in S for each oS(T%, T)-
bounded set B of T°+ It is obvious that completely bounded sets are
bounded.

ProOPOSITION 4.3. If S is sequentially complete and A is oS(T, T%)-
bounded in T then A is completely bounded in T. (cf. [10] §5,
Satz 1).

Proof. Suppose A were a oS{T°, T)-bounded subset of S which
is not completely bounded. Then there would be a ¢S(T°, T)-bounded
subset B of T° and a continuous seminorm p on S such that p(4B)
is not bounded. Let {t,} be a sequence in A and {u,} a sequence in
B such that

p(tu,) > 4"
for n =1,2, «--.

An Increasing subsequence of integers k(1), k(2), - ++ can be defined
by induction such that:

(a) 27k gup {p{t,u): ue B} < 2™
(b) 277" sup {p(tw,): ue A} < 27"

where # = 1,2, «-« k{m — 1). The series >, 27"y,  converges
absolutely to a point % in T° with respect to the aS(T%, T) topology.
This is because T° is o¢S(T%, T)-complete by 4.1{b) and for each
t ¢ T and each continuous seminorm ¢ on S

IA

> a2 7wy, t) = S 2749 sup {g(ut): u e B)
J=1 =1

IA

sup {g{ut)y:u e B} < oo .

But this leads to a contradiction of the boundedness of 4 in T since
n—1
p(tu) = P2 P Up) — >0 275 Pl W)

j=1

a ﬂ;ml—‘—l 27D () = 28 — 1.

This is because
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n—1 . n—1i .
Zzu 270 (i) < ]Z:x 277 by (b)

J=1

and

2 2O p(beaten) < 3 27 by (a).

j=n+1

For U a subspace of T%, the topology BS(T, U) on T is deter-
mined by the seminorms

(4.1) p4(t) = sup {p(tw): ue A}

where A ranges over the collection of T-bounded subsets of U and p
ranges over the collection of continuous seminorms on S.

ProposITION 4.4. Let S and T contain @, and suppose TS with
the BS(TS, T) topology has AK. A sequence in T is oS(T, T®)-Cauchy
of and only if it is oS(T, T°)-bounded and coordinatewise convergent.
(cf. [10] §5, Satz 6).

Proof. It is clear that a o¢S(T, T%)-Cauchy sequence in T is
oS(T, T)-bounded and coordinatewise convergent.

Let {t,} be a sequence in T which is ¢S(T, T%)-bounded and coor-
dinatewise convergent. It will suffice to prove that {ut,} is a Cauchy
sequence in S for each e T5. Let e > 0 and p a continuous seminorm
be given. Since T° has AK with the gS(T®, T) topology there is k,
such that

s — u[Zk]) < /3 for k = k,

where B = {¢,}. Since {t,} is coordinatewise convergent there is u,
such that »put,[Zk] — ut,[Zk]) < /8 for m,n >mn, Thus for
n, M > N,

p(ut, — ut,) < p(ut, — wt,[<k]) + put,[|<k] — ut,[<k])
+ p(ut, [<k] — ut,,)
= pe(uw — ul=Ek]) + plut,[<k] — ut,[k])
+ pe(u — u[<k])
<¢B+¢B3+¢3=c¢.

Throughout the remainder of §4, S will represent a K-space
containing @ which has a @-topology. The (not uniquely determined)
family of S-bounded subsets of » whose polars in S form a funda-
mental system of neighborhoods of zero in S will be denoted by <Z.

PROROSITION 4.5. Let S D @ be a K-space having a @ topology.
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For each sequence space T both the aS(T, T°) and BS(T, T¥) topologies
on T are-p-topologies. A fundamental system of zero meighborhoods
wm aS(T, T5) consists of sets of the form

(uB)"ue T°, Be & .

A fundamental system of zero-neighborhoods in G(T, T®) consists of
sets having the form

(AB)®
where A is a aS{T, T°) bounded subset of T° and Be 7.
Proof. A fundamental system of seminorms determining the
topology oS(T, T¢) consists of those having the form
pu(t) = plut)  weT®
where p is defined on S by
p(s) = sup{|(s,v)|:ve B} .

Thus

p.(t) = sup {|(ut, v)|: ve B} = sup {|(¢, s)|: ve uB}

so that p,(t) <1 if and only if te (uB)*.
The topology BS(T, T5) is determined by a system of seminorms
each of which has the form

PA(t) = sup {p(ut): ue A} teT

where A is a T-bounded subset of T° and p is a continuous seminorm
on S having the form (5.1). Thus for te T we have

4(t) = sup {sup {| (ut, v)|: wue A, ve B}}
= sup {|(ut, v)|: uec A, ve B}
= sup{|(¢, s)|: se AB} .

Consequently »,(¢f) <1 if and only if te (AB)".

PROPOSITION 4.6. Let SD @ be a K-space having a @-topology,
namely the Z-topology where it is assumed that each member of the
T-saturated hull of <& is contained in a member of <&, and let T be
a sequence space containing P.

(a) If T has the oS(T, T°)-topology

T = U {uB¥: Be &, ue T} .
(b) If T has the BS(T, T%)-topology
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7= U {(AB)¥"“: Be =B, A is a oS(T®, T)-bounded subset of TS} .

Proof. (a) By 4.5 and 3.3
T = {(uB)¥“: Be <&, u€ T} .

It may be assumed that each B is absolutely convex since B® =
B®@S gand B®9 o B is absolutely convex. Since S D @ and B is
S-bounded B and hence B is @-bounded, and hence compact in w.
The operator ¢-— ut is continuous and linear from ® into w. Thus
B ig absolutely convex and compact in @ so that wB“ ) o (uB)* ),
On the other hand (uB)“ is the closure of B in ® and uB¥ is
the image of the closure of B under a continuous map. Thus (uB)¥“' >
B g0 that the two sets are equal. This implies that 7" has the
desired form.

(b) This follows immediately from 4.5 and 3.3.

A sum space is defined to be a K-space S containing @ on which
a @-topology is defined and such that S* = M(S). It is easy to see
that e¢s, bs, I' and @ (@ having its weak or Mackey topologies) are all
sum spaces. The concept of sum space is studied in the paper [13]
in which further examples are established e.g., cs N {? for 1 < p < =
and ms the space of mean series summable sequences as well as all
rearrangements of these spaces.

THEOREM 4.7. If S is a sum space and T D @ is an arbitrary
sequence space given the oS(T, T®) topology T' = T".

Proof. If ve T” there is ue T° and ¢t e B¥'“ where Be & such
that » = tu. But B¥W < § = M(S) < M(T®) so that v = tue T5.

If we T® define g on T by g(t) = E(ut) where E is any continuous
linear functional on S such that E{e[j]) = 1 for each j. There is such
a function because ec S/. Then for each j,

g(eld]) = Elelslu) = u(j)

so ue TV,

Throughout the remainder of this section, S will denote a sum
space which is a BK-space, and A will denote the unit ball of S’ =
M(S) when M(S) is interpreted as a BK-algebra of operators on S.
Thus

A = {te M(S): tB c B)

where B is the unit ball of S, and so A is a multiplicative semigroup
containing e.
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PROPOSITION 4.8. Let S denote a BK-sum space and A the unit
ball of S7. If T vs S-perfect then T is A-tnvariant. (cf. [10] §3,
Satz 4).

Proof. If ueA,teT and ve TS(ut)v = u{tv) e S since tve S and
ue M(S). Thus ute T55 = T.

ProrosiTiON 4.9. Let S denote a BK-sum space and A the unit
ball of S7. If T is A-invariant then the oS(T, T°) and B8S(T, T) topo-
logies are locally A-imvariant.

Proof. oS(T, TS). By 4.5 a fundamental system of zero neigh-
borhoods for oS(T, T°) consists of T-polars of sets of the form

auBYue T a > 0.

Since B is A-invariant so is B, auB"% for v e T% and a > 0 as well
as (auB')* gince T is A-invariant.

BS(T, T%). An argument essentially the same as the one in the
preceding paragraph will show that the oS(T%, T) topology on T%
is locally A-invariant. Thus if C is a T-bounded subset of 7%, AC
is also T-bounded since it is the image of C under an equicontinuous
set of operators. Thus a fundamental system of zero-neighborhoods
for BS(T, T°) consists of T-polars of sets having the form

ACBY C is oS(T?, T)-bounded in T%.

Since each such set is A-invariant so is its T-polar because T is A-
invariant so that gS(T, T°) is locally A-invariant.

COROLLARY. In an A-invariant space T D @, the A-invariant
hull AB of a oS(T, T%) bounded set B is itself oS(T, T®) bounded (cf.
[10] §5, Satz 2).

Proef. This is immediate since AB is the image under B of an
equicontinuous family of operators.

THEEOREM 4.10. Let S denote a BK-sum space and A the unit
ball of S*. If T 1s A-invariant the BS(T, TS) tepology on T coincides
with the BP-topology.

Proof. By 4.5 the BS({T, T%) topology on T is a ®-topology thus
weaker than the g@-topology.

Let C be a o(p, T)-bounded subset of ®. For each te T define
the following seminorm on S’
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Py(v) = sup {|(tv, u)

:ueC} ve S’ .

Since C is g(®, T)-bounded and T is A-invariant (hence S’ invariant)
p.(v) < = for each v€S’. Furthermore, S is a K-space so p, is the
supremum of continuous seminorms on S (recall C C ). Since S/
is a barrelled space p, is continuous on S/. There is thus a, > 0 such
that

2:(v) < a;l|vll;

where || ||; is the norm on S/. Hence, if te T and || ||s is the norm
on S,

sup {||tul|s: uw € C} = sup {sup | (tu, v)|: ve A}, u € C}
sup {|(tv, w)|: ve A, we C}
= sup {p.(v): ve A} < a, .

fi

Thus C is also a aS(T5, T) bounded subset of T°. As in the proof
of 4.9, AC is also oS(T®, T)-bounded. By 4.5 the polars in T of such
subsets of @ form a basis system of zero neighborhoods in the 8S(T, T%)
topology on T. Since AC o C, (AC)™” < C*". Thus the BS(T, T%)
topology on T is stronger than the g®-topology on 7 so that the two
topologies must coincide.

ExampPLE. The pg®-topology on bv is the normed topology. How-
ever, bv"' = I', and the BI'(bv, I') topology on bv is the relative topology
on bv as a subspace of m, which is a weaker topology.
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