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Much research has been concerned with the preservation
of particular properties of solutions for the perturbed differ-
ential equation. In particular many results have been obtained
for the perturbation of either stable or bounded differential
equations. However, the preservation under perturbation of
a more fundamental property of solutions; namely, extenda-
bility of solutions on [%;, ), has not been fully explored, and
it is this problem which this paper is concerned with.

Particular sufficient conditions on the behavior of a class of
perturbing scalar functions {#(x)} are obtained to insure that solutions
of

& =) + ¢(x)
exist in the future whenever solutions of
T = v(x)

exist in the future. It is shown, moreover, that for a rather broad
class of unperturbed scalar differential equations the admissible per-
turbing functions {¢(x)} are dependent on the unperturbed functions
{v(z)}. This does not often occur in the case of stability and bounded-
ness. However, under more restrictive conditions on the unperturbed
equation, such as linearity, admissible classes of perturbing functions
are provided which are independent of the unperturbed equation.

We obtain necessary and sufficient conditions on the unperturbed
equation so that all solutions of a certain class of perturbed equations
exist in the future.

The techniques are applied to obtain results on the uniqueness
and boundedness of perturbed scalar differential equations.

The reader is referred to ([1], [3], [4], [6]) for a through treat-
ment of the theory of the extendability of solutions of differential
equations.

2. Notation and preliminaries. Let R? denote Euclidean d-space
and || will denote any d-dimensional norm. We represent a solution
of the differential equation

T = f(t, )
satisfying x(t,) = =, by 2(¢, t,, x,)-
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Consider the following problem: assume all solutions of

(E) &= f(t, o),

where f: R x R‘— R? is continuous, exist in the future; then for
what class of functions g(¢, ) do all solutions of

P) T = f{t,x) + g 2.

In this discussion we will impose a growth condition on the
solutions of (E) by requiring the existence of a function ¢: [0, o) —
(0, <o) such that

2.1) £t %)] < (@) for all teR, and r,_) _—

B(r
This condition is sufficient for all solutions of (E) to exist in the
future (see [2 p. 30]). We say ¢(-) is related to f(t, z) if (2.1) is
satisfied.

DeFINITION 2.1. Let 4 be the class of continuous functions ¢:
[0, =) — (0, =) and satisfyingg dr/p(r) = co.

DEFINITION 2.2. Let 4 be the class of those functions ¢ € 4 which
are monotone increasing.

Because of the growth conditions imposed on f we have essentially
reduced the problem to studying the extendability of perturbed scalar
differential equations. Namely, we shall analyze the following problem:
Assume all solutions of

(ES) = "(r),

v: [0, =) — (0, =) is continuous, exist in the future; (it is not difficult
to show that existence in the future is equivalent to S dr/v(r) = <o)

then for what class of functions é(r) do all solutions of
(PS) 7= (r) + (r)

¢:]0, ==) — (0, ==) exist in the future. Due to the theory of differential
inequalities results for (ES) and (PS) imply corresponding results for
(E) and (P). Hence our discussion will in most part be confined to
(ES) and (PS).

As pointed out before, one of the most fundamental questions
concerned with perturbations is whether the perturbing term ¢ is inde-
pendent of the particular function v. In the following example we will
show that the perturbation term must depend upon the unperturbed
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system in order to get meaningful results; namely, there exist solutions
of (PS) that do not exist in the future when both v and ¢ ¢ 4.

ExamMpPLE 2.3. Consider the scalar equation & = h(x) where 1/h(x)
is defined as follows: for each integer » > 0 suchthat n <2 =< n + 1,

1/h(n) = n,1/h{in + 1) =n + 1,

h(w) = 1/a*, n+1m* <2z =n+ 1~ 1/(n+ 1)?*,

1/h(z) is linear for n < 2 < n + 1/#* and
m+1)—1/n+1Psessmnm+1).

Hence from the construction of h(x), we have for each z, > 0

* da [ o
Ty 1/a* + area T, ,
gzo h(ﬁi) = Sxo / n *'LZT/O*H]

where T, are the triangles whose sides are the graph of 1/i(z). The
area of T, is greater than n/2-1/n* = 1/2n. Therefore

& = da
E T, = o= S = co h ed.
n=]wy+1] area h(m) (x)

We now consider the equation
T =h)+ 1.

We want to show that some solutions of this equation do not exist
in the future.
Now

= dy = do S
W oY S area R,,
Sl 1+ h(®) S o o ares

where R, is the rectangle with height 1 and base 2/n® and center
{n, 1/2). The area of R, = 2/n*. Hence, since i dz/(1 + o°) < = and

S>> ,area R, < oo, we haveg dx/(1 + h(x)) < ==. This condition on
1 + A(z) is sufficient for thellre to exist solutions of # = 1 + A(x) which
do not exist in the future.

One unusual property, that we will later consider more deeply,
of the system @ = A(x) is that although all solutions exist in the future,
we have for any ¢ > 0, not all solutions of & = A{x) + ¢ exist in the
future.

Thus, in discussing a class of perturbation functions ¢(r) for (ES),
we expect that ¢(r) depends on v(r). In fact we will often impose
the following conditions on ¢ and ~:

(2.2) Lim sup ¢(r)/7(r) < =,

r—o0
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or

(2.3) lim oionf é(r)/v(r) > 0.

Moreover, by imposing a linearity or Lipschitz condition on v we are
able to construct the corresponding admissible perturbation classes
which are independent of the unperturbed system. Examples are
provided to show these classes are “maximal.” By assuming our
perturbation term depends on ¢ we provide sufficient conditions on
v(x) such that all solutions of & = v(x) + ¢g(t) exist in the future.
For a large class of equations necessary and sufficient conditions on
v(x) are given such that all solutions of (PS) exist in the future when
all solutions of (ES) exist in the future.

3. Perturbed differential scalar equations.

THEOREM 3.1. Assume all solutions of (ES) exist in the future.
Then all solutions of (PS) exist in the future for awny ¢ satisfying
2.2).

Proof. Since solutions of (ES) exist in the future thengmdr/v(r) =
co, From (2.2) there exist N and K satisfying

g(r)/v(r) < K for »r > N .
Therefore,

o(r) + 7() = 1 + K)v(r), r > N==1/(3(r) + 7{r))
= 1/((1 + K)v(r)),» > N .

Since rdoﬂ/v(w) = oo,

g"i___ﬂ__ = o
$(r) + (r)

Noting that lim inf._. ¢(»)/v(r) > 0 =1im sup,_.. 7{(#)/é(r) < < the
following dual theorem is immediately obtained by interchanging
the roles of v and ¢.

THEOREM 3.2. Assume solutions of + = ¢(r) exist in the future.

Then all solutions of (PS) exist im the future for any v satisfying
(2.3).

COROLLARY 3.3. Assume that v is bounded. If sed then all
solutions of (PS) exist in the future.
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Proof. The limit of ¢(r) as r — o either exists or is equal to .
Since 7v(-) is bounded there exists a C > 0 such that v(») < C. Hence
we have for ¢(r) = 0,

&(r)/v(r) > ¢(r)/C == lim inf ¢(r)/v(r) > lim ¢(r)/C > 0.
The result follows from Theorem 3.2.

COROLLARY 38.4. Assume solutions of 7 = Mt)v(r) exist in the
Suture, where ) is continuous. Then solutions of 7 = N(E)v(r) + 1 (t)é(r)
exist in the future for y(t) continuous, and for ¢ satisfying (2.2).

Proof. Suppose that solutions of

3.1) 7 = Mr)v(r) + x(B)g(r)

do not exist in the future. Then there exist », ¢, ¢, and a solution
7(+) of (3.1) such that

P(t, by, 7)) — oo as t—t, £>t, .

On the compact set [t, ] there exists a B >0, T > 0 such that
AMit) £ B and y(t) < T. Consider the equation

3.2) § = By(s) + To(s) .

Certainly By and T¢ satisfies (2.2). Hence by Theorem 3.1 all solutions
of (3.2) exist in the future. In particular all solutions of (3.2) are
bounded on [t, £] which implies all solutions of (3.1) are bounded on
[t, t], a contradiction, thus proving the result.

A dual result using Theorem 3.2 can easily be obtained when
(2.3) is satisfied.

When we observe Example 2.3 we notice that all solutions of & =
hz) + 1 do not exist in the future. One natural question is what
functions will perturb # = k(x) and preserve the extendability of solu-
tions. We will now consider this question in a more general form.
If we suppose all solutions of (ES) exist in the future, then what
conditions on v are needed to insure that all solutions of

&= + 9@ ,

where ¢g: R — R* is continuous, exist in the future? With Theorem
3.1 we prove the following result.

COROLLARY 3.5. Assume all solutions of (ES) exist in the future
and that either
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3.3) lim sup v(r) < oo
or
(3.4) lim inf v(r) > 0 s satisfied .

r—00

Then for continuous function g: R — R+ we have that all solutions of
(PT) T = v(x) + g(t)

exist in the future.

Proof. Since g(t) = g(t)-1, (3.3) and (3.4) implies (2.2) and (2.3)
respectively for ¢(r) = 1. Applying Corollary 8.4 we arrive at the
result.

REMARKS. It follows from Example 2.3 that we cannot improve
the conditions on v in Corollary 3.5 since in that case v(x) = h(x),
g(t) = 1, and lim sup,_.. A(x) =  and liminf, . &(x) = 0.

Results for systems (E) and (P) may be obtained by assuming
[ f(t, )| = v(x]) and |g(¢, )| < ¢(|x|) where v(-) and ¢(-) satisfy the
hypotheses of the previous theorems and corollaries.

We have shown that if v and ¢ belong to 4 then it is not neces-
sarily true that all solutions of (PS) exist in the future unless v and
¢ satisfy (2.2) or (2.3). The problem then is to consider a restriction
of the class 4, call it L, such that if ve L, and ¢ c 4, where v and
¢ are independent of each other, then all solutions of (PS) exist in
the future.

DEFINITION 3.6. Let L be the class of continuous functions 7:
[0, o) — (0, ) satisfying |[v(x)| = K |2| + h(t) where h: R— R* is
continuous and K is any positive constant.

The object of the next theorem is to prove essentially that I -+
dc 4.

THEOREM 3.7. We are given (ES), where ve L. Then if ¢ed
all solutions of (PS) exist in the future.
The solution of (PS) satisfies

(3.5) * = Kr + ¢(r) + 9(t) .
Letting v = ¢ %'r, we see that (3.5) becomes
(8.6) ¥y = L(t,y) + k),

where h(t) = e X'g(t) and L,(¢, y) = e “*(¢(ye*")). If we consider any
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interval [t,, T] where ¢, is fixed and T > ¢, then we have for ¢t € [¢,, T]
L., y) = e "(g(ye"") = Ly(y)

since ¢ is monotone. We also note that Smdy/LZ(y) = oo and Ly(-) is
monotone, and using Corollary 3.5 we have that all solutions of

¥ = Ly(y) + h(?)
exist on [¢, T]. Since T is arbitrary, the result follows.

REMARK. As we have done before, we can obtain results for (E)
and (P) by allowing f and g to satisfy

[f(t, 2)] = Mt)e(|x))
and
lg(t, »)| = x@®v(z]) ,

in which X, ¥ are continuous. By assuming ¢(-) € L and (-) € 4, we
arrive at the same results. In particular L can be extended to include
Lipschitz functions and linear functions.

Theorem 3.7 is a generalization of a theorem of Stokes [5]. In
his theorem, however, he assumed a linearity condition on f(¢, x),
namely, that f(¢, ) = A(t)x, where all solutions of & = A(¢)x are
uniformly stable. He arrived at the same result using the Tychonoff
fixed point theorem. With the general conditions assumed in Theorem
3.7, we are not able to use this method.

In a meaningful sense we shall show 4 + 4 ¢ 4, implying that
Theorem 3.7 cannot be significantly strengthened.

ExAMPLE 3.8. Consider the functions «+(-) and ¢(-) where + and
¢ depend upon each other as follows: we consider the initial values

2 =02 =10 =2 () =1, and ¢(x,) = 2.
For all n =1, we define
P (@es) = — (@ons) + 3(2)" 7 (@or — Wui)
and define (x) = y(%,,_,) for all x satisfying
By =¥ = Bonia s
where 2,,,, = %, + Y(%,_,). Similarly, we define

¢(m2n) = - ’\[f(xzn—x) =+ 3<2)2n(x2n+1 - xm) ’
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and define ¢(x) = ¢(z,,) for all & satisfying
Ton = T = Lonte »

where @,,., = @,, + ¢(x,,). With these initial values we can generate
all the points «x,, the constants (x.,_,), ¢(x.,), and hence we can then
define ¢(x) and () inductively as step functions on R*.
By their constructions, we have
—_— Z 1 = oo, and
| o)

Since ¢(-) and +(-) are monotone, we have that they are each in 4.
We claim that ¢ + + ¢ 4. To show this it is sufficient to show

e dx
—_— oo,
SO $(x) + ()
We see that
° dx
S°¢(90)+n,/f(90) / / /

= (UB)(L + 12+ 1/2 + +) = (13, 1/2< o0,
thus proving the result. Hence the solution of

&= g(x) + ¥(@),
with an initial condition (¢,) = x, > 0, does not exist on [¢, o).
4., Necessary and sufficient conditions for extendability. From
previous remarks we have observed some peculiar characteristics of
Example 2.3. We shall characterize the class of continuous functions

Mz), h: RT— R*, so as to determine what properties of h(x) cause
solutions of

% = h(x) + K, K any constant,
not to exist in the future, even though all solutions of
T = h(x)

do exist in the future. The class of perturbing functions will, in
fact, include the constant functions as a proper subset.

THEOREM 4.1. We assume that all solutions of

& = h(),
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where h: Rt — R* is continuous, exist in the future. Then for any
#: [0, o) — (0, o), with lim sup,_.. 3(r) < oo and lim inf, .. ¢(r) >0 some
solution of

& = h(x) + ¢(x)

does mot exist in the future if and only if h has the following
properties:

“4.1) if we let S(K) = {x: h(z) = K}, then
m(S(K)) < = forall K>0,

where m(S(K)) represents the Lebesgue measure of S(K), and
(4.2) for all K >0,

dx
S ~stx) h(2) < ’
where ~ S(K) is the complement of S(K). (Note: (4.1) and (4.2) imply
lim sup,.. #(x) = o and liminf,_ . h(zx) = 0.)

Proof. Let (4.1) and (4.2) hold. It is sufficient to show there
exists an x, > 0 such that

°° dx
Swe(w) e

From the hypotheses on ¢(x) there exist K > 0,2, >0 such that
é(x) = K for » = x,. Hence
S‘” dx < r dw < S dx n S dx :
soh(x) + ¢(x) a W) + K~ Jswo h(x) + K ~s h(x) + K

but since k(x) + K > h(z), we see that from (4.2)

dx S h@) _
S~su<) Mz) + K < ~s(g) dx < )

Moreover, since 1/(h(z) + K) < 1/K, then

dw B B
SS(K}W < SS(K)]“/K = (1/K)m(S(K)) < )

by (4.1), thus proving the first part.

Conversely, assume some solution of # = h(x) + ¢(x) fails to
exist in the future. Assume (4.1) does not hold; that is, there exists
C >0 such that m(S(C)) = . Since S(C) = {x: h{x) + ¢ = C + ¢},
& > 0, we have that
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1/(h(x) + ¢) = 1/(C + ¢) for xe S(C) and all ¢ > 0.

From the hypotheses on ¢(x) there exists K, > 0 such that ¢(z) < K,
for all z. Hence for z ¢ S(C)
1 > 1 )
h(x) + (@)  C + K,

Since some solution of
& = h(zx) + ¢(x)
does not exist in future, there exists an », > 0 such that

o0

= dx
S"‘o h(x) + ¢(m)<

If we consider the set
Si(C) = S(ONS(C) N[0, 7)) ,
then
m(S,(C)) = m(S(C)) — m(S(C) N [0, r]) = m(s(C)) — 7, = oo .

Therefore,
r N S S do__ _ 1 8,C) = o,
ro (%) + ¢{x) sporC + K, C I K,

a contradiction.
If we now assume {4.2) does not hold, then there exists K > 0

such that

g v _
~s(&) h(2) )
For x€ ~ (S(K)) we have h{z) > K, which implies h(z) + K < 2h(x).
Hence,
lg dx g dx
2 J~six) h(x) ~su h{x) + K
< S"" dx i S*O dx < S‘” dx + oK .
o ) + K o h(x) + K ro (x) + K
Since
Sm_._.ilx__ = oo implies Sw.__i/g__ = oo
ro W(x) + K o hx) + C

for all C > 0, a contradiction arises for C = K,, hence proving the



THE EXTENDABILITY OF SOLUTIONS 287

result.

An immediate corollary characterizes those h(x) such that all
solutions of & = A(x) + é(x) exist in the future.

COROLLARY 4.2. Supposeall solutions of & = h(x), where h: Rt*— R*),
18 continuous, exist in the future. Then for each ¢: [0, ) — (0, o)
with lim, ., sup ¢(r) < oo, lim,_.,, inf ¢(r) > 0, all solutions of = h(x) +
é(x) exist in the future if and only if h(x) has one of the following
two properties.

(4.3) there exists C > 0 such that m(S(C)) = o ,

or

(4.4) g g = oo for some K > 0.

~s(x) h(x)

We thus see it is possible to imvestigate the extendability of solutions
of & = h(x) + #(x) by analyzing h(x) on a possibly “small” subset of
[0, ).

5. Applications to boundedness and uniqueness. The preceding
results naturally extend to the case when solutions are uniformly
bounded. In particular, it is well known that if | f(¢, )| < MOy (| x]),

where €4 and rx(t)dt< co, then solutions of (E) are uniformly
0

bounded. Moreover if |g{t, )| = p{t)¢(|x|), where rfx(t)dt < oo, g€,
0

and ¢ and + satisfy either (2.2) or (2.3) then all solutions of (P) are

uniformly bounded. This follows from the fact that solutions of

7= (1) + 1®)(p(r) + 6(r)

are uniformly bounded since r(x(t) + p(t)dt < o and (y(r) + ¢(r)) € 4
0

(Theorems 3.1 and 3.2). In a similar manner we can extend our

other results to obtain analogous conclusions about perturbed uniform

bounded systems.

Our results also extend to questions of uniqueness by applying
the Osgood criterion [2, p. 33]: namely, the only solution u(z) of the
differential equation

(A) uw = a(t)v(w) ;

where a(t) = 0 is continuous, () is continuous for u = 0, ~(0) = 0,

P(w) > 0 if u >0, andg dujp(u) = o, on any interval (0, 0 + ¢] sat-
+0

isfying w(0) = 0, is u(f) = 0. Applying our previous results we obtain



288 STEPHEN R. BERNFELD

the following uniqueness theorem on perturbed systems: assume the
previous conditions on (A). Then for any continuous function b(¢) and
for any function ¢(u) satisfying ¢(0) = 0, ¢é(u) > 0 if v > 0, and

lim sup d(r)]7(r) < oo,

the only solution of
uw = a(t)y(r) + b(t)g(r)

on (0, ¢] satisfying u(0) = 0 is u(f) = 0. Applying Kamke’s Theorem
[2, p. 31], results for systems (E) and (P) may also be obtained. Similarly
some of our other results can be extended to obtain information
concerning the uniqueness of solutions of perturbed systems.
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