AN ALGEBRA OF GENERALIZED FUNCTIONS ON AN OPEN INTERVAL: TWO-SIDED OPERATIONAL CALCULUS

Gregers Louis Krabbe
Let \((a, b)\) be any open sub-interval of the real line, such that \(-\infty \leq a < 0 < b \leq \infty\). Let \(L^{\text{loc}}(a, b)\) be the space of all the functions which are integrable on each interval \((a', b')\) with \(a < a' < b' < b\). There is a one-to-one linear transformation \(\mathcal{I}\) which maps \(L^{\text{loc}}(a, b)\) into a commutative algebra \(\mathcal{A}\) of (linear) operators. This transformation \(\mathcal{I}\) maps convolution into operator-multiplication; therefore, this transformation \(\mathcal{I}\) is a useful substitute for the two-sided Laplace transformation; it can be used to solve problems that are not solvable by the distributional transformations (Fourier or bi-lateral Laplace).

In essence, the theme of this paper is a commutative algebra \(\mathcal{A}\) of generalized functions on the interval \((a, b)\); besides containing the function space \(L^{\text{loc}}(a, b)\), the algebra \(\mathcal{A}\) contains every element of the distribution space \(\mathcal{D}'(a, b)\) which is regular on the interval \((a, 0)\). The algebra \(\mathcal{A}\) is the direct sum \(\mathcal{A} \oplus \mathcal{A}_+\), where \(\mathcal{A}\) (respectively, \(\mathcal{A}_+)\) \((a, 0)\) (respectively, to the interval \((0, b)\)). There is a subspace \(\mathcal{Y}\) of \(\mathcal{A}\) such that, if \(y \in \mathcal{Y}\), then \(y\) has an "initial value" \(\langle y, 0{-}\rangle\) and a "derivative" \(\partial_t y\) (which corresponds to the usual distributional derivative). If \(y\) is a function \(f(\)\) which is locally absolutely continuous on \((a, b)\), then \(y\) belongs to \(\mathcal{Y}\), the initial value \(\langle y, 0{-}\rangle\) equals \(f(0)\), and \(\partial_t y\) corresponds to the usual derivative \(f'(\)\). If \(y\) is a distribution (such as the Dirac distribution) whose support is a locally finite subset of the interval \((a, b)\), then both \(y\) and \(\partial_t y\) belong to the subspace \(\mathcal{Y}\). In case \(a = -\infty\) and \(b = \infty\), the subspace \(\mathcal{Y}\) contains the distribution space \(\mathcal{D}'_+\).

The resulting operational calculus takes into account the behavior of functions to the left of the origin (in case \(a = -\infty\) and \(b = \infty\), the whole real line is accounted for—whereas Mikusiński’s operational calculus only accounts for the positive axis). Since the functions are not subjected to growth restrictions, the transformation \(\mathcal{I}\) is a useful substitute for the two-sided Laplace transformation (no strips of convergence need to be considered: see Examples 2.21 and the four problems 6.3–6.7). Problems such as

\[
\frac{d^2}{dt^2} y + y = \sec \frac{\pi t}{2\alpha} \quad (-\alpha < t < \alpha)
\]
can be solved by calculations which duplicate the ones that would arise if the Laplace transformation could be applied to such problems.

The differential equation

\(\frac{d^2 y}{dt^2} + y = \sum_{k=\pm\infty} \delta(t - 2k\pi) \)

is solved in 6.7 in order to illustrate our operational calculus; the right-hand side of this equation represents a series of unit impulses starting at \(t = -\infty \). The differential equation (1) cannot be solved by the distributional Fourier transformation nor by the distributional two-sided Laplace transformation. When \(-\infty = a < t < b = \infty \) the equation

\[y(t) = c_0 \cos t + c_1 \sin t + \left(1 + \left[\frac{t}{2\pi} \right] \right) \sin t \]

defines the general solution of the equation (1).

The paper is subdivided as follows. § 1: the space of generalized functions, § 2: two-sided operational calculus, § 3: translation properties, § 4: the topological space \(\mathcal{V}_\omega \), § 5: derivative of an operator, § 6: four problems.

The concepts introduced in § 5 (initial value, derivative, antiderivative of an operator) are more general and more appropriate than the corresponding ones in my textbook [5].

0. Preliminaries. Henceforth, \(\omega \) is an open sub-interval \((\omega_-, \omega_+)\) of the real line \(\mathbb{R} \); we suppose that \(\omega_- < 0 < \omega_+ \). If \(h(\cdot) \) is a function on \(\omega \), we denote by \(h_+(\cdot) \) the function defined by

\[h_+(t) = \begin{cases} 0 & \text{for } t < 0 \\ h(t) & \text{for } t \geq 0 \end{cases} \]

we set

\[h_{11}(\cdot) = h(\cdot) - h_+(\cdot) \]

As usual, the support of a function \(f(\cdot) \) (denoted \(\text{Supp} f \)) is the complement of the largest open subset of \(\mathbb{R} \) on which \(f(\cdot) \) vanishes. Let \(e_t(\cdot) \) be the function defined by

\[e_t(u) = \begin{cases} 1 & \text{for } 0 \leq u < t \\ -1 & \text{for } t < u < 0 \end{cases} \]

and by \(e_t(u) = 0 \) for all other values of \(u \). It will be convenient to denote by \(e_t \) the support of the function \(e_t(\cdot) \); thus, \(e_t \) is the interval with end-points 0 and \(t \):
Unless otherwise specified, suppose that \(f() \) and \(g() \) belong to \(L^\infty(\omega) \) (this is the space of all the complex-valued functions which are Lebesgue integrable on each interval \((a, b)\) with \(\omega_- < a < 0 < b < \omega_+ \)). We denote by \(f \wedge g() \) the function defined by

\[
(0.5) \quad f \wedge g(t) = \int_0^t f(t - u)g(u)\,du \quad \text{ (all } t \text{ in } \omega); \]
that is,

\[
(0.6) \quad f \wedge g(t) = \int_{\epsilon_t}^t f(t - u)e_t(u)g(u)\,du .
\]

Remark 0.7. Suppose that \(\omega_- \leq a \leq 0 \leq b < \omega_+ \):

\[
(0.8) \quad \text{if } a < t < b \text{ and } u \in e_t \text{ then } (t - u) \in e_t \subset (a, b) .
\]
This is easily verified.

Remarks 0.9. The following properties are direct consequences of (0.1)–(0.8):

\[
(0.10) \quad f \wedge g(t) = f_+ \wedge g(t) = f_+ \wedge g_+(t) \quad \text{ (for } t > 0),
\]
and

\[
(0.11) \quad f \wedge g(t) = f_{11} \wedge g(t) = f_{11} \wedge g_{11}(t) \quad \text{ (for } t < 0).
\]

Final Remark 0.12. If \(f_i() = f() \) and \(g_i() = g() \) almost-everywhere on \(\omega \), then \(f_i \wedge g_i() = f \wedge g() \) almost-everywhere on \(\omega \). This is another easy consequence of (0.5)–(0.8).

Lemma 0.13. If \(a \leq 0 \leq b \) and if \(f() = 0 \) almost-everywhere on the interval \((a, b)\), then \(f \wedge g() = 0 \) on \((a, b)\).

Proof. If \(t \in (a, b) \) it follows from (0.8) that

\[
u \in e_t \quad \text{ implies } (t - u) \in e_t \subset (a, b) ;
\]
therefore, \((t - u) \in (a, b) \), whence our hypothesis \((f() = 0 \) almost-everywhere on \((a, b)) \) gives \(f(t - u) = 0 \) for \(u \) almost-everywhere on the interval \(e_t \): the conclusion \(f \wedge g(t) = 0 \) now follows directly from (0.6).

Lemma 0.14. Suppose that \(a < 0 < b \). If \(f() = 0 \) on the interval \((\omega_-, b)\), then
If \(h(\cdot) \in L^{10\varepsilon}(\omega) \) and if \(h(\cdot) = 0 \) on the interval \((a, \omega_+)\), then

\[
(0.16) \quad h \ast g(t) = -\int_{t-a}^{0} h(t-\tau)g(\tau)d\tau \quad \text{(for} \omega_- < t < a) .
\]

Proof. First, the case \(b < t < \omega_+ \). From (0.5) we have

\[
(1) \quad f \ast g(t) = \int_{0}^{t-b} f(t-\tau)g(\tau)d\tau + \int_{t-b}^{t} f(t-u)g(u)du .
\]

From (0.8) we see that

\[
u \in [0, t) \quad \text{implies} \quad (t-u) \in e_t \subset \omega ,
\]

so that \((t-u) \in \omega\). If \(u > t-b \), then \(b > t-u \), whence \((t-u) \in (\omega_-, b) \); consequently, our hypothesis \((f(\cdot) = 0 \) on \((\omega_-, b))\) gives \(f(t-u) = 0 \) whenever \(u > t-b \): Conclusion (0.15) is now immediate from (1).

Next, the case \(\omega_- < t < a \). From (0.5) we have

\[
(2) \quad h \ast g(t) = -\int_{t}^{t-a} h(t-u)g(u)du - \int_{t-a}^{0} h(t-\tau)g(\tau)d\tau .
\]

From (0.8) we again see that

\[
u \in (t, 0) \quad \text{implies} \quad (t-u) \in e_t \subset \omega ,
\]

so that \((t-u) \in \omega\). If \(u < t-a \) then \(t-u > a \), whence \((t-u) \in (a, \omega_+) \); consequently, our hypothesis \((h(\cdot) = 0 \) on \((a, \omega_+))\) gives \(h(t-u) = 0 \) whenever \(u < t-a \): Conclusion (0.16) is now immediate from (2).

0.17. **Convolution.** If \(F(\cdot) \) and \(G(\cdot) \) belong to \(L^{1}(\mathbb{R}) \), then \(F \ast G(\cdot) \) is the function defined by

\[
F \ast G(x) = \int_{\mathbb{R}} F(x-u)G(u)du \quad \text{(all} \ x \ \text{in} \ \mathbb{R}) ;
\]

it is well-known that \(F \ast G(\cdot) \in L^{1}(\mathbb{R}) \) (see [1], p. 634). Further,

\[
(0.18) \quad \text{Supp} \ F \ast G \subset (\text{Supp} \ F) + (\text{Supp} \ G) ;
\]

see p. 385 in [2].

Theorem 0.19. If \(f(\cdot) \) and \(g(\cdot) \) belong to \(L^{10\varepsilon}(\omega) \), then \(f \ast g(\cdot) \) belongs to \(L^{10\varepsilon}(\omega) \), and

\[
(0.20) \quad f \ast g(\cdot) = g \ast f(\cdot) \quad \text{almost-everywhere on} \ \omega .
\]
Proof. Suppose that \(\omega_- < a < 0 < b < \omega_+ \). If \(h(\cdot) \in L^{1_{\text{loc}}}(\omega) \), we can define the function \(h_b(\cdot) \) by

\[
(1) \quad h_b(t) = \begin{cases} h(t) & \text{for } 0 < t < b \\ 0 & \text{otherwise.} \end{cases}
\]

Similarly, \(h_a(\cdot) \) is defined by

\[
(2) \quad h_a(t) = \begin{cases} h(t) & \text{for } a < t < 0 \\ 0 & \text{otherwise.} \end{cases}
\]

Note that both \(h_b(\cdot) \) and \(h_a(\cdot) \) belong to \(L^1(\mathbb{R}) \). Set

\[
(3) \quad F(\cdot) = -f_a \ast g_a(\cdot) + f_b \ast g_b(\cdot).
\]

The four functions on the right-hand side of (3) are all integrable on \(\mathbb{R} \); consequently, both \(f_a \ast g_a(\cdot) \) and \(f_b \ast g_b(\cdot) \) are integrable on \(\mathbb{R} \); from (3) it now follows that \(F(\cdot) \) is integrable on \(\mathbb{R} \). In consequence, if we can prove that

\[
(4) \quad F(t) = f \bigtriangleup g(t) \quad \text{for } a < t - 0 < b,
\]

then \(f \bigtriangleup g(\cdot) \) is integrable on the arbitrary sub-interval \((a, b)\) of the interval \(\omega \); our conclusion \(f \bigtriangleup g \in L^{1_{\text{loc}}}(\omega) \) is at hand; moreover, Conclusion (0.20) comes from (4)–(3) and the property \(F_1 \ast F_2(\cdot) = F_2 \ast F_1(\cdot) \) (see [1], p. 635). Accordingly, the proof will be accomplished by proving (4).

The proof of (4) is divided into two cases. \textit{First case:} \(a < t < 0 \). Since \(\text{Supp} f_b \) and \(\text{Supp} g_b \) are subsets of the interval \([0, \infty)\), we see from (0.18) that

\[
\text{Supp} f_b \ast g_b \subset [0, \infty);
\]

consequently, \(f_b \ast g_b(\cdot) \) vanishes for \(t < 0 \); therefore, (3) gives

\[
(5) \quad F(t) = -f_a \ast g_a(t) = -\int_a^t f_a(t - u)g(u)du
\]

(for \(a < t < 0 \)); the second equation comes from (2) and the fact that \(g_a(u) = 0 \) when \(u < a \) and when \(u > 0 \). From (5) it follows that

\[
F(t) = -\int_a^t f_a(t - u)g(u)du - \int_0^t f_a(t - \tau)g(\tau)d\tau;
\]

but \(a < u < t \) implies \(t - u > 0 \), so that \(f_a(t - u) = 0 \); therefore,

\[
(6) \quad F(t) = -\int_0^t f_a(t - \tau)g(\tau)d\tau;
\]

but \(0 > \tau > t \) implies \(t < t - \tau < 0 \); in consequence, since \(a < t \), we
have $a < t - \tau < 0$, so that (2) gives $f_a(t - \tau) = f(t - \tau)$: Equation (6) becomes

$$F(t) = \int_{\epsilon t} f(t - u)e_t(u)g(u)du.$$

In view of (6.6), this concludes the proof of (4) in case $a < t < 0$.

Second case. $0 < t < b$. As in the first case, we observe that $f_a * g_a(t) = 0$; it is a question of proving that $F(t) = f_b * g_b(t)$: the reasoning is entirely analogous to the one used in the first case.

THEOREM 0.21. Suppose that the functions $f(\cdot)$, $g(\cdot)$, and $h(\cdot)$ all belong to $L^{10}(\omega)$. If the function $|f| \wedge (|g| \wedge |h|)(\cdot)$ is continuous on ω then

$$f \wedge (g \wedge h)(x) = (f \wedge g) \wedge h(x) \quad \text{for every } x \in \omega.$$

Proof. From (0.6) it follows that

$$F \wedge (G \wedge H)(x) = \int_{\epsilon x} \int_{\epsilon t} F(x - t)G(t - u)H(u)dudt.$$

Since $|f| \wedge (|g| \wedge |h|)(\cdot)$ is continuous on ω (by hypothesis), we therefore have $|f| \wedge (|g| \wedge |h|)(\cdot) < \infty$, so that (1) gives

$$\int_{\epsilon x} \int_{\epsilon t} |f(x - t)g(t - u)h(u)|dudt < \infty;$$

we may therefore apply Tonelli's Theorem [3, p. 131] to write

$$f \wedge (g \wedge h)(x) = \int_{\epsilon x} \int_{\epsilon u} f(x - t)g(t - u)h(u)dtdu,$$

where x_u is the appropriate interval. Let us prove that

$$f \wedge (g \wedge h)(x) = \int_0^x h(u) \int_0^x f(x - t)g(t - u)dtdu.$$

In case $x > 0$ the double integral is taken over the interior of the triangle

$$\{(u, t): 0 < t < x \text{ and } 0 < u < t\};$$

consequently, the range of t (in the integral (2)) is the interval $x_u = [u, x]$: this establishes (3). In case $x < 0$ the double integral is taken over the triangle

$$\{(u, t): x < t < 0 \text{ and } t < u < 0\};$$

The principle of this proof is due to R. B. Darst.
consequently, the range of \(t \) (in the integral (2)) is the interval \(x_u = [x, u] \); the integral (2) becomes
\[
\int^x f(x - t)g(t - u)h(u) \, dt \, du,
\]
which again establishes the equation (3). The change of variable \(\tau = t - u \) brings (3) into the form
\[
\int_0^u h(u) \int_0^{x-u} f(x - u - \tau)g(\tau) \, d\tau \, du;
\]
consequently, (0.5) gives
\[
\int_0^x h(u) [f \Lambda g(x - u)] \, du:
\]
Conclusion (0.22) is now immediate from (0.5).

Definition 0.23. For any integer \(n \geq 1 \) we denote by \(q_n(\cdot) \) the function defined by the equation \(q_n(0) = 0 \) and
\[
q_n(t) = \exp \left(\frac{-1}{nt} \right) \quad (for \ t \neq 0).
\]

Theorem 0.24. Suppose that \(f(\cdot) \) belongs to \(L^{1c}(\omega) \). If \(\omega_- \leq a \leq 0 \leq b \leq \omega_+ \) and if
\[
(4) \quad f \Lambda q_n(t) = 0 \quad for \ a < t < b \quad and \quad every \ integer \ n \geq 1,
\]
then \(f(\cdot) \) vanishes almost-everywhere on the interval \((a, b) \).

Proof. From (4) and (0.20) it follows that
\[
0 = \lim_{n \to \infty} q_n \Lambda f(t) = \lim_{n \to \infty} \int_{e_t} q_n(t - u)e_t(u)f(u) \, du;
\]
since \(|q_n(\cdot)| \leq 1 \) we may apply the Lebesgue Dominated Convergence Theorem:
\[
(5) \quad 0 = \int_{e_t} \lim_{n \to \infty} \left[\exp \frac{-1}{nt - u} \right] e_t(u)f(u) \, du = \int_{e_t} e_t(u)f(u) \, du.
\]
From (5) and (0.3)-(0.4) we see that
\[
0 = \int_a^t f \quad for \ 0 < t < b, \quad and \quad 0 = -\int_a^t f \quad for \ a < t < 0,
\]
which implies our conclusion: \(f(\cdot) \) vanishes almost-everywhere on the interval \((a, b) \).
1. The space \(\mathcal{D}_0 \) of generalized functions. As before, \(\omega \) is an arbitrary sub-interval of \(\mathbb{R} = (-\infty, \infty) \) such that \(\omega \ni 0 \). If \(f(\cdot) \) and \(g(\cdot) \) are functions, the equation \(f(\cdot) = g(\cdot) \) will mean that the functions are equal almost-everywhere on the interval \(\omega \).

Notation 1.0. Let \(\mathcal{C}_0(\omega) \) be the space of all the functions which are continuous on \(\omega \) and which vanish at the origin.

Notation 1.1. We denote by \(1(\cdot) \) the constant function defined by \(1(t) = 1 \) for all \(t \) in \(\mathbb{R} \).

Lemma 1.2. If \(g(\cdot) \in L^{1c}(\omega) \) then \(1 \mathcal{L} g(\cdot) \in \mathcal{C}_0(\omega) \).

Proof. From (0.5) we see that
\[
1 \mathcal{L} g(t) = \int_0^t 1(t-u)g(u)du = \int_0^t g(u)du.
\]
On the other hand, \(g(\cdot) \in L^1(a, b) \) whenever \((a, b) \) is a compact sub-interval of the open set \(\omega \): the conclusion is now at hand.

Lemma 1.4. If \(\Psi(\cdot) \) is continuous on \(\omega \), then \((1 \mathcal{L} \Psi)' = \Psi(\cdot) \).

Proof. The equations
\[
(1 \mathcal{L} \Psi)'(t) = \frac{d}{dt} (1 \mathcal{L} \Psi)(t) = \Psi(t)
\]
are immediate from (1.3) and the Fundamental Theorem of Calculus.

Lemma 1.5. Suppose that \(v(\cdot) \in \mathcal{C}_0(\omega) \). If \(v'(\cdot) \) has only countably many discontinuities and is integrable in each compact sub-interval of the open interval \(\omega \), then \(v(\cdot) = 1 \mathcal{L} v'(\cdot) \).

Proof. Take \(t \) in \(\omega \). If \(t > 0 \) the equations
\[
v(t) = v(t) - v(0) = \int_0^t v'(u)du = 1 \mathcal{L} v(t)
\]
are from \(v(0) = 0 \), [4, p. 143], and (1.3). If \(t < 0 \), the same reasoning yields
\[
v(t) = -(v(0) - v(t)) = -\int_t^0 v'(u)du = 1 \mathcal{L} v(t)
\]

Theorem 1.6. Let \(G(\cdot) \) be a function whose derivative is continuous on the interval \(\omega \). If \(f(\cdot) \in L^{1c}(\omega) \), then \(G \mathcal{L} f(\cdot) \in \mathcal{C}_0(\omega) \) and
\((1.7)\) \[G \wedge f(\cdot) = G(0)(1 \wedge f)(\cdot) + 1 \wedge (G' \wedge f)(\cdot). \]

\textit{Proof.} Clearly, the function \(v(\cdot) = G(\cdot) - G(0)1(\cdot)\) belongs to \(C_0(\omega)\); consequently, \(1.5\) gives
\[G(\cdot) - G(0)1(\cdot) = 1 \wedge G'(\cdot), \]
so that \(0.12\) implies
\[(1) \quad G \wedge f(\cdot) - G(0)(1 \wedge f)(\cdot) = (1 \wedge G')(\wedge f)(\cdot). \]

From \(0.19\) it follows that \(\langle |G'| \wedge |f|\rangle(\cdot) \in L^{10\circ}(\omega)\); we can therefore conclude from \(1.2\) that the function \(1 \wedge (|G'| \wedge |f|)(\cdot)\) is continuous on \(\omega\), whence the equation
\[(2) \quad (1 \wedge G')(\wedge f(\cdot) = 1 \wedge (G' \wedge f)(\cdot) \]
now remains from \(0.21\). Conclusion \((1.7)\) is immediate from \((1)-(2)\). It still remains to prove that \(G \wedge f(\cdot) \in C_0(\omega)\).

Set \(g(\cdot) = G' \wedge f(\cdot)\); Equation \((1.7)\) becomes
\[(3) \quad G \wedge f(\cdot) = G(0)(1 \wedge f)(\cdot) + 1 \wedge g(\cdot). \]

From \(0.19\) we see that \(g(\cdot) \in L^{10\circ}(\omega)\); the conclusion \(G \wedge f(\cdot) \in C_0(\omega)\) is obtained from \((3)\) by setting \(g = f\) and then \(g = g,\) in \(1.2\).

1.8. The space of test-functions. Let \(W_\omega\) be the linear space of all the complex-valued functions which are infinitely differentiable on \(\omega\) and whose every derivative vanishes at the origin. Thus, \(w(\cdot) \in W_\omega\) if \(w(\cdot) \in C_0(\omega)\) and \(w^{(k)} \in C_0(\omega)\) for every integer \(k \geq 1\).

\textbf{Example 1.9.} Let \(q_n(\cdot)\) be the function defined in \(0.23\); it is easily verified that \(q_n^{(k)}(0) = 0\) for every integer \(k \geq 1\); therefore, \(q_n(\cdot) \in W_\omega\).

\textbf{Lemma 1.10.} \textit{If} \(f(\cdot) \in L^{10\circ}(\omega)\) \textit{and} \(q(\cdot) \in W_\omega\) \textit{then}
\[(1.11) \quad q \wedge f(\cdot) \in C_0(\omega) \]
and
\[(1.12) \quad (q \wedge f)'(\cdot) = q' \wedge f(\cdot). \]

\textit{Proof.} Since \(q'(\cdot) \in C_0(\omega)\), we can set \(G = q\) in \(1.6\) to obtain \((1.11)\) and the equations
\[(4) \quad q \wedge f(\cdot) = q(0)(1 \wedge f)(\cdot) + 1 \wedge (q' \wedge f)(\cdot) = 1 \wedge (q' \wedge f)(\cdot) \]
now come from \((1.7)\) and \(q(0) = 0\) \(\text{since} q(\cdot) \in C_0(\omega)\)). Next, set
Equation (4) becomes

\[(5) \quad \Psi(\omega) = q' \wedge f(\omega). \]

Equation (4) becomes

\[(6) \quad q \wedge f(\omega) = 1 \wedge \Psi(\omega). \]

Setting \(G = q' \) in 1.6, we see from (5) that \(\Psi(\omega) \in \mathbb{C}_0(\omega) \); the equations

\[(7) \quad (1 \wedge \Psi)'(\omega) = \Psi'(\omega) = q' \wedge f(\omega) \]

therefore follow from 1.4 and (5). Conclusion (1.12) is immediate from (6)-(7).

Lemma 1.13. If \(f(\omega) \in L^{\text{loc}}(\omega) \) and \(w(\omega) \in W_\omega \), then \(w \wedge f(\omega) \in W_\omega \), and

\[(1.14) \quad (f \wedge w)'(\omega) = w' \wedge f(\omega) = f \wedge w'(\omega). \]

Proof. If the equation

\[(8) \quad (w \wedge f)^{(k)}(\omega) = w^{(k)} \wedge f(\omega) \]

holds for \(k = n \), then it holds for \(k = n + 1 \); this is easily seen by observing that the equations

\[[(w \wedge f)^{(n)}]'(\omega) = (w^{(n)} \wedge f)'(\omega) = w^{(n+1)} \wedge f(\omega) \]

come from (8) and (1.12). Since (8) holds for \(k = 0 \), it holds for any integer \(k \geq 0 \). From (8) and (1.11) (with \(q = w^{(k)} \)) it follows that

\[(w \wedge f)^{(k)}(\omega) \in \mathbb{C}_0(\omega) \]

for any integer \(k \geq 0 \);

therefore, \(w \wedge f(\omega) \in W_\omega \). Conclusion (1.14) comes from (1.12) and (0.20).

Definitions 1.15. An operator is a linear mapping of \(W_\omega \) into \(W_\omega \). If \(A \) is an operator and \(w(\omega) \in W_\omega \), we denote by \(.A w(\omega) \) the function that the operator \(A \) assigns to \(w(\omega) \).

As usual, the product \(A_1 A_2 \) of two operators is defined by

\[(1.16) \quad .A_1 A_2 w(\omega) = .A_1 (.A_2 w)(\omega) \quad \text{(every } w(\omega) \text{ in } W_\omega). \]

1.17. The space of generalized functions. Let \(\mathcal{N}_\omega \) be the set of all the operators \(A \) such that the equation

\[(1.18) \quad .A (w_1 \wedge w_2)(\omega) = (.A w_1) \wedge w_2(\omega) \]

holds whenever \(w_1(\omega) \) and \(w_2(\omega) \) belong to \(W_\omega \).
DEFINITION 1.19. If \(f(\cdot) \in L^{10c}(\omega) \) we denote by \(f^* \) the operator which assigns to each \(w(\cdot) \) in \(W_\omega \) the function \(f \wedge w(\cdot) \):

\[
(1.20) \quad f^*w(\cdot) = f \wedge w(\cdot) \quad \text{(for each } w(\cdot) \text{ in } W_\omega).
\]

THEOREM 1.21. If \(f_1(\cdot) \) and \(f_2(\cdot) \) belong to \(L^{10c}(\omega) \), then

\[
(1.22) \quad f_1^*f_2^* = (f_1 \wedge f_2)^*.
\]

Proof. Take any \(w_2(\cdot) \) in \(W_\omega \). From 1.13 and (0.20) we see that \(|f_2| \wedge \omega w_2(\cdot) \in W_\omega \); consequently, we can set \(w = |f_2| \omega w_2 \) and \(f' = |f_1| \) in 1.13 to obtain

\[
|f_1| \wedge (|f_2| \wedge w_2)(\cdot) \in W_\omega:
\]

from 0.21 it therefore follows that

\[
(1.23) \quad f_1 \wedge (f_2 \wedge w_2)(\cdot) = (f_1 \wedge f_2) \wedge w_2(\cdot),
\]

which, in view of 1.19, means that

\[
.f^*(f_2^*w_2)(\cdot) = (f_1 \wedge f_2)^*w_2(\cdot).
\]

Since \(w_2(\cdot) \) is an arbitrary element of \(W_\omega \), Conclusion (1.22) is immediate from (1.16).

REMARK 1.24. If \(f(\cdot) \in L^{10c}(\omega) \) then \(f^* \in \mathcal{A}_\omega \). Indeed, \(f^* \) is an operator (by (1.20), (0.20), and 1.13): it only remains to prove that the equation (1.18) holds for \(A = f^* \). Setting \(f_1 = f \) and \(f_2 = w_1 \) in (1.23), we obtain

\[
.f \wedge (w_1 \wedge w_2)(\cdot) = (f \wedge w_1) \wedge w_2(\cdot);
\]

in view of (1.20), this becomes

\[
.f^*(w_1 \wedge w_2)(\cdot) = (f^*w_1) \wedge w_2(\cdot);
\]

therefore, (1.18) holds when \(A = f^* \).

DEFINITIONS 1.25. We denote by \(D \) the differentiation operator:

\[
(1.26) \quad Dw(\cdot) = w'(\cdot) \quad \text{(all } w(\cdot) \text{ in } W_\omega).
\]

Let \(I \) be the identity-operator:

\[
(1.27) \quad Iw(\cdot) = w(\cdot) \quad \text{(all } w(\cdot) \text{ in } W_\omega).
\]

If \(f(\cdot) \in L^{10c}(\omega) \), we denote by \(\{f(t)\} \) the operator defined by

\[
(1.28) \quad \{f(t)\}w(\cdot) = f \wedge w'(\cdot) \quad \text{(all } w(\cdot) \text{ in } W_\omega);
\]
the operator \{f(t)\} will be called the operator of the function \(f(\)\).

Remark 1.29. \(\{1(t)\} = I\). Indeed, the equations

\[\{1(t)\}w(\) = 1 \wedge w'(\) = w(\) \]

are from (1.28) and 1.5.

Remark 1.30. \(D \in \mathcal{A}_\omega\). Indeed, \(D\) is clearly an operator, and the equations

\[.D(w_1 \wedge w_2)(\) = (w_1 \wedge w_2)'(\) = w_1' \wedge w_2(\) = (.Dw_1) \wedge w_2(\) \]

are from (1.26), (1.14), and (1.26).

Definition 1.31. Let \((a, b)\) be a sub-interval of \(\omega\) such that \(a \leq 0 \leq b\); if \(A \in \mathcal{A}_\omega\) and \(B \in \mathcal{A}_\omega\), we say that \(A\) agrees with \(B\) on \((a, b)\) if

\[.Aw(t) = .Bw(t) \text{ for } a < t < b \text{ and for every } w(\) \text{ in } W_\omega. \]

Theorem 1.32. Suppose that \(f_k(\) \in L^{1_{\text{loc}}}(\omega)\) for \(k = 1, 2\). If \(\{f_1(t)\}\) agrees with \(\{f_2(t)\}\) on \((a, b)\), then \(f_1(\) = f_2(\)\) almost-everywhere on the interval \((a, b)\). Conversely, if the functions are equal almost-everywhere on \((a, b)\), then their operators agree on \((a, b)\).

Proof. Set \(h(\) = f_1(\) - f_2(\)\). By hypothesis, the relation

\[\{h(t)\}w(t) = 0 \quad (\text{for } a < t < b) \]

holds for every \(w(\)\) in \(W_\omega\); it will suffice to show that \(h(\) = 0\) almost-everywhere on \((a, b)\). Take any integer \(n \geq 1\), and let \(q_n(\)\) be the function that was defined in 0.23; since \(q_n(\) \in W_\omega\) (see 1.9), it follows from 1.13 (with \(f = 1\)) that \(q_n \wedge 1(\) \in W_\omega\); in view of (0.20) we may therefore set \(w(\) = 1 \wedge q_n(\)\) in (1) to obtain

\[\{h(t)\}(1 \wedge q_n)(t) = 0 \quad (\text{for } a < t < b). \]

The equations

\[\{h(t)\}(1 \wedge q_n)(\) = h \wedge (1 \wedge q_n)'(\) = h \wedge q_n(\) \]

are from (1.28) and 1.4. Combining (2) and (3), we see that \(h \wedge q_n(t) = 0\) for \(a < t < b\) and for every integer \(n \geq 1\); the conclusion \(h(\) = 0\) (almost-everywhere on \((a, b)\)) now comes from 0.24.

Conversely, suppose that \(f_1(\) = f_2(\)\) almost-everywhere; this means that \(h(\) = 0\) almost-everywhere on \((a, b)\); we may therefore apply 0.13 to conclude that
consequently, (1.28) gives \(\{h(t)\}w(t) = 0 \), so that

\[\{f_1(t)\}w(t) = \{f_2(t)\}w(t) \quad \text{for } a < t < b \text{ and } w(\) \in W_\omega; \]

this proves that \(\{f_1(t)\} \) agrees with \(\{f_2(t)\} \) on \((a, b) \).

Corollary 1.33. Suppose that \(f_1(\) \) and \(f_2(\)) belong to \(L^{1\infty}(\omega) \): \n
\[f_1(\) = f_2(\) \text{ if (and only if) } \{f_1(t)\} = \{f_2(t)\}. \]

Proof. Set \(a = \omega_- \) and \(b = \omega_+ \) in 1.32: by definition, two operators are equal if they agree on \((a, b) \); moreover, we agree that the equation \(f_1(\) = f_2(\) \) means that these functions are equal almost-everywhere on \((a, b) \). The conclusion is now immediate from 1.32.

Theorem 1.34. The mapping \(f(\) \mapsto \{f(t)\} \) is an injective linear transformation of \(L^{1\infty}(\omega) \) into \(\mathcal{W}_\omega \) such that

\[\{f(t)\} = f^*D. \]

Proof. The equation (1.35) is immediate from (1.28), (1.16), and (1.26). On the other hand, it is easily verified that \(\mathcal{W}_\omega \) is an algebra (if \(A_k \in \mathcal{W}_\omega \) for \(k = 1, 2 \), then \(A_1A_2 \in \mathcal{W}_\omega \) since \(f^* \in \mathcal{W}_\omega \) (by 1.24), and since \(D \in \mathcal{W}_\omega \) (by 1.30), the conclusion \(\{f(t)\} \in \mathcal{W}_\omega \) comes from (1.35). From 1.33 we may now conclude that \(f(\) \mapsto \{f(t)\} \) is an injective transformation of \(L^{1\infty}(\omega) \) into \(\mathcal{W}_\omega \): the linearity is clear from (1.28).

Lemma 1.36. If \(B \in \mathcal{W}_\omega \) then the equation

\[B(p_1 \land p_2)(\) = p_1 \land (Bp_2)(\) \]

holds for every \(p_1(\) \) and \(p_2(\) \) in \(W_\omega \).

Proof. The equations

\[B(p_1 \land p_2)(\) = B(p_2 \land p_1)(\) = (Bp_2) \land p_1(\) \]

are from (0.20), (0.12), and (1.18); conclusion (1.37) is now immediate from (0.20).

Theorem 1.38. \(\mathcal{W}_\omega \) is a commutative algebra.

Proof. The multiplication of the algebra \(\mathcal{W}_\omega \) is the usual operator-multiplication (defined in (1.16)); it is easily verified that \(\mathcal{W}_\omega \) is
an algebra. Take A_1 and A_2 in \mathcal{A}_ω; to prove the commutativity, it will suffice to demonstrate that $A_1A_2 = A_2A_1 = 0$. Let $q_1(\)$ and $q_2(\)$ be any two elements of W_ω; we begin by observing that

(1) \[A_1A_2(q_1 \land q_2')(\) = A_1[(A_2q_1) \land q_2](\) = (A_2q_1) \land (A_1q_2')(\); \]
these equations are from (1.16), (1.18), and (1.37) (with $p_1 = A_2q_1'$ and $p_2 = q_2'$). On the other hand, the equations

(2) \[A_2A_1(q_1 \land q_2'(\) = A_2(q_1 \land A_1q_2'(\)) = (A_2q_1) \land (A_1q_2')(\) \]
are from (1.16), (1.37), and (1.18). We now subtract (2) from (1) to obtain

(3) \[A(q_1 \land q_2)(\) = 0, \text{ where } A = A_1A_2 - A_2A_1. \]

From (3) and (1.18) it results that

\[0 = (Aq_1) \land q_2'(\) = \{Aq_1(t)\}q_2(\) \quad (\text{all } q_2(\) \text{ in } W_\omega); \]
the last equation is from (1.28). Consequently, $0 = \{Aq_1(t)\}$; we may now infer from 1.33 that $0 = Aq_1(\)$ for each $q_1(\)$ in W_ω: the desired conclusion $A = 0$ is at hand.

Theorem 1.39. If $A \in \mathcal{A}_\omega$ and $w(\) \in W_\omega$, then $\{Aw(t)\} = A\{w(t)\}$.

Proof. Let $w_2(\)$ be an arbitrary element of W_ω; the equations

(4) \[\{Aw(t)\}w_2(\) = (Aw) \land w_2'(\) = A(w \land w_2')(\) \]
are from (1.28) and (1.18). On the other hand, the equations

(5) \[A\{w(t)\}w_2(\) = A(\{w(t)\}w_2)(\) = A(w \land w_2)(\) \]
come from (1.16) and (1.28). Comparing (4) and (5):

(6) \[\{Aw(t)\}w_2(\) = (A\{w(t)\})w_2(\). \]
Since (6) holds for every $w_2(\)$ in W_ω, the proof is complete.

Theorem 1.40. If $f_1(\)$ and $f_2(\)$ both belong to $L^{10c}(\omega)$, then

(7) \[D[f_1 \land f_2(t)] = \{f_1(t)\}\{f_2(t)\}. \]

Proof. The equations

(8) \[D[f_1 \land f_2(t)] = D(f_1 \land f_2)^*D = Df_1^*f_2^*D = (f_1^*D)(f_2^*D) \]
are obtained by using (1.35) (with $f = f_1 \land f_2$), by using (1.22), and by utilizing the commutativity and the associativity of the multiplication in \mathcal{A}_ω. Conclusion (7) comes directly from (8) and two more
2. Two-sided operational calculus. If c is a scalar (that is, a complex number), the equation \(\{c1(t)\} = cI \) comes from 1.29 and the linearity of the transformation \(f(\cdot) \mapsto \{f(\cdot)\} \); consequently, \(cI \in \mathcal{S}_\omega \) (recall that \(I \) is the identity: (1.27)). Since the correspondence \(c \mapsto cI \) is an algebraic isomorphism of the field of scalars into the algebra \(\mathcal{S}_\omega \), there is no reason to distinguish between the scalar \(c \) and the operator \(cI \):

\begin{equation}
(2.0) \quad c = cI = \{c1(t)\} \quad \text{for any scalar } c. \nonumber
\end{equation}

Since \(ct^1(t) = ct^1 \) for all \(t \) in \(\mathbb{R} \), it is natural to write \(\{ct^1\} \) instead of \(\{ct^1(t)\} \); in particular,

\begin{equation}
(2.1) \quad c = cI = \{c\} \quad \text{and } 1 = I = \{1\}. \nonumber
\end{equation}

Substituting \(f_1 = 1 \) into 1.40:

\begin{equation}
(2.2) \quad D\{1 \Lambda f_2(t)\} = \{f_2(t)\}. \nonumber
\end{equation}

We can also combine the linearity property with (2.1) to obtain

\begin{equation}
(2.3) \quad \{c_1f_1(t) + c_2f_2(t) + c_3\} = c_1\{f_1(t)\} + c_2\{f_2(t)\} + c_3; \nonumber
\end{equation}

of course, we suppose throughout that \(c_k \) \((k = 1, 2, 3)\) are scalars, and \(f_k(\cdot) \quad (k = 1, 2) \) belong to \(L^{\text{loc}}(\omega) \).

Theorem 2.4. Suppose that \(f(\cdot) \) is a function which is continuous on the interval \(\omega \). If \(f'(\cdot) \) has at most countably-many discontinuities and is integrable in each compact sub-interval of \(\omega \), then

\begin{equation}
(2.5) \quad \{f'(t)\} = D\{f(t)\} - f(0)D. \nonumber
\end{equation}

Proof. If \(v(\cdot) = f(\cdot) - f(0)1 \), then \(v'(\cdot) = f'(\cdot) \) and we may apply 1.5:

\begin{equation}
(1) \quad f(\cdot) - f(0)1 = v(\cdot) = 1 \Lambda f'(\cdot). \nonumber
\end{equation}

From (1) and (2.3) it follows that

\begin{equation}
(2) \quad \{f(t)\} - f(0) = \{1 \Lambda f'(t)\}. \nonumber
\end{equation}

Multiplying by \(D \) both sides of (2), we obtain

\[D\{f(t)\} - f(0)D = D\{1 \Lambda f'(t)\} = \{f'(t)\}; \]

the last equation is from (2.2).

2.6. Invertibility. As usual, an operator \(A \) is called invertible
if $A \in \mathcal{A}_\omega$ and there exists an operator X in \mathcal{A}_ω such that $AX = 1$. Suppose that A is an invertible operator; since \mathcal{A}_ω is a commutative algebra, it is easily verified that there exists exactly one operator A^{-1} such that $A^{-1} \in \mathcal{A}_\omega$ and $AA^{-1} = 1$. Setting $f(t) = t$ in 2.4, we obtain

\[(2.7) \quad \{1\} = D\{t\} ;\]

consequently, D is an invertible operator, and $D^{-1} = \{t\}$.

Theorem 2.8. Suppose that $Y \in \mathcal{A}_\omega$ and $V \in \mathcal{A}_\omega$. If the equation $VY = R$ holds for some invertible R in \mathcal{A}_ω, then V is invertible, and $Y = R/V$, where R/V denotes RV^{-1}.

Proof. Easy; see 1.76 in [5].

Remarks 2.9. From (2.5) we see that

\[(2.10) \quad D\{\sin t\} = \{\cos t\},\]

whence $D^2\{\sin t\} = D\{\cos t\} = -\{\sin t\} + D$ (this last equation also comes from (2.5)); we may therefore use 2.8 to obtain

\[(2.11) \quad \{\sin t\} = \frac{D}{D^2 + 1}.\]

The equation

\[(2.12) \quad D^{-k} = \left\{\frac{t^k}{k!}\right\} \quad \text{(for any integer } k \geq 0)\]

is an easy consequence of (2.7) and (2.5).

2.13. Notation. We shall often write f instead of $\{f(t)\}$. Consequently, (2.3) can be re-written in the form

\[(2.14) \quad \{c_1f_1(t) + c_2f_2(t) + c_3\} = c_1f_1 + c_2f_2 + c_3,\]

and 1.33 becomes

\[(2.15) \quad f_1 = f_2 \text{ if (and only if) } f_1(\) = f_2(\).\]

Combining 1.40 with (0.5):

\[(2.16) \quad f_1 \wedge f_2 = f_1D^{-1}f_2 = \left\{\int_0^t f_1(t - u)f_2(u)du\right\}.\]

Also, note that (2.2) gives

\[(2.17) \quad f_2 = D(1 \wedge f_2).\]
that is,
\begin{equation}
D^{-1}f_z = 1 \Lambda f_z;
\end{equation}
combining with (1.3):
\begin{equation}
\left\{ \int_0^t f_z \right\} = D^{-1}f_z.
\end{equation}

Finally, note that Theorem 1.39 becomes
\begin{equation}
Aw = Aw \quad \text{(for } A \in \mathcal{A}_\omega \text{ and } w() \in W_\omega).\nonumber
\end{equation}

APPLICATION 2.21. Given a function \(f() \) in \(L^{10c}(-\alpha, \alpha) \), let us solve the differential equation
\begin{equation}
y''(t) + y(t) = f(t) \quad (-\alpha < t < \alpha);
\end{equation}
for example, we could have \(f(t) = \sec(\pi t/2\alpha) \). To solve (1), set \(\omega = (-\alpha, \alpha) \), \(c_0 = y(0), c_1 = y'(0) \), and inject both sides of (1) into \(\mathcal{A}_\omega \); this gives \(D^2y + y = c_1D + c_0D^2 + f \); solving for \(y \):
\begin{align*}
y &= c_1 \frac{D}{D^2 + 1} + c_0D \frac{D}{D^2 + 1} + \frac{D}{D^2 + 1} D^{-1}f;
\end{align*}
we can now use (2.11), (2.10), and (2.16) to write
\begin{equation}
y = c_1 \sin \omega + c_0 \cos \omega + \left\{ \int_0^t (\sin (t - u))f(u)du \right\}.\nonumber
\end{equation}

3. **Translation properties.** In this section we shall describe some two-sided analogues of the translation properties described in [5].

If \(b \geq 0 \) we define the function \(T_b() \) by
\begin{equation}
T_b(t) = \begin{cases} 0 & \text{for } t < b \\ 1 & \text{for } t \geq b. \end{cases}
\end{equation}

If \(a < 0 \) we set
\begin{equation}
T_a(t) = \begin{cases} -1 & \text{for } t < a \\ 0 & \text{for } t \geq a. \end{cases}
\end{equation}

Observe that
\begin{equation}
T_x() = 0 \text{ on } (-|x|, |x|) \quad \text{(for any } x \text{ in } \mathbb{R}).
\end{equation}

Until further notice, let \(g() \) be a function in \(L^{10c}(\omega) \), and let \(g_x() \) be the function defined by
\begin{equation}
g_x(u) = T_x(u)g(u - x) \quad \text{(for } u \in \omega);\nonumber
\end{equation}
note that $g_x(\cdot) \in L^{10c}(\omega)$.

Lemma 3.4. If $b \geq 0$ then $1 \Lambda g_b(\cdot) = T_b \Lambda g(\cdot)$.

Proof. Observe that $g_b(\cdot) = 0 = T_b(\cdot)$ on the interval (ω_-, b); from 0.13 it therefore follows that

\[(1) \quad g_b \Lambda 1(t) = 0 = T_b \Lambda g(t) \quad \text{for } t \in (\omega_-, b) .\]

Next, suppose that $t > b$ and $t \in \omega$: the equation

\[1 \Lambda g_b(t) = \int_0^t 1(t - u)T_b(u)g(u - x)du\]

comes from (0.5) and (3.3); in view of (3.0), we see that

\[(2) \quad 1 \Lambda g_b(t) = \int_b^t g(u - x)du = \int_0^{t-b} g(\tau)d\tau = T_b \Lambda g(t) :\]

the second equation is obtained by the change of variable $\tau = u - b$; the last equation comes from (0.15) by setting $f = T_b$ in 0.14. The conclusion is immediate from (1)-(2).

Theorem 3.5. If $x \in \mathbb{R}$ then $1 \Lambda g_x(\cdot) = T_x \Lambda g(\cdot)$ and

\[(3.6) \quad g_x = gT_x .\]

Proof. In view of 3.4, it only remains to consider the case $x = a < 0$. Observe that $g_a(\cdot) = 0 = T_a(\cdot)$ on the interval (a, ω_+); from 0.13 it therefore follows that

\[(3) \quad g_a \Lambda 1(t) = 0 = T_a \Lambda g(t) \quad \text{for } t \in (a, \omega_+)) .\]

Next, suppose that $t < a$ and $t \in \omega$: as in the proof of 3.4, we see that

\[(4) \quad 1 \Lambda g_a(t) = -\int_t^a g(u - x)du = -\int_{t-a}^0 g(\tau)d\tau :\]

the second equation is obtained by the change of variable $\tau = u - a$. Note that $T_a(\cdot) = 0$ on the interval (a, ω_+): we can therefore set $h = T_a$ in 0.14 and use (0.16) to obtain

\[(5) \quad T_a \Lambda g(t) = -\int_{t-a}^0 T_a(t - \tau)g(\tau)d\tau = -\int_{t-a}^0 g(\tau)d\tau .\]

From (4)-(5) it results that $1 \Lambda g_a(t) = T_a \Lambda g(t)$ for $\omega_- < t < a$; the conclusion $1 \Lambda g_x(\cdot) = T_x \Lambda g(\cdot)$ is now immediate from (3). The equations
are from (2.17), from our conclusion (1 ∨ g() = T_x \land g), and from (2.17): this proves (3.6).

3.7. Particular cases. In view of (3.3), we can write (3.6) in the form

\begin{equation}
\{T_x(t)g(t - x)\} = T_xg \quad \text{(for } x \in \mathbb{R} \text{ and } g() \in L^{1_{loc}}(\omega)).
\end{equation}

This equation is a useful substitute for the Laplace-transform identity

\[\mathcal{L}[T_x(t)g(t - x)] = e^{-sx}\mathcal{L}[g(t)]. \]

Let \(\mathcal{U}() \) be the function \(1() - 1_{+}() \); that is,

\begin{equation}
\mathcal{U}() = 1() - T_0().
\end{equation}

From (0.1) and (3.0) it follows that \(g_{+}() = T_0()g() \); but (3.8) then gives \(\{g_{+}(t)\} = T_0g \), so that

\begin{equation}
\{g_{+}(t)\} = g - T_0g = \mathcal{U}g \quad \text{(by (0.2) and (3.9))}.
\end{equation}

Setting \(g() = T_0() \) in (3.8) we see that \(T_0 = \{T_0(t)T_0(t)\} = T_0T_0 \), whence it results that

\begin{equation}
T_0\mathcal{U} = 0, \quad T_0^2 = T_0, \quad \text{and } \mathcal{U}^2 = \mathcal{U}.
\end{equation}

If \(A \in \mathcal{A}_\omega \) we set \(A_+ = T_0A \) and \(A_{\mathcal{U}} = \mathcal{U}A \); clearly, \(A = A_{\mathcal{U}} + A_+ \) and \(A_{\mathcal{U}}A_+ = 0 \). If \(B \in \mathcal{A}_\omega \) then

\begin{equation}
A_{\mathcal{U}}B = A_{\mathcal{U}}B_{\mathcal{U}} = \mathcal{U}(AB)
\end{equation}

and

\begin{equation}
A_+B = AB_+ = A_+B_+ = (AB)_+.
\end{equation}

Let \((B,\mathcal{A}) \) denote the set \(\{BA: A \in \mathcal{A}\} \); it is easily seen that \((\mathcal{U},\mathcal{A}) \) and \((T_0,\mathcal{A}) \) are ideals in the algebra \(\mathcal{A}_\omega \), and \(\mathcal{A}_\omega \) is the direct sum of these ideals:

\begin{equation}
\mathcal{A} = (\mathcal{U},\mathcal{A}) \oplus (T_0,\mathcal{A}).
\end{equation}

Note that \(\text{sgn } t = -\mathcal{U}(t) + T_0(t) \), so that \(\text{sgn } = -\mathcal{U} + T_0 \). It is easily verified that \(\{|t|\} = D^{-1} \text{sgn} \), and

\begin{equation}
\{e^{a|t|}\} = \frac{D^2 + aD \text{sgn}}{D^2 - a^2}.
\end{equation}

If \(\alpha > 0 \) we set

\[1^\alpha() = -T_{-\alpha}() + T_\alpha(); \]
from (3.8) it follows readily that
\[1^\alpha g = \{-1 - 1^\alpha(t)g(t + \alpha) + 1^\alpha(t)g(t - \alpha)\} \, . \]

If \(h(\) \) is a periodic function of period \(\alpha \), then
\[h = \frac{[1 - 1^\alpha(t)h(t)]}{1 - 1^\alpha} \, . \]

Finally, if \(\alpha \geq 0 \) and \(\beta \geq 0 \) then \(1^\alpha 1^\beta = 1^{\alpha + \beta} \) and
\[(3.15) \quad 1^\alpha 1^\beta = 1^{\alpha + \beta} \, ; \]
we define \(1^\alpha \) to be \(1 \) in case \(\alpha = 0 \).

3.16. Other operational calculi. Mikusiński’s injection (of \(L^{10\alpha}(0, \infty) \) into the Mikusiński field) is an extension of the Laplace transformation; analogously, our injection \(f(\) \mapsto \{f(t)\} \) is comparable to the two-sided Laplace transformation. However, if \(\mathcal{L}\{f(t)\} \) denotes the Laplace transform of the function \(f(\) \), then
\[\mathcal{L}\{e^{-t} - e^t\}(s) = \frac{2}{1 - s^2} = \mathcal{L}\{e^{-|t|}\}(s) ; \]
the first equation holds for \(s > 1 \), the second for \(0 < s < 1 \). This contrasts with
\[\{e^{-t} - e^t\} = \frac{2D}{1 - D^2} \neq \{e^{-|t|}\} \quad \text{(see (3.14))}. \]

A problem which is not Laplace-transformable is discussed in 6.7.

Theorem 3.17. If \(\alpha > 0 \) and \(h(\) \in L^{10\alpha}(\omega) \), then the equation
\[(3.18) \quad \left\{ \sum_{k = -\infty}^{\infty} c_k T_{k\alpha}(t)g(t - k\alpha) \right\} = g\left\{ \sum_{k = -\infty}^{\infty} c_k T_{k\alpha}(t) \right\} \]
holds for any scalar-valued sequence \(c_k \) \((k = 0, \pm 1, \pm 2, \pm 3, \cdots)\).

Proof. Set
\[(1) \quad g(T_\alpha)(\) = \sum_{k = -\infty}^{\infty} c_k g_{k\alpha}(\) \, . \]

Take any \(t \) in \(\omega \): there exists an integer \(m > 0 \) such that \(|t| < m\alpha \). Clearly,
\[(2) \quad g(T_\alpha)(t) = \sum_{|k| < m} c_k g_{k\alpha}(t) + \sum_{|i| \geq m} c_i g_{i\alpha}(t) \, . \]
Since \(t \in (-m\alpha, m\alpha) \subset (-|i|\alpha, |i|\alpha) \) and since \(g_{i\alpha}(\) = 0 \) on the interval
(−|i|α, |i|α) (by (3.2) and (3.3)), we have \(g_{ic}(t) = 0 \): consequently, the series (1) converges, and (3.3) gives

\[
(3) \quad g(T_\alpha(t)) = \sum_{k=\infty}^{\infty} c_k T_{k\alpha}(t)g(t - k\alpha).
\]

The equations

\[
g(T_\alpha) = D\left\{ 1 \land g(T_\alpha) \right\} = D\left\{ \sum_{k=\infty}^{\infty} c_k (1 \land g_{k\alpha})(t) \right\}
\]

are from (2.17) and (1); from 3.5 it therefore follows that

\[
(4) \quad g(T_\alpha) = D\left\{ \sum_{k=\infty}^{\infty} c_k (T_{k\alpha} \land g)(t) \right\}.
\]

Equation (4) gives

\[
(5) \quad g(T_\alpha) = D\left\{ g \land \sum_{k=\infty}^{\infty} c_k T_{k\alpha}(t) \right\} = g\left\{ \sum_{k=\infty}^{\infty} c_k T_{k\alpha}(t) \right\}.
\]

the second equation is from 1.40. Conclusion (3.18) now comes from (3) and (5).

Remark 3.19. If \(c \) is a scalar and if \(\lambda \geq 0 \), the equation

\[
\frac{1^l h}{1 - cI^\alpha} = \left\{ \sum_{k=0}^{\infty} \frac{e^k(h(t + k\alpha + \lambda) + h(t - k\alpha - \lambda))}{1 - cI^\alpha} \right\}
\]

is not hard to verify; it is the two-sided analogue of Theorem 5.29 in [5].

Theorem 3.20. If \(x \in \mathbb{R} \) and \(w(\cdot) \in W_\omega \) then

\[
(3.21) \quad T_x w(t) = T_x(t)w(t - x) \quad \text{for } t \in \omega.
\]

Proof. The equations

\[
\{T_x(t)w(t - x)\} = T_x w = \cdot T_x w
\]

come from (3.8) and (2.20); Conclusion (3.21) now follows from (2.15).

Lemma 3.22. If \(R \in X_\omega \) and \(w(\cdot) \in W_\omega \) then

\[
(3.23) \quad R_{\|} w(\cdot) = [Rw]_{\|}(\cdot).
\]

Proof. Setting \(g = \cdot Rw \) in (3.9.1), we obtain

\[
(1) \quad \{[Rw]_{\|}(t)\} = \|\{Rw(t)\} = \|R\{w(t)\}:
\]

the last equation is from 1.39. Since \(B_{\|} = \|B \) (by definition), Equa-
tion (1) becomes
\[([.Rw]_{U}(t)) = R_{U}[w(t)] = [.R_{U}w(t)] : \]
the second equation is from 1.39. Conclusion (3.23) is immediate from (2) and 1.33.

Theorem 3.24. If \(A \in \mathcal{X}_\omega \) and \(B \in \mathcal{X}_\omega \), then
\[A_{U} = B_{U} \text{ if (and only if) } A \text{ agrees with } B \text{ on } (\omega_-, 0). \]

Proof. Recall that \((\omega_-, 0) = \omega \cap (-\infty, 0) \). Let \(w() \) be any element of \(W_\omega \); the equations
\[(3) \quad [.A_\omega w(U() = .A_{U}w() = .B_{U}w() = [.B_\omega w(U() \]
are from (3.23), our hypothesis \(A_{U} = B_{U} \), and (3.23). Since \(h_{U}(t) = h(t) \) for \(t < 0 \) (see (0.1)-(0.2)), Equation (3) implies
\[(4) \quad .A_\omega w(t) = .B_\omega w(t) \quad \text{ (for } \omega_- < t < 0). \]

From (4) and 1.31 we see that \(A \) agrees with \(B \) on \((\omega_-, 0) \). Conversely, if \(A \) agrees with \(B \) on \((\omega_-, 0) \), then (4) holds, whence the equation \([.A_\omega w(U() = [.B_\omega w(U() \): combining this with (3.23), we obtain
\[.A_{U}w() = .B_{U}w() \quad \text{ (for every } w() \text{ in } W_\omega), \]
which gives \(A_{U} = B_{U} \).

Theorem 3.25. The space \((T_0, \mathcal{X})\) consists of all the elements of \(\mathcal{X}_\omega \) which agree with \(0 \) on \((\omega_-, 0) \). Moreover,
\[(3.26) \quad B \in (T_0, \mathcal{X}) \iff B_{U} = 0 \iff B = B_+ . \]

Proof. We begin with (3.26). If \(B \in (T_0, \mathcal{X}) \) then \(B = \tau_0A \) for some \(A \) in \(\mathcal{X}_\omega \); therefore, \(UB = 0 \) (by (3.10)); this gives \(B_{U} = 0 \); since \(B = B_{U} + B_+ \), the equation \(B_{U} = 0 \) implies \(B = B_+ \); if \(B = B_+ \), then \(B = \tau_0B \), whence \(B \in (T_0, \mathcal{X}) \). This proves (3.26).

If \(B \in (T_0, \mathcal{X}) \) then \(B_{U} = 0 \) (by (3.26)), which implies that \(B \) agrees with \(0 \) on the interval \((\omega_-, 0) \) (by 3.24). Conversely, if \(B \) agrees with \(0 \) on the interval \((\omega_-, 0) \), then \(B_{U} = 0 \) (by (3.24)): the conclusion \(B \in (T_0, \mathcal{X}) \) now comes from (3.26).

Theorem 3.27. If \(B \in \mathcal{X}_\omega \) is such that the equation \(f = B_{U} \) holds for some \(f() \) in \(L^{10\omega}(\omega) \), then \(f \) agrees with \(B \) on the interval \((\omega_-, 0) \).

Proof. The equations
are from the definition \((f_{11} = \bigcup f)\), from our hypothesis, from the definition \((B_{11} = \bigcup B)\), from (3.10), and again from the definition \((B_{11} = \bigcup B)\). From (3.28) and 3.24 we see that \(f\) agrees with \(B\) on the interval \((\omega_-, 0)\).

4. The topological space \(\mathscr{X}_\omega\). Let the function space \(W_\omega\) be endowed with the topology of pointwise convergence on the interval \(\omega\): this enables us to topologize \(\mathscr{X}_\omega\) by endowing it with the product topology (recall that \(\mathscr{X}_\omega\) consists of mappings of \(W_\omega\) into the topological space \(W_\omega\)). Consequently, the equation

\[
B = \lim_{\lambda \to \gamma} A_\lambda \quad \text{(for } B \text{ and } A_\lambda \text{ in } \mathscr{X}_\omega) \]

means that

\[
(1) \quad .Bw(t) = \lim_{\lambda \to \gamma} .A_\lambda w(t) \quad \text{(for } t \in \omega \text{ and } w() \in \omega_\omega). \]

It is immediately clear that \(\mathscr{X}_\omega\) is a locally convex Hausdorff vector space: in fact, H. Shultz has proved that it is sequentially complete and that the multiplication of the algebra \(\mathscr{X}_\omega\) is sequentially continuous.

We denote by \(\lim A_\lambda \) the mapping that assigns to each \(w()\) in \(W_\omega\) the function \(.Bw()\) defined by (1):

\[
(4.1) \quad \left(\lim_{\lambda \to \gamma} A_\lambda\right)w() = \lim_{x \to \gamma} .A_\lambda w() \quad \text{(every } w() \text{ in } W_\omega). \]

If \(x \mapsto F(x)\) is a mapping into \(\mathscr{X}_\omega\), we set

\[
(4.2) \quad \frac{d}{dx} F(x) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} [F(x + \varepsilon) - F(x)]; \]

in view of (4.1), this means that \(dF(x)/dx\) is the operator defined for any \(w()\) in \(W_\omega\) by

\[
(4.3) \quad .\left(\frac{d}{dx} F(x)\right)w() = \frac{\partial}{\partial x} (\cdot F(x)w()). \]

Theorem 4.4. If \(x \in \mathbf{R}\), then \(\left(\frac{d}{dx}\right)_{\tau_x} = -\tau_x D\).

Proof. Take any \(w()\) in \(W_\omega\), take any \(t \neq x\) in \(\omega\); from (4.3) we see that

\[
(2) \quad .\left(\frac{d}{dx} \tau_x\right)w(t) = \frac{\partial}{\partial x} (\cdot \tau_x w(t)) = \frac{\partial}{\partial x} \tau_x(t)w(t - x): \]
the second equation is from (3.21). Set $E_1 = \{x: x > t\}$ and $E_2 = \{x: x < t\}$; note that the function $x \mapsto T_x(t)$ is constant on E_k when $k = 1, 2$; consequently, since $x \neq t$ then $x \in E_k$ for some k, whence $\partial T_x(t)/\partial x = 0$; we can use this to infer from (2) that

$$\left(\frac{d}{dx} T_x\right) w(t) = T_x(t) \frac{\partial}{\partial x} w(t - x) = -T_x(t)w'(t - x) \quad (\text{all } t \neq x).$$

Consequently, we may use (3.21) to write

$$\left(\frac{d}{dx} T_x\right) w(\cdot) = -T_x w'(\cdot) \quad (\text{all } w(\cdot) \text{ in } W_\omega).$$

Calling $B = dT_x/dx$, this gives $Bw(\cdot) = -T_x Dw(\cdot)$, whence the conclusion $B = -T_x D$.

Corollary 4.5. if $x \in \mathbb{R}$ then $D T_x = \lim_{\varepsilon \to 0^+} (1/\varepsilon)(T_{x+\varepsilon} - T_x)$.

Proof. From 4.4 and (4.2) it follows that

$$-T_x D = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} (T_{x+\varepsilon} - T_x),$$

which implies directly our conclusion.

Remark 4.6. Corollary 4.5 indicates that $D T_x$ corresponds to the Dirac delta distribution δ_x concentrated at the point x.

Theorem 4.7. If $F_k(\cdot)$ ($k = 0, \pm 1, \pm 2, \pm 3, \cdots$) is a sequence in $L^1_{\text{loc}}(\omega)$, then

$$\sum_{k=-\infty}^{\infty} T_{ka} F_k = \left\{ \sum_{k=-\infty}^{\infty} T_{ka}(t) F_k(t - ka) \right\}.$$ \hspace{1cm} (4.8)

Proof. Let $T_{ka} F_k(\cdot)$ be the function defined by

$$T_{ka} F_k(t) = T_{ka}(t) F_k(t - ka). \hspace{1cm} (1)$$

Set

$$f_\alpha(\cdot) = \sum_{k=-\infty}^{\infty} T_{ka} F_k(\cdot). \hspace{1cm} (2)$$

For any integer $n \geq 1$, observe that

$$f_\omega(\cdot) = f_n(\cdot) + \sum_{|i| > n} T_{ia} F_i(\cdot); \hspace{1cm} (3)$$

since $(-n\alpha, n\alpha) \subseteq (-|i|\alpha, |i|\alpha)$ and since $T_{ia} F_i(\cdot) = 0$ on the interval $(-|i|\alpha, |i|\alpha)$ (because of (3.2) and (1)), we may conclude that $T_{ia} F_i(\cdot) = 0$ on ($-$
0 on the interval \((-na, na)\): consequently, (3) becomes

\[(4) \quad f_\omega(t) = f_n(t) \quad \text{on} \quad (-na, na) \quad \text{for any integer} \quad n \geq 1.\]

If \(t \in \omega\) there exists an integer \(m \geq 1\) such that \(t \in (-m\alpha, m\alpha)\): from (4), (2), and (1) we see that

\[(5) \quad \sum_{k=-\infty}^{\infty} T_{k\alpha}(t) F_k(t - k\alpha) = f_\omega(t) = \sum_{k=-m}^{\infty} T_{k\alpha} F_k(t).\]

On the other hand,

\[(6) \quad f_n = \left\{ \sum_{k=-n}^{n} T_{k\alpha} F_k(t) \right\} = \sum_{k=-k}^{n} T_{k\alpha} F_k;\]

the second equation is from (3.8) and (1).

In view of (5)-(6), the proof of (4.8) will be accomplished by showing that

\[(7) \quad \lim_{n \to \infty} f_n = f_\omega.\]

To that effect, take any \(w(\)\) in \(W_\omega\), and any \(t\) in the interval \(\omega\); we must prove that

\[(8) \quad \lim_{n \to \infty} f_n w(t) = f_\omega w(t).\]

Observe that there exists an integer \(m \geq 1\) such that \(|t| < m\alpha\); suppose that \(n \geq m\); from (4) and 1.32 it follows that the operators \(f_n\) and \(f_\omega\) agree on \((-na, na)\): therefore, 1.31 gives

\[(9) \quad f_n w(t) = f_\omega w(t) \quad \text{for all} \quad n \geq m;\]

this is because \(w(\) \in W_\omega\) and \(-m\alpha < t < m\alpha\). Conclusion (8) is immediate from (9).

Remark 4.9. Let \(c_k\ (k = 0, \pm 1, \pm 2, \pm 3, \cdots)\) be a scalar-valued sequence. Setting \(F_k(\) = c_k\) in (4.8), we obtain

\[(4.10) \quad \sum_{k=-\infty}^{\infty} c_k T_{k\alpha} = \left\{ \sum_{k=-\infty}^{\infty} c_k T_{k\alpha}(t) \right\};\]

combining with (3.18):

\[(4.11) \quad \left\{ \sum_{k=-\infty}^{\infty} c_k T_{k\alpha}(t) g(t - k\alpha) \right\} = \sum_{k=-\infty}^{\infty} c_k T_{k\alpha} g.\]

Obviously, if \(g(\)\) is a periodic function of period \(\alpha > 0\), then (4.11) becomes

\[(4.12) \quad g \sum_{k=-\infty}^{\infty} c_k T_{k\alpha} = \left\{ g(t) \sum_{k=-\infty}^{\infty} c_k T_{k\alpha}(t) \right\}.\]
5. Derivative of an operator. Given $A \in \mathcal{A}$ and $B \in \mathcal{A}$, let us indicate by $A \subset B$ the existence of a number $a < 0$ such that A agrees with B on the interval $(a, 0)$. The notion of “agreeing with” has been defined in 1.31. Recall that $F = \{F(t)\}$ (see 2.13); as usual, $F(0-)$ denotes the limit of $F(t)$ as t approaches zero through negative values.

Theorem 5.0. Suppose that $B \in \mathcal{A}$. There is at most one scalar c_1 such that the equation $c_1 = f_i(0-)$ holds for some function $f_i(\cdot)$ in $L^{1\infty}(\omega)$ with $f_i \subset B$.

Proof. Suppose that the equation $c_2 = f_i(0-)$ holds for some function $f_2(\cdot)$ in $L^{1\infty}(\omega)$ with $f_2 \subset B$; we must prove that $c_1 = c_2$. By definition, there exists an interval $(a_k, 0)$ such that f_k agrees with B on the interval $(a_k, 0)$ (for $k = 1, 2$); from 1.31 we now see that f_i agrees with f_2 on $(a, 0)$, where a is the largest of the two negative numbers a_1 and a_2; from 1.32 it follows that $f_i(\cdot) = f_2(\cdot)$ on $(a, 0)$, whence $f_i(0-) = f_2(0-)$: this proves that $c_1 = c_2$.

5.1. Derivable operators. An operator B is said to be derivable if $B \in \mathcal{A}$ and if there exists a function $f_i(\cdot)$ in $L^{1\infty}(\omega)$ such that $|f_i(0-)| < \infty$ and $f_i \subset B$.

5.2. Initial value of an operator. If B is derivable, we denote by $\langle B, 0- \rangle$ the unique scalar c_1 such that the equation $c_1 = f_i(0-)$ holds for some function $f_i(\cdot)$ in $L^{1\infty}(\omega)$ such that $f \subset B$; we also set

$$\partial_i B = DB - \langle B, 0- \rangle D.$$

(5.3)

The uniqueness of c_1 comes from 5.0, while the existence of c_1 can be verified by setting $c_1 = f_i(0-)$ in 5.1.

Remarks 5.4. If $f(\cdot)$ is a function in $L^{1\infty}(\omega)$ such that $|f(0-)| < \infty$, then the operator f is derivable, and $\langle f, 0- \rangle = f(0-)$ (this is immediate from 5.1); from (5.3) we see that

$$\partial_i f = Df - f(0-) D.$$

5.5. Suppose that $f(\cdot)$ is continuous on ω; if $f'(\cdot)$ has at most countably-many discontinuities and is integrable on each compact sub-interval of the open interval ω, then

$$\partial_i f = \{f'(t)\} \quad \text{and} \quad \langle f, 0- \rangle = f(0):$$

this follows immediately from 2.4, 2.13, and 5.4.
5.6. Suppose that $B \in \mathcal{S}_\omega$. If $f(\cdot) \in L^1_{\text{loc}}(\omega)$ is such that $|f(0^-)| < \infty$ and $f \subseteq B$, then B is derivable and $\langle B, 0^- \rangle = f(0^-)$: this follows directly from 5.0-5.2.

5.7. If $B \in \mathcal{S}_\omega$ is such that the equation $B \mu = f$ holds for some function $f(\cdot) \in L^1_{\text{loc}}(\omega)$ such that $|f(0^-)| < \infty$, then B is derivable and $\langle B, 0^- \rangle = f(0^-)$. This is immediate from 3.27 and 5.6.

Theorem 5.8. Suppose that $\alpha > 0$. If A_k $(k = 0, \pm 1, \pm 2, \pm 3, \ldots)$ is a sequence in \mathcal{S}_ω such that the equation

\[
B = \sum_{k=-\infty}^{\infty} \mathcal{T}_{k\alpha} A_k
\]

defines an element B of \mathcal{S}_ω, then B is derivable, $\langle B, 0^- \rangle = 0$, and $\partial_\nu B = DB$.

Proof. Take any $w(\cdot)$ in W_ω. From (1) and (3.21) it follows that

\[
.B w(t) = \mathcal{T}_\alpha(t).A_0 w(t) + \sum_{k \neq 0} \mathcal{T}_{k\alpha}(t).A_k w(t - k\alpha)\quad (\text{for } t \in \omega).
\]

If $k \neq 0$ we see from (3.2) that $\mathcal{T}_{k\alpha}(\cdot) = 0$ on $(-\alpha, \alpha)$: consequently, the equation (2) implies that

\[
.B w(t) = \mathcal{T}_\alpha(t).A_0 w(t)\quad (\text{for } |t| < \alpha).
\]

Since $\mathcal{T}_\alpha(\cdot) = 0$ on $(-\alpha, 0)$, it now follows from (3) that $Bw(t) = 0$ for $-\alpha < t < 0$ and for any $w(\cdot)$ in W_ω: therefore, the operator 0 agrees with B on $(-\alpha, 0)$, whence $0 \subseteq B$; the conclusion $\langle B, 0^- \rangle = 0$ now follows from 5.6; in view of (5.3), the proof is concluded.

Theorem 5.9. Suppose that $x \in \mathbb{R}$. Each element of $(\mathcal{T}_x \mathcal{S})$ is infinitely derivable; in fact,

\[
\langle B, 0^- \rangle = 0 \quad \text{and} \quad \partial^k_x B = D^k B \quad (\text{for each integer } k \geq 1)
\]

whenever $B \in (\mathcal{T}_x \mathcal{S})$.

Proof. Note that $(\mathcal{T}_x \mathcal{S})$ is the set $\{\mathcal{T}_x A : A \in \mathcal{S}_\omega\}$. If B is an element of $(\mathcal{T}_x \mathcal{S})$, then $B = \mathcal{T}_x A$ for some A in \mathcal{S}_ω: clearly, B can be written in the form (1) (set $\alpha = |x|$ and $A_k = A$ for $k = \text{sgn} x$ and $A_k = 0$ for other values of k): the conclusion $\langle B, 0^- \rangle = 0$ now comes from 5.8. Since $\partial^k_x B = B$ (by definition) for $k = 0$, we proceed by induction on $k \geq 1$. To that effect, we assume that $\partial^k_x B = D^k B$: clearly,
(4) \[\partial_t^{n+1}B = \partial_t(D^nB) = D^{n+1}B + \langle D^nB, 0-D \rangle. \]

On the other hand, \(D^nB = D^nT_xA = T_xD^nA \); consequently, \(D^nB \) belongs to \((T_xA) \), whence \(\langle D^nB, 0-D \rangle = 0 \) (by what we established at the beginning of this proof); therefore (4) gives \(\partial_t^{n+1}B = D^{n+1}B \). The induction proof is completed.

Note 5.11. Both \(T_x \) and the Dirac delta distribution \(D\delta \) belong to the space \((T_xA) \). If \(B = B_\pm \) or if \(B_{\perp} = 0 \) then \(B \) belongs to \((T_xA) \): see 3.25.

Theorem 5.12. Set \(a = \omega_- \) and suppose that \(B \in \mathcal{X}_a \). If the equation \(B_{\perp} = f \) holds for some function \(f(\) \) in \(L'(a, 0) \), there exists a unique scalar \(c_1 \) such that the equation

(5) \[c_1 = \int_a^0 f_1(u)du \]

holds for some \(f_1(\) \) in \(L'(a, 0) \) with \(f_1 = B_{\perp} \).

Proof. Clearly, such a scalar exists. If

(6) \[c_2 = \int_a^0 f_2(u)du \]

for \(f_2(\) \) in \(L'(a, 0) \) and \(f_2 = B_{\perp} \), then both \(f_1 \) and \(f_2 \) agree with \(B \) on \((a, 0) \) (by 3.27): therefore, \(f_1(\) \) equals \(f_2(\) \) almost-everywhere on \((a, 0) \) (by 1.32); the conclusion \(c_1 = c_2 \) now comes from (5)–(6).

5.13. The anti-derivative. Let \(B \) be as in 5.12. We set

(7) \[\int_a^t B = D^{-1}B + c_1. \]

In a subsequent paper we shall prove that

\[\langle \int_a^t B, 0-D \rangle = c_1 \quad \text{and} \quad \partial_t \int_a^t B = B. \]

In case \(B = f \) with \(f(\) \in L'(a, 0) \) and \(f(\) \in L^{loc}(\omega) \), it follows immediately from (2.19) and (3) (7) that

\[\int_a^t f = \left\{ \int_a^t f(u)du \right\}. \]

6. Four problems. Recall that \(DT_x \) corresponds to the Dirac delta distribution concentrated at the point \(x \) (see 4.6), it is infinitely derivable (see 5.11). If an operator \(A \) is twice derivable, it follows directly from (5.3) that
\[\partial_t^2 A = D^2 A - \langle A, 0 \rangle D^2 - \langle \partial_t A, 0 \rangle D . \]

We shall need two more facts. Each operator \(A \) in \(\mathcal{A} \) can be written as a sum

\[A = A_\| + A_+, \quad \text{where} \quad A_+ = A \tau_0 \quad \text{(see 3.7)} ; \]

moreover, if \(g(\cdot) \in L^{\infty}(\omega) \) then

\[g\tau_0 = \{\tau_0(t)g(t)\} \quad \text{(see (3.8))} . \]

6.3. First problem. Given two scalars \(m \) and \(a \), to find an operator \(y \) such that

\[m \partial_t y = D\tau_0 \quad \text{and} \quad \langle y, 0 \rangle = a . \]

Definition (5.3) gives \(mDy - maD = D\tau_0 \), whence \(y(\cdot) = a + m^{-1}\tau_0(\cdot) \). This same problem has been discussed in [5, p. 38].

6.5. Second problem. The equations

\[i = \partial_t q \quad \text{and} \quad q = CE \]

relate the current \(i \) to the change \(q \) in a simple electric circuit having capacitance \(C \), impressed electromotive force \(E \), no inductance, and no resistance (see 7.19 in [5]). From (1) and (5.3) it follows that

\[i = CDE - \langle q, 0 \rangle D . \]

Multiplying by \(\tau_0 \) both sides of (2), we can use (6.1) to write

\[i_+ = CDE_+ - \langle q, 0 \rangle D\tau_0 . \]

If there is a short-circuit at the time \(t = 0 \), then \(E_+ = 0 \), so that (3) gives the answer \(i_+ = -\langle q, 0 \rangle D\tau_0 \); this is an impulse whose magnitude is the negative of the initial charge \(\langle q, 0 \rangle \).

6.6. Third problem. Given a scalar \(c \), to find an operator \(y \) such that

\[\partial_t^2 y + y = \partial_t(D\tau_0) \quad \text{and} \quad \langle \partial_t y, 0 \rangle = \langle y, 0 \rangle = c . \]

Since \(\partial_t(D\tau_0) = D^2\tau_0 \) (by 5.9), we can use (6.0) to write

\[(D^2 + 1)y = D^2\tau_0 + \langle y, 0 \rangle D^2 + \langle \partial_t y, 0 \rangle D ; \]

we now use the initial conditions and solve for \(y \):

\[y = \frac{D^2}{D^2 + 1}\tau_0 + c\left(\frac{D^2}{D^2 + 1} + \frac{D}{D^2 + 1}\right) . \]
From (4) and (2.10)-(2.11) it results that
\[y = \{\cos t\} T_0 + c(\sin + \cos), \]
whence our conclusion \(y(\cdot) = T_0(\cdot) \cos + c(\sin + \cos) \) now comes directly from (6.2) and 1.33.

Last problem 6.7. To find an element \(y \) of \(\mathcal{A}_\omega \) such that
\[
\frac{\partial^2}{\partial t^2} y + y = \sum_{k=-\infty}^{\infty} D T_{2k\pi}.
\]

Setting \(c_0 = \langle y, 0- \rangle \) and \(c_1 = \langle \partial_t y, 0- \rangle \), we see from (6.0) that
\[
(D^2 + 1)y = c_0 D^2 + c_1 D + D \sum_{k=-\infty}^{\infty} T_{2k\pi}.
\]

Solving (6) for \(y \), we obtain \(y = c_0 \cos + c_1 \sin + y_p \), where
\[
y_p = \frac{D}{D^2 + 1} \sum_{k=-\infty}^{\infty} T_{2k\pi} = \{\sin t\} \sum_{k=-\infty}^{\infty} T_{2k\pi}:
\]

the second equation is from (2.11). From (7) and (4.12) it now follows that
\[
y_p = \left\{ \sin t \sum_{k=-\infty}^{\infty} T_{2k\pi}(t) \right\}.
\]

From (8) and (2.15) we can now write
\[
y_p(t) = \sin t \sum_{k=-\infty}^{\infty} T_{2k\pi}(t) = \left(1 + \left[\frac{t}{2\pi}\right]\right) \sin t;
\]
as usual, \(\lfloor t/2\pi \rfloor \) is the greatest integer \(< t/2\pi \) (the last equation follows directly from the definition of \(T_x(\cdot) \)). In case \(\omega = \mathbb{R} \), the answer (9) to the problem (5) cannot be obtained by the Fourier transformation nor by the distributional two-sided Laplace transformation.

Added in proof. There still remains to connect the theory presented in this paper with the theory of distributions; this has been done in the Research Announcement "An algebra of generalized functions on an open interval; two-sided operational calculus" (by Gregers Krabbe), Bull. Amer. Math. Soc. 77 (1971), 78–84.

References

Received August 19, 1971.

Purdue University
Stephen Richard Bernfeld, *The extendability of solutions of perturbed scalar differential equations* .. 277
James Edwin Brink, *Inequalities involving* f_p and $f^{(n)}_q$ *for* f *with* n zeros ... 289
Orrin Frink and Robert S. Smith, *On the distributivity of the lattice of filters of a groupoid* ... 313
Donald Goldsmith, *On the density of certain cohesive basic sequences* 323
Charles Lemuel Hagopian, *Planar images of decomposable continua* 329
W. N. Hudson, *A decomposition theorem for biadditive processes* 333
W. N. Hudson, *Continuity of sample functions of biadditive processes* 343
Masako Izumi and Shin-ichi Izumi, *Integrability of trigonometric series. II* ... 359
H. M. Ko, *Fixed point theorems for point-to-set mappings and the set of fixed points* ... 369
Gregers Louis Krabbe, *An algebra of generalized functions on an open interval: two-sided operational calculus* 381
Thomas Latimer Kriete, III, *Complete non-selfadjointness of almost selfadjoint operators* .. 413
Shiva Narain Lal and Siya Ram, *On the absolute Hausdorff summability of a Fourier series* ... 439
Ronald Leslie Lipsman, *Representation theory of almost connected groups* ... 453
James R. McLaughlin, *Integrated orthonormal series* 469
H. Minc, *On permanents of circulants* ... 477
Akihiro Okuyama, *On a generalization of* Σ-spaces 485
Norberto Salinas, *Invariant subspaces and operators of class (S)* 497
James D. Stafney, *The spectrum of certain lower triangular matrices as operators on the* ℓ_p *spaces* ... 515
Arne Stray, *Interpolation by analytic functions* 527
Li Pi Su, *Rings of analytic functions on any subset of the complex plane* 535
R. J. Tondra, *A property of manifolds compactly equivalent to compact manifolds* ... 539