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Suppose that a is a real-valued measurable function defined
on the unit interval [0,1] and that c is a function in the
Lebesgue space L2(0,1). Let A be the (not necessarily bounded)
operator on L2(0,1) associated with the pair (a, c) by

(Af)(x) = a(x)f(x) + i c{x)\X c(t) f(f)dt.
Jo

A has the domain

= {fe L2(0,1): Γ | a(x)f(x) |2 dx <
Jo

which is dense in L2(0,1). One easily verifies that the imagi-
nary part (2i)~\A — A*) extends to the bounded operator
f-> 1/2 </, c> c. Thus A is almost self adjoint in the sense that
it differs from its real part by an operator of rank one.

The operators A are more general than they appear.
Livsic showed that every bounded operator B with real spec-
trum, no selfadjoint part, and with nonnegative imaginary
part of rank one is unitarily equivalent to the completely
non-selfadjoint part of such an operator A acting on L2(0, a)
for some positive α. This raises the question of when (in terms
of a and c) A is completely non-selfadjoint. The main result
of this paper answers this question when the pair (αr, c) is
subject to a mild restriction that is always satisfied when A
is bounded.

One consequence (Corollary 3.18) is a negative result concerning
the behavior of singular spectral multiplicity under compact pertur-
bations.

We need to establish some conventions and terminology. All
Hubert spaces throughout will be separable. Let B be a densely
defined operator on a Hubert space H with domain £&(B). We will
say that a subspace N of H reduces B if &(B) Π N and &(B) Π Nλ

are dense in Nand N1, respectively, and B{^f{B) Π N) c ΛΓand B(&{B) Π
Nj)aNL. B is said to be completely non-selfadjoint if the only reducing
subspace N for B with the property that the restriction B | N is self-
adjoint is the zero subspace.

B is dίssipative if Im <JS/, /> ^ 0 for all / in &r{B). If in
addition (B + i/2)£&(B) = H, then B is called maximal dissipative.
In this case the Cayley transform C = (B — i/2) (B + i/2)"1 is a con-
traction defined on all of H. (We have replaced i by i/2 in the Cayley

413



414 THOMAS L. KRIETE

transform to make some subsequent equations appear more natural.)
There exists a unique reducing subspace N for C with the property that
C\N is unitary and C\NL is completely non-unitary. N also reduces
B, B\N is selfadjoint, and B\Nλ is completely non-selfadjoint. Again
N is unique with respect to these properties (see [15]).

In §3 we will see that A is maximal dissipative. To solve the
problem at hand, it thus suffices to find the completely non-unitary
part of T = (A - ί/2)(A + i/2)-1

We now set down the condition on the pair (a, c) that is needed
to make our proof work. Suppose that m denotes Lebesgue measure
on [0, 1]. Let v be the measure on (— co? co) given by

v{F) = ί \c\2 dm

for every Borel subset F of the reals. We denote Lebesgue measure
on (— oo, oo) by n. dv/dn is the Radon-Nikodym derivative of v with
respect to n. We will demand that

(1.1) Γ \osψ-
J-« dn

dx
rr: — oodn x2 + 1/4

Since {x: dv/dn(x) Φ 0} c closed support of v c essential range of α,
it is clear that (1.1) holds whenever the essential range of a (which
is a closed set) is not all of (-oo, oo). In particular, (1.1) holds if
A is bounded.

In the next section we write down some necessary information
about Sz.-Nagy-Foias operator models and characterize a certain type
of invariant subspace. An operator model operator S acting on a
space K is then associated with the pair (a, c). In §3 we show that
when (1.1) holds, it is possible to construct an isometry W: K—>L2(0, 1)
which gives a unitary equivalence between S and the completely
non-unitary part of T = {A — i/2)(A + ί/2)"1. We then give a criterion
for deciding when W is unitary, i.e., when WK is all of L2(0, 1).
Since A is completely non-selfadjoint provided WK = L2(0, 1), this
answers the question posed above. In §4 our methods are used to
study almost unitary contractions with no isometric part.

A few remarks on the general spirit of this paper may be useful
to the reader. Every completely non-unitary contraction To acting on
a separable Hubert space H is unitarily equivalent to an operator
model S in the sense of Sz.-Nagy and Foias [15, Chap. VI]. S acts
on a model Hubert space K. To is determined up to unitary equivalence
by the characteristic operator function b of S. One knows the model
theory for To if one can specify 6. Adopting terminology suggested by
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Douglas N. Clark, we will say that we know a concrete model theory
for To if we can specify b together with an explicit unitary operator
U: H—>K with UT0 = SU. This is necessarily a little vague since
the usual method for constructing S from To always yields an abstract
form for U. What we mean here is that U must be defined in terms
of some additional structure that H may possess as, say, a space of
functions.

This paper offers an example of a concrete model theory with
an application to a non-model-theoretic problem. We will take To and
U to be, respectively, the restrictions T\WK and W*\WK where T
and W are as above. The model theory of T\ WK was known (modulo
Cay ley transforms) to Brodskii and Livsic [3], although they did not
associate an operator model S with the characteristic operator function.
Perhaps the first example of a concrete model theory along these lines
is due to Sarason [12] and, independently, to Rosenblum (unpublished).
They considered the case in which T is a function of the Volterra
operator; the operator U in this case is essentially a part of the
Fourier transform. The present paper may be viewed as a natural
extension of this work. Other examples of concrete model theories
are given by the author [11], Ahern and Clark [1] and Clark [4].

From the point of view of model theory our most interesting
result is probably Theorem 2 which relates the range of W to the
regularity (in the sense of Sz.-Nagy and Foias) of certain factorizations
of b. These results were announced in [10].

I wish to thank Professor Marvin Rosenblum for suggesting a
research problem that led to these results.

2* The operator S. Let σ Lebesgue measure on the unit circle
T in the complex plane normalized so that σ(T) = 1. We sometimes
consider σ as a measure on [0, 2π). χ is the identity function on
T: χ(eίx) = eix. D will denote the open unit disk {z: \z\ < 1}.

If l ^ P ^ oofL
p = Lv(dσ) is the usual Lebesgue space. | | / | | p

denotes the norm of / in ZΛ Hp is the Hardy subspace of Lp (see
[9]). If F is a measurable subset of T, LP(F) is the space consisting
of those Lp functions which vanish a.e. off of F. (We will think of the
elements of Lp as functions in the usual incorrect but harmless way.)

Now suppose that b in H°° is not the zero function and ||6||oo ^ 1.
Let Δ = (1 - |6|2)1/2. Clearly 0 £ A ̂  1 a.e.. E will denote the meas-
urable set {eix: /j(eix) > 0}. Let £gf denote the Hubert space H2 0 L\E)
with the obvious norm. Elements of £%f will be written (/, g) where
feH2 and geU(E). U is the isometry on ^f given by U(f, g) =
(χ/, χg). U+ denotes the unilateral shift on H2: U+f = χf. Let

M={(bf,Δf):feH2}.
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M is a closed subspace of Sίf which is invariant for U. Suppose that
K= M1 and P is the projection of ^f onto K. Let S= PU\K. S
is a completely non-unitary contraction; I — S*S and I — SS* are
operators of rank 1. This is a special case of a general construction
due to Sz.-Nagy and Foias (see [15], [5]). We refer to S as an
operator model.

For any z in D, let kz{eix) = (1 — zeix)~\ kz is the well known
Szego kernel function in H2; it has the reproducing property f(z) =

</, h> = j /fc, ΛΓ, ze D and / e iϊ2.
Now (kz, 0) is in ^g^ and it is easy to see that the element Hz

of ^ T defined by

(2.1) Hz = ([1 - 6(i) b]kβ, - W) Δkz)

(for z in D) is orthogonal to M. Since (ftβ, 0) — Hz lies in Λί, we see
that Hz is the projection of (kz, 0) onto K = Mτ. Thus, if (w, v) e K,

(2.2) %(«) = φ , v), Hzy .

In particular,

(2.3) < i ^ , i ϊ , > =(l-b(w) b(z))(l - wz)~\ z,weD .

Let iΓ0 denote the smallest subspace of K containing {Hz: zeD}.

LEMMA 2.1. (i) K Q Ko = {(0, v): veU(E) and (0, v) e ίΓ} =

{α e i ί : | |S* a?|| = \\x\\fσrn = 0, 1, 2, . . . .}

(ii) // 1 log A dσ = — <χ>, ί/^e^ iΓ0 = K.

Proof. The first equality of sets in (i) follows immediately from
(2.2). The second follows from the fact that if (u, v) is in K,

\\S**(u,v)\\*= \\UΪ*u\ 2 _ ι II > , , 1 1 2
2 ~ Γ | | ^ 1 1 2

which converges to \\v\\2 as n—>^.
Now suppose that Ko Φ K. By (i) there is a nonzero v in L2(E)

such that (0, v) e K. Since K = M1, we see that 0 = φp, Ap), (0, v)> =

1 pv Ada for all analytic polynomials p. Since v is nonzero, it follows that

the polynomials are not dense in If(Adσ). Therefore, Szegδ's theorem

implies that I log Ada > — oo [9? p. 58]. Thus if I log Ada = — oo, we

must have Ko = K.
Now suppose that Ft and F2 are Hubert spaces. A contraction

valued analytic function {Fly F29 Ψ) is a function analytic in D taking
values in the space of bounded operators from F1 to F2 and such
that | | y ( 2 ) | | ^ l for all z in D. Ψ(eix) is defined to be the limit
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!- Ψ(τeix) which exists almost everywhere in the strong operator
topology [15].

A factorization of Ψ is a representation

(2.4) Ψ = Ψ2Ψ1

where {Fl9 F3, Ψ^ and {F3, F2, Ψ2) are contraction valued analytic func-
tions and F3 is some Hubert space. Since the complex numbers can
be viewed as the space of bounded operators on the 1-dimensional
Hubert space C, we can consider 6 as a contraction valued analytic
function {C9 C, b}. In particular, if b = ψ2ψ1 where ψ1 and ψ2 are in
the unit ball of H°°, we have a special case of (2.4).

In [15] the notion of a regular factorization is defined. We
specialize this as follows.

DEFINITION 2.2. Let b be an H°* function whose modulus is
bounded by 1. A scalar regular factorization of b is a representation
b = ψ2ψt where ψl9 ψ2 are in H°° and | fi(eix) \ e {1, | b(eix) |} for almost
every x.

If b = ψyh is a scalar regular factorization, let A, = (1 — | ^ |2)1/2

and Ej = {eix: Δ5{eix) > 0}, j = 1, 2. It is easy to see that E, Π E2 has
measure zero and that the sets E and Eγ U E2 are the same modulo a
Lebesgue null set. It follows that ΔXΔ2 = 0 a.e. and A = At + Δ2 a.e..
Moreover, L\E) = IfiEJ ® L2(E2). (We will use 0 for both internal
and external orthogonal direct sum; which is intended should be clear
from the context.) We want to characterize a certain type of in-
variant subspace for S*. We will depend heavily on a result of Sz.-
Nagy and Foias characterizing all of the invariant subspaces of S*.

With each scalar regular factorization b = ψ2ψ^ we associate a
linear manifold M(ψl9 ψ2) in £ίf given by M(ψl9 ψ2) = {(^2^, ΨιΔ2u +
v): ueH2 and veL2(Eί)}. Since 1^1 = 1 a.e. on E2 and Δ2 = 0 a.e.
on El9 we have \\(ψ2u, ψγA2u + v)\\2 = | |^ 2^IIS + \\fχΔ2u + v\\\ = \\φ2u\\l +
\\A2U\\l + \\v\\l = \\u\\l + \\v\\l. Hence M(ψl9 ψ2) is closed. In addition,
Ma M(ψl9 ψ2) and M(φl9 ψ2) is invar iant for U, so t h a t ^f Q M(ψl9 f2)
is an invariant subspace for S*.

The next Lemma is implicitly contained in a proof by de Branges
and Rovnyak (see [2], Theorem 6). We include a proof here for
completeness. In general (unless otherwise noted), the projection of
a Hubert space onto a subspace B will be denoted by PB. IB is the
identity operator on B.

LEMMA 2.3. Let H be a Hilbert space, V an isometry on H and
A and invariant subspace for V such that AΠ KerF* = {0}. Let B —
AL and VB be the compression VB = PBV \ B. Then rank (IB — V£ VB)• =
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dim (A θ VA).

Proof. First note that V£ = V*\B. Let Q = A Q AV and C =
{x: V*x e B). Since (V | A)* = PAV* \ A, one easily sees that C = B@Q.
We need two other facts, the first of which is this: Ker (IB — VB VB) =
{xeB: VxeB}. To see this, suppose that x = VBVBx so that | |^| |2 =
| | F ^ | | 2 . Since VB = PBV\B, it must be the case that Vx is in B,
which establishes one half of the assertion. If, conversely, Vx is in
B, then VBx = Vx, so V£ VBx = V*Vx = x and x is in Ker (IB - VIVB)
as desired.

The second fact is the following: {xeB: Vxe B) = BQ F*Q. For
if x is in BQV*Q, then Vx is orthogonal to Q. However Vx is in
C (since V* V = I) and we know that C = B 0 Q, so Vx e B and half
of the assertion is proved. The reverse inclusion is clear.

If we put all of this together we have Range (IB — VBVB) = F*Q,
so rank (IB - V% VB) = dim F*Q. But Q Π Ker F* = {0}, so dim F*Q =
dimQ and the proof is complete.

Now suppose that F is a separable Hubert space. We will denote
by L% the space of (weakly) measurable functions / on T with values
in F and such that

\2Z\\f(eίx)\\2

Fdσ(x)< - .
Jo

L> is a Hubert space with inner product

<f,9>= [*<f(eix)> g{eίx)yF dσ{x) .
Jo

Hj is the Hardy subspace of L% (see [8], [15]). Obviously L2

C = L2.
If B is a weakly measurable essentially bounded function on T

whose values are bounded operators on F, then Bf will denote the
function with values B(eix)f(eix) whenever / e L\. We will write BL\
for {Bf:feL2

F} which is contained in L%.
We can now given the main result of this section.

PROPOSITION 2.4. Suppose that log A is not Lebesgue integrable.
Let N be an invariant subspace for S* and let Si be the compression
Sί = PNS\N=P*U\N. If

(2.5) rank (IN - S'S,) = 1 ,

then N = ^f:P Q M(ψl9 ψ2) for some scalar regular factorization b =
ΨYΨΊ of b.

Proof. Suppose that {C, F> 9\} and {F, C, Ψ2) are contraction
valued analytic functions such that b = Ψ2Ψ1. Let Δγ{eix) — (Ic —
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y i(e ί x)*y i(e ί x))1 / 2 and A2{eix) = (IF - Ψ2(eix)*Ψ2(eίx)y12. Now recall that
E = {eix: A{eίx) > 0} so that the closure 1L2 is exactly L\E). Let

Z: ^T — H2 © 4LJ. θ ί ϊ 2

denote the mapping defined on the dense subset iϊ 2 0 ΔU of < ^ by
Z(u, Av) = (u, Δ2Ψγv, A{v). Z is isometric [15, p. 277].

Now since N is invariant for S*, a general theorem of Sz.-Nagy
and Foias [15, p. 278] says there exists a factorization b = Ψ2Ψγ as
above which is regular, i.e., it has the following properties:

(i) The mapping Z is onto.
(ii) ZN = (H2 © ΔjJF © {0}) θ {(»>, 4**, 0): u e Hi).
It is also clear that ZU — VZ where V is the isometry on H2 φ

Δ2L\ © AJJ given by F(u, v, w) = (χu, χv, χw).
Now suppose that (u, v) e {£Zf Q N) Π Ker C7*. Then 0 = U*(u,

v) = (U*u, χv), so that u — c = constant and v — 0. Suppose that
c Φ 0. Since r i ^ © ^ is invariant for ί7, it contains the sub-
space generated by {Un(c, 0): n = 0,1, - •}, namely iP®{0}. Thus
N c {0} © L\E) so that S* | ΛΓ is isometric. Since ί log J dσ = - oo,
we can conclude from Lemma 2.1 that N = {0} which contradicts (2.5).
Thus it must be the case that c = 0 and so {Sίf © N) Π Ker [7* = {0}.
We can now invoke (2.5) and Lemma 2.3 to conclude that dim [(£ίf Q
N) © £/(<̂ T © N)] = 1. Equivalents, if G - ^ ( ^ T θ JV), then
dim(G©FG) = 1. One easily checks that {(Ψ2x, A2x, 0): xeF} is
contained in G © VG. Thus the mapping a —> (?P"2α;, z/2α;, 0) is an iso-
metry of F into G © ^ ^ It follows that dim F = 1, so we can take
F— C and Ψι and ¥2 to be complex valued (from now on we call
them ψL and ^2, respectively, to emphasize this).

It is shown in [15, p. 290] that under these conditions b — γ2ψί
is a scalar regular factorization. Thus M(ψly ψ2) makes sense and
contains {(ψ2u, ̂ γΔ2u + ALv): ue H2 and v e L2} as a dense subset. Since
1^1 = 1 a.e. on E2 and A — Aι + Δ2 a.e., it follows that Z maps this
dense subset onto the dense subset {(ψ2u, A2n, Δ{ΰ)\ ueH2 and veL2}
of Z{^tf © N). Hence M(ψl9 f2) = Z~ιZ{2ί? Q'N) - .3T © iV. This
completes the proof.

REMARK 2.5. Suppose that N = Sίf Q M(ψl9 ψ2) where b =
is a scalar regular factorization of 6. Since NaK, we have PNP =
PN, so PNHW = PvP(fcw, 0) = PN(kw, 0), w e l ) .

We leave it to the reader to verify that for each w in D, the
projection of (kwy 0) onto M(φί9 ψ2) is exactly {ir2{w)ψ2kw,
so that

PyHw = ([1 "
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Hence

(2.6) <PNHV

1 — wz

for all z and w in D.

Now let a and c be as in the introduction and suppose that β
is the function β(x) = (a(x) - i/2)(a(x) + i/2)~\ 0 ^ a? ̂  1. Clearly
|/31 = 1 a.e. For the rest of §2 and 3 we will assume that b is
related to a and c by

(2.7) δ ( s ) = e x p { ( 1 - z ) \ l l - 0 ( x ) \c(x) |2 d x \ , zeD.

One easily checks that

(2.8) I b(z) I = exp {(1 - | z |2) Γ R * f <*> ~ ̂  | φ ) |2 c
I Jo |^(a;) - z\2

We can thus apply the preceding results in this section to this par-
ticular b.

Recall the definition of the measure v in the Introduction.

LEMMA 2.6. 1 log Δ dσ = — oc if and only if (1.1) holds.

Proof. The function β maps [0, 1] into T - {1}; write β(x) = eiθ{x)

where θ: [0, 1] —> (0, 2π). Let μ be the measure on (0, 2π) given by

μ(F) = \ \c\*dm

for every Borel subset of (0, 2π). A change of variables [7, p. 163]

in (2.8) then gives

I b(z) I = exp { Γ |

1

i " | g | ' (cos ί - 1) dμ{t)\ zeD.
I J o \e%t — z\2 )

We recognize (1 — \z\2)\eu — z\~2 as the Poisson kernel; if we set
z = reix and let r - * l , Fatou's Theorem implies that \b(eix)\ =
exp [(cos£ — T)(dμ/dσ)(x)] a.e. This equation, the fact that A =
(1 - |δ|2)1 / 2, and the elementary inequality fcr' ^ (1 - e~f) ^ ί(ί ^ 0)
together imply that log Δ is o -integrable if and only if log [(1 —
cos x)(dμ/dσ)(x)] is cr-integrable.

Now let τ: ( - oo, oo) _> (0, 2π) be defined by eiτ{x) = (a? - i/2)(α +
i/2)-1. Thus ^ = τoα, so that v{F) = ^(τ(F)) for any Borel subset of
the reals. By the chain rule we have
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2π τ-^y) ψ- {τ~\y)) = ψ-{y) a.e. .
an dσ

Now τ~v(y) = 4~1(1 — cos y)~ι so we find that

j[* log [(1 - cos y) j£(y)] dy = J'* log [j- J ^ ~ % ) ) ] dy .

Making the change of variables y = τ(x) and using the relation τ'{x) —
(x2 + 1/4)~ι yields the equation

- cosy)^ί(y)]dy

2 J— dn

The lemma easily follows.
We would like to have a simple way of ensuring that log Δ is

not tf-integrable. The next proposition gives a useful criterion.

PROPOSITION 2.7. Suppose that Φ is a positive Baire function on
(—00, CXD) SWC& that

o 1

log zί is not σ-integrable.

Proof. The composition φoa is measurable since Φ is a Baire
function. Assume now that (i) holds. By a change of variables we
have

dn 1 + y

It follows from the inequality of the geometric and arithmetic means
[12, p. 61] that this last integral is not exceeded by

7Γ J—0
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If we also assume that (ii) holds, it must be the case that (1.1) holds
also. By Lemma 2.6 this is clearly equivalent to the desired conclusion.

Consider, as examples, the functions Φ(x) = eM and Φ(x) = exp(\X — x\~1)
where λ is a fixed real number. One might choose the first if \a\ is
not too large to often; the second if the values of a are not heavily
concentrated near λ.

3* When A is completely non-selfadjoint* Assume in this
section that α, c and A are as in the introduction and that (1.1)
holds, b will be related to a and c by (2.7).

Now suppose that z is not in the essential range of a. For each
t in [0, 1] let

φt{z) = exp jΐ j (a(x) - z)~ι \c(x) |2 dx\

REMARK 3.1. If z is not in the essential range of a, then
(A — z)~ι exists and

[{A - zΓf] (x) = /<*> - i y c ( x ) [ f*{z) mf(t) dt ,
a(x) z a{x) z J a(t) z/ i yc(x) [ f
a(x) — z a{x) — z Jo a(t) — z

0 ^ x ^ 1 .
The proof is a simple computation using Fubini's Theorem and the
fact t h a t (d/dt)φt(z)~ι = - ί φt{z)~\a{t) - z)~ι \c(t)\\ See also [3].

Recall t h a t β = (a - ί/2)(a + i/2)"1, and \β\ = 1 a.e. .

D E F I N I T I O N 3.2. For each z in D and t in [0, 1] let

bt(z) = exp {(1 - z) Γ \7,β{x)\c{x) I2 dx)
I Jo β(χ) — Z )

and

1 - β(t)z

We observe that bL = b and that each bt is in the unit ball of H°°.
Moreover, | Yz(t)\ ^ K\c(t)\ where K is a positive constant depending
only on z. Hence Yz e L2(0, 1) for each z in D.

From Remark 2.1 it is clear that (A + i/2)"1 exists and that
(A + il2)~ιUφ, 1) c i^(A). It follows that (A + i/2) &(A) = L2(0, 1).
Hence A is a maximal dissipative operator and the discussion in §1
applies to A. In particular, T = (A — ί/2)(A + ij2)~ι is an everywhere
defined contraction on L2(0, 1).
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REMARK 3.3. For each t in [0, 1], let Mt be the multiplication
operator on L2(0, 1) defined by Mt: /—>36[O)i]/ where X[Ofi] is the charac-
teristic function of the interval [0, t]. Mt is a projection and its
range, which we denote by L2(0, t), is the subspace of those functions
in L2(0, 1) which vanish a.e. on (t, 1].

Let At and Tt be the compressions At = MtA\L2(0, t) and Tt =
MtT\U{0, t). It is easy to check (using Remark 3.1) that At is
maximal dissipative and (2i)"1(At — A*) extends to an operator of rank
1. Moreover, Tt = (At - i/2)(At + i/2)"1. It follows from [15, p. 348]
that /, - Tt* Tt and It - Tt ϊ

7^ have rank 1. Here It is the identity
on L2(0, t). This can also be shown from the following proposition.

PROPOSITION 3.4.

(Tf)(x) = β{x)f{x) + Y0(x)[m bM-1 (β(t) - 1) fit) dt
Jo

and

(T*f)(x) = β(x)f(x) + c(x) MO)"1 (β(x) - 1) Yt(t) f(t) dt
Jx

for all f in L2(0, 1).

The proof of this is an easy computation using the form of
(A + i/2)-1 and the fact that φt(- i/2) = δt(O)"1.

We will need the following technical lemmas in order to charac-
terize the completely non-self ad joint subspace of A. m will denote
Lebesgue measure on [0, 1].

LEMMA 3.5. // 0 ^ s < t ^ 1 and z, we D, then

YwΫΛm = -

Proof. Using the fact that \β\ = 1 a.e. and some computation,
it is not hard to show that

d
-f- [bx(w)bjz)(wz - I)"1] = Yw(x)YΛx) .
ax

The Lemma follows upon integrating this equation from s to t.

LEMMA 3.6. If 0 < \z\ < 1, then

Y*(t)(β(t) - ϊ)b{O)bt{O)~ιc{t)dt = z-\b{z) - 6(0)) .

Proof. One verifies that
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bt{z)ht{QΓ = expίz Γ ( ^ ) - l ) 2 | φ ) | 2 dx\
I Jo 1 — β(χ)z J- β(x)z

Differentiating (with z Φ 0) gives

0 ^ t ^ 1. If we multiply this equation by 6(0), integrate from 0 to
1 and recall that b1 = 6, we find that the equation in the statement
of the Lemma is true.

LEMMA 3.7.

[\ (β(t) - l)bt{0yιc(t)\2dt = \bx(0)\~2 - 1, 0 £ x £ 1 .
Jo

Proof. We easily check that

16,(0) |-2 = exp {- 2 Γ (Re β(x) - 1) \c(x) |2 dx) ,
L J o )

so that

* 16,(0)1- = 2 (1 - Re β(t)) | 6.(0)1- |c(*)Γ .

Now |/3 - 1|2 = 2 (1 — Re/9) a.e. (since \β\ = 1 a.e.); substituting
this in the previous equation and integrating from 0 to a; gives the
desired conclusion.

Now let K and S be the Hubert space and operator, respectively,
associated with 6 as in §2. We define a linear mapping Wo from
finite linear combinations of {Hz: zeD} into L2(0, 1) by W0CΣJCJHZ) —
Σ CJYZ , ̂ i β D and α, complex.

LEMMA 3.8. (i) Wo extends in a unique way to an isometry W
from K into L2(0, 1).

(ii) (W*g, Hzy = [ gΫzdm, g e L2(0, 1) and zeD.
Jo

Proof. If z,weD, we see from (2.3) and Lemma 3.5 with
s = 0, t = 1, that

IW9 WOHZ>= [ YwΫzdm

Thus Wo preserves inner products and hence norms. Since we are
assuming that (1.1) holds, Lemma 2.1 (ii) and Lemma 2.6 imply that
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{Hz: zeD} spans K. Thus Wo has a unique isometric extension W to
all of K, so that (i) follows, (ii) is clear from the definition of Wo

and the proof is complete.
Note that the vector (δ, A) in gg? spans MQ UM. It follows that

Z7*(δ, A) lies in M1 = K.

LEMMA 3.9. Let f e K. Then \\Sf\\ = \\f\\ if and only if f is

orthogonal to £7*(δ, A).

Proof. S is the compression of the isometry U the subspace K =
M1. It follows from the proof of Lemma 2.3 that {feK:\\Sf\\ =
\\f\\} = KOU*{MQUM). One easily checks that the vector (δ, A)
spans MQUM, which completes the proof.

The following theorem identifies the completely non-unitary subspace
of T. Assertions (i), (iii) and (iv) were known (up to Cay ley trans-
forms) to Brodskii and Livsic, although they did not identify the
subspace WK as the range of an isometry. Their proof used an
argument about the resolvent of A which does not seem to work
when A is unbounded. The following proof relates W, S and T in a
natural way and has the advantage of working when the spectrum
of T is the entire unit circle.

THEOREM 1. (i) WK is a reducing subspace for T.
(ii) WS= TW.
(iii) TI WK is completely non-unitary.
(iv) T\{WK)L is unitary.

Proof. First we show that S* = TF* T* W. For this it will suffice
to show that S* and W*T*W agree on the total subset {Hz: zeD}
of K. Recall that the isometry U acting on 3ίf is exactly U+ 0 Mχ

where Mχ: f —+χf acts on U(E) and U+ is the unilateral shift on H2.
Now (Uϊf)(z) = z~ι{f{z) - (/(0)) if / e H\ and S* = U* \ K. It follows
from an easy computation that

(3.1) S*HZ = z H z - W ) U * ( b , A), z e D .

Now in the expression for T* given in Proposition 3.4, replace /
by Yz and use Lemma 3.5 to get

(T*Y.)(x) = β{x)Yz{x) + c(x)bx{θr\β(x) ~ l)(bx(ΦM - b(z)b(O)) .

Using this, the definition of Yz> and the fact that |/5| — 1 a.e., we
easily compute that

(T*Y,)(x) = zYz(x) - b(zj[c(x)(β(x) -
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For convenience, let h(x) — b(0)c(x)(β(x) — Γjδ^O)""1 We have just shown
that

(3.2) T*ΓZ - zYz- b(z)h,zeD.

Applying W* to this equation and recalling that WHZ — Yz, we have

(3.3) W*T*WHZ = zHz - Έ(zjW*h,zeD.

A comparison on this with (3.1) shows that we must prove that
W*h = £/*(&, A). By Lemma 3.8 (ii), the definition of h and Lemma
3.6,

<W*h, Hz> = z-\b(z) - b(0))

= (Uίb)(z)

= <JJ*(b, Δ), HΛ> ,

z Φ 0. Since the functions {Hz: zeD and z Φ 0} span K, we have
W*h = U*(b, A) as desired. Hence

(3.4) S* = T7*T*TF.

Now we shall show that WK is invariant for T*. Since {Yz: ze
D} spans TFJK ,̂ it is enough to show that T*Yβ is in WK for each
z in Zλ The action of T* on Yz is given by (3.2); from this it is
clear that we need only argue that he WK. W is an isometry, so
h will lie in WK if and only if || W*h\\ = \\h\\. We know that W*h =
U*(b,A); an easy computation shows that || T7*Λ||2 = |[ U*(b, zί)||2 =
1 — 16(0) |2. On the other hand, it follows from Lemma 3.7 and the

definition of h that \\h\\2 = [ \h\2 dm = 1 - |δ(0)|2 = ||T7*Λ||2. Thus

WK is invariant for T*.
Now T l̂̂ Γ* is the projection of L2(0, 1) onto WK. Denote this

projection by E. Since WK is invariant for ϊ7*, we can let W act
on equation (3.4) from the left to get T7S* = ET*W= T*T7. There-
fore W provides a unitary equivalence between S* and T* | WK.

Let S = ET\WK, so that S* = T*\WK. Clearly JB and S are
unitarily equivalent by way of W:

(3.5) F Γ S - S T Γ .

We have shown that WU*(b, A) = h. It follows from Lemma 3.9
that g in WK is orthogonal to h if and only if \\Bg\\ = \\g\\. For
such a g we have \\g\\ = \\Bg\\ = \\ETg\\ ^ \\Tg\\ ^ \\g\\. Hence

\\ETg\\ = \\Tg\\ so t h a t TgeWK. Thus T( WK Q {h}) c WK. In

order to conclude that WK is invariant for Γ, we need only show
that The WK.

From the definition of h, Proposition 3.4, Lemma 3.7 and some
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computation we have

(Th)(x) = b(0)β(x)(β(x) -

+ H0)(β(x) - ΐjbjβ) c(x)(\bx(O)Γ ~ 1)
- -b(0)Y0(x),

i.e.,

(3.6) Th= -b(0)Y0.

Since YQ e WK we have shown that TWKcz WK. Thus WK reduces T.
It follows that B = T\WK which implies that (3.5) can be im-

proved to WS = TW. TI WK is therefore unitarily equivalent to S
and so is completely non-unitary.

Finally, we know from Remark 3.3 that I - T* T and I - TT*
have 1-dimensional range. Setting z = 0 in (3.2) yields T* Yo =
- 6(0)7*. Combining this with (3.6) shows that (I - T* T)h = (1 -
and (J - 2Ύ*) Γo = (1 - 16(0) |2) Yo. The ranges of the operators I -
T*T and I - TT* are therefore contained in WK so their kernels
contain (WK)L. It follows that T\(WK)L is unitary. This completes
the proof.

We are now in a position to decide when the subspace WK is all
of L2(0, 1). We will need a simple lemma (see [11, Lemma 3.3] for
the proof) and a definition.

LEMMA 3.10. Let Hι and H2 be Hilbert spaces and let V: Hι —> H2

be an isometry. Suppose that E is a projection in H2 and V*EV is
a projection in H^ Then VHY is invariant for E.

DEFINITION 3.11. Let bt be as in Definition 3.2 and define qt by
h = btqt, 0 ^ t ^ 1. {bt} will be called a regular family if b = btqt is
a scalar regular factorization for each t in [0, 1].

THEOREM 2. WK = L2(0, 1) if and only if \ c | > 0 α.β. and {bt}
is a regular family.

Proof. Suppose first that WK = L2(0, 1) and Mt is as in Remark
3.3. Then Pt = W*Mt W is a projection in K since Mt is a projection
in L2(0, 1). Let Kt = PtK; clearly Kt = W*MtL

2(0, 1) = T7*L2(0, ί),
0 ^ t ^ 1. Now L2(0, t) is easily seen to be invariant for T*, so, by
Theorem 1 (ii), Kt is invariant for S*.

Let St be the compression St = PtS\Kt and Γt be as in Remark
3.3. It follows from Theorem 1 (ii) that W provides a unitary equi-
valence between S*\Kt and 7*1^(0, t), or, equivalently, that St and
Γί are unitarily equivalent. Thus, by Remark 3.3, we have rank
(IKt — SfSt) — 1. We can now invoke Proposition 2.4 to conclude that
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Kt = Sίf θ M(ψl9 ψ2) for some scalar regular factorization b = φ2ψi
Now, by Lemma 3.5 we have

<PtHw, Hz> = <MtWHw, WHZ>

(3.7) = Γ YwΫzdm
Jo

= ( 1 - bjw)bt{z)){l - w z ) - \ z,weD.

On the other hand, since Kt = ^QMiψ^ ψ2), equation (2.6) implies that
(3.8) <JPtHv, Hz> = ( 1 - ψ 2 ( w ) f 2 ( z ) ) ( l - wz)~\ z,weD.

Comparing (3.7) and (3.8) shows that bt = af2 for some constant a of
modulus 1. This clearly implies that b = btqt is a scalar regular
factorization. Since t is arbitrary in [0, 1], we have shown that bt is
a regular family.

Now let F — {x: c(x) = 0}. It is clear from Definition 3.2 that
each Yz vanishes a.e. on F. Since the functions Yz span WK —
L2(0, 1), it must be the case that F has Lebesgue measure zero. This
completes the proof one way.

Conversely, suppose that {bt} is a regular family and \c\ > 0 a.e.
Let b = btqt define qt and set Kt = <%* Q M(bt, qt), 0 ^ t ^ 1. Pt will
denote the projection of K onto uTi# Again by (2.6) we have

(3.9) (PtHw, H z y = ( 1 - bt(w)bt(z))(l - wz)~\ z,weD.

On the other hand, we can use Lemma 3.5 as in equation (3.7)
to conclude that

< W * M t W H w , H z y = ( 1 - bt(w)bt(z))(l - wz)~\ z,weD .

Comparing this with (3.9) and recalling that {Hz: ze D) spans K shows
that Pt = W*MtW. Therefore, by Lemma 3.10, WK is invariant for
Mt,0^t^l. Moreover, Yo is in WK, so if 0 ^ s < t ^ 1 and 9c(s tλ

is the characteristic function of the interval (s, £], 3£(S)ί] Yo is exactly
Mi Yo - MSYO which must lie in WK. It follows that pY0 is in T7iT
for any step function p. If g is orthogonal to TFiΓ, then \ p Yogdm = 0

for all step functions p. Consequently Yog = 0 a.e. Since β never
takes the value 1 and \c\ > 0 a.e., it follows from Definition 3.2 that
I Γo | > 0 a.e. Thus g = 0 a.e. and WK = L2(0,l). This completes the
proof.

We would like to have a condition on the pair (a, c) that is
equivalent to the hypothesis of Theorem 2. To this end suppose that
\c\ > 0 a.e. and let p be the measure on [0, 1] given by p(F) —

1 \c\2 dm. It is clear that p is mutually absolutely continuous with
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respect to Lebesgue measure m. Thus for any y in the essential
range of a (which we denote by R{oc)) and any real t, define rj(y, t) by

v(y, t) =
\y - δ, y + 5))

It will follow from the proof of Lemma 3.14 that for each ί, this
limit exists for almost all y in the set σac(a) defined below.

DEFINITION 3.12. Suppose that F is a measurable subset of R(a).
a will be called essentially invertible on F (with respect to the measure
p) if for each t in [0, 1], η(y, t) e {0, 1} for almost every y in F.

Essential invertibility is a kind of measure-theoretic one-to-one-
ness condition. To see this assume that a is essentially invertible on F.
For each rational r in [0, 1] there exists a set Nr of measure zero
contained in R(a) such that η(y, r) exists and lies in {0, 1} for all y
in F — Nr. Let N denote the union of all of these sets Nr. N has
measure zero and η(y, r) exists and lies in {0, 1} for each y in F — N
and rational r.

For a fixed y in F — N, η(y, r) is a nondecreasing function of r
(r rational). Let x = sup {r: r is rational and η(y, r) = 0}. Clearly
γj(yy r) = 0 if r < x and η(y, r) = 1 if r > a?. From the definition of
37(3/, ί) it is clear that the sets orι(y — 8, y -\- δ), δ > 0, are concentrated
around x as δ—*0. Accordingly, # is called the essential pre-image of ?/.

DEFINITION 3.13. The absolutely continuous spectrum of α is the
set

σac(a) = {2/: lim^o (2δ)~1m(α~1(i/ — <?, y + <5)) exists and is positive.}

Note that oac(a) c R(a) and that the limit in the definition agrees
almost everywhere with the Radon-Nikodym derivative d(ma~ι)jdn)
here ma~~ι is the measure given by (ma~ι)(F) = m(a~\F)).

LEMMA 3.14. Suppose that \c\ > 0 a.e. . Then {bt} is a regular
family if and only if a is essentially invertible on σae(a).

Proof. The function β maps [0, 1] into T - {1}. Write β(x) =

eίθM w here θ: [0, 1] — (0, 2τr). For 0 ^ £ ̂  1 let vt and ^ be the
measures on (— co? 00) and (0, 2ττ), respectively, given by vt(F) = p([0,
t] f]a"ι(F)) and μt(G) = p([0, t]Πθ~ι(G)). An argument analogous to
that in Lemma 2.6 implies that

I bt(eix) I = exp [(cos x - 1) ^-(x)] a.e.
do
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Thus the condition that {bt} be a regular family is exactly the con-
dition that for any t, 0 ̂  t ^ 1 ,

(3.10) A^{x)ek^(x)\ a.e..
dσ I dσ J

As in Lemma 2.6 we compute

dn 2π dσ

x real. Since τ'{x) never vanishes and vι = v, (3.10) is equivalent to

(3.11) ^ ( s ) 6 JO, ^-{
dn V dn

a.e. .

Since |0 and m are mutually absolutely continuous, it follows that
{x: (dv/dn)(x) > 0} and σac(a) differ only by a Lebesgue null set.
Moreover, 0 ̂  dvt/dn <£ dvjdn, so (3.11) holds automatically for almost
all a? outside of σac(a). Hence for {bt} to be a regular family it is
necessary and sufficient that for each t,

f(A)-e(o,i}
dn dn

for almost all x in σac(a). Since, for each t in [0, 1], (dvtjdn)(x) =
lim^0 (2δ)~ίp(a~~ι(x — δ, x + δ) Π [0, ί]) for almost all x, we see that
this is equivalent to the condition that a be essentially invertible on
σac(a). This completes the proof.

Since A is maximal dissipative, we know from Theorem 1 and
the discussion in §1 that WK reduces A, A\WK is completely non-
selfad joint and A\(WK)L is self ad joint. Putting this together with
Theorem 2 and Lemma 3.14 yields our main theorem.

THEOREM 3. A is completely non-self ad joint if and only if \c\ >
0 a.e. and a is essentially invertible (with respect to p) on σac(a).

COROLLARY 3. Suppose that \c | > 0 a.e. and a is monotone. Then
A is completely non-self adjoint.

Proof. Let t e [0, 1] and assume that a is nondecreasing. If y <
a(t), then a"1 (y — δ, y + δ) is contained in [0, t] if δ is small enough.
Hence rj(y, t) = 1. Similarly η(y, t) — 0 if y > a(t). Thus a is essen-
tially invertible on R(a) which contains σae(a). The same conclusion
holds if a is nonincreasing. Therefore, if | c | > 0 a.e., Theorem 3
implies that A is completely non-self ad joint.
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The next corollary follows immediately from Theorem 3.

COROLLARY 3.16. If \c\ > 0 a.e. and σac(a) has measure zero, then
A is completely non-self adjoint.

The reader can check σac(a) has measure zero if and only if b is
an inner function. This will certainly happen if, e.g., a has countable
range.

COROLLARY 3.17. Suppose that c and 1/c are essentially bounded
and that a is continuously differentiable. Then A is completely non-
selfadjoint if and only if a is monotone.

This is an easy consequence of Theorem 3 and the definition of
essential invertibility. The hypothesis can be weakened in several
obvious ways. We leave the proof for the reader.

We conclude this section with a rather curious result on the
perturbation of singular spectral multiplicity.

COROLLARY 3.18. Let B, = [ λ dESS) αraZ B2 = [x dE2{\) be
bounded selfadjoint operators on a separable Hilbert space. Suppose
that Bι and B2 have no point spectra and no absolutely continuous
spectra. Suppose further that the spectral measures E1 and E2 are
mutually absolutely continuous, that is, E±(G) = 0 if and only if E2(G) =
0 for G a Borel subset of the line. Then, given ε > 0, there exists
a compact operator K with \\K\\ < ε such that Bx + K and B2 are
unitarily equivalent. Moreover, K is contained in each Schatten p-class
Cp for p > 1.

Proof. We will need the fact, which is probably part of the
folklore, that any selfadjoint operator B with no point spectrum can
be represented as a multiplication operator Mφ: f —>Φf acting on U(a,
b), where [a, b] is a given interval and φ is in L°°{a, b). One way to
see this is to decompose B as direct sum of at most countably many
selfadjoint operatorators {Bk}, each of which has a cyclic vector. Bk

can be represented as a multiplication /(λ) —> λ/(λ) on U(μk) for some
finite positive measure μk with compact support on the line. Now
for each Bk, select a non-degenerate subinterval Ik of [α, b] in such
a way that the Ik's are disjoint and their union is [a, b]. We may
assume that the total mass of μk equals the length of Ik. μk has no
atoms, so we can choose a strictly increasing function (as in the
proof of Theorem 5) φk: Ik —> (— co? oo) such that mφi1 = μk, where
m is Lebesgue measure. The map f—+f°φk from U{μk) to L2(Ik) is
clearly an isometry. It is onto since φk is strictly increasing, and so
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induces a unitary equivalence between MΦk and Bk. Define φ on [a,
b] so that its restriction to Ik is φk. Mφ is the desired operator. If
E(G) is the spectral projection for B corresponding to a Borel set G,
then E(G) corresponds to the map f—»χΦ-i{β)f on U(a, b).

We apply this as follows. Represent B1 and B2 as Mai and M«2,
respectively, acting on L2(0, 1). By our assumption about Eγ and E2,
the measures mocζ1 are mutually absolutely continuous. Let g be the
Radon-Nikodym derivative of ma;1 with respect to ma2

ι, so that

maγ](G) = I g d(ma2

ι) = I g{a2{x)) dx. Now # ̂  0 and go^2 vanishes

only on a set of Lebesgue measure zero. Let cx = 1 and c2 = (g°oc2y
12

and vk(G) — \ \ck\
2 dm. In the theory developed above vk corres-

ponds to the operator Ak = Ma, + i Vk, where (Vkf)(x) = <?*.(&) I ck(t)f(t)dt.
* Jo

We have just shown that vγ = v2. It follows that for k = 1,2, the
functions bk associated with ak and ck as in (2.7) are identical. Since
1?! and B2 have purely singular spectra, vγ — v2 is a singular measure.
It follows that σae(ak) has measure zero, so that the operator "PΓfc:
Kk — L2(0, 1) is onto for k = 1, 2 by Corollary 3.16. Therefore (Afc -
ΐ/2)(Afc + ί/2)"1 is unitarily equivalent to Sk for k = 1, 2. Now ^ =
62, so that Si = S2> hence A1 and ^42 are unitarily equivalent, say Aγ =
UA2U~ι for U unitary. Therefore Maχ + D= UMa2U~ι where D = i(V1-
UV2U~ι). It is easy to see that V2 is unitarily equivalent to the
Volterra operator VΊ which is well known to be in the Schatten p-
class Cp for p > 1. Therefore D is in Cp and | | J D | | ^ 2 ||V;||.

Now, choose α > 2 (HFiH/ε) and apply the above discussion to aBx

and aB2 rather than Bι and B2, and then divide by α. Since \\a~ιD\\ < ε,
we are done if we set K = α"1/).

4* Related results for almost unitary contractions* The techni-
ques in the preceding sections can be used to study other integral
operators. Suppose, for example, that A > 0 and a: [0, A] —> [0, 27r)
is measurable. Let X be the operator on L2(0, A) given by

(4.1) (Xf)(x) = ζ{x)f{x) -

where ξ(x) = eia{x). Let Xo denote this operator when a(x) = 0 and
let Me be the multiplication Mξ: f — ξf. Clearly X = X0Mς.

It is easy to compute that X is a contraction and, in fact, that
I — X*X and I — XX* are positive rank-one operators. For 0 ^ t <£
A, we define X* (analogous to Tt in Remark 3.3) to be the compression
of X to L2(0, £). It is easy to compute that It — Xt*Xt = <( , ^<^ Ut
and Jί — XίXί* = <̂  , vty vt, where It is the identity on L2(0, t), ut(x) =
ξ(x) exp ((x — t)/2) and vt(x) = exp (— α /2), 0 ^ x ^ t. Another compu-
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tation shows that X*vΛ = e~A'2 uA and XuA = e~AI2vA so that uA and
vA play the roles of h and Yo, respectively, in Theorem 1.

We associate with X the functions {bt} in the unit ball of H°°
given by

(4.2) bt(z) = exp {- -L
22 Jo ξ(χ) — z

Set b — bA and associate S and K with 6 as in §2.
For each z in D let

Λs(ί) - bjz){l - ξ(t)z)-\ 0 ^ t ^ 1, z e D .

Define VQ from finite linear combinations of {Hz: zeD} (in K) into
L2(0, A) by

We define essential invertility for the function a as in Definition
3.12 but with p replacted by Lebesgue measure m. Let μ be the
measure on [0, 2π) given by μ(F) = m{a~\F)). The arguments of the
previous sections, altered only in computational details, yield the
following theorem.

THEOREM 4. Suppose that

Then the mapping Vo has a unique isometric extension V from K into
L2(0, A). VK reduces X, X\(VK)L is unitary and X\VKis completely
non-unitary. VS = XV, so that X \ VK is unitarily equivalent to S.
VK = L2(0, A) if and only if {bt} is a regular family, which is the
case if and only if a is essentially invertible on σae(a).

In the case a = 0, the mapping V is equivalent to one used by
Sarason to study the Volterra integration operator [12]. Note that
in this case b(z) reduces to inner function

exp - —2 1 - 2

and Theorem 4 implies that VK = L2(0, A).
The operators S of §2 are known to represent a certain abstract

class of contractions. Using this fact and Theorem 4 we can prove
the following representation theorem. This may be considered as an
analog, for contractions, of the triangular model of Brodskii and
Livsic [3]. Ko will denote the compact operator
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so that Xo = I - if0.

THEOREM 5. Lei T be a contraction operator on a Hilbert space
H such that I — T*T and I — TT* are rank one operators. Suppose
that T7* has no isometric restriction and that the spectrum of T is
contained in the unit circle. Let A = — log (1 — \\I — T*T\\). Then
there exists a non-decreasing function a: [0, A] —> [0, 2π) with this
property: if ξ(x) = eia{x), then T is unitarily equivalent to (I — K0)Mξ

acting on L2(0, A).

Proof. Let T be as in the hypotheses of the Theorem. T is
completely non-unitary (otherwise T7* would have an isometric part)
so by results of Sz.-Nagy and Foias [15], T is unitarily equivalent
to an operator S acting on K as in §2. Let b be the associated H°°
function. Since T contains the spectrum of S (by hypothesis), b has
no zeros in D (see [15, p. 247]). Since | δ | is bounded by 1, b has a
representation of the form

(4.3) b(z) = e x p { — 1 Γ ^ ± ^ dμ (x)\, z e D ,
I 2 Jo e%* — z i

where μ is a finite positive measure on [0, 2π). (see [9, p. 63]).
Set A = μ([0, 2π)) and let a: [0, A] —•> [0, 27r) be a nondecreasing func-

tion such that μ(F) = m(α~1(ί7)) for every Borel subset of [0, 2ττ). Here
m is Lebesgue measure on [0, A]. (It will suffice to take a(t) =
inf {x: μ([0, x\) ^ t}.) By a change of variable in (4.3) we have

2 ()

where ξ(x) = e

ia^x\ Let bt be defined as in (4.2) and suppose that V
is associated with {6J as in Theorem 4. We want to conclude that
S is unitarily equivalent to X = (/ — K0)Mξ acting on L2(0, A).

Since a is monotone we can invoke the argument in Corollary
3.15 to establish the essential invertibility of a on σae(a). Furthermore,
the condition in Theorem 4 that

dσ

is used only to show that the span Ko of {Hz: ze D] is all of K.
Since S*\K© Ko is the maximal isometric part of S* (see Lemma 2.1),
we see from our hypothesis on Γ* that K = Ko automatically. Hence
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Theorem 4 is applicable and the operators T, S and X = (I — K0)Mζ

are all unitarily equivalent.
Finally, from our previous discussion I — X* X = <( , uAy uA, so

| | I - T*T\\ = II I - X*X|| = | K | | 2 = 1 - β-4. Hence A - - log (1 -
| | I - T*T\\). This completes the proof.

We can use Theorem 5 to extend some results of Ahern and Clark
[1]. For the rest of this section T will be a contraction satisfying
the hypothesis of Theorem 5.

Let W acting on Nz> H be the minimal strong unitary dilation
of T([6], [15]), i.e. IF is unitary, Tn = PHW*\H, and T*n = PπW-n\H,
n ĵ> 0. For any continuous function u on the unit circle, u{W)
makes sense as a normal operator on N. Tu will be the operator on
H defined by Tu = PHu(W)\H. If u is in H~, then Tu = u(T) where
the last operator is taken in the sense of the Sz.-Nagy and Foias
operational calculus [15].

The corollaries that follow were proved by Ahern and Clark [1]
under the additional hypothesis that T*n —>0 strongly (this happens
if and only if δ is an inner function). [1] also contains an analogue
of Theorem 5 for this case.

COROLLARY 4.1. Suppose that Z is a unitary operator such that

(I - KQ)Mζ - ZTZ* .

where Mζ is as in Theorem 5. Then

u(Mζ) + K^ ZTUZ*

for some compact K.

Proof. The important part of Theorem 5 (for the purposes of
this proof) is that T is unitarily equivalent to Y + KL where Y is
unitary and Kt is compact. An argument in [1] then shows that the
same unitary equivalence takes Tu onto u(Y) + K for some compact
K. This completes the proof.

Recall that the Fredholm spectrum of an operator B is the set
spF(B) = {λ: B - λ is not Fredholm}. The Weyl spectrum w(B) is
the intersection w(B) = Π {sp(B + K): K is compact}. The index of
Fredholm operator B is the integer i(B) = dim(Ker B) — dim (Ker B*).
It is known that

w{B) = spF(B) U {λ: B - X is Fredholm and i(B - λ) Φ 0} .

The reader can find these definitions and facts in [13] and [14].
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Now suppose that b is as in Theorem 5, so b has the the repre-
sentation (4.3). It follows from [15, p. 247] that sp(T) = sp(S) is
exactly the closed support of μ, which is equal to the essential range
of ζ (where μ is considered as a measure on T).

COROLLARY 4.2. w(Tu) = spF(Tu) = u(sp(T))

Proof. Let f be as in Theorem 5 and recall that the property of
being Fredholm is invariant under compact perturbations. From
Theorem 5 and Corollary 5.1 we have spF(Tu) = spF(u(Mζ) + K) =
spF{u{Mξ)).

Now u(Mς) = Muaζ is a multiplication operator on a non-atomic
measure space and hence spF(u(Mξ)) = sp{u{Mξ)). It follows that
spF(u(Mξ)) = ^(essential range ζ) = u(sp(T)). Finally, if Tu — λ is
Fredholm, then i(Tu - λ) = i{u{Mξ) + K - λ) = i(u(Mξ) - λ) = 0; this
follows from the fact that the index does not change under compact
perturbation and u(Mς) - λ is normal. Thus w(Tu) = spF(Tu). This
completes the proof.

COROLLARY 5.3. Tu is compact if and only if u vanishes on
sp(T).

Proof. Let K be compact. u(Mξ) + K is compact if and only if
u(Mξ) = MUΰζ is compact, which can happen only when MUΰζ = 0, i.e.
u(ζ(x)) = 0 a.e. . This is the case if and only if u vanishes on the
essential range of ξ which coincides with sp(T). The proof is complete.

Added in proof. (1) Douglas N. Clark has informed me that
the converse to Lemma 2.1 (ii) is true. Here is his proof. Define
U: U(A2dσ) —* U(E) by Uf = Δf. U is clearly a unitary operator;
hence {Up: p is a polynomial} spans U{E) if and only if the poly-
nomials span L2{A2dσ). The former is true precisely when Ko = K
(see the proof of Lemma 2.1) whereas the latter is true if and only
if log A2 = 2 log A is not integrable, by Szegδ's theorem.

(2) In Corollary 3.18, suppose that the spectral measures Et and E2

of B1 and B2, respectively, are assumed only to have the same closed
support, rather than to be mutually absolutely continuous. Then BL

and B2 have the same (essential) spectra and it follows from two
famous theorems of von Neumann that B1 + K and B2 are unitarily
equivalent for some compact operator K (see Charakterisierung des
Spektrums eines Integraloperators, Actualites Sci. Ind., 229, Paris
(1935), p. 11). An improvement of one of von Neumann's theorems
(S. Kuroda, On a theorem of Weyl-von Neumann, Proc. Japan Acad.
34 (1958), 11-15) together with a recent refinement of the other
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(P. R. Halmos, Limits of shifts, to appear) shows that the full con-
clusion of Corollary 3.18 is true with the weaker hypotheses. In
fact, B, and B2 need not be singular, but only "essential" selfadjoint
operators.
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