INTEGRATED ORTHONORMAL SERIES

JAMES R. McLAUGHLIN
Throughout this paper the author defines

\[F_\alpha(t) = \sum_{m=1}^{\infty} |\phi_m(t)|^\alpha = \sum_{m=1}^{\infty} \left| \int_a^t \phi_m(x) dx \right|^\alpha \]

where \(0 < \alpha \leq 2, a \leq t \leq b, \) and \(\{\phi_m\} \) is a sequence in \(L^1[a, b], \) usually orthonormal. In this paper, \(F_\alpha(t) \) is studied for the Haar, Walsh, trigonometric, and general orthonormal sequences. For instance, it is proved that for the Haar system \(F_\alpha(t) \) satisfies a Lipschitz condition of order \(\alpha/2 \) in \([0, 1]\) and that this result is best possible for any complete orthonormal sequence. An application is also given regarding the absolute convergence of Walsh series.

Previously, Bosanquet and Kestelman essentially proved [3, p. 91]

Theorem A. Let \(\{\varphi_m\} \) be orthonormal. Then the Fourier coefficients of every absolutely continuous function are absolutely convergent if and only if \(F_\alpha(t) \in L^\alpha[a, b]. \)

Also, applying Parseval's equality to the characteristic function of \([a, t],\) we obtain

Theorem B. Let \(\{\varphi_m\} \) be orthonormal. Then \(\{\varphi_m\} \) is complete in \(L^2[a, b] \) if and only if \(F_\alpha(t) = t - a, \) \(a \leq t \leq b. \)

For certain systems, such as the Haar system, the following extension of Theorem A is possible.

Theorem 1. Assume \(\{\varphi_m\} \) is orthonormal, \(\Phi_m(t) \) has constant sign on \([a, b]\) for each \(m = 1, 2, \ldots, \) and \(\sum |\Phi_m(b)| < \infty. \) Then the Fourier coefficients of every absolutely continuous function \(f(t), \) such that \(f''(t) \in L^p, \) are absolutely convergent if and only if \(F_{\alpha}(t) \in L^\alpha, 1 \leq p \leq \infty, p^{-1} + q^{-1} = 1. \)

Proof. Necessity. Integrating by parts we obtain

\[\int_a^b f''(t) \sum_{m=1}^{\infty} |\phi_m(t)| dt \]

exists for every \(f'' \in L^p. \) Hence, \(F_{\alpha}(t) \in L^\alpha \) [7, p. 166].

Sufficiency. By Hölder's inequality
If an orthonormal sequence \(\{\varphi_m\} \) is not complete we still obtain \(F_2(t) \) continuous since the "completed" series converges to a continuous function and hence (i.e. by Dini's theorem) the convergence must be uniform. In fact, we have

Theorem 2. If \(\{\varphi_m\} \) is orthonormal, then \(F_2(t) \in \text{Lip} (1/2) \).

Proof. Let \(x, y \in [a, b] \). Using Bessel's inequality, we obtain

\[
|F_2(x) - F_2(y)| = \left| \sum_{m=1}^{\infty} [\varphi_m(x)]^2 - [\varphi_m(y)]^2 \right| \\
\leq \sum_{m=1}^{\infty} |\varphi_m(x) - \varphi_m(y)| \left\{ |\varphi_m(x)| + |\varphi_m(y)| \right\} \\
\leq \left\{ \sum_{m=1}^{\infty} [\varphi_m(x) - \varphi_m(y)]^2 \right\}^{1/2} \left\{ \sum_{m=1}^{\infty} [\varphi_m(x)]^2 \right\}^{1/2} \\
+ \left\{ \sum_{m=1}^{\infty} [\varphi_m(x) - \varphi_m(y)]^2 \right\}^{1/2} \left\{ \sum_{m=1}^{\infty} [\varphi_m(y)]^2 \right\}^{1/2} \\
\leq 2|b - a|^{1/2} |x - y|^{1/2} .
\]

Remark 1. This result is best possible in the following sense: For every \(\varepsilon > 0 \) if we set \(\varphi_i(x) = (1 - x)^{i(1-1/2)} \), \(0 \leq x < 1 \), then \(\varphi_i \in L^2[0, 1] \) but \([\varphi_i(t)]^2 \in \text{Lip} (1/2 + \varepsilon) \).

Remark 2. It would be interesting to know if \(F_2(t) \) is absolutely continuous and if \(F_2'(t) \in L^2 \) for any orthonormal sequence \(\{\varphi_m\} \).

Theorem 3. For any complete orthonormal system \(\{\varphi_m\} \), \(F_2(t) \in \text{Lip} (\alpha/2 + \varepsilon) \) for any \(\varepsilon > 0 \).

Proof. Let \(t \in [a, b] \). By Parseval's equality

\[
[F_2(t)]^{1/2} \geq [F_2(t)]^{1/2} = (t - a)^{1/2} , \quad 0 < \alpha \leq 2 ,
\]

since for any nonnegative sequence \(\{a_m\} \), \([\sum a_m^\alpha]^{1/\alpha} \) is a non-increasing function of \(\alpha \) for \(\alpha > 0 \).

We will now determine which Lipschitz class \(F_2(t) \) belongs to for the Haar, Walsh, and trigonometric systems.

Definition. If \(0 < \alpha \leq 1 \), set

\[
N_\alpha(f) = \sup |f(x) - f(y)| |x - y|^{-\alpha} \quad \text{for} \ x \neq y \quad \text{and} \quad x, y \in [a, b] .
\]

Lemma 1. Let \(\alpha > 0 \) and \(0 < \alpha - \beta \leq 1 \). If
\[\sum_{m=1}^{\infty} N_\alpha(f_m) = O(n^\delta) \]

and
\[\sum_{m=1}^{\infty} \|f_m\|_\infty = O(n^{\delta-\alpha}) , \]

then
\[f(t) = \sum_{m=1}^{\infty} f_m(t) \in \text{Lip} (\alpha - \beta) . \]

Proof. Let \(2^{-\delta-1} < h \leq 2^{-\delta} \). Then
\[
|f(t + h) - f(t)| \leq \sum_{m=1}^{\infty} |f_m(t + h) - f_m(t)| = \sum_{m=1}^{2^{\delta}} + \sum_{m=2^{\delta}+1}^{\infty} = P + Q .
\]

\[
P = O \left(h^\alpha \sum_{m=1}^{2^{\delta}} N_\alpha(f_m) \right) = O(h^{\alpha-\beta}) ,
\]

\[
Q = O \left(\sum_{m=2^{\delta}+1}^{\infty} \|f_m\|_\infty \right) = O(h^{\alpha-\beta}) .
\]

Lemma 2. (a) If \(\sum_{m=1}^{2^{\delta}+1} |a_m| n^\alpha = O(2^{\alpha \delta}) \), then
\[\sum_{m=1}^{n} |a_m| = O(n^{\delta-\alpha}), \beta - \alpha < 0 . \]

(b) If \(\sum_{m=2^{\delta}+1}^{n} |a_m| = O(2^{\alpha \delta}) \), then \(\sum_{m=1}^{n} |a_m| n^\alpha = O(n^{\alpha+\beta}), \alpha + \beta > 0 . \)

Proof. Straightforward.

Lemma 3. Let \(0 < \gamma \leq 1 \) and suppose \(f \in \text{Lip} \gamma \).

(a) If \(0 < \alpha \leq 1, \|f\|^\alpha \in \text{Lip} (\alpha \gamma) \).

(b) If \(\alpha > 1, \|f\|^\alpha \in \text{Lip} \gamma \).

Proof. We may assume \(f(t) \geq 0 \) because
\[|f(t + h) - f(t)| \leq |f(t + h) - f(t)| . \]

Part (a). Since \(|x + y|^\alpha \leq |x|^\alpha + |y|^\alpha, 0 < \alpha \leq 1 \), we obtain
\[|f^\alpha(t + h) - f^\alpha(t)| \leq |f(t + h) - f(t)|^\alpha = O(h^{\alpha \gamma}) . \]

Part (b). Since \(|x^\alpha - y^\alpha| \leq \|\alpha t^{\alpha-1}\|_\infty |x - y|, \alpha \geq 1 \), it follows that
\[|f^\alpha(t + h) - f^\alpha(t)| \leq \|\alpha f^{\alpha-1}(t)\|_\infty |f(t + h) - f(t)| = O(h^\gamma) . \]

Theorem 4. Let \(0 < \gamma \leq 1 \) and assume \(f \in \text{Lip} \gamma \) and is of period \(b - a \).

(a) If \(0 < \alpha \leq 1, 0 < \alpha \gamma - \delta \leq 1 \), and
\[\sum_{m=1}^{n} |a_m| n^\gamma \in O(n^\delta) , \]
then

\[f_\alpha(t) = \sum_{m=1}^{\infty} a_m |f(mt)|^\alpha \in \text{Lip} \left(\alpha \gamma - \delta \right) . \]

(b) If \(\alpha > 1, 0 < \gamma - \delta \leq 1, \) and

\[\sum_{m=1}^{\infty} |a_m|^m = O(n^\delta), \]

then

\[f_\alpha(t) = \sum_{m=1}^{\infty} a_m |f(mt)|^\alpha \in \text{Lip} \left(\gamma - \delta \right) . \]

Proof. Part (a). By hypothesis and Lemma 3 (a)

\[\sum_{m=1}^{n} N_{\alpha \gamma} [a_m |f(mt)|^\alpha] = O \left(\sum_{m=1}^{n} |a_m|^m \right) = O(n^\delta) . \]

Also, by Lemma 2 (a), if \(0 < \alpha \gamma - \delta, \) then

\[\sum_{m=1}^{\infty} \| a_m |f(mt)|^\alpha \|_\infty = O \left(\sum_{m=1}^{\infty} |a_m|^m \right) = O(n^{\delta - \gamma}) \]

and so our result follows by Lemma 1.

Part (b). By hypothesis and Lemma 3 (b)

\[\sum_{m=1}^{n} N_\gamma [a_m |f(mt)|^\alpha] = O \left(\sum_{m=1}^{n} |a_m|^m \right) = O(n^\delta) . \]

Also, by Lemma 2 (a), if \(0 < \gamma - \delta, \) then

\[\sum_{m=1}^{\infty} \| a_m |f(mt)|^\alpha \|_\infty = O \left(\sum_{m=1}^{\infty} |a_m|^m \right) = O(n^{\delta - \gamma}) , \]

and so our result again follows from Lemma 1.

Theorem 5. Let \(0 < \alpha \leq 2 \) and assume \(\varphi \in L^\alpha[a, b], \varphi_m(x) = \varphi(mx), \) and \(\Phi(t) \) is of period \(b - a. \) If

\[\sum_{m=1}^{n} |b_m| = O(n^\delta), 0 < \alpha - \beta < 1 , \]

then

\[G_\alpha(t) = \sum_{m=1}^{\infty} b_m |\Phi_m(t)|^\alpha \in \text{Lip} \left(\alpha - \beta \right) . \]

Proof. \(\Phi_m(t) = m^{-1}\Phi(mt) \) and so
Now let $\gamma = 1$ and $a_m = b_m m^{-\alpha}$ in Theorem 4. Then, if $0 < \alpha \leq 1$, our result follows by Theorem 4 (a) with $\delta = \beta$.

If $\alpha > 1$ and $\alpha - \beta < 1$, then by Lemma 2 (b)

$$\sum_{m=1}^{n} |a_m| m^\beta = \sum_{m=1}^{n} |b_m| m^{1-\alpha} = O(n^{\delta-\alpha+1}) .$$

Thus, utilizing Theorem 4 (b) with $\delta = \beta - \alpha + 1$, we obtain

$$G_a(t) \in \text{Lip } [1 - (\beta - \alpha + 1)] = \text{Lip } (\alpha - \beta) .$$

Corollary 1.

(a) $\sum_{m=1}^{\infty} \left| \int_{0}^{t} \sin mx \, dx \right|^\alpha \in \text{Lip } (\alpha - 1), 1 < \alpha < 2$, on $[0, 2\pi]$.

(b) If $1 < \alpha < 2$ and $\{w_m(x)\}$ and $\{r_m(x)\} = \{r_1(2m^{-1}x)\}$ denote the Walsh and Rademacher functions (defined in [1]), then

$$\sum_{m=1}^{\infty} \left| \int_{0}^{t} w_m(x) \, dx \right|^\alpha = t^\alpha + \sum_{m=1}^{\infty} 2^{m-1} \left| \int_{0}^{t} r_m(x) \, dx \right|^\alpha \in \text{Lip } (\alpha - 1) \text{ on } [0, 1],$$

since $\left| \int_{0}^{t} w_m(x) \, dx \right| = \left| \int_{0}^{t} r_k(x) \, dx \right|$ for $2^{k-1} \leq m < 2^k, k = 1, 2, \cdots$, as can be easily seen directly.

(c) If $0 < \alpha < 2$ and $\{h_m\}$ denotes the Haar system (defined in [1]), then

$$\sum_{m=1}^{\infty} \left| \int_{0}^{t} h_m(x) \, dx \right|^\alpha = t^\alpha + \sum_{m=1}^{\infty} 2^{(m-1)\alpha/2} \left| \int_{0}^{t} r_m(x) \, dx \right|^\alpha \in \text{Lip } (\alpha/2) \text{ on } [0, 1],$$

since $\sum_{m=2^{k-1}}^{2^k-1} \left| \int_{0}^{t} h_m(x) \, dx \right| = 2^{(k-1)\alpha/2} \left| \int_{0}^{t} r_k(x) \, dx \right|$ for $k = 1, 2, \cdots$.

Remark 3. For the Haar system $F_i(t)$ has no finite derivative anywhere [5, p. 279].

Theorem 6. Let $0 < \| \varphi \|_1 < \infty$, $\varphi_m(x) = \varphi(mx)$, and assume $\Phi(t)$ is of period $b - a$.

(a) $\sum |a_m| m^{-\alpha} < \infty$ if and only if $\sum |\varphi_m(x)|^\alpha \in L[a, b]$.

(b) If $\sum |a_m| m^{-\alpha} = \infty$, then $\sum |\varphi_m(x)|^\alpha = \infty$ almost everywhere.

Proof. Part (a). Since $\Phi_m(t) = m^{-\alpha} \Phi(mt)$, we obtain

$$\int_{a}^{b} |\Phi_m(t)|^\alpha \, dt = m^{-\alpha} \int_{a}^{b} |\Phi(mt)|^\alpha \, dt = m^{-\alpha} \int_{a}^{b} |\Phi(t)|^\alpha \, dt .$$

Part (b). Applying Fejer's Lemma [7, p. 49], we obtain for every set E of positive measure
\[
\lim_{m \to \infty} \int_{E} |\Phi(mt)|^{\alpha} dt = \frac{t_{E}(E)}{b - a} \int_{a}^{b} |\Phi_{1}(t)|^{\alpha} dt > 0 \text{ as } m \to \infty,
\]
and so by a theorem of Orlicz [1, p. 327]
\[
\sum |a_{m}| m^{-\alpha} |\Phi_{1}(mt)|^{\alpha} = \sum |a_{m}| |\Phi_{n}(t)|^{\alpha} = \infty
\]
almost everywhere.

Corollary 2. There exists an absolutely continuous function whose Walsh-Fourier series is absolutely divergent.

Proof. For the Walsh system \(F_{1}(t) \in L^{\infty}\) by Theorem 6 and so the result follows from Theorem A.

It now seems appropriate to prove

Theorem 7. Let
\[
\omega^{2}(\delta, f) = \sup_{0 < h < \delta} \left\{ \int_{0}^{1} [f(x + h) - f(x)]^{2} dx \right\}^{1/2}.
\]
If \(\sum 2^{n/2} \omega^{2}(2^{-n}, f) < \infty\), then the Walsh-Fourier series of \(f\) converges absolutely.

Proof. Let \(\{c_{n}\}\) denote the Walsh-Fourier coefficients of \(f\) and let \(x + y = \sum_{n=1}^{\infty} |x_{n} - y_{n}| 2^{-n}\) where \(x = \sum x_{n} 2^{-n}\) and \(y = \sum y_{n} 2^{-n}\) are the binary expansions of \(x\) and \(y\) (where for dyadic rationals we choose the finite expansion). N. Fine proved [4, p. 395]
\[
\sum_{k=2^{n-1}}^{2^{n}-1} c_{k}^{2} \leq \int_{0}^{1} [f(x + 2^{-n}) - f(x)]^{2} dx.
\]
Also, by definition of \(\oplus\), we obtain
\[
\int_{0}^{1} [f(x + 2^{-n}) - f(x)]^{2} dx = \int_{E_{0}} [f(x + 2^{-n}) - f(x)]^{2} dx + \int_{E_{1}} [f(x - 2^{-n}) - f(x)]^{2} dx = 2 \int_{E_{0}} [f(x + 2^{-n}) - f(x)]^{2} dx
\]
where \(E_{p} = \{x \in [0, 1]: x_{n} = p\}\) for \(p = 0, 1\). Hence,
\[
\sum_{k=2^{n-1}}^{2^{n}-1} c_{k}^{2} \leq 2[\omega^{2}(2^{-n}, f)]^{2},
\]
and so by Schwarz's inequality
\[
\sum_{k=2^{n-1}}^{2^{n}-1} |c_{k}| \leq \left(\sum_{k=2^{n-1}}^{2^{n}-1} c_{k}^{2} \right)^{1/2} \left(\sum_{k=2^{n-1}}^{2^{n}-1} 1 \right)^{1/2} \leq \omega^{2}(2^{-n}, f) 2^{n/2}.
\]
REMARK 4. Previously N. Fine [4, p. 394] and N. Vilenkin [6, p. 32] proved that if \(f \in \text{Lip} \alpha, \alpha > 1/2 \), then the Walsh-Fourier series of \(f \) converges absolutely. By Theorem 7 it follows that all of the sufficiency theorems on absolute convergence for trigonometric series [2, p. 154–161] in terms of modulus of continuity carry over completely for the Walsh system.

REFERENCES

Received February 25, 1971 and in revised form April 24, 1972. Supported by NSF grant GP-14135.

Pennsylvania State University
Stephen Richard Bernfeld, *The extendability of solutions of perturbed scalar differential equations* .. 277
James Edwin Brink, *Inequalities involving \(f_p \) and \(f^{(n)}_q \) for \(f \) with \(n \) zeros .. 289
Orrin Frink and Robert S. Smith, *On the distributivity of the lattice of filters of a groupoid* .. 313
Donald Goldsmith, *On the density of certain cohesive basic sequences* .. 323
Charles Lemuel Hagopian, *Planar images of decomposable continua* 329
W. N. Hudson, *A decomposition theorem for biadditive processes* 333
W. N. Hudson, *Continuity of sample functions of biadditive processes* 343
Masako Izumi and Shin-ichi Izumi, *Integrability of trigonometric series. II* .. 359
H. M. Ko, *Fixed point theorems for point-to-set mappings and the set of fixed points* .. 369
Gregers Louis Krabbe, *An algebra of generalized functions on an open interval: two-sided operational calculus* 381
Thomas Latimer Kriete, III, *Complete non-selfadjointness of almost selfadjoint operators* ... 413
Shiva Narain Lal and Siya Ram, *On the absolute Hausdorff summability of a Fourier series* .. 439
Ronald Leslie Lipsman, *Representation theory of almost connected groups* ... 453
James R. McLaughlin, *Integrated orthonormal series* 469
H. Minc, *On permanents of circulants* .. 477
Akihiro Okuyama, *On a generalization of \(\Sigma \)-spaces* 485
Norberto Salinas, *Invariant subspaces and operators of class \((S)\)* 497
James D. Stafney, *The spectrum of certain lower triangular matrices as operators on the \(l_p \) spaces* ... 515
Arne Stray, *Interpolation by analytic functions* 527
Li Pi Su, *Rings of analytic functions on any subset of the complex plane* ... 535
R. J. Tondra, *A property of manifolds compactly equivalent to compact manifolds* ... 539