RINGS OF ANALYTIC FUNCTIONS ON ANY SUBSET OF THE COMPLEX PLANE

Li Pi Su
RINGS ON ANALYTIC FUNCTIONS ON ANY SUBSET OF THE COMPLEX PLANE

Li Pi Su

We prove that for any two subsets X, Y of \mathbb{C}, the complex plane, X and Y are conformally homeomorphic if there is an isomorphism between $\mathcal{A}(X)$ and $\mathcal{A}(Y)$ which is the identity on constant functions.

It has been known for some time that the conformal structure of a domain in the complex plane or a Riemann surface is determined by the algebraic structure of certain rings of analytic functions on it. (See [3], [11], [12], [10], [9] and [8].) Iss’sa [5] shows this is also true for a Stein variety of positive dimension.

All functions considered here are complex single-valued.

Definition 1. Let X be an arbitrary subset of \mathbb{C}. A function f on X is said to be analytic at a point $p \in X$ if there is a power series $\sum_{n=0}^{\infty} \alpha_n(z - p)^n$ which converges for $|z - p| < R$, and $f(z) = \sum_{n=0}^{\infty} \alpha_n(z - p)^n$ for all $z \in X$ and $|z - p| < R$, where $R > 0$, and α_n is a complex number for each $n = 0, \ldots$, and f is said to be analytic on X if it is analytic at each point of X.

Definition 2. Let X and Y be two arbitrary subspaces of \mathbb{C}. A mapping τ from X to Y is said to be analytic mapping if τ is an analytic function on X and has values in Y. τ is said to be a conformal mapping if τ is analytic, one-to-one, and onto. (See [2, Ch. II. §2].) For any two subsets X, Y of \mathbb{C}, X, Y are said to be conformally homeomorphic if there is a one-to-one conformal mapping from X onto Y.

Let X be an arbitrary subset of \mathbb{C}, and $\mathcal{A}(X) = \{f: f$ is analytic on $X\}$. We can then easily show that $\mathcal{A}(X)$ forms a ring with the constant function of value 1 as the identity u. By [1, p. 145], if $f \in \mathcal{A}(X)$ and $Z(f) = \{x \in X: f(x) = 0\} = \emptyset$, then $1/f \in \mathcal{A}(X)$.

Lemma 3. For $p \in X$, there is an $f \in M_p = \{f \in \mathcal{A}(X): f(p) = 0\}$ such that $Z(f) = \{p\}$ and f belongs to no maximal ideal other than M_p.

Proof. Let $f(z) = z - p$. Then that $f \in M_p$ and f belongs to no other fixed maximal ideal [4, 4.4] is clear. Now, suppose that M is a free maximal ideal [4, 4.1] such that $f \in M$. Since M is free, there is $g \in M$ such that $g(p) \neq 0$. Thus, we have $g(z) = \alpha + \sum_{j=0}^{k} \alpha_{k+j}(z - p)^{k+j}$ for $z \in X$ and $|z - p| < R$, for some $R > 0$, $\alpha_0 \neq 0$, $\alpha_k \neq 0$ and $k \geq 1$.
Hence \(\alpha^n = g(z) - (z - p)^{n-1} \cdot f(z) \cdot h(z) \) for some \(h \in \mathbb{A}(X) \). Now \(f, g \in M \) which is an ideal, \(\alpha \in M \). This is impossible as \(\alpha \neq 0 \). Hence, the assertion holds.

Lemma 4. If \(\Phi \) is an isomorphism from \(\mathbb{A}(X) \) onto \(\mathbb{A}(Y) \), then \(\Phi(M_p) \) is a fixed maximal ideal.

Proof. That \(\Phi(M_p) \) is a maximal ideal is clear. From Lemma 3, there is an \(f_0 \in M_p \) such that \(Z(f_0) = \{ p \} \), and \(f_0 \) belongs to no other maximal ideal. Consider \(Z(\Phi(f_0)) \). If \(Z(\Phi(f_0)) = \varnothing \), then \(\Phi(f_0) \) is a unit so that \(\Phi(M_p) \) is the whole ring, \(\mathbb{A}(X) \). This is impossible. Hence, \(Z(\Phi(f_0)) \neq \varnothing \). But if \(Z(\Phi(f_0)) \) contains more than one point, say \(q_1 \) and \(q_2 \), then \(\Phi(f_0) \in M_{q_1} \) and \(M_{q_2} \) so that \(f_0 \) would belong to at least two maximal ideals which is again impossible. Hence \(Z(\Phi(f_0)) = \{ q \} \) for some \(q \in Y \). Hence \(\Phi(M_p) = M_q \) is fixed ideal.

Theorem 5. Let \(X \) and \(Y \) be two subsets of \(C \), and \(\Phi \) be an isomorphism from \(\mathbb{A}(Y) \) onto \(\mathbb{A}(X) \) such that it is the identity on the constant functions. Then \(\Phi \) induces a mapping \(\tau: X \rightarrow Y \), defined by \(\Phi(g) = g \circ \tau \), and \(\tau \) is a conformal mapping of \(X \) onto \(Y \).

Proof. Define \(\tau \) to be a mapping from \(X \) to \(Y \) as follows: \(\tau(p) = \cap Z(\Phi^{-1}(M_p)) \). By hypothesis \(\Phi^{-1} \) is an isomorphism of \(\mathbb{A}(X) \) onto \(\mathbb{A}(Y) \). By Lemma 4, \(\Phi^{-1}(M_p) \) is a fixed maximal ideal in \(\mathbb{A}(Y) \). Thus, \(\tau \) is a single-valued mapping. Evidently, \(M_{\tau(p)} = \Phi^{-1}(M_p) \), and \(\tau \) is one-to-one and onto. Now, for each \(g \in \mathbb{A}(Y) \), and \(p \in X \), let \(\Phi(g)(p) = \alpha \). Then \(\Phi(g) - \alpha \in M_p \), \(g - \Phi^{-1}(\alpha) \in M_{\tau(p)} \), so that \(g(\tau(p)) = \Phi^{-1}(\alpha)(\tau(p)) = \alpha = \Phi(g)(p) \). Hence \(\Phi(g) = g \circ \tau \). Similarly, \(\Phi^{-1}(f) = f \circ \tau^{-1} \), where \(\tau^{-1}: Y \rightarrow X \) with \(\tau^{-1}(q) = \cap Z(\Phi(M_q)) \). If we choose \(g(w) = w \) on \(Y \), and \(f(z) = z \) on \(X \), then \(\tau(p) = g \circ \tau(p) \), and \(\tau^{-1}(q) = f \circ \tau^{-1}(q) \) are analytic. Hence, \(\tau \) is a conformal mapping.

Corollary 6. Let \(X \) and \(Y \) be two subsets of \(C \), and \(\Phi \) be an isomorphism of \(\mathbb{A}(X) \) onto \(\mathbb{A}(Y) \) which is the identity on real constant functions. Then \(X \) and \(Y \) can be decomposed respectively into \(X_1 \cup X_2 \) and \(Y_1 \cup Y_2 \) such that the sets \(X_1 \), \(X_2 \) are open and disjoint in \(X \) and similarly for \(Y_1 \) and \(Y_2 \), in such a way that \(X_1 \) is conformal with \(Y_1 \), and \(X_2 \) is anti-conformal with \(Y_2 \), where some of \(X_1 \), \(X_2 \), \(Y_1 \) and \(Y_2 \) could be empty.

Note that a set is anti-conformal with another set if it is conformal with its complex conjugate.

* \(\alpha_0 \) stands for the constant function of value \(\alpha_0 \).
Proof. As in Theorem 5, the mapping \(\tau \) defined by \(\tau(p) = \cap Z[\Phi^{-1}(M_p)] \) is one-to-one and onto. We know that \((\Phi(i))^3 = \Phi(-1) = -1 \), hence \(\Phi(i) = i, -i \) or \(i \) on one clopen subset of \(X \), say \(X_1 \), and \(-i \) on \(X_2 = \overline{X} - X_1 \), (which is then a clopen subset). We will set \(X_1 = X \) and \(X_2 = X \), respectively, according as \(\Phi(i) = i \) and \(\Phi(i) = -i \). Therefore, \(\Phi(\alpha) = \alpha \) on \(X_1 \), and \(\overline{\alpha} \) on \(X_2 \) for any constant \(\alpha \). Then, by an argument similar to that used in Theorem 5, we can show that \(\Phi(g) = g \circ \tau \) on \(X_1 \), and \(g \circ \tau \) on \(X_2 \); and \(\Phi^{-1}(f) = f \circ \tau^{-1} \) on \(X_1 \) and \(\overline{f} \circ \tau^{-1} \) on \(X_2 \), for any \(g \in \mathcal{A}(Y) \) and \(f \in \mathcal{A}(X) \). Hence the assertion holds.

REMARK. In Theorem 5, the condition that \(\Phi \) is the identity on the constant functions cannot be omitted. Consider \(X = \{p\}, Y = \{q\} \). Then \(\mathcal{A}(X) = C = \mathcal{A}(Y) \). We know that there is an isomorphism of \(C \) to \(C \) other than \(z \rightarrow z \) and \(z \rightarrow \overline{z} \) (see [7, Remark on p. 119]). Define \(\Phi: \mathcal{A}(X) \rightarrow \mathcal{A}(Y) \) in the obvious way. Then \(\Phi(\alpha) \neq \alpha \) for some \(\alpha \in \mathcal{A}(Y) \). On the other hand, \(\alpha \circ \tau(p) = \alpha \). Hence, \(\Phi(\alpha) \neq \alpha \circ \tau \).

However, L. Bers shows that if \(X \) and \(Y \) are domains with boundary points, then every isomorphism of \(\mathcal{A}(Y) \) onto \(\mathcal{A}(X) \) induces a mapping which is either conformal or anti-conformal. (See [3].) Nevertheless, Royden [10], and Ozawa and Mizumoto [9] assumed that the given isomorphism preserves the constant functions. Recently, Nakai [8]** shows that if \(X \) and \(Y \) are open Riemann surfaces and \(\Phi \) is such that \(\Phi(i) = i \) (or \(-i \)), then \(\Phi \) induces a conformal (or conjugate-conformal, resp.) mapping. Iss'sa [5]** shows that if \(X \) and \(Y \) are Stein varieties of positive dimensions, then \(\Phi \) induces a unique conformal or a unique conjugate-conformal mapping.

THEOREM 7. Let \(X \) and \(Y \) be two subsets of \(C \), and \(\tau \) be a conformal mapping of \(X \) onto \(Y \). Then the induced mapping \(\tau' \), defined by \(\tau'(g) = g \circ \tau \), is an isomorphism of \(\mathcal{A}(Y) \) onto \(\mathcal{A}(X) \) leaving the constant function unchanged.

Proof. Use the Weierstrass’ double-series theorem in [6] to show the composition of \(g \circ \tau \in \mathcal{A}(X) \) for any \(g \in \mathcal{A}(Y) \). The others are obvious.

REFERENCES
4. L. Gillman and M. Jerison, Rings of Continuous Functions, D. Van Nostrand Company,

** The author wishes to express her thanks to the referee for bringing her attention to these two articles.

Received April 14, 1971.

THE UNIVERSITY OF OKLAHOMA
Stephen Richard Bernfeld, *The extendability of solutions of perturbed scalar differential equations* ... 277
James Edwin Brink, *Inequalities involving f_{-p} and $f^{(n)}_{-q}$ for f with n zeros* ... 289
Orrin Frink and Robert S. Smith, *On the distributivity of the lattice of filters of a groupoid* ... 313
Donald Goldsmith, *On the density of certain cohesive basic sequences* 323
Charles Lemuel Hagopian, *Planar images of decomposable continua* 329
W. N. Hudson, *A decomposition theorem for biadditive processes* 333
W. N. Hudson, *Continuity of sample functions of biadditive processes* 343
Masako Izumi and Shin-ichi Izumi, *Integrability of trigonometric series, II* 359
H. M. Ko, *Fixed point theorems for point-to-set mappings and the set of fixed points* ... 369
Gregers Louis Krabbe, *An algebra of generalized functions on an open interval: two-sided operational calculus* 381
Thomas Latimer Kriete, III, *Complete non-selfadjointness of almost selfadjoint operators* .. 413
Shiva Narain Lal and Siya Ram, *On the absolute Hausdorff summability of a Fourier series* ... 439
Ronald Leslie Lipsman, *Representation theory of almost connected groups* ... 453
James R. McLaughlin, *Integrated orthonormal series* 469
H. Minc, *On permanents of circulants* ... 477
Akihiro Okuyama, *On a generalization of Σ-spaces* 485
Norberto Salinas, *Invariant subspaces and operators of class (S)* 497
James D. Stafney, *The spectrum of certain lower triangular matrices as operators on the l_p spaces* ... 515
Arne Stray, *Interpolation by analytic functions* 527
Li Pi Su, *Rings of analytic functions on any subset of the complex plane* 535
R. J. Tondra, *A property of manifolds compactly equivalent to compact manifolds* .. 539