A PROPERTY OF MANIFOLDS COMPACTLY EQUIVALENT TO COMPACT MANIFOLDS

R. J. Tondra
A PROPERTY OF MANIFOLDS COMPACTLY EQUIVALENT TO COMPACT MANIFOLDS

R. J. TONDRA

In this paper it is shown that there is a countable collection \(\mathcal{G} = \{G_k\}_{k=1}^\infty \) of connected \(n \)-manifolds such that any manifold \(M \) which is compactly equivalent to a compact manifold is an open monotone union of some \(G_{\alpha(M)} \in \mathcal{G} \).

In [4] it is shown that if \(\mathcal{F} \) is the class consisting of all open 2-manifolds of finite genus, then there is a countable collection \(\mathcal{D} = \{D_k\}_{k=1}^\infty \) of open 2-manifolds with the property that given \(M \in \mathcal{F} \), there exists some \(D_j \in \mathcal{D} \) such that \(M \) is an open monotone union of \(D_j \). By appropriately extending the concept of genus to higher dimensions, one can obtain similar results for a larger class of manifolds.

1. Preliminaries. Unless otherwise specified, all manifolds will be assumed to be connected and \(\text{bd} \, M \) and \(\text{int} \, M \) will denote the boundary and interior respectively of a manifold \(M \). Let \(M \) and \(N \) be \(n \)-manifolds. \(M \) and \(N \) are compactly equivalent, denoted by \(M \sim N \), if given any proper compact set \(K \subset M \) there is an embedding \(i \) of the pair \((K, K \cap \text{bd} \, M)\) into \((N, \text{bd} \, N)\) such that \(i(K \cap \text{bd} \, M) = i(K) \cap \text{bd} \, N \) and given any proper compact set \(L \subset N \) there is an embedding \(j \) of \((L, L \cap \text{bd} \, N)\) into \((M, \text{bd} \, M)\) such that \(j(L \cap \text{bd} \, N) = j(L) \cap \text{bd} \, M \). Clearly compact equivalence is an equivalence relation on the class of all \(n \)-manifolds. Note that a 2-manifold \(M \) without boundary has finite genus if and only if \(M \sim Q \) where \(Q \) is some closed 2-manifold.

Let \(\mathcal{L} \) be the class consisting of all non-compact \(n \)-manifolds \(M \), \(n \geq 2 \) and \(n \neq 4 \), such that \(M \in \mathcal{L} \) if and only if \(M \sim N \), \(N \) a compact manifold. The principal result of this paper is the following:

Theorem 1.1. There is a countable collection \(\mathcal{G} = \{G_k\}_{k=1}^\infty \) of manifolds such that given \(M \in \mathcal{L} \) there is some positive integer \(\alpha(M) \) such that \(M \) is an open monotone union of \(G_{\alpha(M)} \).

As usual an \(n \)-manifold \(M \) is called an open monotone union of an \(n \)-manifold \(H \) if \(M = \bigcup_{i=1}^{\alpha} H_i \), where for all \(i, H_i \) is open in \(M \), \(H_i \subset H_{i+1} \) and \(H_i \equiv H \) (\(\equiv \) denotes topological equivalence).

2. Proof of the theorem. If \(M \) is an \(n \)-manifold, let \(I(M) \) rel \(\text{bd} \, M = \{f \mid f \text{ is a homeomorphism of } M \text{ onto itself such that } f \text{ is isotopic to the identity relative to } \text{bd} \, M \} \).
The following lemma gives the existence of a complicated domain which is the basic tool used in the construction of the collection \mathcal{G} mentioned in Theorem 1.1.

Lemma 2.1. Let E be an n-cell, $n \geq 2$. There exists a proper domain (open connected set) G of E, $bd E \subset G$, such that if U is open in E and K is a proper continuum, $bd E \subset K \subset U$, then there exists a $g \in I(E)$ rel $bd E$ such that $K \subset g(G) \subset U$.

Proof. This follows immediately from Lemma 3.8 of [5].

Lemma 2.2. Let Q be a compact n-manifold, $n \geq 2$. There is a proper domain D of Q such that if U is open in Q and contains a residual set R of Q, and K is proper continuum in Q, $R \subset K \subset U$, then there exists $h \in I(Q)$ rel $bd Q$ such that $K \subset h(D) \subset U$.

Proof. Let E be a bicollared n-cell, $E \subset \text{int } G$, and let G be a proper domain G of E which satisfies the conditions of Lemma 2.1. We will show that $D = (Q - E) \cup G$ is the required domain. Without loss of generality, we may assume that U is connected. Since U contains a residual set R (see [3] for appropriate definition) there is a bicollared n-cell E' and $\alpha \in I(Q)$ rel bd such that $R \subset Q - \text{int } E' \subset U$ and $\alpha(E') = E$. Note that E' and α can be obtained as follows: one easily constructs γ_1, γ_2, and $\gamma_3 \in I(Q)$ rel $bd Q$ such that γ_1 only moves points inside $E' \cup (\text{collar of } bd E)$ and shrinks E to a very small set, γ_2 moves $\gamma_1(E)$ into the open n-cell $Q - R$, and γ_3 moves only points inside $Q - R$ and expands $\gamma_2(\gamma_1(E))$ so that $Q - U \subset \gamma_3(\gamma_2(\gamma_1(\text{int } E))) \subset Q - R$. Thus we can set $\alpha^{-1} = \gamma_2 \gamma_3 \gamma_1$ and $E' = \alpha^{-1}(E)$. Let $R \subset K \subset U$, a proper continuum. Without loss of generality, we may assume that $K \cap E'$ is a proper continuum in E' and $bd E' \subset K \cap E'$. Then $K'' = \alpha(K \cap E') = \alpha(K) \cap E$ is a proper continuum in E, $U'' = \alpha(U) \cap E = \alpha(U \cap E')$ is open in E and $bd E' \subset K'' \subset U''$. Therefore it follows from Lemma 2.1 that there is a homeomorphism $h \in I(E)$ rel $bd E$ such that $K'' \subset h(G) \subset U''$. Now extend h to all of Q by defining $h(x) = x$, $x \in Q - E$. Then $\alpha(K) \subset h(D) \subset \alpha(U)$ and so $g = \alpha^{-1} h$ is the required homeomorphism.

Since there are only a countable number of topologically distinct compact manifolds [1], Theorem 1.1 follows immediately from the following theorem.

Theorem 2.3. Let Q be a compact n-manifold, $n > 1$ and $n \neq 4$. There is a domain D of Q such that if M is a non-compact n-manifold and $M \sim_{c} Q$, then M is an open monotone union of D.
Proof. Let D be a domain of Q which satisfies Lemma 2.2, and let $L = Q - \text{int} E$, E a bicollared n-cell contained in $\text{int} Q$. Let M be a non-compact n-manifold such that $M \sim Q$. It is easily seen that $\text{bd} M = \text{bd} Q$ and that there is an embedding f of $(L, \text{bd} Q)$ into $(M, \text{bd} M)$ such that $f(\text{bd} E) = \text{bd} E = L - \text{int}_Q L$ where $\text{int}_Q L$ denotes the point set interior of L relative to Q is a bicollared $(n - 1)$-sphere in $\text{int} M$. Since M is an n-manifold, there exists a sequence $(C_i)_{i=1}^\infty$ of continua in M such that $M = \bigcup_{i=1}^\infty C_i$ and for all $i \geq 1$, $f(L) \subset \text{int}_Q C_i \subset C_i \subset \text{int}_M C_{i+1}$. Since M is not compact and $M \sim Q$, for each $i \geq 1$ there is an embedding h_{i+1} of $(C_{i+1}, \text{bd} M)$ into $(Q, \text{bd} Q)$ such that $\text{bd} Q \subset h_{i+1}(f(L)) \subset h_{i+1}(C_i) \subset h_{i+1}(\text{int}_Q C_{i+1})$, where $K_i = h_{i+1}(C_i)$ is a proper continuum in Q and $U_i = h_{i+1}(\text{int}_Q C_{i+1})$ is open in Q. Since $n \neq 4$, it follows from [2] that $Q - h_{i+1}(f(\text{int}_Q L))$ is a bicollared n-cell and therefore there is a residual set R of Q such that $R \subset K_i \subset U_i$. It follows from Lemma 2.2 that there exists $\alpha_i \in I(Q) \text{ rel } \text{bd} Q$ such that $K_i \subset \alpha_i(D) \subset U_i$. Define $\beta_i: D \rightarrow M$ by $\beta_i(x) = h_{i+1}^{-1}(\alpha_i(x))$. Then β_i is an embedding of $(D, \text{bd} Q)$ into $(M, \text{bd} M)$ and $C_i \subset \beta_i(D) \subset \text{int}_M C_{i+1}$. Therefore $M = \bigcup_{i=1}^\infty \beta_i(D)$, where $\beta_i(D)$ is open and $\beta_i(D) \subset \beta_{i+1}(D)$ for all $i \geq 1$. Therefore M is an open monotone union of D.

The author would like to thank the referee for his helpful suggestions.

References

Received April 5, 1971 and in revised form June 18, 1971.

IOWA STATE UNIVERSITY
Stephen Richard Bernfeld, *The extendability of solutions of perturbed scalar differential equations* ... 277
James Edwin Brink, *Inequalities involving f_p and $f^{(n)}_q$ for f with n zeros* .. 289
Orrin Frink and Robert S. Smith, *On the distributivity of the lattice of filters of a groupoid* .. 313
Donald Goldsmith, *On the density of certain cohesive basic sequences* 323
Charles Lemuel Hagopian, *Planar images of decomposable continua* 329
W. N. Hudson, *A decomposition theorem for biadditive processes* 333
W. N. Hudson, *Continuity of sample functions of biadditive processes* 343
Masako Izumi and Shin-ichi Izumi, *Integrability of trigonometric series. II* ... 359
H. M. Ko, *Fixed point theorems for point-to-set mappings and the set of fixed points* .. 369
Gregers Louis Krabbe, *An algebra of generalized functions on an open interval: two-sided operational calculus* 381
Thomas Latimer Kriete, III, *Complete non-selfadjointness of almost selfadjoint operators* ... 413
Shiva Narain Lal and Siya Ram, *On the absolute Hausdorff summability of a Fourier series* .. 439
Ronald Leslie Lipsman, *Representation theory of almost connected groups* .. 453
James R. McLaughlin, *Integrated orthonormal series* 469
H. Minc, *On permanents of circulants* .. 477
Akihiro Okuyama, *On a generalization of Σ-spaces* 485
Norberto Salinas, *Invariant subspaces and operators of class (S)* 497
James D. Stafney, *The spectrum of certain lower triangular matrices as operators on the l_p spaces* .. 515
Arne Stray, *Interpolation by analytic functions* 527
Li Pi Su, *Rings of analytic functions on any subset of the complex plane* 535
R. J. Tondra, *A property of manifolds compactly equivalent to compact manifolds* ... 539