Pacific Journal of Mathematics

EXTENSIONS OF AN INEQUALITY BY PÓLYA AND SCHIFFER FOR VIBRATING MEMBRANES

CATHERINE BANDLE

Vol. 42, No. 3

March 1972

EXTENSIONS OF AN INEQUALITY BY PÓLYA AND SCHIFFER FOR VIBRATING MEMBRANES

CATHERINE BANDLE

The inequality by Pólya and Schiffer considered in this paper is concerned with the sume of the n first reciprocal eigenvalues of the problem $\Delta u + \lambda u = 0$ in G, u = 0 on ∂G . First we extend this inequality to the problem of an inhomogeneous membrane $\Delta u + \lambda \rho u = 0$ in G, u = 0 on ∂G . Then we prove a sharper form of it for a class of homogeneous membranes with partially free boundary. The proofs are based on a variational characterization for the eigenvalues and use conformal mapping and transplantation arguments.

The inequality by Pólya and Schiffer considered in this paper is concerned with the eigenvalue problem $\Delta \varphi + \lambda \varphi = 0$ in a Jordan domain $G, \varphi = 0$ on ∂G . It can be stated as follows: Among all domains with given maximal conformal radius \dot{r} , the circle yields the minimum of the expression $\sum_{i=1}^{n} \lambda_i^{-1}$. This theorem is related to the geometrical inequality

(1) $\pi\dot{r}^2 \leq A$,

where A denotes the total area of G. The aim of this paper is (i) to extend the inequality by Pólya and Schiffer to the problem of an inhomogeneous membrane fixed on the boundary, (ii) to sharpen it for certain kinds of elastically supported, homogeneous membranes. Instead of considering the problem of an inhomogeneous membrane we will study the equivalent eigenvalue problem $Lu + \lambda u = 0$ where $L = \Delta/\rho$ is the Beltrami operator of an abstract surface with the line element $ds^2 = \rho(dx^2 + dy^2)$. With the help of inequalities by Alexandrow [1], we will derive first some relations between \dot{r} , ρ and the Gaussian curvature of the surface. These results will be needed for the theorem concerning the eigenvalue problem. Its proof is essentially based on a method indicated by Hersch in [6] which uses conformal mapping and transplantation arguments. In the last part, we give an isoperimetric inequality for a class of plane membranes. The extremal domain is in this case the circular sector.

1. Geometrical preliminaries.

DEFINITIONS 1.1. Let Σ be an abstract surface given by a Jordan domain G in the z-parameter plane (z = x + iy), and by the metric $ds^2 = \rho(z)|dz|^2$ where $\rho(z)$ is an arbitrary positive function in C^2 .

 $A(B) = \iint_{B} \rho dx dy$ is the area of a domain $B \subseteq \Sigma$ and $L(\gamma) = \int_{\gamma} \sqrt{\rho} |dz|$

is the length of an arc $\gamma \subseteq \Sigma$. The Gaussian curvature has the form

$$K_{g} = (-\varDelta_{z} \ln \rho)/2
ho \Big[\varDelta_{z} = rac{\partial^{2}}{\partial x^{2}} + rac{\partial^{2}}{\partial y^{2}} \Big]$$
 .

We shall assume that the inequality $K_G \leq K_0$ holds in G. Consider a surface \mathscr{M}_{K_0} of constant curvature K_0 given in the following isothermic representation:

(i) w-plane (w = u + iv) with the metric

$$ds^{2} = rac{4c^{2}}{\left(1 \,+\, |\,w\,|^{2}
ight)^{2}}\,|\,dw\,|^{2} \quad ext{if} \quad K_{\scriptscriptstyle 0} = 1/c^{2}$$

(ii) interior of the unit circle $\{w; |w| < 1\}$ with the metric

$$ds^{\scriptscriptstyle 2} = rac{4c^{\scriptscriptstyle 2}}{\left(1 \, - \, |\, w\,|^{\scriptscriptstyle 2}
ight)^{\scriptscriptstyle 2}} |\, dw\,|^{\scriptscriptstyle 2} \quad ext{if} \quad K_{\scriptscriptstyle 0} = \, - \, 1/c^{\scriptscriptstyle 2} \; .$$

(iii) w-plane with the metric $ds^2 = |dw|^2$ if $K_0 = 0$.

We shall define the metric of \mathscr{M}_{K_0} by $ds^2 = g(w) |dw|^2$, where g(w) depends on K_0 and is determined by one of the preceding formulas. Let $f_a(z)$ be the conformal mapping from G onto the unit circle $\{w; |w| < 1\}$ with $f_a(a) = 0$ and $f'_a(a) > 0$. The conformal radius of the point a with respect to G is then defined as $r_a(G) = 1/f'_a(a)$ [9, p. 16]. We set

(2)
$$R_a(G) = \begin{cases} \frac{1}{2} \sqrt{\rho(a) |K_0|} r_a(G) & \text{if } K_0 \neq 0 \\ \sqrt{\rho(a)} r_a(G) & \text{if } K_0 = 0 \end{cases}$$

EXAMPLE. If G is a circle with the radius r_0 , the center in the origin and $\rho(z) = g(z)$, then $R_0(G) = r_0$. $w_a(z) = R_a(G)f_a(z)$ maps G onto the circle $\{w; |w| < R_a(G)\}$, and $z_a(w)$ denotes its inverse. We shall denotes the circle $\{w; |w| < \varepsilon\}$ by C_z . $R_a(G)$ has been chosen in such a way that

(3)
$$\iint_{\mathcal{C}_{\varepsilon}} g(w) du dv = \iint_{z_a(\mathcal{C}_{\varepsilon})} \rho(z) dx dy + o(\varepsilon^2) .$$

Since

$$\iint_{\sigma_arepsilon} g(w) du dv = egin{cases} 4\pi c^2 arepsilon^2 + o(arepsilon)^2 & ext{if} \quad K_{\scriptscriptstyle 0}
eq 0 \ \pi arepsilon^2 & ext{if} \quad K_{\scriptscriptstyle 0} = 0 \ , \end{cases}$$

it follows that

(4)
$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^2} \iint_{C_{\varepsilon}} g(w) du dv = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^2} \iint_{z_a(C_{\varepsilon})} \rho(z) dx dy$$

exists and is different from zero.

1.2. Some Properties of $R_a(G)$.

(a) $R_a(G)$ is invariant under conformal mapping.

Proof. Let $\xi(z): \Sigma \Rightarrow \hat{\Sigma}$ be a conformal mapping and let $z(\xi)$ be its inverse. We set $\xi(a) = a$ and $\xi(G) = \hat{G}$. The line element of $\hat{\Sigma}$ is $d\hat{s}^2 = \hat{\rho}(\xi) |d\xi|^2$ with $\hat{\rho}(\xi) = \rho(z(\xi)) |dz/d\xi|^2$. Since K_g is a conformal invariant, we have

(5)
$$R_{\hat{a}}(\hat{G}) = \frac{1}{2} \sqrt{\hat{\rho}(\hat{a}) |K_0|} r_{\hat{a}}(\hat{G}) = \frac{1}{2} \sqrt{\rho(a) |K_0|} \left| \frac{dz}{d\xi} \right|_{\xi = \hat{a}} r_{\hat{a}}(\hat{G}) .$$

Because of the relation $|dz/d\xi|_{\xi=\hat{a}}r_{\hat{a}}(\hat{G}) = r_a(G)$ [9], it follows that $R_{\hat{a}}(\hat{G}) = R_a(G)$.

(b) If $K_0 < 0$, then $R_a(G) < 1$ for any $a \in G$

Proof. The function $\hat{\rho}(w) = \rho(z_a(w)) |dz_a/dw|^2$ satisfies in

$$C = \{w; |w| \leq R_a(G)\}$$

the inequality $\Delta_w \ln \hat{\rho}(w) \ge (2/c^2)\hat{\rho}(w)$. By a theorem of Osserman [7]

$$(6) \qquad \widehat{\rho}(w) \leq \frac{4c^2 R_a^2}{(R_a^2 - r^2)^2} \quad (r = |w|, R_a = R_a(G) \quad \text{for any} \quad w \in C) \;.$$

Since $\hat{\rho}(0) = 4c^2$, (6) implies $R_a \leq 1$.

(c) Let $\mu_{\varepsilon} = \mu(\partial C, \partial C_{\varepsilon})$ be the modulus of the annulus $D = C \setminus C_{\varepsilon}$ $[C = \{w; |w| < R_{\alpha}\}, \partial C$ the boundary of $C; C_{\varepsilon} = \{w; |w| < \varepsilon\}, \partial C_{\varepsilon}$ the boundary of $C_{\varepsilon}]$. Let h be the solution of the Dirichlet problem $\Delta h = 0$ in $C \setminus C_{\varepsilon}, h = 0$ on $\partial C_{\varepsilon}, h = 1$ on ∂C and let D(h) denote the Dirichlet integral of h. Then $\mu_{\varepsilon} = \{D(h)\}^{-1}$. In an analogous may we define $\mu(\Gamma, \Gamma_{\varepsilon})$, where Γ and Γ_{ε} are boundaries of G and $z_{\alpha}(C_{\varepsilon})$. Since the modulus is invariant under conformal mapping, we conclude that

$$\mu_{arepsilon}=\mu(arepsilon,\,arepsilon_{arepsilon})=rac{1}{2\pi}\lnrac{R_{a}}{arepsilon}$$
 ,

and thus

(7)
$$R_a = \varepsilon e^{2\pi\mu_{\varepsilon}} = \lim_{\varepsilon \to 0} \varepsilon e^{2\pi\mu^{\varepsilon}} \qquad [10, p. 45].$$

If G is contained in G', then it follows from (7) and the Dirichlet principle that $R_a(G) \leq R_a(G')$.

C. BANDLE

(d) Let $A = A(G) = \iint_G \rho dx dy$ be the total area of Gwith respect to the metric $ds^2 = \rho |dz|^2$, and let $A_c = \iint_C g(w) du dv$ be the total area of C with respect to the metric $ds^2 = g(w) |dw|^2$. A_c takes the values

$$(8) \qquad \qquad A_{\scriptscriptstyle C} = egin{cases} 4\pi c^2 R_a^2/(1\,+\,R_a^2) & ext{if} \quad K_{\scriptscriptstyle 0} = c^{-2} \ 4\pi c^2 R_a^2/(1\,-\,R_a^2) & ext{if} \quad K_{\scriptscriptstyle 0} = -c^{-2} \ \pi R_a^2 & ext{if} \quad K_{\scriptscriptstyle 0} = 0 \;. \end{cases}$$

The following result is an extension of a classical theorem [9, problem 125 IV]. We have

$$(9) A \ge A_c .$$

Equality holds in (9) if and only if G is a geodesic circle on a surface of constant curvature K_0 . (If $K_0 > 0$ we have to assume that $A < 4\pi/K_0$.)

Proof. Let $A_1(\varepsilon)$ and $A'_1(\varepsilon)$ denote the area of $z_a(C_{\varepsilon})$ and C_{ε} . By (7) and Corollary 2 [3] it follows that

(10)
$$\mu(\Gamma, \Gamma_{\varepsilon}) = \frac{1}{2\pi} \ln \frac{R_{a}}{\varepsilon} \leq \frac{1}{4\pi} \left\{ \ln \frac{A}{4\pi - K_{0}A} - \ln \frac{A_{1}(\varepsilon)}{4\pi - K_{0}A_{1}(\varepsilon)} \right\}.$$

Equality holds only if Γ and Γ_{ε} are two "concentric" circles on a surface of constant curvature K_0 . Suppose that $K_0 \neq 0$. From (8) we have $A'_1(\varepsilon) = 4\pi c^2 \varepsilon^2 + o(\varepsilon^2)$. Substituting this expression in (10), we obtain

$$rac{4\pi c^2 R_a^2}{A_1'(arepsilon)+o(arepsilon^2)} \leq rac{A(4\pi-K_{\scriptscriptstyle 0}A_{\scriptscriptstyle 1}(arepsilon))}{A_1(arepsilon)(4\pi-K_{\scriptscriptstyle 0}A)} = arPhi(arepsilon) \; .$$

Since $\lim_{\varepsilon \to 0} (A'_1(\varepsilon)/A_1(\varepsilon)) = 1$ (cf. (3), (4)), it follows that

$$(11) \quad R_a^2 = \frac{A_c}{c^2(4\pi - K_0 A_c)} \leq \lim_{\varepsilon \to 0} \frac{A_1'(\varepsilon) + o(\varepsilon^2)}{4\pi c^2} \varPhi(\varepsilon) = \frac{1}{c^2} \frac{A}{(4\pi - K_0 A)}$$

This inequality implies $A_c \leq A$. The case $K_0 = 0$ can be treated in exactly the same way and will therefore be omitted.

REMARKS. (1) Let $g_z(z, a)$ be the Green's function defined by $\Delta_z g_z(z, a) = -\delta_a(z)$ in G, $g_z(z, a) = 0$ on Γ . $g_w(w, 0)$ is the corresponding Green's function in C. We shall use the following notations $G(t) = \{z \in G; g_z(z, a) > t\}, C(t) = \{w \in C; g_w(w, 0) > t\}; A_z(t) = \iint_{G(t)} \rho dx dy$ and $A_w(t) = \iint_{C(t)} g(w) du dv$. By the same reasoning as before we can show

that

$$A_z(t) \ge A_w(t) .$$

Equality holds if and only if G is a geodesic circle on a surface of constant curvature K_0 . If $K_0 > 0$, we have, of course, to assume that $A_z(t) < 4\pi/K_0$.

(2) We define $\dot{R}(G) = \max_{a \in G} R_a(G)$. If G is a circle of radius r with the center at the origin and the metric $ds^2 = g(w) |dw|^2$, then $R_a(G) = (r^2 - |a|^2)/(1 \pm |a|^2)r$ [9]. In this case, $\dot{R}(G) = R_0(G)$. Because of (11) we have the isoperimetric inequality: Among all domains with given total area A and with given K_0 , the geodesic circles on a surface of constant curvature K_0 have the largest value of $\dot{R}(G)$. From (11) it follows that

(13)
$$r_a^2(G) \leq \frac{4A}{\rho(a)(4\pi - K_0A)}$$
.

If $\rho \equiv 1$, then (13) reduces to $\pi r_a^2(G) \leq A$.

2. Bounds for the eigenvalues of an inhomogeneous membrane. Let Σ be an abstract surface given in an isothermic representation (cf. §1.1). We consider the following eigenvalue problem

I
$$\frac{\Delta_z}{\rho} \varphi(x, y) + \lambda \varphi(x, y) = 0$$
 in G
 $\varphi = 0$ on Γ (boundary of G).

 Δ_z/ρ represents the Beltrami operator of Σ . Suppose that a countable number of eigenvalues $0 < \lambda_1 < \lambda_2 \leq \cdots$ exists. $R[v] = D(v) / \iint_{\sigma} v^2 \rho dx dy$ $\left[D(v) = \iint_{\sigma} \operatorname{grad}^2 v dx dy \right]$ is the Rayleigh quotient of Problem I. Let L_n be an *n*-dimensional linear space of continuously differentiable functions which vanish on Γ , and let v_1, \cdots, v_n be an orthogonal basis in L_n with respect to the Dirichlet metric, i.e.,

$$D(v_i, v_j) = \iint_{G} \operatorname{grad} v_i \operatorname{grad} v_j dx dy = 0 \quad \text{if} \quad i \neq j \; .$$

Following [6] we define $T \operatorname{Rinv} [L_n] = \sum_{i=1}^n \{R[v_i]\}^{-1}$. For the sums of the reciprocal eigenvalues we have the variational characterization [5, 6]

(14)
$$\sum_{i=1}^{n} \lambda_i^{-1} = \max_{L_n} T \operatorname{Rinv} [L_n].$$

The maximum is attained if $v_i = \varphi_i$ $i = 1, \dots, n$ are the first *n* eigenfunctions of Problem I. Assume that $(-\Delta_z \ln \rho)/2\rho \leq K_0 = \pm c^{-2}$ in G,

C. BANDLE

where K_0 is any real number. In addition to Problem I we consider the auxiliary problem

g(w) depends on K_0 and was defined in §1.1; and $R_a = \sqrt{\rho(a)} r_a/2c$ or $R_a = \sqrt{\rho(a)} r_a$ (cf. §1.1). The eigenfunctions of this problem are either of the form

(15)
$$\widehat{\varphi}_k(r,\theta) = R_0(\widehat{\lambda}_k,r)$$

or

(16)
$$\widehat{\varphi}_k(r,\theta) = R_m(\widehat{\lambda}_k, r) \cos m\theta$$
 and $\widehat{\varphi}_{k+1}(r,\theta) = R_m(\widehat{\lambda}_k, r) \sin m\theta$
 $m = 1, 2, \cdots$.

In (0, R_a), $R_m(\widehat{\lambda}_k, r)$ satisfies the differential equation

(17)
$$(rR')' - \frac{m^2R}{r} + \frac{4\hat{\lambda}_k c^2 rR}{(1 \pm r^2)^2} = 0$$
$$\left(' = \frac{d}{dr}\right)$$

if $K_0 = \pm c^{-2}$, and

(18)
$$(rR')' - \frac{m^2R}{r} + \hat{\lambda}_k R = 0 \text{ if } K_0 = 0.$$

The boundary conditions are

(19)
$$R'(0) < \infty$$
 and $R(R_a) = 0$.

We shall call m the order of R. By introducing the new variable

$$z = egin{cases} (r^2-1)/(1+r^2) & ext{if} \quad K_{\scriptscriptstyle 0} > 0 \ (r^2+1)/(1-r^2) & ext{if} \quad K_{\scriptscriptstyle 0} < 0 \end{cases}$$

(17) is transformed into the Legendre equation

$$\pm rac{d}{dz} \Big[(z^2-1) rac{d}{dz} y(z) \Big] \mp rac{m^2 y(z)}{z^2-1} + \widehat{\lambda}_k c^2 y(z) = 0 \; .$$

The following result is a generalization of a theorem of Pólya-Schiffer [8]. We shall use a method of proof devised by Hersch [6].

THEOREM 1. If $(- \Delta \ln \rho)/2\rho \leq K_0$, $2\pi - K_0A > 0$, and n is a natural number, then we have the isoperimetric inequality

(20)
$$\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \cdots + \frac{1}{\lambda_n} \ge \frac{1}{\widehat{\lambda}_1} + \frac{1}{\widehat{\lambda}_2} + \cdots + \frac{1}{\widehat{\lambda}_n}$$

where $\hat{\lambda}_i$ is the *i*th eigenvalue of Problem II.

Proof. Let $\widehat{\varphi}_1(w), \dots, \widehat{\varphi}_n(w)$ be the first *n* eigenfunctions of Problem II and let $U_1(z), \dots, U_n(z)$ be the transplanted functions $U_i(z) = \widehat{\varphi}_i(w_a(z))$. Because of the invariance of the Dirichlet integral under conformal transformation, we have $D_G(U_i, U_j) = D_C(\widehat{\varphi}_i, \widehat{\varphi}_j) = 0$ if $i \neq j$. $U_i(z)$ $i = 1, \dots, n$ can therefore be used as trial functions for the variational characterization (14). Thus,

(21)
$$\sum_{i=1}^{n} \lambda_{i}^{-1} \ge \sum_{i=1}^{n} \{R[U_{i}]\}^{-1} = \sum_{i=1}^{n} \frac{\iint_{C} \widehat{\varphi}_{i}^{2} \left| \frac{dz_{a}}{dw} \right|^{2} \rho(z_{a}(w)) du dv}{D_{C}(\widehat{\varphi}_{i})}$$

Let $\hat{\varphi}_k(w)$ and $\hat{\varphi}_{k+1}(w)$ be two functions of the type (16). In this case

$$(22) \quad \{R[U_k]\}^{-1} + \{R[U_{k+1}]\}^{-1} = \frac{\int_0^{R_a} \int_0^{2\pi} (\hat{\varphi}_k^2 + \hat{\varphi}_{k+1}^2) g(w) \left| \frac{dz_a}{dw} \right|^2 \frac{\rho}{g} r dr d\theta}{D_c(\hat{\varphi}_k)} \,.$$

We observe that

(23)
$$\widehat{\varphi}_k^2(w) + \widehat{\varphi}_{k+1}^2(w) = \varPhi(r)$$

is independent of θ . By the Schwarz inequality,

(24)
$$\int_{0}^{2\pi} \left| \frac{dz_{a}}{dw} \right|^{2} \frac{\rho(z_{a}(w))}{g(w)} r d\theta \ge \left(\int_{0}^{2\pi} \left| \frac{dz_{a}}{dw} \right| \sqrt{\rho} r d\theta \right)^{2} / \int_{0}^{2\pi} g(w) r d\theta .$$

We note that for fixed r

$$\int_{0}^{2\pi} \left| rac{dz_a}{dw}
ight| \sqrt{
ho} \, r d heta \, = \, L_z(t)$$
 ,

where $L_z(t)$ is the length of the level line $g_z(z, a) = t = (1/2\pi) \ln (R_a/r)$ in the metric of Σ . We also observe that $\int_0^{2\pi} g(w) r d\theta = L_w^2(t)/2\pi r$, where $L_w(t)$ is the length of the level line $g_w(w, 0) = t$ with respect to the metric of \mathscr{M}_{K_0} .

In order to estimate $L^2_z(t)$, we use the following geometrical isoperimetric inequality of Alexandrow [1]: If G is a domain on Σ homeomorphic to a circle, and if $K_G \leq K_0$, then the following relation holds between the area A of G and the length L of the boundary ∂G :

(25)
$$L^2 \ge A(4\pi - K_0 A)$$
.

Equality holds iff G is isometric to a geodesic circle on a surface of

constant curvature K_{0} .⁽¹⁾ From this inequality we conclude that

(26)
$$L_z^2(t) \ge A_z(t)(4\pi - K_0A_z(t)) = f(A_z)$$
.

 $A_z(t)$ has been defined in §1.2. If $K_0 \leq 0$, then $f(A_z)$ is a monotone increasing function; if K_0 is positive then $f(A_z)$ is monotone increasing in the interval $[0, 2\pi/K_0]$. By (26), (12) and our assumption on A, it follows that

$$L^2_z(t) \ge A_w(t)(4\pi - K_{\scriptscriptstyle 0}A_w(t)) = L^2_w(t)$$
 .

This implies

$$\int_{_0}^{_{2\pi}} \left| rac{dz_a}{dw}
ight|^2 rac{
ho(z_a(w))}{g(w)} r d heta \geqq 2\pi r \; .$$

From this inequality and from (22) and (23)

$$\{R[U_k]\}^{-1} + \{R[U_{k+1}]\}^{-1} \ge 2\widehat{\lambda}_k^{-1}$$
 .

If $\hat{\varphi}_n$ and $\hat{\varphi}_{n+1}$ belong to the same order *m* [cf. (16)], we denote by $\hat{\varphi}_n(w)$ the function for which

(27)
$$\{R[U_n]\}^{-1} \ge \widehat{\lambda}_n^{-1}.$$

By the same arguments as before, (27) holds also for the functions $\hat{\varphi}_k(w)$ of order 0 [cf. (15)]. This establishes the theorem.

REMARKS. If ρ is constant we obtain the theorem of Pólya-Schiffer [8, 6]. It is easy to see that (20) is optimal if we choose a such that $R_a(G) = \max_{p \in G} R_p(G)$.

3. Generalization. Let Σ' be a piece of an abstract surface with the line element $ds^2 = |z - a|^{-\omega/\pi} \nu(z) |dz|^2$ where $\nu(z) \in C^2$ and $0 \leq \omega < 2\pi$. Σ' includes the regular surfaces in the usual sense which have at the point a corner of curvature ω [cf. 1]. We assume that $(-\Delta_z \ln \nu)/2\nu \leq K_0$. In this case we define

(28)
$$R_{a}(G) = \begin{cases} \frac{1}{2 - \omega/\pi} \sqrt{\nu(a) |K_{0}|} r_{a}(G) & \text{if } K_{0} \neq 0 \\ \\ \frac{2}{2 - \omega/\pi} \sqrt{\nu(a)} r_{a}(G) & \text{if } K_{0} = 0 \end{cases}$$

We consider a circular cone \mathscr{C}_{K_0} in a three-dimensional space of constant curvature K_0 with the curvature ω at the corner [1]. It can be represented by

¹ This inequality is valid for more general surfaces. A brief summary can be found in [1, pr. 509, 514].

(i) sector $0 < \theta < 2\pi - \omega$ (θ, r polar coordinates of the *w*-plane) the lines $\theta = 0$ and $\theta = 2\pi - \omega$ identified, and the metric

$$ds^{2} = rac{4c^{2}}{(1 \, + \, |w|^{2})^{2}} |\, dw\,|^{2} \quad (K_{\scriptscriptstyle 0} = 1/c^{2})$$

(ii) sector $0 < \theta < 2\pi - \omega$, 0 < r < 1 with the lines $\theta = 0$ and $\theta = 2\pi - \omega$ identified, and the metric

$$ds^{2} = rac{4c^{2}}{\left(1\,-\,\left|\,w\,
ight|^{2}
ight)^{2}}\,\left|\,dw\,
ight|^{2} \quad (K_{\scriptscriptstyle 0} = \,-\,1/c^{2})$$

(iii) wedge $0 < \theta < 2\pi - \omega$ with the lines $\theta = 0$ and $\theta = 2\pi - \omega$ identified and the metric $ds^2 = |dw|^2$ $(K_0 = 0)$.

With the help of the function $\xi = w^{2\pi/(2\pi-\omega)}$, the sector $0 < \theta < 2\pi - \omega$ is mapped into the ξ -plane. g(w) is then transformed into $\widetilde{g}(\xi) = g(w(\xi)) |dw/d\xi|^2$ which is $\widetilde{g}(\xi) = c^2(2-\omega/\pi)^2 |\xi|^{-\omega/\pi}/(1\pm |\xi|^{2-\omega/\pi})^2$ if $K_0 = \pm c^{-2}$ or $\widetilde{g}(\xi) = ((2\pi - \omega)/2\pi)^2 |\xi|^{-\omega/\pi}$ if $K_0 = 0$.

EXAMPLE. Let G be a circle with the radius r_0 , the center in the origin and the metric $ds^2 = \tilde{g}(\xi) |d\xi|^2$. In this case $R_0(G) = r_0$. Let $C = \{\xi; |\xi| < R_a(G)\}$ be a circle on the cone \mathscr{C}_{K_0} . The line element is then $ds^2 = \tilde{g}(\xi) |d\xi|^2$. In this metric

$$egin{aligned} A_{\scriptscriptstyle C} &= \iint_{\scriptscriptstyle C} \widetilde{g}(\hat{\xi}) d\xi_{\scriptscriptstyle 1} d\eta = egin{cases} &2(2\pi-\omega)c^2 R_a^{2-\omega/\pi}/(1\pm R_a^{2-\omega/\pi}) & ext{if} \quad K_{\scriptscriptstyle 0} = \pm c^{-2}\ &2\pi-\omega}{2R_a^{2-\omega/\pi}} & ext{if} \quad K_{\scriptscriptstyle 0} = 0\ &(\xi=\xi_{\scriptscriptstyle 1}+i\eta) \end{aligned}$$

is the total area of C. $A = \iint_G |z - a|^{-\omega/z} \nu(z) dx dy$ represents the total area of G. All properties (a), (b), (c) and (d) remain valid in this case. The proofs are the same as in §1.2 except for (d) where we use Theorem 2 [3] instead of Corollary 2 [3].

We now consider on Σ' the eigenvalue problem I, and on $C \in \mathscr{C}_{\kappa_0}$ the auxiliary problem II (cf. §2). By transplanting the last into the *w*-plane, it becomes equivalent to the following eigenvalue problem:

$$egin{aligned} rac{arDelta w}{g(w)} \widehat{arphi} + \widehat{\lambda} \widehat{arphi} &= 0 \quad ext{in} \quad \{w; \|w\| < R_a^{1-\omega/2\pi} \quad ext{and} \quad 0 < rg w < 2\pi - \omega\} \ & \widehat{arphi} &= 0 \quad ext{on} \quad \|w\| = R_a^{1-\omega/2\pi} \;, \ & \widehat{arphi} \mid_{ heta=0} = \widehat{arphi} \mid_{ heta=2\pi-\omega} \;. \end{aligned}$$

By a separation of the variables it follows that $\hat{\varphi}(r, \theta)$ is either of

C. BANDLE

the type $\hat{\varphi}_k = R_0(\hat{\lambda}_k, r)$, or else $\hat{\varphi}_k = R_m(\hat{\lambda}_k, r) \cos m\theta$ and $\hat{\varphi}_{k+1} = R_m(\hat{\lambda}_k, r) \sin m\theta$ with $m = 2\pi n/(2\pi - \omega)$ $(n = 1, 2, \cdots)$. In $(0, R_a^{1-\omega/2\pi})$ $R_m(\hat{\lambda}_k, r)$ satisfies the differential equation (17) with the boundary conditions (18). In the same way as in §2 we can prove

THEOREM I'. If $(- \Delta \ln \nu)/2\nu \leq K_0$ and $2\pi - \omega - K_0A > 0$, then

$$rac{1}{\lambda_1}+rac{1}{\lambda_2}+\cdots+rac{1}{\lambda_n}\geq rac{1}{\widehat{\lambda}_1}+rac{1}{\widehat{\lambda}_2}+\cdots+rac{1}{\widehat{\lambda}_n}\,.$$

This inequality is valid for arbitrary n.

4. Bounds for the eigenvalues of plane membranes with partially free boundary. Let G be a Jordan domain in the z-plane. Suppose that its boundary consists of three analytic arcs \overrightarrow{OA} , \overrightarrow{AB} and \overrightarrow{BO} where \overrightarrow{OA} and \overrightarrow{BO} are concave with respect to G. We assume further that \overrightarrow{OA} and \overrightarrow{BO} meet in 0 at an angle $\alpha(0 < \alpha \leq \pi)$.

There exists a conformal mapping f(z) from G into the circular sector $0 \leq \theta \leq \alpha, r \leq 1$. $(r, \theta \text{ polar coordinates of the w-plane)}$ such that $f(0) = 0, f(A) = 1, f(B) = e^{i\alpha}$ and f'(0) > 0 [4, p. 378]. If we put $r_0 = \{f'(0)\}^{-1}$, then $w(z) = r_0 f(z) = z + a_2 z^2 + \cdots$. Its inverse will be called z(w). We consider the following eigenvalue problem of the membrane with partially free boundary:

(A)
$$\Delta_z \varphi + \lambda \varphi = 0$$
 in G
 $\varphi = 0$ on \widehat{AB}
 $\frac{\partial \varphi}{\partial n} = 0$ on $\widehat{OA} \cup \widehat{BO}$.

These eigenvalues will be compared with the eigenvalues $\widehat{\lambda}$ of the problem

$$\begin{array}{lll} \text{(B)} \quad \varDelta_w \widehat{\varphi} + \widehat{\lambda} \widehat{\varphi} = 0 \quad \text{in} \quad \widehat{G} = \{w; \, |w| < r_0 \quad \text{and} \quad 0 < \arg w < \alpha \} \\ & \widehat{\varphi} = 0 \quad \text{on} \quad r = r_0 \\ & \widehat{\varphi} \mid_{\theta=0} = \widehat{\varphi} \mid_{\theta=\alpha} \, . \end{array}$$

The solutions of (B) are

$$\widehat{\varphi}_k(r, \theta) = J_0(\sqrt{\widehat{\lambda}_k}r)$$

or

 $\widehat{arphi}_k(r, heta) = J_{rac{2\pi m}{lpha}}(\sqrt{\widehat{\lambda}_k}r)\cosrac{2\pi m}{lpha} heta$

and

$$\widehat{\varphi}_{k+1}(r,\theta) = \frac{J_{2\pi m}}{\alpha} (\sqrt{\widehat{\lambda}_k} r) \sin \frac{2\pi m}{\alpha} \theta \quad m = 1, 2, \cdots$$

 $J_{\beta}(r)$ is the Bessel function of order β . (B) can be interpeted as the problem of a vibrating membrane on a circular cone.

THEOREM II. For an arbitrary integer n we have

$$\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \cdots + \frac{1}{\lambda_n} \ge \frac{1}{\widehat{\lambda}_1} + \frac{1}{\widehat{\lambda}_2} + \cdots + \frac{1}{\widehat{\lambda}_n}.$$

Proof. Let f(w) = f(r) be a function depending only on r. We first show that every function F(z) = f(w(z)) satisfies the inequality

(29)
$$\begin{aligned} \iint_{G} F^{2}(z) dx dy &= \int_{0}^{r_{0}} f^{2}(r) r dr \int_{\theta=0}^{\alpha} \left| \frac{dz}{dw} \right|^{2} d\theta \\ &\geq \alpha \int_{0}^{r_{0}} f^{2}(r) r dr = \iint_{\widehat{G}} f^{2} du dv . \end{aligned}$$

By the Schwarz inequality, we have

(30)
$$\int_{0}^{\alpha} \left| \frac{dz}{dw} \right|^{2} d\theta \geq \frac{1}{\alpha t^{2}} \left(\int_{0}^{\alpha} \left| \frac{dz}{dw} \right| t d\theta \right)^{2}.$$

We observe that $L(t) = \int_{0}^{\alpha} |dz/dw| td\theta$ is the length of the arc $z(C_t)$ where C_t is the circular arc $w = te^{i\theta}$ $0 \leq \theta \leq \alpha$. Let A(t) denote the area of the domain $z(\hat{G}_t)$, where \hat{G}_t is the circular sector $0 \leq r \leq t$, $0 \leq \theta \leq \alpha$. Because of the concavity of the arcs \widehat{OA} and \widehat{BO} it follows from a reflection argument and an isoperimetric inequality by Alexandrow [1] that

$$L^{\scriptscriptstyle 2}(t) \geqq 2lpha A(t)$$
 .2

The function $\xi = w^{2\pi/\alpha}$ maps the sector $0 \leq \theta \leq \alpha$ onto the ξ -plane. Let $\tilde{\theta}$ and \tilde{r} be the polar coordinates of the ξ -plane. We have

$$(31) A(t) = \int_{0}^{t} \int_{0}^{\alpha} \left| \frac{dz}{dw} \right|^{2} r dr d\theta \\ = \left(\frac{\alpha}{2\pi} \right)^{2} \int_{0}^{t^{2\pi/\alpha}} \tilde{r}^{(\alpha-2\pi)/\pi} \tilde{r} d\tilde{r} \int_{0}^{2\pi} \left| \frac{dz}{dw} (w(\hat{\xi})) \right|^{2} d\tilde{\theta} \\ = \frac{\alpha t^{2}}{2} \cdot \frac{1}{2\pi} \int_{0}^{2\pi} \left| \frac{dz}{dw} (w(\hat{\xi})) \right|^{2} d\tilde{\theta} .$$

Since

² A detailed proof with more general results can be found in [2].

$$egin{aligned} & {\it \Delta}_{arepsilon} \left| rac{dz}{dw}(w(\hat{arepsilon}))
ight|^{2} = 4 rac{\partial}{\partial arepsilon} rac{\partial}{\partial arepsilon} \left| rac{dz}{dw}(w(arepsilon))
ight|^{2} & \geq 0 \end{array}$$
 ,

it follows that

$$rac{1}{2\pi} \int_{_{0}}^{_{2\pi}} \left| rac{dz}{dw}
ight|^{^{2}} d ilde{ heta} \geqq \left| rac{dz}{dw}
ight|^{^{2}}_{_{w}=0} = 1$$

and hence

(3

$$A(t) \ge \frac{\alpha t^2}{2}$$

(32) and (30) imply

(33)
$$\int_{1}^{\alpha} \left| \frac{dz}{dw} \right|^{2} d\theta \ge \alpha$$

which proves (29).

The remaining part of the proof proceeds as in Theorem I (§2).

We transplant the eigenfunction $\hat{\varphi}_i$ into the z-plane. $U_i(z) =$ $\hat{\varphi}_i(w(z))$ are admissible for the variational characterization (14), and we thus have

(34)
$$\sum_{i=1}^{n} \lambda_i^{-1} \ge \operatorname{Trin} v \left[L(U_1, \cdots, U_n) \right] = \sum_{i=1}^{n} \frac{\iint_{\sigma} \widehat{\varphi}_i^2 \left| \frac{dz}{dw} \right|^2 du dv}{D_{\hat{\sigma}}(\widehat{\varphi}_i)} .$$

If

$$\widehat{\varphi}_{k}(r, heta) = J_{rac{2\pi m}{lpha}}(\sqrt{\widehat{\lambda}_{k}r})\cosrac{2\pi m heta}{lpha}$$

and

$$\widehat{arphi}_{{}_{k+1}}\!(r, heta) = J_{rac{2\pi m}{lpha}}\!(\!\sqrt{\widehat{\lambda}_k r})\sinrac{2\pi m}{lpha} heta$$
 ,

then (29) implies

(35)
$$\{R[U_k]\}^{-1} + \{R[U_{k+1}]\}^{-1} \ge 2\widehat{\lambda}_k^{-1}$$

For functions $\widehat{\varphi}_k$ which depends only on r we have $\{R[U_k]\}^{-1} \ge \widehat{\lambda}_k$. It is always possible to choose $\widehat{\varphi}_n(r, \theta)$ such that the last inequality remains true for k = n. These relations together with (34) establish the theorem.

The first eigenvalue $\widehat{\lambda}_i$ of problem (B) is the same as the first eigenvalue ν_1 , of the problem $\varDelta_w \widetilde{\varphi} + \nu \widetilde{\varphi} = 0$ in G, $\widetilde{\varphi} = 0$ on $r = r_0$, $\partial \tilde{\varphi} / \partial n = 0$ on $\theta = 0$ and $\theta = \alpha$. Theorem II and Theorem III in [2] yield the

COROLLARY. If A denotes the total area of G and $j_0 = 2,4048\cdots$ is the first zero of the Bessel function $J_0(r)$, then

(36)
$$\frac{lpha}{2A}j_0^2 \leq \lambda_1 \leq \left(\frac{j_0}{r_0}\right)^2$$
.

Equality holds in both cases if and only if G is a circular sector.

The right-hand side of (36) is a generalization of an inequality by pólya and Szegö [8]. The following charaterization of r_0 is based on the one indicated in [8] for the conformal radius. Let $\mu(\widehat{AB}, \Gamma_{\epsilon})$ be the modulus of the domain $G_{\epsilon} \subseteq G$ bounded by $\widehat{AB}, \widehat{BO}, \widehat{OA}$ and $\Gamma_{\epsilon} = \{z; |z| = \epsilon\}$. It is defined as $\mu(\widehat{AB}, \Gamma_{\epsilon}) = 1/D(h)$ where $\Delta h = 0$ in $G_{\epsilon}, h = 1$ on Γ_{ϵ} and h = 0 on \widehat{AB} . An easy computation (cf. §1 (c)) yields

(37)
$$r_0 = \lim_{\epsilon \to 0} \varepsilon e^{\alpha \mu (AB, \Gamma_{\epsilon})} .$$

Let D denote the shortest distance from the arc AB to the origin 0. By (37) and the monotonicity of $\mu(AB, \Gamma_{\epsilon})$ it follows that $D \leq r_0$. This inequality together with the corollary implies $\lambda_1 \leq (j_0/D)^2$.

References

Received June 8, 1971. The work was supported by NSF Grant GU-2056

CARNEGIE-MELLON UNIVERSITY PRESENT ADRESS: STANFORD UNIVESITY

^{1.} A. D. Alexandrow, Die innere Geometrie der konvexen Flächen, Berlin, 1955.

^{2.} C. Bandle, Extremaleigenschaften von Kreissektoren und Halbkugeln, To appear in Comment. Math. Helv., 46 (1971), 356-380.

^{3.} _____, Konstruktion isoperimetrischer Ungleichungen der Mathematischen Physik aus solchen der Geometrie, Comment. Math. Helv., **46** (1971), 182-213.

^{4.} Behnke-Sommer, Theorie der analytischen Functione einer komplexen Veränderlichen, Berlin Göttingen, Heidelberg 1955.

^{5.} R. Courant, and D. Hilbert, Methods of Mathematical Physics, New York, 1965, vol. 1.

^{6.} J. Hersch, On symmetric memberanes and conformal radius: Some complements to Polya's and Szegö's Inequalities, Arch. Rat. Mech. Anal., **20** (1965), 378-395.

^{7.} R. Osserman, On the inequality $\Delta u \ge f(u)$, Pacific J. Math., 7 (1957), 1641-1647.

G. Pólya, and M. Schiffer, Convexity of functionals by transplantation, J. d'Anal. Math., 3 (2 partie) (1953/54) 245/345.

^{9.} G. Pólya, and G. Szegö, Aufgaben und Lehrsätze aus der Analysis II, Berlin, Springer-Verlag, 1964.

^{10.} _____, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, 1951.

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

C. R. HOBBY

Stanford University Stanford, California 94305 J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

University of Washington Seattle, Washington 98105

ASSOCIATE EDITORS

E.F. BECKENBACH B.H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. **39**. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

Pacific Journal of Mathematics Vol. 42, No. 3 March, 1972

Catherine Bandle, <i>Extensions of an inequality by Pólya and Schiffer for vibrating membranes</i>	543
S. J. Bernau, <i>Topologies on structure spaces of lattice groups</i>	557
Woodrow Wilson Bledsoe and Charles Edward Wilks, On Borel product	
measures	569
Eggert Briem and Murali Rao, Normpreserving extensions in subspaces of $C(X)$	581
Alan Seymour Cover, Generalized continuation	589
Larry Jean Cummings, Transformations of symmetric tensors	603
Peter Michael Curran, Cohomology of finitely presented groups	615
James B. Derr and N. P. Mukherjee, <i>Generalized quasicenter and</i>	
hyperquasicenter of a finite group	621
Erik Maurice Ellentuck, Universal cosimple isols	629
Benny Dan Evans, Boundary respecting maps of 3-mainfolds	639
David F. Fraser, A probabilistic method for the rate of convergence to the	
Dirichlet problem	657
Raymond Taylor Hoobler, Cohomology in the finite topology and Brauer	
groups	667
Louis Roberts Hunt, Locally holomorphic sets and the Levi form	681
B. T. Y. Kwee, On absolute de la Vallée Poussin summability	689
Gérard Lallement, On nilpotency and residual finiteness in semigroups	693
George Edward Lang, Evaluation subgroups of factor spaces	701
Andy R. Magid, A separably closed ring with nonzero torsion pic	711
Billy E. Rhoades, <i>Commutants of some Hausdorff matrices</i>	715
Maxwell Alexander Rosenlicht, <i>Canonical forms for local derivations</i>	721
Cedric Felix Schubert, On a conjecture of L. B. Page	733
Reinhard Schultz, Composition constructions on diffeomorphisms of	
$S^p \times S^q$	739
J. P. Singhal and H. M. (Hari Mohan) Srivastava, A class of bilateral	
generating functions for certain classical polynomials	755
Richard Alan Slocum, Using brick partitionings to establish conditions	
which insure that a Peano continuum is a 2-cell, a 2-sphere or an annulus	763
James F. Smith, <i>The p-classes of an H*-algebra</i>	777
Jack Williamson, <i>Meromorphic functions with negative zeros and positive</i>	
poles and a theorem of Teichmuller	795
William Robin Zame, Algebras of analytic functions in the plane	811