ON BOREL PRODUCT MEASURES

WOODROW WILSON BLEDSOE AND CHARLES EDWARD WILKS
ON BOREL PRODUCT MEASURES

W. W. BLEDSOE AND C. E. WILKS

It has been known for many years that the product of two regular borel measures on compact hausdorff topological spaces may not be borel in the product topology. The problem of defining a new product measure that extends the classical product measure and carries over this borel property has been approached in different ways by Edwards, by Bledsoe and Morse (Product Measures, Trans. Amer. Math. Soc. 79 (1955), 173–215; called PM here.) and by Johnson and Berberian. Godfrey and Sion and Hall have shown that all three of these methods are equivalent for the case of Radon measures on locally compact hausdorff spaces.

Elliott has extended the results of PM by defining a product measure for a pair, the first of which is a (generalized) borel measure and the second a continuous regular conditional measure (generalization of conditional probability), and proving a corresponding Fubini-type theorem.

The purpose of this paper is to extend the results of PM in a manner similar to Elliott’s, but with his continuity condition replaced by an absolute continuity condition and by a “separation of variables” condition. It is still an open question whether Elliott’s continuity condition is necessary.

1. Definitions and Notation. By a measure (outer measure) μ on a space M is meant a nonnegative countably subadditive function on 2^M, the subsets of M. In a topological space (M, m), an m-borel measure on M is any measure on M for which the open sets are (Caratheodory) measurable, and the borel sets of (M, m) are the members of the smallest σ-algebra containing m. If G is any family of sets, let σG be the union $\bigcup_{a \in G} a$ of the family G. If $H \subseteq 2^M$ and g is a nonnegative function on H, then $\text{mss } g_{MH}$ is defined to be the function on 2^M such that $\int_{D} C_{\mu}(x, y) \mu dx \nu dy = 0 = \int_{D} C_{\nu}(x, y) \nu dy \mu dx$, where C_{μ} is the characteristic function on D. The ordinary product measure of μ and ν is given by

1 Most of the notation used here is taken from [2] and [4].
\[\psi = \text{mss } g(M \times N)R \]

where \(R \) is the set of \(\mu \nu \)-measurable rectangles, and \(g(a \times b) = \mu(a) \cdot \nu(b) \) for \(a \times b \in R \). The extended product measure of \(\mu \) and \(\nu \) given in [2] is

\[\phi = \text{mss } g(M \times N)(R \cup Z) \]

where \(Z \) denotes the set of \(\mu \nu \)-nilsets, and

\[g(D) = \int \int Cr_D(x, y) \mu dx \nu dy \]

for \(D \in (R \cup Z) \). (i.e., \(g(D) = 0 \) for \(D \in Z \), and \(g(a \times b) = \mu(a) \cdot \nu(b) \) for \(a \times b \in R \)).

It was shown in [2] that

\(\phi \) is an extension of \(\psi \),

(i.e., if \(A \) is \(\psi \)-measurable then \(A \) is \(\phi \)-measurable and \(\phi(A) = \psi(A) \)). In cases where the nilsets are \(\psi \)-measurable then, of course, \(\phi \) and \(\psi \) are identical; but the \(\psi \)-measurability of nilsets is still an open question in the interesting case when \(\mu \) and \(\nu \) are regular borel measures on compact hausdorff spaces.

A result from [2], (Thms. 5.11–5.13), is

Theorem 2.1. If \(\mu \) measures \(M \) and \(\nu \) measures \(N \) and \(\phi \) is the extended product measure of \(\mu \) and \(\nu \), then

1. \(\phi \) is an extension of the ordinary product measure of \(\mu \) and \(\nu \),
2. \(\mu \nu \)-measurable rectangles are \(\phi \)-measurable,
3. \(\mu \nu \)-nilsets have \(\phi \) measure 0, and
4. (Fubini) if \(f \) is \(\phi \)-integrable, then

\[\int \int f(x, y) \mu dx \nu dy = \int f(z) \phi dz = \int \int f(x, y) \nu dy \mu dx. \]

Elliott, in [4], has generalized this result by replacing the measure \(\nu \) by a regular conditional measure, defined as follows. Let \(\mathcal{B} \) be a family of subsets of \(N \) for which \(\sigma \mathcal{B} \in \mathcal{B} \). \(\nu \) is called a regular conditional measure on \(M \times \mathcal{B} \) if \(\nu \) is such a function on \(M \times \mathcal{B} \) that

(i) for each \(x \in M \), \(\nu_z = \nu(x, \cdot) \) is a measure for which members of \(\mathcal{B} \) are \(\nu_z \)-measurable, and

(ii) for each \(b \in \mathcal{B} \), the function \(\nu(\cdot, b) \) is \(\mu \)-integrable (i.e.,

\[\int \nu(x, b) \mu dx \leq \infty \].)

A rectangle \(a \times b \) is a \(\mu \nu \mathcal{B} \)-basic rectangle if \(a \) is \(\mu \)-measurable, \(b \in \mathcal{B} \), and
A set $C \subseteq M \times N$ is called a μv-nilset if
\[
\int \int C_r(x)\nu(x, b)\mu dx = 0.
\]

The $\mu v\mathcal{B}$-product measure (of Elliott) is defined as $\mu v g(M \times N)\mathcal{F}$, where \mathcal{F} is the family consisting of all $\mu v\mathcal{B}$-basic rectangles and μv-nilsets, and
\[
g(C) = \int \int C_r(x, y)\nu_x dy \mu dx.
\]

for $C \in \mathcal{F}$. A corresponding ordinary (conditional) product measure for μ and v can be defined on $M \times N$ using only μv-basic rectangles [9].

Elliott [4, Thms 1.0, 1.4], generalized 2.1 as follows:

Theorem 2.2. If μ measures M, \mathcal{B} is a σ-algebra of subsets of N, $\sigma \mathcal{B} = N \in \mathcal{B}$, ν is a regular conditional measure on $M \times \mathcal{B}$, and ϕ is the $\mu v\mathcal{B}$-product measure, then

1. ϕ is an extension of the ordinary (conditional) product measure of μ and v,
2. $\mu v\mathcal{B}$-basic rectangles are ϕ-measurable,
3. μv-nilsets have ϕ-measure 0, and
4. (Fubini-like) if f is ϕ-integrable, then
\[
\int f(x)\phi dx = \int \int f(x, y)\nu_x dy \mu dx.
\]

3. Topological measures. Let (M, m) be a topological space with a measure μ on M. μ is said to be an m-borel measure if members of m (open sets) are μ-measurable. If, additionally, for each $A \in m$,
\[
\mu(A) = \sup_{C} \mu(C),
\]
where C varies over all closed subsets of A for which $\mu(C) < \infty$, then μ is called an m-inner regular borel measure. m is said to be m-almost lindelof if for each subfamily H of m for which $M = \sigma H$, and for each $S \subseteq M$ for which $\mu(S) < \infty$, there is a countable subfamily G of H for which $\mu(S - \sigma G) = 0$.

A regular conditional measure on $M \times \mathcal{B}$ is said to be m-continuous if, for each $b \in \mathcal{B}$, $\nu(\cdot, b)$ is an m-continuous function.

3.0. Throughout the remainder of this paper we shall assume that
1 \((M, m)\) and \((N, n)\) are topological spaces and that \((P, p)\) is their topological product.

2 \(\mu\) is a finite, \(^2\) \(m\)-inner regular borel measure on \(M\), and \(m\) is \(\mu\)-almost lindelof. \(\nu\) is a finite, \(^2\) \(n\)-inner regular borel measure on \(N\), and \(n\) is \(\nu\)-almost lindelof.

3 \(\mathcal{R}\) is a \(\sigma\)-algebra of subsets of \(N\) such that \(n \subseteq \mathcal{R}\).

4 \(\nu\) is a regular conditional measure on \(M \times \mathcal{R}\), with the properties that for each \(x \in M\), \(\nu_x\) is a finite \(n\)-inner regular borel measure, \(n\) is \(\nu_x\)-almost lindelof and each member of \(\mathcal{R}\) is \(\nu_x\)-measurable.

Elliott, in 2.3 of [4], generalized this result as follows:

Theorem 3.2. If \(\mu\) and \(\nu\) satisfy conditions 3.0, and \(\phi\) is the \(\mu \nu \mathcal{R}\)-product measure, and if \(\nu\) is \(m\)-continuous, then

1. \(\phi\) is a \(p\)-inner regular borel measure on \(P\), and
2. \(p\) is \(\phi\)-almost lindelof.

The continuity condition of 3.2 can be replaced by an absolute continuity condition, as follows:

Theorem 3.3. If \(\mu, \nu\), and \(\nu\) satisfy the conditions of 3.0, \(\mathcal{R}\) is the set of \(\nu\) measureable sets, \(\phi\) is the \(\mu \nu \mathcal{R}\)-product measure, and if

\(\nu' \ll \nu_x \ll \nu'\)

for each \(x \in M\), then

1. \(\phi\) is a \(p\)-inner regular borel measure, and
2. \(p\) is \(\phi\)-almost lindelof.

Proof. Let \(\nu''(x, B) = \nu'(B)\) for each \(x \in M, B \in \mathcal{R}\). Then \(\nu''\) is a regular conditional measure which is constant in \(x\) and therefore continuous. Let \(\phi'\) be the (Elliott) \(\mu \nu'' \mathcal{R}\)-product measure and complete the proof in Parts V, VI and VII below.

\(^2\) Many of the results that follow hold also for non-finite measures.
Part I. \[\phi(A) = 0 \implies \phi'(A) = 0 \]
\[\rightarrow A \text{ is a } \mu_\nu\text{-nilset} \rightarrow A \text{ is a } \mu_\nu''\text{-nilset}. \]

Proof. \[\phi(A) = 0 \]
\[\rightarrow A \text{ is a } \mu_\nu\text{-nilset} \]
\[\left(\text{by 2.2.4, .3} \right) \]
\[\rightarrow \int [Cr_A(x, y) \nu_{z, y} \, dy \, dx] = 0 \]
\[\rightarrow \nu_{z, y}(A_{x}) = 0 \text{ for } \mu\text{-almost all } x \in M, \text{ where } A_{x} = \{ y | (x, y) \in A \} \]
\[\rightarrow \nu'(A_{x}) = 0 \text{ for } \mu\text{-almost all } x \text{ (since } \nu' \ll \nu' < < \nu' \text{'}) \]
\[\rightarrow \nu''(A_{x}) = 0 \text{ for } \mu\text{-almost all } x \]
\[\rightarrow \int [Cr_A(x, y) \nu'_{z, y} \, dy \, dx] = 0 \]
\[\rightarrow A \text{ is a } \mu_\nu''\text{-nilset} \]
\[\rightarrow \phi'(A) = 0. \]
\[\left(\text{by 2.2.4, .3} \right) \]

Part II. \[\phi' \ll \phi < < \phi' \]

Proof. Use Part I.

Part III. If \(A \in p \) (an open set) then for some countable subfamily \(G \) of \(mn\)-open rectangles, \(\sigma G \subseteq A \), and \(\phi'(A - \sigma G) = 0 \).

Proof. This is Th. 2.2.3 of [4].

Part IV. \(mn\)-open rectangles are \(\phi \)-measurable.

Proof. This follows from 2.2.2.

Part V. \(\phi \) is a borel measure.

Proof. Let \(A \in p \). By Parts III and IV we can find a family \(G \) for which \(\sigma G \subseteq A \), \(\sigma G \) is \(\phi \)-measurable and \(\phi'(A - \sigma G) = 0 \). But by Part I, \(\phi(A - \sigma G) = 0 \), and hence \(A \) is \(\phi \)-measurable.

Part VI. \(p \) is \(\phi \)-almost lindelof.

Proof. Use 3.2.2 and Part I.

Part VII. \(\phi \) is \(p \)-inner regular.

Proof. Let \(A \in p \) and \(\varepsilon > 0 \). Check that \(\phi'(A) \leq \mu(M) \cdot \nu'(N) < \infty \), and use 3.2.1 to secure such a sequence \(c \) of \(p \)-closed sets that \(c_{1} \subseteq c_{i+1} \subseteq A \), and

\[\phi'(A) = \lim_{i \to \infty} \phi'(c_{i}) . \]
Let $C = \bigcup_{i=\omega} e_i$, and using Parts I and V, observe that $\phi'(A - C) = 0$, $\phi(A - C) = 0$, $\phi(A) = \lim_{i=\omega} \phi(e_i)$.

Consequently, ϕ is p-inner regular.

It is interesting to consider whether the conclusions of Theorem 3.3 remain valid when the condition $\nu' < < \nu_x < < \nu'$ is lessened to $\nu_x < < \nu'$, or when this condition is removed altogether. The authors have been unable to settle these questions.

Theorems 3.4 and 3.5 below are further results in the spirit of 3.2 and 3.3, in which the continuity hypothesis has been replaced by a "separation of variables" condition.

THEOREM 3.4. If μ and ν satisfy conditions 3.0, and ϕ is the $\mu\nu_{\mathcal{R}}$-product measure, and if there exist a μ-integrable function f and a measure ψ on \mathcal{N} such that

$$\nu(x, b) = f(x) \cdot \psi(b)$$

for each $x \in M$ and $b \in \mathcal{R}$, then

1. ϕ is a p-inner regular borel measure on P, and
2. p is ϕ-almost lindelof.

Proof. For each set C, let

$$C_x = \{y | (x, y) \in C\}.$$

If $f(x) = 0$ for each $x \in M$, or if $\psi(N) = 0$, then the conclusions hold trivially. So we assume that $f(x_0) > 0$ for some $x_0 \in M$ and that $f(x) < \infty$ for all $x \in M$. Hence $\psi(b) = \nu(x_0, b)/f(x_0)$, for all $b \in \mathcal{R}$, and by 3.0.4, we conclude that ψ is an n-inner regular borel measure and n is ψ-almost lindelof. Let G be the family of μ-measurable sets, and for each $A \in G$, let

$$h(A) = \int_A f(x) \mu dx$$

and $\gamma = \text{mss} hMG$.

This defines a measure γ on M, and $\gamma(A) = h(A)$ for $A \in G$. Since ψ is m-continuous (indeed it is constant on M) we can define the $\gamma\psi_{\mathcal{R}}$-product measure, ϕ', and conclude from 3.2 that ϕ' has the desired properties .1 and 2. We complete the proof by showing that $\phi' = \phi$.

Let F be the family of $\mu\nu_{\mathcal{R}}$-basic rectangles and $\mu\nu$-nilsets, let F' be the family consisting of $\gamma\psi_{\mathcal{R}}$-basic rectangles and $\gamma\psi$-nilsets, and let

$$g(C) = \int \int C_{x}(x, y) \nu_x \psi \mu dy dx,$$

$$g'(C) = \int \int C_{x}(x, y) \psi \gamma dy dx,$$
for $C \in F$.

First, if $a \times b$ is a $\mu \nu \mathcal{B}$-basic rectangle, then

$$g'(a \times b) = \int \int C_{r \times s}(x, y) \nu d y d x$$

$$= \psi(b) \gamma(a)$$

$$= \psi(b) \int_a^b f(x) \mu d x$$

$$= \int_a^b \nu(x, b) \mu d x$$

$$= \int_a^b 1 \nu_d y \mu d x$$

$$= \int \int C_{r \times s}(x, y) \nu_d y \mu d x$$

$$= g(a \times b) .$$

Secondly, if C is a $\mu \nu$-nilset, then for μ-almost all a,

$$0 = \int C_r(x, y) \nu_d y = \nu(x, C_z) = f(x) \cdot \nu(C_z) ,$$

and hence,

$$g'(C) = \int \int C_r(x, y) \nu_d y d x$$

$$= \psi(C_z) \gamma d x$$

$$= \int \psi(C_z) \cdot f(x) \mu d x$$

$$= 0 = g(C) .$$

Thus $g'(C) = g(C)$, for $C \in F$.

Now let $Z = \{x \in M | f(x) = 0\}$ and observe that Z is μ-measurable, and

(1) $Z \times N \in F'$ and $g'(Z \times N) = 0$.

Let

$$F_1 = \{(a \cup z) \times b | a \text{ is } \mu\text{-measurable, } z \subseteq Z, \text{ and } b \in \mathcal{B}\} ,$$

and check that $F_1 = F'$.

Therefore,

$$\phi' = \text{mss } g' PF'$$

$$= \text{mss } g' PF_1$$

$$= \text{mss } g' PF$$

$$= \text{mss } g PF$$

$$= \phi .$$
The result in 3.4 leads to the following

Theorem 3.5. If μ and ν satisfy conditions 3.0 and ϕ is the $\mu \nu \mathcal{B}$-product measure, and if there exist, for each $i \in \omega$, μ-integrable functions f_i and measures ψ_i on N such that

\[\nu(x, b) = \sum_{i \in \omega} f_i(x) \cdot \psi_i(b) \]

for each $x \in M$ and $b \in \mathcal{B}$, then

.1 ϕ is a p-inner regular borel measure on P, and
.2 p is ϕ-almost lindelöf.

Proof. For each $i \in \omega$, $x \in M$, and $b \in \mathcal{B}$, let

\[\nu_i(x, b) = f_i(x) \cdot \psi_i(b), \]

\[\phi_i = \text{(the } \mu \nu_i \mathcal{B} \text{-product measure)}, \]

\[\phi' = \sum_{i \in \omega} \phi_i. \]

By 3.4 learn that, for each $i \in \omega$,

ϕ_i is a p-inner regular borel measure on P, and p is ϕ_i-almost lindelöf,

and hence, since these two properties carry over to countable sums, we have

ϕ' is a p-inner regular borel measure on P, and p is ϕ'-almost lindelöf.

We complete the proof by showing that $\phi = \phi'$.

Let F be the family consisting of all $\mu \nu \mathcal{B}$-basic rectangles and $\mu \nu$-nilsets. For each $i \in \omega$ and $C \in F$, let

\[g_i(C) = \int \int Cr_c(x, y) \nu_i dy \mu dx \]

\[g(C) = \int \int Cr_c(x, y) \nu_i dy \mu dx. \]

Thus

\[g(C) = \sum_{i \in \omega} g_i(C) \]

for $C \in F$, and

\[\phi(A) = \text{mss } g(M \times N) F(A) \]

\[= \text{mss } (\sum_{i \in \omega} g_i)(M \times N) F(A) \]
for $A \subseteq M \times N$. The third step above follows from Theorem 3.8 below and the fact that F is disjunctive (See Definition 3.7), and the fact that the g_i are nonnegative and countably additive on disjointed subsets of F.

The desired conclusion is at hand.

Questions that naturally arise are: when can a representation of the type (2) be obtained? How useful therefore is Theorem 3.5? No satisfactory answer to these questions is known to the authors at this time.

Theorem 3.2 (Elliott) generalizes Theorem 3.1 (Morse-Bledsoe) in yet another way, in that it uses one-sided nilsets C, where

$$\int \int C_{\{(x, y) \in \mathbb{R}^d \mid y \subseteq y \}} dy \mu dx = 0,$$

instead of two-sided nilsets D, where

$$\int \int C_{\{(x, y) \in \mathbb{R}^d \mid y \subseteq y \}} dy \mu dx = 0 = \int \int C_{\{(x, y) \in \mathbb{R}^d \mid y \subseteq y \}} dy \mu dx.$$

Thus Theorem 3.1 is equally valid if the definition of μ_ν-nilset given in §2 is amended to read: a subset D of $M \times N$ is a μ_ν-left nilset if

$$\int \int C_{D(x, y) \in \mathbb{R}^d} dy \mu dx = 0.$$

Similarly, we could use μ_ν-right nilsets.

The remainder of the paper gives results needed in the proof of Theorem 3.5.

Lemma 3.6. If T is a directed set with respect to the relation \prec and if $0 \leq A_{t_0} \leq A_{t}$ whenever $i \in \omega, t \in T, t' \in T, \text{ and } t < t'$, and if $\sum_{t \in \omega} A_{t_0} < \infty$ for some $t_0 \in T$, then

$$\sum_{t \in \omega} \inf_{t \in T} A_{t} = \inf_{t \in T} \sum_{t \in \omega} A_{t}.$$

Proof. Let $\varepsilon > 0$ and select $N \in \omega$ so that

$$\sum_{i = N}^{\infty} A_{t_0} < \varepsilon/2,$$
and then choose \(\bar{t} \in T \) so that
\[
A_{it} \leq \inf_{t' \in T} A_{it'} + \frac{\varepsilon}{2N}, \text{ for } \bar{t} < t, i < N.
\]

Thus for \(\bar{t} < t, t_0 < t \), we have
\[
\sum_{t \in \omega} A_{it} = \sum_{t = 0}^{N-1} A_{it} + \sum_{t = N}^{\infty} A_{it}
\leq \sum_{t = 0}^{N-1} A_{it} + \sum_{t = N}^{\infty} A_{it_0}
\leq \sum_{t = 0}^{N-1} A_{it} + \varepsilon/2
\leq \sum_{t = 0}^{N-1} \left(\inf_{t' \in T} A_{it'} + \frac{\varepsilon}{2N} \right) + \varepsilon/2
= \sum_{t = 1}^{N-1} \inf_{t' \in T} A_{it'} + \varepsilon
\leq \sum_{t \in \omega} \inf_{t' \in T} A_{it'} + \varepsilon.
\]

Therefore
\[
\inf_{t \in T} \sum_{t \in \omega} A_{it} \leq \sum_{t \in \omega} \inf_{t \in T} A_{it}.
\]

Since the reversed inequality is well known, the desired conclusion is at hand.

Definition 3.7. We say that a family \(H \) is *disjunctive* if for each \(G_1 \) and each \(G_2 \), which are countable subfamilies of \(H \), there is a countable pairwise disjointed subfamily \(G \) of \(H \) which is a refinement of both \(G_1 \) and \(G_2 \) and such that \(\sigma G = \sigma G_1 \cap \sigma G_2 \).

Theorem 3.8. If
\begin{enumerate}
 \item \(H \) is disjunctive,
 \item for each \(i \in \omega \), \(g_i \geq 0 \),
 \item \(g_i \) is subadditive\(^3\) on \(H \),
 \item \(g_i \) is countably additive on disjointed subfamilies of \(H \),
 \item \(A \subseteq S \), and
 \item \(mss \left(\sum_{i \in \omega} g_i \right)_{SH} (A) < \infty \),
\end{enumerate}
then
\[
mss \left(\sum_{i \in \omega} g_i \right)_{SH} (A) = \sum_{i \in \omega} mss g_{iSH}(A).
\]

Proof. Let
\(^3\) A function \(f \) is said to be subadditive on \(H \) if for each \(B \) and each countable subfamily \(G \) of \(H \) for which \(B \subseteq \sigma G \), we have \(f(B) \leq \sum_{\alpha \in G} f(\alpha) \).
$H_A = \{G \mid G$ is a countable subfamily of H for which $A \subseteq \sigma G\}.$

Since H is disjunctive it follows that H_A is a directed set with respect to the refinement relation. Also using .2 it follows that

$$0 \leq \sum_{\alpha \in G'} g_i(\alpha) \leq \sum_{\alpha \in G} g_i(\alpha)$$

whenever $i \in \omega$, $G \in H_A$, $G' \in H_A$, and G' is a disjointed refinement of G. Furthermore, from .4 we know that for some $G_0 \in H_A$,

$$\sum_{\alpha \in G_0} \sum_{i \in \omega} g_i(\alpha) < \infty.$$

Thus by Lemma 3.6 (identifying H_A with T, and A_{it} with $\sum_{\alpha \in G} g_i(\alpha)$), we conclude that

$$\sum_{i \in \omega} \inf_{G \in H_A} \sum_{\alpha \in G} g_i(\alpha) = \inf_{G \in H_A} \sum_{i \in \omega} \sum_{\alpha \in G} g_i(\alpha).$$

Consequently,

$$\text{mss} \left(\sum_{i \in \omega} g_i \right) SH(A) = \inf_{G \in H_A} \sum_{i \in \omega} \sum_{\alpha \in G} g_i(\alpha)$$

$$= \sum_{i \in \omega} \inf_{G \in H_A} \sum_{\alpha \in G} g_i(\alpha)$$

$$= \sum_{i \in \omega} \text{mss} g_i SH(A).$$

REFERENCES

Received May 20, 1971.

THE UNIVERSITY OF TEXAS
AND
PEPPERDINE UNIVERSITY
PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SAMELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

C. R. HOBBY
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS
E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
Catherine Bandle, *Extensions of an inequality by Pólya and Schiffer for vibrating membranes* ... 543
S. J. Bernau, *Topologies on structure spaces of lattice groups* 557
Eggert Briem and Murali Rao, *Normpreserving extensions in subspaces of \(C(X) \) ... 581
Alan Seymour Cover, *Generalized continuation* .. 589
Larry Jean Cummings, *Transformations of symmetric tensors* 603
Peter Michael Curran, *Cohomology of finitely presented groups* 615
James B. Derr and N. P. Mukherjee, *Generalized quasicenter and hyperquasicenter of a finite group* ... 621
Erik Maurice Ellentuck, *Universal cosimple isols* .. 629
Benny Dan Evans, *Boundary respecting maps of \(3 \)-manifolds* 639
David F. Fraser, *A probabilistic method for the rate of convergence to the Dirichlet problem* ... 657
Raymond Taylor Hoobler, *Cohomology in the finite topology and Brauer groups* ... 667
Louis Roberts Hunt, *Locally holomorphic sets and the Levi form* 681
B. T. Y. Kwee, *On absolute de la Vallée Poussin summability* 689
Gérard Lallement, *On nilpotency and residual finiteness in semigroups* 693
George Edward Lang, *Evaluation subgroups of factor spaces* 701
Andy R. Magid, *A separably closed ring with nonzero torsion pic* 711
Billy E. Rhoades, *Commutants of some Hausdorff matrices* 715
Maxwell Alexander Rosenlicht, *Canonical forms for local derivations* 721
Cedric Felix Schubert, *On a conjecture of L. B. Page* 733
 Reinhard Schultz, *Composition constructions on diffeomorphisms of \(S^p \times S^q \) ... 739
Richard Alan Slocum, *Using brick partitionings to establish conditions which insure that a Peano continuum is a 2-cell, a 2-sphere or an annulus* .. 763
James F. Smith, *The \(p \)-classes of an \(H^* \)-algebra* ... 777
Jack Williamson, *Meromorphic functions with negative zeros and positive poles and a theorem of Teichmuller* .. 795
William Robin Zame, *Algebras of analytic functions in the plane* 811