NORMPRESERVING EXTENSIONS IN SUBSPACES OF $C(X)$

Eggert Briem and Murali Rao
NORMPRESERVING EXTENSIONS IN SUBSPACES
OF C(X)

EGGERT BRIEM AND MURALI RAO

If B is a subspace of $C(X)$ and F is a closed subset of X, this note gives sufficient conditions in order that every function in the restriction subspace $B|_F$ has an extension in B with no increase in norm.

Introduction. Let X be a compact Hausdorff space, $C(X)$ the Banach algebra of all continuous complex-valued functions on X and let B be a closed linear subspace of $C(X)$ separating the points of X and containing the constants. A closed subset F of X is said to have the normpreserving extension property w.r.t. B if any function b_0 in the restriction subspace $B|_F$ has an extension $b \in B$ (i.e. $b|_F = b_0$) such that $\|b\| = \|b_0\|_F$ (resp. $\|b\|_F$) denotes the supremum norm on X (resp. F). The main result is the following:

Let F be a closed subset of X and suppose there is a map T (not necessarily linear) from $M(X)$ into $M(X)$ satisfying the following conditions

(i) $m - Tm \in B^\perp$ for all $m \in M(X)$
(ii) $T\lambda$ is a probability measure when λ is
(iii) If $s_i \in C$ and $m_i \in M(X)$, $i = 1, \cdots, n$ and $\sum_{i=1}^n s_i m_i \in k(F)^\perp$ then $\sum_{i=1}^n s_i (Tm_i)|_F \in B^\perp$.

Then F has the normpreserving extension property.

$M(X)$ denotes the set of regular Borel measures on X, and if A is a subset of B then A^\perp is the set of those measures in $M(X)$ which annihilate A. $k(F)$ consists of those functions in B which are identically 0 on F. Also if G is a Borel subset of X and $m \in M(X)$ then $m|_G$ is the measure $\chi_G m$ where χ_G is the characteristic function for G.

Two conditions, either of which is known to imply that a closed subset F of X has the normpreserving extension property are the following:

Condition 1. For all $\sigma \in B^\perp$, $\sigma|_F \in B^\perp$.

Condition 2. F is a compact subset of the Choquet boundary Σ_B for B and for all $\sigma \in M(\Sigma_B) \cap B^\perp$, $\sigma|_F \in B^\perp$.

($M(\Sigma_B)$ denotes the set of those $\sigma \in M(X)$ for which the total variation $|\sigma|$ is maximal in Choquet’s ordering for positive measures (see [1])
In Chapter 2 of this note we show that when either Condition 1 or Condition 2 is satisfied there exists a map T with the above properties. Actually, when Condition 1 or Condition 2 is satisfied stronger extension properties than the norm-preserving one hold. (In the case of Condition 1 see [4] Theorem 3 and [5] Theorem 4.8 in the case of Condition 2 see [2] Theorem 4.5 and [3] Theorem 2). But as we show in Chapter 2 these stronger extension properties are corollaries to theorems based on the existence of a map T described above. Thus we are able to deal simultaneously with Conditions 1 and 2.

1. A condition for the norm-preserving extension property.

Throughout this chapter F is a fixed closed subset of X and T is a map from $M(X)$ into $M(X)$ satisfying

(i) $m - Tm \in B^1$ for all $m \in M(X)$

(ii) $T\lambda$ is a probability measure when λ is.

(iii) If $s_i \in C$ and $m_i \in M(X)$ and $\sum_{i=1}^n s_i m_i \in k(F)^1$ then

$$\sum_{i=1}^n s_i |m_i|_{X \setminus F} \in B^1.$$

Remark 1.1. It follows from conditions (i) and (iii) that if $\sum s_i \sigma_i \in B^1$ then $\sum s_i (T\sigma_i) |_{X \setminus F} \in B^1$. Also if λ is a probability measure and $\lambda = \lambda|_{X \setminus F}$ then $T\lambda = (T\lambda)|_{X \setminus F}$, because $\lambda \in k(F)^1$ hence by (iii) $(T\lambda)|_{X \setminus F} \in B^1$. Since B contains the constants and $T\lambda$ is a positive measure $(T\lambda)|_{X \setminus F} = 0$.

We let S_B denote the state space of B s.e. $S_B = \{p \in B^*: \|p\| = p(1) = 1\}$. S_B is a convex set which is compact in the w^*-topology and the natural map of X into S_B is a homeomorphism. We shall frequently think of X as embedded in S_B. A representing measure for $p \in S_B$ is a probability measure v_p on X such that $p(f) = \int f dv_p$ for all $f \in B$.

Definition 1.2. For each $b_0 \in B|_{X \setminus F}$ we define a function \tilde{b}_0 on S_B as follows. If $p \in S_B$ put

$$\tilde{b}_0(p) = \int_{X \setminus F} b_0 dTv_p$$

where v_p is any representing measure for p on X.

Remark 1.3. The above definition is meaningful because if v'_p is another representing measure for p on X then $v_p - v'_p \in B^1$; hence by Remark 1.1 $(Tv_p)|_{X \setminus F} = (Tv'_p)|_{X \setminus F} \in B^1$.

Lemma 1.4. \tilde{b}_0 has the following properties:
(1) \(\bar{b}_0 \) is an affine function

(2) \(|\bar{b}_0(p)| \leq \|b_0\|_F \) for all \(p \in S_B \)

(3) \(\bar{b}_0(p) = b_0(p) \) if \(p \in F \)

(4) \(\bar{b}_0 \) is a linear combination of upper semicontinuous affine functions.

(5) \(\int \bar{b}_0 d\sigma = 0 \) for all \(\sigma \in B^\perp \).

Proof 1. follows from the definition of \(\bar{b}_0 \) and remark 1.1. (2) is trivial: To prove (3) observe that if \(x \in F \) then by remark 1.1 \(T\delta_x = (T\delta_x)|_F \) (\(\delta_x \) is point mass at \(x \)). But \(T\delta_x \) is a representing measure for \(x \). (4) Observe that if \(b_0 \in B|_F \) and \(f_0 = Re b_0 \), we can define \(\bar{f}_0 \) in exactly the same way as we defined \(\bar{b}_0 \). Then \(\bar{f}_0 \) is affine on \(S_B \) and \(\bar{f}_0 = Re \bar{b}_0 \). First assume that \(f_0 \geq 0 \). We want to show that \(\bar{f}_0 \) is upper semi-continuous. For each \(t \geq 0 \) put \(K_t = \{ p \in S_B : \bar{f}_0(p) \geq t \} \) we must show that \(K_t \) is closed. Let \(\{p_\alpha\} \) be a net from \(K_t \) with limit point \(p_0 \), and \(v_\alpha \) a representing measure for \(p_\alpha \) on \(X \) for each \(\alpha \). Write \(T v_\alpha = u_\alpha + w_\alpha \) where \(u_\alpha = (Tv_\alpha)|_F \). Let \(u_0 \) be a \(w^* \)-clusterpoint for \(\{u_\alpha\} \) and let \(\{w_\beta\} \) be a subnet from \(\{u_\alpha\} \) converging to \(u_0 \). Also let \(w_0 \) be a clusterpoint for \(\{w_\beta\} \). Then \(v_0 = u_0 + w_0 \) is a representing measure for \(p_0 \) and since

\[
 u_0 = u_0|_F, \quad T\left(\frac{u_0}{\|u_0\|}\right) = T\left(\frac{u_0}{\|u_0\|}\right)|_F.
\]

(Remark 1.1). Using this and Remark 1.1 once more we get:

\[
 \bar{f}_0(p_0) = \int_F f_0 dT v_0 = \|u_0\| \int_F f_0 dT \left(\frac{u_0}{\|u_0\|}\right) + \|w_0\| \cdot \int_F f_0 dT \left(\frac{w_0}{\|w_0\|}\right)
\]

\[
 \geq \|u_0\| \int_F f_0 dT \left(\frac{u_0}{\|u_0\|}\right) = \int_F f_0 d u_0 \geq t. \quad \text{Hence } p_0 \in K_t.
\]

In general take a positive number \(k \) such that \(f_0 + k \geq 0 \). Then

\[
 \bar{f}_0 = \bar{f}_0 + k - k
\]

is the difference of upper semi-continuous functions. Since this holds for any \(f_0 \in ReB|_F \) (4) is proved.

Since \(\bar{b}_0 \) is a linear combination of real valued affine upper semi-continuous functions it satisfies the barycenter formula i.e. if \(p \in S_B \) and \(v_\alpha \) is a representing measure for \(p \) then

\[
 \int \bar{b}_0 d v_\alpha = \bar{b}_0(p)
\]

(See [1] Cor. I 1.4)

Now we consider a measure \(\sigma \in B^\perp \) with a decomposition \(\sigma = \sum_{i=1}^n t_i \sigma_i \) into probability measures \(\sigma_i \) representing points \(p_i \in S_B \) for
By axiom (i) the measure $T\sigma_i$ also represent p_i for $i = 1, 2, 3, 4$. Applying the above result together with the definition of δ_o and axiom (iii), we obtain:

$$\int b_o d\sigma = \sum_{i=1}^{4} t_i \int b_o d\sigma_i = \sum_{i=1}^{4} t_i \delta_o(p_i) = \sum_{i=1}^{4} t_i \left(\int F b_o(T\sigma_i) = 0 \right).$$

This completes the proof of (5).

Proposition 1.5. $B|_F$ is closed in $C(F)$

Proof. Let $\sigma \in B^+$, and consider a $b_o \in B|_F$ such that $\|b_o\|_F \leq 1$. By statement (5) of Lemma 1.4:

$$0 = \int b_o d\sigma = \int_F b_o d\sigma + \int_{X \setminus F} b_o d\sigma.$$

Hence

$$\left| \int_F b_o d\sigma \right| = \left| \int_{X \setminus F} b_o d\sigma \right| \leq \|\sigma\|_{X \setminus F},$$

and so $\|\sigma\|_F \leq \|\sigma\|_{X \setminus F}$.

By a result of Gamelin [4] and Glicksberg [5] (see also [3, Prop. 1]) this implies that $B|_F$ is almost normpreserving, or what is equivalent, that $B|_{k(F)}$ is isometric to $B|_F$. Hence $B|_F$ is complete in uniform norm, and we are done.

Proposition 1.6. Let $b_o \in B|_F$ and let ψ be a strictly positive lower semi-continuous function on X such that $\psi(x) > |b_o(x)|$ for all $x \in X$. Then there is a function $b \in B$ such that $b|_F = b_o$ and $|b(x)| < \psi(x)$ for all $x \in X$.

Proof. Apply Theorem 2.2 of [2].

Theorem 1.7. Let F and T be as in the beginning of this chapter and let $b_o \in B|_F$ with $\|b_o\|_F \leq 1$ and let ψ be a strictly positive lower semi-continuous function such that $\psi(x) > |b_o(x)|$ for all $x \in X$. Then there is a function $b \in B$ such that $b|_F = b_o$, $\|b\| = \|b_o\|_F$ and $|b(x)| < \psi(x)$ for all $x \in X$.

Proof. The proof is exactly the same as proof of [3] Theorem 2 after replacing the function A from [3] by δ_o and Lemma 1 of [3] by Proposition 1.6 of this note.
COROLLARY 1.8. F and T as before. Then F has the normpreserving extension property w.r.t. B.

Theorem 1.9. Let F and T be as before let $b_0 \in B_p$ and let ψ be a strictly positive lower semi-continuous function such that $\psi(x) \geq |b_0(x)|$ for all $x \in X$. Suppose furthermore that $\psi(x) \geq \int \psi d T\lambda_x$ for all $x \in X \setminus F$ for which $b_0(x) \neq 0$ (λ_x is a representing measure for x). Then there is a function $b \in B$ such that

$$b|_F = b_0 \text{ and } |b(x)| \leq \psi(x) \text{ for all } x \in X.$$

Proof. The proof is the same as the proof of [2] Theorem 4.5 replacing in the proof of Theorem 2.1 of [2] by Proposition 1.6 of this note.

2. Relations to conditions 1 and 2. We start by showing the equivalence of condition 1 to a condition involving $k(F)^\perp$.

Proposition 2.1. Let F be a closed subset of X. Then the following conditions are equivalent:

1. For all $\sigma \in B^1$, $\sigma|_F \in B^\perp$.

1'. For all $\sigma \in k(F)^\perp$, $\sigma|_{X \setminus F} \in B^\perp$.

Proof. Condition 1' trivially implies 1. Suppose Condition 1 is satisfied and let $\sigma \in k(F)^\perp$. Let $b_0 \in B|_F$ and let $b \in B$ be any extension of b_0. Since $\sigma \in k(F)^\perp$ the quantity $\int bd\sigma$ is independent of the choice of the extension b. Thus $b_0 \rightarrow \int bd\sigma$ is a well defined linear functional on $B|_F$. By [4] Theorem 1, $B|_F$ is closed in $C(F)$. It then follows from the open mapping theorem that $b_0 \rightarrow bd\sigma$ is a continuous linear functional. Thus we can find a measure $\sigma_1 = \sigma|_F$ such that $\sigma_1 - \sigma \in B^\perp$. But then $\sigma|_{X \setminus F} = (\sigma_1 - \sigma)|_{X \setminus F} \in B^\perp$.

Let again F be a closed subset of X and suppose that Condition 1 is satisfied. Let T be the identity map from $M(X)$ to $M(X)$. By the above proposition T satisfies requirements (i) (ii) and (iii) from the beginning of Chapter 1. In this case if $b \in B|_F$, $\tilde{b}_0(x) = 0$ for all $x \in X \setminus F$. From Theorem 1.9 we can then deduce the following well known theorem.

Theorem 2.2. Let F be a closed subset of X and suppose that $\mu|_F \in B^1$ for all $\mu \in B^1$. If $b_0 \in B|_F$ and ψ is a strictly positive lower semi-continuous function with $\psi(x) \geq |b_0(x)|$ for all $x \in F$ then there is function $b \in B$ such that
We now look at Condition 2. Let F be a compact subset of the Choquet boundary Σ_B and suppose Condition 2 is satisfied i.e. for all $\sigma \in B^1 \cap M(\Sigma_B), \sigma_{\mid F} \in B^1$. We need the following lemma

Lemma 2.3. Under the above hypotheses $B_{\mid F}$ is closed in $C(F)$.

Proof. By [5] Theorem 3.1 we must show the existence of a constant $c \geq 1$ such that $\|\mu - (B_{\mid F})\| \leq c \|\mu - B\|$ for all $\mu \in M(F)$. Let $\mu \in M(F)$ and $\sigma \in B^1$. We write $\sigma = \sigma_{\mid F} + \sigma_{\mid X \setminus F}$ and further write $\sigma_{\mid X \setminus F} = t_1\lambda_1 - t_2\lambda_2 + it(t_3\lambda_3 - t_4\lambda_4)$ where the t_i's are positive numbers and the λ's are probability measures such that λ_1 and λ_2 (resp. λ_3 and λ_4) live on disjoint subsets of X. For $i = 1, \cdots, 4$ let v_i be a maximal measure such that $\lambda_i - v_i \in B^1$. Put $w = t_1v_1 - t_2v_2 + it(t_3v_3 - t_4v_4)$. Then $\sigma_{\mid X \setminus F} - w \in B^1$ and $\|w\| \leq \sum_{i=1}^{4} t_i \|v_i\| = \sum_{i=1}^{4} t_i \|\lambda_i\| \leq 2\|\sigma_{\mid X \setminus F}\|$. Now $\sigma_{\mid F} + w \in B^1 \cap M(\Sigma_B)$ so that $\sigma_{\mid F} + w_{\mid F} \in B^1$. Hence $\|\mu - (A \sigma_{\mid F})\| \leq \|\mu - (\sigma_{\mid F} + w_{\mid F})\| \leq \|\mu - \sigma_{\mid F}\| + 2\|\sigma_{\mid X \setminus F}\| \leq 2\|\mu - \sigma\|$. Thus we can take $c = 2$ and the lemma is proved.

As above let F be a compact subset of Σ_B and suppose that for all $\sigma \in M(\Sigma_B) \cap B^1, \sigma_{\mid F} \in B^1$. We define a map T from $M(X)$ to $M(X)$ as follows. If λ is a probability measure on X pick a maximal measure v with $\lambda - v \in B^1$ and put $T\lambda = v$. If λ is already maximal put $T\lambda = \lambda$. If $\sigma \in M(X)$ write $\sigma = t_1\lambda_1 - t_2\lambda_2 + it(t_3\lambda_3 - t_4\lambda_4)$ where the t_i's are positive numbers and where λ_1 and λ_2 (resp. λ_3 and λ_4) are probability measures living on disjoint subsets of X. Then put $T\sigma = t_1T\lambda_1 - t_2T\lambda_2 + it(t_3T\lambda_3 - t_4T\lambda_4)$. The map T from $M(X)$ to $M(X)$ we get in this way obviously has properties (i) and (ii) from the beginning of Chapter 1. Observe that $T\sigma = \sigma$ if $\sigma = \sigma_{\mid F}$ since $F \subset \Sigma_B$. To see that T also has property (iii) let $\Sigma_B, \sigma_{\mid F} \in k(F)^1$. By Lemma 2.3 $B_{\mid F}$ is closed in $C(F)$. Just as in the proof of Proposition 2.1 we can find a measure $\mu = \mu_{\mid F}$ such that $\mu - \Sigma_B, \sigma_{\mid F} \in B^1$. Then $\mu - \Sigma_B, T\sigma_{\mid F} \in B^1 \cap M(\Sigma_B)$ so that $\mu - \Sigma_B, (T\sigma_{\mid F})_{\mid F} \in B^1$, but then $\Sigma_B, (T\sigma_{\mid F})_{\mid X \setminus F} \in B^1$. We can then using Theorems 1.7 and 1.9 deduce the same interpolation theorems as in [2] and [3]. In particular we get from Theorem 1.7:

Theorem 2.4. Let F be a compact subset of the Choquet boundary Σ_B and suppose that for all $\sigma \in B^1 \cap M(\Sigma_B), \sigma_{\mid F} \in B^1$. Then F has the normpreserving extension property w.r.t. B.

\[b \mid_F = b_0 \text{ and } |b(x)| \leq \psi(x) \text{ for all } x \in X. \]
REFERENCES

Received May 10, 1971.

AARHUS UNIVERSITET, AARHUS DENMARK

The first author’s present address is:
Science Institute
UNIVERSITY OF ICELAND
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

C. R. HOBBY
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E.F. BECKENBACH B.H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY
UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA
WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
Pacific Journal of Mathematics
Vol. 42, No. 3 March, 1972

Catherine Bandle, Extensions of an inequality by Pólya and Schiffer for vibrating membranes .. 543
S. J. Bernau, Topologies on structure spaces of lattice groups 557
Woodrow Wilson Bledsoe and Charles Edward Wilks, On Borel product measures .. 569
Eggert Briem and Murali Rao, Normpreserving extensions in subspaces of C(X) ... 581
Alan Seymour Cover, Generalized continuation 589
Larry Jean Cummings, Transformations of symmetric tensors 603
Peter Michael Curran, Cohomology of finitely presented groups 615
James B. Derr and N. P. Mukherjee, Generalized quasicenter and hyperquasicenter of a finite group ... 621
Erik Maurice Ellentuck, Universal cosimple isols 629
Benny Dan Evans, Boundary respecting maps of 3-manifolds 639
David F. Fraser, A probabilistic method for the rate of convergence to the Dirichlet problem ... 657
Raymond Taylor Hoobler, Cohomology in the finite topology and Brauer groups ... 667
Louis Roberts Hunt, Locally holomorphic sets and the Levi form 681
B. T. Y. Kwee, On absolute de la Vallée Poussin summability 689
Gérard Lallement, On nilpotency and residual finiteness in semigroups 693
George Edward Lang, Evaluation subgroups of factor spaces 701
Andy R. Magid, A separably closed ring with nonzero torsion pic 711
Billy E. Rhoades, Commutants of some Hausdorff matrices 715
Maxwell Alexander Rosenlicht, Canonical forms for local derivations 721
Cedric Felix Schubert, On a conjecture of L. B. Page 733
Reinhard Schultz, Composition constructions on diffeomorphisms of $S^p \times S^q$... 739
J. P. Singhal and H. M. (Hari Mohan) Srivastava, A class of bilateral generating functions for certain classical polynomials 755
Richard Alan Slocum, Using brick partitionings to establish conditions which insure that a Peano continuum is a 2-cell, a 2-sphere or an annulus ... 763
James F. Smith, The p-classes of an H^*-algebra 777
Jack Williamson, Meromorphic functions with negative zeros and positive poles and a theorem of Teichmüller 795
William Robin Zame, Algebras of analytic functions in the plane 811