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ALAN S. COVER

In this paper the operation of analytic continuation is
generalized by relaxing the condition that a direct continua-
tion of a function must have the same values as the original
on the intersection of their domains of definition. Thus the
generalized continuations of a function can have some other
property in common with the original function such as being
preimages of a single function under a local integral opera-
tor. This generalization is accomplished by developing -
continuation of & = {(fu, S)|fx€® and S, a ball in &
with respect to a collection of maps, -7, of subsets of F#
into Z. ¥ must satisfy some compatibility conditions.
Many of the proofs in this development parallel those for
analytic continuation and lead to the introduction of a mani-
fold on which the generalized continuation is single valued.
A generalized continuation of function elements (f., S,) is
achieved when all the f.’s are complex valued functions de-
fined on S, and some examples are given.

In §1 .o~continuation is developed for <. A manifold M(¥, &)
is developed on which .%~continuation is single valued and the complete
S7-function is introduced which is similar to the complete analytic
function of Weierstrass. Theorem 11 states a necessary and sufficient
local condition that M(<, .&) and M(S#, <) be holomorphic. In
section 2 .9~continuation is specialized to sets, .&# , where f, is a funec-
tion with S, as its domain of definition. Then (f,, S.) is referred to
as a function element. For function elements a compatible set of
maps can be considered as a generalization of direct analytic continua-
tion of power series. An indicator function is defined to help describe
a complete .o~function. Direct analytic continuation and continuation
of the coefficients of a linear Weierstrass polynomial are given as
examples.

Given in §3 is the more intricate example of continuing the nor-
malized B;-associate of the Bergman-Whittaker Integral Operator.
Using Theorem 11 this generalized continuation is shown to be
equivalent to analytically continuating the harmonic function repre-
sented by the B,-associate. This is the example which motivated the
study of generalized continuation.

1. Generalized continuation. Let @ be a set and with each f,
in @ associate ball, S,, in C* and let & = {(f., S.) |f-€®}. Let x,
denote the center of S, and consider a set of operators or maps .7 =
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{A,|x e C"} such that
Ax: {faixesa}_’{fa|wa = Q}} .

In this paper the statement, “a property holds for an expression
for every a and 2” means that this property holds for all @ and =
for which the indicated expression is defined.

DEFINITION. A set of operators, .7 is called a compatible set of
operators for &7 if .7 satisfies

(i) for every a, x and y, f.A, = f.AA.

(ii) if f,A, = fs then 7y = r, — d(X., 25)

(iii) for every a, f.A,, = fa-

In the preceding definition d(x, ¥) denotes the distance between
the two points ¢ = (#', -+, ") and y = (%', -++, y") in C* given by

% . A 1/2
(e, v) = (3 10/ - v'F)
and 7, is the radius of S,.

DErFINITION. If .27 is a compatible set of operators and f.A, =
fs, then f; is called a direct generalized .o%continuation of f, or simply
a direct .%“continuation of f,.

As in the case of an analytic function of one complex variable
an analytic manifold is introduced on which .9~continuation is single-
valued. First, the following definitions are given.

1. A finite sequence of balls, S, ---, S, is called a chain if the
center a,,, of S;,, lies in S,.

2. If fiA,,,, = fiz for i =1, -+, m — 1, then f, is said to have
been .o~continued along the chain of balls.

3. A curve or path C on C" is a continuous mapping, f, of the
closed unit interval, I, into C* and is denoted by C = (u(¢), I). The
inverse curve C™ of C = (u(t), I) is the curve (0, I) where o(t) =
pr@ —t) for tel.

4. Let C = (g, I) be a curve in C* with an element (f;, S,) in
& associated with each eI such that the center of S, is x(¢). If
for every t, and ¢, such that p(t) lies in S, for all ¢ in the interval
th=t=1t we have f, is a direct .%“continuation of f,, then f, is
said to be the .9~continuation of f, along the curve C.

In order to construct the analytic manifold some properties of
S7-continuation are needed. These results are contained in the fol-
lowing Theorems. Some of the proofs are similar to the proofs of
the corresponding properties in one complex variable and these proofs
are omitted and the reader is referred to [8, pages 63-69]. For the
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rest of this section it is assumed that .o~ is a compatible set of
operators.

Lemma 1. If x, -+, 2,€8, and f.A, -+ A, is defined then

faAml e Azn :fann .

The proof of this Lemma is by induction and (i) of the definition
of compatibility.

For a given f, and any =z, ¢S, define »(x,) to be the radius of S,,
the ball associated with f,4, . Using (ii) of compatibility the fol-
lowing Theorem can be proven.

THEOREM 1. () ts either identically infinite or is a continuous
Sunction of x,.

THEOREM 2. Let f; = f,A, and let C = (¢, I) be a curve such
that |C|cC S, p(0) = x,, and p(l) = 5. Then there exist x,, +-+, ,
on |C| such that

frA, -or A, = f..

Lemma 1 is used in the proof of Theorem 2. This Theorem says
that if f; is a direct .o~continuation of f, and C is a path in S, which
joins @, to x, then there exists an .9%continuation of f; along a chain
S, +++, S, to obtain f, where the centers of the S;’s,57 =1, -+, n lie
on |C|.

THEOREM 3. If f,A, = fiA, = f, and if &, = %, then f, = fa.

Proof. By Theorem 2 there exists z,, +++,2, = ¥ = %, = 2; on the
line segment between y and « such that

fTAzl e Azn :fa .
Also substituting for f, and using (iii) of compatibility and Lemma 1
(fs40A;, - A, =Ts .
Hence, f, = f3.

COROLLARY 1. If f.A, - A, = fid, -+ A, and if @, = @,
the’lb fa = fp.

THEOREM 4. Let {f,} be the elements of an S~continuation of f,
along the path C to obtain f,.. Then {f,_} are the elements of an
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S-continuation of f, along the path C™ and this continuation gives

foe

THEOREM 5. ~continuation of a given element f, along a given
curve C always leads to the same element f,.

THEOREM 6. If an .&-continuation of f, along a path C is possi-
ble, it can always be accomplished by .7-continuation along a finite
chain of balls.

THEOREM 7. Let S, ---, S, be a chain of balls with centers
%y, cee, 2, and C = (¢, I) be a path from xz, to x, and passing through
Xy o0, B,y SUch that p(t)yeS; for all t, t; <t < t;,, where pu(t;) = ;.
Then if fi, ««+, f. 18 an S7-continuation along this chain, there exists
an Sz-continuation of f, along C which gives f, at x,.

The desired .%%~continuation along the curve C for Theorem 7 is
given by: for each te[0, 1] associate the element f, = f, A.(¢) where
LG =t=t.

DEeFINITION. For every a and g define

%j = {x|faAz = fﬂAz} .
THEOREM 8. #! = @ or ! = 8S.NS,.

Proof. Both &z!c S,NS; and (S, N S;)\F#! are open sets. The
theorem follows since S, N S; is connected.

S~continuation need not be possible along a given curve C=(y, I).
The point (%) is a singular point or an .o%singular point relative to
C and f, if the element f, can be continued along the segment 0 to
t for all t < t, but not along the segment if ¢ > {,.

DEFINITION. The (complete) .o~function is the set F of all ele-
ments obtainable from a given element by .%~continuation.

From this definition and Theorem 4, it is clear that each element
of F can be obtained from any other element of F by .%“continuation.
Furthermore, two &~functions F, and F, which have a single element
in common are identical. Let

My, = {(%a fo) |[f€ F and x, is the center of f.}
and for o < r(x,) let
Kﬁ(xa’ fd) = {(yy g) |g = faAy and d(y, xa) < p} .
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Let {K,(®., f.)} be the base for a topology on M, and the projection
map of K (%, f), (¥, 9) — y be the coordinate map for M.

THEOREM 9. I’ = (u(t), I) where p(t) = (x,, 1), ts a path on M,
if and only if [, is an -continuation along the path C = (z,, I).

Proof. Clearly (x,, I) is a path. For any t, let ¢, be such that
z, €8, forallt, {,<¢t<t%. In particular 2, €S, and (z., 1) € K,(%:, [,

of some o > r,. Hence, f;, = ftOAM1 and we have an .%~continuation.

DEFINITION. The union of all M, is called the manifold of F#
with respect to .9%~continuation and is denoted by M( ¥, .&).

THEOREM 10. M, is a connected analytic manifold.

DEFINITION. Given .S7-continuation for & and <#-continuations
for & a mapping + from M(F, .o7) to M(<, &) is called an .&7Z-
morphism if

(1) V(% fa) = (Yay 92) implies z, = ¥,

(i) V(e fo) = (%, 9.) implies y(x,, fod.) = (X, 9.B.) if both f.A4,
and g¢.B, are defined.

Since an .%7<Z-morphism leaves the first entry in (x,, f.) fixed it
is convenient to write f, in place of (., f.). Using this convention
(ii) can be stated as:

()" ¥ (feds) = (Vo) B,-

LEMMA 2. + a bijective .7Z-morphism implies " is a B~
morphism.

Proof. Let f, = g, have their center at x and assume f, 4, = f;
and g.B, = g; both exist.

'\yfﬁ = "lr(faAy) = ("t”f&)Bﬂ = gaBy = 0p
Hence,
V7 GeBy) = ¥ = f5 = fuly = (V9 4, .

THEOREM 11. Let + be a bijective mapping from M(F, .7) to
M(27, &) such that (x, f) = (x, h).  is a homeomorphism if and
only if + is an SZB-morphism.

Proof. Assume + is an .&ZZF-morphism, fy = ke, (fo Sa) € F,
(ha, Ta) € % and U == Sa n Ta- Then

W@, feds) @ e U} = {(@, hoB,)|w € U}
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implies that + and ' are continuous.

Assume +r is a homeomorphism and using the same notation
E = {(y, h.B,) |y € U}

is a basic open set in M(5#, &%) and « a homeomorphism implies
' (E) contains a basic open set of the form

{(y, faA)) |y € Na}

where N,c U is a ball. + preserves first coordinate and is injective
implies

(1) ¥, f4,) = (¥, hB,)

for all y in N,. Hence, +f, = h, implies there exists a ball N, such
that (1) holds for y in N,.

Let z be in S and L denote the line segment from «, to z. For each
xin L let f, =f.A, and N, be the ball where (1) holds for f,. Let M, be
the ball concentric with N, and having a radius which is one fourth the
radius of N,. L compact implies there exist {M.;|l7 =1, -+, n} which
covers L. Then assuming ¢ = @, «,, --+, ¢, = 2 are ordered along L
then w; is in N, . Hence,

faAz = fanzAxg et Aacﬂ
and since (1) holds for f,, in N,

q/f(faAz) = q/f[(fanz et A:v,,,_l)Aa:.n] = [w(fasz e Aa:n__l)]Bx"
= (“l"fa)B:cz e Ba:n = (Wb‘fa)Bz .

Therefore, (1) holds in S which is the ball in which both f,A, and
h.B, are defined.

COROLLARY. If « s a bijective S7@-morphism and (fo, %) =
(90, %) them My, is homeomorphic to M, where F and G are the .~
function and Z-function of f, and g, respectively.

THEOREM 12. Let + be a bijective 7Z-morphism and C=(a(t), I)
be a path in C*. {f,|tel} is an ~continuation along C if and only
of {9:1v @), f) = (@), 9.) and tel} is a Z-continuation along C.

Proof. From Theorem 9 {f,|te I} an .%7~continuation along C is
equivalent to {(x(¢), f.)|te€ I} being a path on M(Z, .&). Since  is
homeomorphism {4 (x(¢)), fi)|te I} is a path on M(¥, &) and this is
equivalent to {g.|v(x(?), f.) = (®(t), g.), t € I} being a <Z- continuation
along C.
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2. Examples of generalized continuation of function ele-
ments. The elements of @ are called function elements if (f,, S,) in
& implies f. is a complex valued function whose domain of defini-
tion is S, or S, X T where T is fixed (see §3). In general, for y in
S, N S;, where (f,, S.) and (f,4,, S;) are in &

(fed ) () # f,(v)

as can be seen in the examples. The Complete Weierstrass Analytic
is quite similar to the complete .%~continuation of function elements
except the values of a function element do not have to agree with its
direct .97~continuation.

DEFINITION. Let F be a complete .o~function generated by a
function element then the single-valued function, f, defined on M, by

f[(xa; fa)] = fa(xa)

is called the indicator function of F.

In the case of .%-continuation of function elements the Law of
Permance of Functional Equations can be applied, however, the func-
tional equations to which it applies depends on the particular .97~con-
tinuation. Two examples of generalized continuation of function ele-
ments are given.

1. Analytic Continuation: Let @ denote the set of absolutely
convergent power sesies of one complex variable with positive radius
of convergence,

0= {Ps) = 3 ar’(z - 2},
and for P, in @ let S, be its disc of convergence so that
F = {(P, S} .
Analytic continuation can be represented by
&7 = {Aico

where A, is the operator which expresses a function element defined
in a neighborhood of z as a power series about the point z. In this
case it is known that & and .o satisfy the conditions for being a
compatible set of operators. Indeed .o is referred to as a direct
analytic continuation. The indicator function in this example is the
multivalued analytic function which is generated by the power series.

3. Continuing the coefficients of linear Weierstrass Poly-
nomials. Let @ be the functions defined by a power series with
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positive radius of convergence and which have the value zero at the
center of their disc of convergence,

0={f@=3ae -2},

n=1

and for f, in @ let S, be its disc of convergence. Now a set of
operators, 77, can be defined on @ by fW, is defined by the power
series of f(z) — f(z,) with center z, whenever z, is in the disc of con-
vergence of f. This set of operators is compatible and hence gives a
generalized continuation, 9%-continuation, on .. Note, that indica-
tor function of any complete 9#-function is

(fW)(z) =0.

For <#7-continuation the Law of Permance of Functional Equations is
quite similar to that of analytic continuation. For instance the %<
continuation of an algebraic function element is again an algebraic
function element.

This example can be generalized to C™ by letting S, be the largest
ball in which the power series converges absolutely. Then f, in @
can be considered as the coefficient of a linear Weierstrass Polynomial
which is regular in W,

P(w, 2) = (w — wo) + fi(2)

which has center (w,, z,). [6, page 68]. If (w, z,) is a zero of P and
2, is S, then representing the zero set of P in a neighborhood of (w,, z,)
is the Weierstrass Polynomial with center (w,, z,), namely,

(w—w) + (FW.)R7) .
Hence, 9#<continuation continues the coefficient of a linear Weierstrass
Polynomial.
4. Continuing the normalized B;-associate of the Bergman
Integral Operator. Let ¥ = {{||{| =1} and set X = (%, 9, 2) in E®
u=u(X,{) =u+ 20 + Z*
(1) Z:%(iy—kz), and Z*:—;-(iy—z).

Bergman introduced the integral operator

(2) HX) = o=\ _f, OF

where f is an analytic function of the complex variables « and {
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having at most a finite number of isolated singularities [1]. The
integral operator defined in (2) is called the Bergman-Whittaker
Integral Operator. Bergman has shown that in a neighborhood of X,
(2) represents a harmonic function [1, 2]. The function f in (2) is
called the B;-associate of the harmonic function which it defines. B;-
associates of the form

(3) f0,0 =3 3 a,urtt

where (3) converges absolutely for # in a neighborhood, N, of zero
and uniformly for % in a compact subset of N and { on &~ are called
normalized B,-associates. Then (2) gives a one to one correspondence
between normalized B;-associates and harmonic functions which are
regular in a neighborhood of the origin [3, 4]. A translation of the
origin in (1) gives

(4) WX - X0 =@-m) + (- %K+ (2 — L)
(5)  fulX,0) = fuolw(X — X,0,0) = 5 3 alfu(X — X, OI'C* .

Then (2) gives a one-to-one correspondence between normalized B,-
associates centered at X, f.(u(X — X, {), ), and harmonic functions
regular in a neighborhood of X,.

The B;-associate may be defined for all w and  but the Bergman
integral operator only represents the harmonic function in a domain,
called the domain of association, which is usually not all of E® [4].
Rational B3-associates generate harmonic functions which are not in
general regular throughout E®. The space is divided by surfaces of
separation into a finite number of regions. As X moves from one
domain of association to another, a new harmonic function is defined.
If X changes from one demain of association to another the singular
points of f(u,{) may enter or leave the interior of the curve of integ-
ration. In this section the generalized continuation developed for
normalized B;-associates overcomes this difficulty. That is, generalized
continuations of a normalized B,-associate generate the same harmonic
function.

Let @ = {f.} be the set of all normalized B,-associates with centers
X, in C® That is, in (1) continue z, ¥, and z to complex numbers
T =x + i, Y =Y + 1 and 2z = 2, + 2. Set 4" = {(f., S.)} Where
f« is in @ and S, is the largest ball with center X, such that for
any compact subset M of S,, (5) converges absolutely and uniformly
on M x <4 Hence, f, is defined on S, x <. The compatible set of
operators <& defined on .+~ is a generalization of analytic continua-
tion such as one finds in Hille [7: page 128]. Assume
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(6) X, 0) = £ulwl(X,0,0) = 55 3 apulu(X, OI'CH

is normalized B;-associate which is centered at the origin. To apply
By, to obtain a normalized Bi-associate which is centered at X, the
steps are:

(A) In (6) express u(X, () as

w(X — X, Q) + u(X,, §) = w(X — X,,{) + @ + ZL + Z2*C

and then expand this last four termed expression in a multinomial
expansion to obtain

n

r —

(1) 35 3 (NS S bt Z 4 (X — X, OFC )t
where b, ,, is the multinomial coefficient and ¢ = n — r — s — ¢.

(B) If (7) converges absolutely as a multiple series we can add
the series in any admissible manner [8; page 114]. In particular (7)
can be expressed as

(8) XY =3 5 euX - X, QT
where ¢,,, is obtained by adding all the coefficients for a fixed » and
V.

(C) Normalize f*, that is, remove all the terms from (8) for
which |v| > ». This gives the direct <Z-continuation

(9) faBXo = TZ_O v_z_‘“r cr,v[u(X - ‘X‘O, C)]er .

Note that £ is an analytic continuation of f,, hence, the integrals
of f¥ and f, defined in (2) will be equal for X in the intersection of
the domains of definition of f; and f,. Moreover, normalizing fJ does
not change the value of the integral (2) as can be seen by applying
the Residue Theorem to a term by term integration of the series.
This implies that Bergman’s Integral operator carries direct-<#Z-con-
tinuation of normalized B;-associates over into analytic continuation
of their respective harmonic functions.

To show that <& is a compatible set of operators it is necessary
to show that

(10) o = 1y — (X, 0)

where 7, is the radius of the ball of definition of f, = f.By. First,
note that

(11) WX — X, O)] < V' 2d(X, X))
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and that for every R there exists a X and ¢ such that
lwX— X,8)|=v2dX, X)=1V2R .

Hence, if 7, is the radius of S, then 1/ 2 r, is the radius of convergence
of

(12) g.o <kin [ @i [)u” .

Second, if X = (x, y, #) and is represented by ®, 2,2 *) then X =
(lz|, | Z|, |Z*|) has the property that d(X, 0) = d(X, 0).
In examining the absolute convergence of (7)

Ibr,s,txgzoszo*t[u(x - X, OI¢| = C, ...
are the terms in the expansion of
[w(X — X, §) + w(X,, D]".

Hence, (7) converges absolutely for d(X, X,) < r, — d(X,, 0) since (11)
and (12) imply that

2255 % el
< 3 (3 laasl )n(X = X, O] + w(E,, DI
. =3 (kg [an,,,[>[w/7d(x, X) + VZdX, o)
=5 (3 )V Zor

where o < r,. This convergence is uniform on compact sets of S, N S,.

Let 57 = {H,, S,)} where H, is a regular harmonic function rep-
resented by a power series whose largest ball of absolute convergence
is S,. The Bergman Integral Operator defines a map +: M(_¥,; &) —
M(s#, .s7) where .57 is analytic continuation and +f, is given by (2).
From previous statements it is noted that « is injective and as noted
in (¢) + is “Zo“morphism. Theorem 11 implies that M(.7; &Z) is
homeomorphic to M(S7, .%7) and the Corollary implies that the mani-
fold obtained by normalized continuation of f, is the same as the
manifold obtained by analytically continuing the harmonic function
12;:: ¢¢;'

In particular when

FXO =3 3 aplu(X — X, O

n=0 k=—n

with center X, is <Z-continued to the function
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FBr(X,0) =5 3 buulu(X — X, QI
with center X, the b,,,’s can be calculated in the following cases.
(1) b = D5mn Au 1 (7Ynl(§ — w))d"™ when X, — X, = (d, 0, 0)
(1) b= 3500 Dot @ nren—ii(7!/ (B — m)!nl(5 — R)!)(2d/2)™ when X, —
X, = (0,d, 0), and
(iil) b,k = 2i5n Dih=n Cjmranmii(— DG/ (R—n) n!(§ — R)!)(d/2)"™ when
X, — X, = (0,0, d).

For example if

(X, 0 =3, 3 [w(X, Ore*
which hags center (0, 0, 0) is <#-continued using above expressions it
is found that the <Z-function determined by f, is

F:{(mea)lXaz(aybyc)7 a+#1 and b+0},

where

oo n 1 n+1l
(X, 0) = S B w(X — X, O)Ck .
1%09=5 3 (=) ™ o
Hence, f, is the B,-associate of a harmonic function %, whose analytic
extensions are single-valued since F' is single-valued. Also the analytic
continuation of A, is regular everywhere except for {(x, ¥, ?) |z +iy=1}.

Indeed it can be shown by using (2) that in a neighborhood of
(0,0, 0)

1

hO ’ ) = — T .
S ey

In a less tedious manner one can observe that

JolX, 8) = 1 i C{l ——luc—l 1 _Cuc}

and hence is the normalized B;-associate of the same 7%, [5, Theorem
2.1].

For <Z-continuation the indicator function of a complete <#-func-
tion generated by (f., S.) is the complete .o~function generated by
(¥fa, S.) as can be seen from (2). Hence, the indicator function for
“-continuation is the harmonic function obtained by the integral
operators.
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