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An exact sequence relating Br(X), the Brauer group of
a regular scheme of dimension < 2, and Amitsur cohomology
(obtained as the cohomology of the sheaf of units on an
appropriate Grothendieck topology) is derived by functorial
methods. In order to do this we first show that any torsion
element of H(X,, Gu), i.e., Pic(X), and H*X.:, Gn), i.e.,
Br(X), is split by a finite, faithfully flat covering Y — X.
After proving a divisibility result for Pic(X) under such
coverings and some preliminary investigation of cohomology
in the topology defined from such coverings, the exact sequence
which is analogous to that of Chase and Rosenberg is obtained.

Let X be a regular scheme with dim X < 2, i.e. 7, is a regular
local ring for all ye X. Grothendieck has then shown that the Brauer
group of the scheme X, Br(X), is isomorphic to H*X,, G,) where
X.,: is the etale site on X [2]. On the other hand Chase and Rosenberg
have given an exact sequence relating the kernel of Br (R)— Br(S)
with I?z(S/R, G,) where S is a finite, faithfully flat R-algebra [5].
This result suggests that the Brauer group of X, X a regular Japanese
scheme with dim X < 2, might be described by H*(X,, G,) where X,
the finite site on X, is the one suggested by using coverings of the type
giving the Chase-Rosenberg exact sequence. Surprisingly, H*(X,, G.,.)
turns out to be too large. The measure of the difference lies in
Pic (X). If Pic(X) is torsion, then H*X,, G,) is the Brauer group
of X.

Clearly we must first show that any Azumaya algebra on X can
be split by a finite, faithfully flat covering of X. This and some
curious results on the behaviour of Pic (X) constitute the major part
of the first section. In the next section the cohomology groups,
H*(X,;, G,), are investigated by spectral sequence arguments, and a se-
quence similar to the Chase-Rosenberg sequence is derived. The result
mentioned above then follows immediately from this sequence and the
splitting theorems of the first section. In a forthecoming paper most
of these results will be extended to the [-primary component of Br(X),
! a prime, for affine schemes X of characteristic . This accounts
for the condition Sp (I) introduced in the second section.

We have generally adopted the style of Artin’s Grothendieck
Topologies [1] since it seems to be more readily available than SGAA
[2]. This makes no difference in the results since all of the topologies
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we will use are generated from pretopologies and the Cech cohomology
groups in such topologies can be computed as in Artin’s notes [2;
Exp. I, 2.1.4 and Exp. V, 2.1, d)]. A general knowledge of sheaves
of Azumaya algebras on schemes is assumed. For details the reader
can consult Grothendieck’s Bourbaki talk [9] which is a straightforward
extension of the work of Auslander and Goldman in the affine case
[3]. We have adopted Bourbaki’s convention of calling central, sep-
arable algebras (in the language of Auslander-Goldman) Azumaya
algebras.

In what follows all rings and schemes are noetherian. All rings
have 1 and are commutative unless they are Azumaya algebras.

1. Some splitting theorems. We will be interested in the fppf
(faithfully flat of finite presentation), etale, Zariski, and finite topologies
on (Sch), the category of schemes belonging to a fixed universe. They
are generated from pretopologies [2; Exp. I, 2.1.2] where for X € (Sch),
{Xi——(pi>X}iEZ is a covering family of X in the fppf, etale, Zariski,
or finite pretopology if (1) for all ¢1e I, ®; is resp. flat and locally of
finite presentation, resp. etale [6; Exp. 1], resp. an open immersion,
resp. finite, flat and (2) U,.; #:(X;) = X. Fixing a scheme X we get
the fppf, etale, Zariski, and finite sites on X denoted by X, X.:
Xz» and X, respectively. They are formed by taking the full
subcategory of (Sch)/X such that the structure map satisfies condition
(1) on the covering families in the respective pretopologies. The set
of covering families of X will be denoted Cov X, where = = fppf, et,
Zar, or f respectively. These sites are related by morphisms of sites

X — X, — Xyoo and Xi, —— X, for any Xe(Sch). The
category of sheaves of abelian groups on these sites will be denoted by
X,, = = fppf, et, Zar, or f.

Let X be a scheme, F' a presheaf of abelian groups on the site
X, where = = fppf, et, Zar, or f. ﬁ"(X*, F) will denote the Cech
cohomology of F on X, and HZX(F) will be the presheaf on X,
given by HX(F)(Y) = H"Y, F) for YeObX,. If FeX,, HYX,, F)
will denote the cohomology (by derived functors) of F on the site X,
and H}(F) will be the presheaf on X, given by H2(F)N(Y) = HY,,
F) for YeObX,. If Y is a scheme over X, faithfully flat quasi-
compact descent theory shows that the functor of points of Y defines
a sheaf in any of the above topologies [6; Exp. VIII].

LEMMA 1.1. Let X be a scheme, X=X, 1l «++ 1l X, be a decomposi-
tion of X into connected components, i;:: X;—X,1 <7< n, be the inclu-
sion map. Given F;e X;,, let F = @_.i;4 F; where x is any of the above
topologies. Then there 1s a natural isomorphism @r., H™(X;,., F;) —
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H™(X,, F) for all m. Moreover if F 1s representable, then F =
@D}, 1+tf F in any of these topologies.

Proof. X, is noetherian with final object (of finite type in the
language of [2]). Consequently @ ;. F; defined as a presheaf is a
sheaf and @ H™(X,, ;. F;) — H™(X,, F) is an isomorphism for all m
[1; II, 5]. Moreover for any y-2 X, Y=9(X) I+« 1L p7(X,).
Hence X, = X, X «++ X X,« and so %;4 is exact, 1 <j < n. Thus
the Leray spectral sequence for 7; collapses, and H™(X., F;) — H™(X,,
1;%xF;) is an isomorphism for all m.

Suppose vy, x represents F. Then o7'(X,) represents ¢}F,
and so F' = @7, ;i F.

COROLLARY 1.2. Let X be a scheme, X =X, 1L +-+ L X, be a
decomposition of X into comnected components, G,y be the sheaf of
units on Xy. Then @i, HM(Xjx, G x;) — H™(Xx) Gp,x) 18 an isomor-
phism for all m.

Recall that an integral domain R is Japanese if the normalization
of R in any finite extension of its quotient field is an R-module of
finite type [7; 0, 23.1]. We extend this to schemes by calling a scheme
X Japanese if for every point ye X, &,/p; is Japanese for all p;e
Ass ().

ProPoSITION 1.8. Let X be a regular, connected scheme with
dimX < 2.

(1) If X is Japanese, then {Y — Xe Cov X;/Y is mormal and
integral} 1s a cofinal subset of Cov X;.

(2) Let {X; ERAIN X}ier€Cov X,, be a finite set of etale maps with
X; finite over the open subscheme ®;(X;). Then there is Y — X € Cov X,
and {U; — Y}, € Cov Yy, which refines {X; Xy Y — Y}.

Proof. (1) Let Z— XeCov X;, Z=— Z where Z is one of the
irreducible components of Z given the reduced subscheme structure.

Let Y—2- X be the normalization of X in the function field of Z.
Since Z is finite over X, ¢ factors through Z. Since X is Japanese,
@ is finite and onto. To show that ¢ is flat we may assume that
X = Spec R, R a regular local ring with dimR < 2, and Y = Spee S
where S is the normalization of R in a finite extension field of the
quotient field of R. But then S is a Cohen-Macauley ring since it is
normal and dim S < 2. Hence S is R-flat [7;0, 17.3.5].

(2) Since @; is etale X; is a regular scheme [6; Exp. I]. Moreover
V, = @(X;) is an open set in X since @, is flat of finite presentation
[8; 2.4.6]. Let Y; be the normalization of X in the ring of regular
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functions on X;. @[: Y;— X is finite sinee the ring of regular functions
on X; is a finite product of finite separable extension fields of the
function field of X. @] is flat and onto by the argument above.
Now @™(V;) = V, x Y; is the normalization of V; in the ring of rational
functions on X; where the fibred product is always over X. But o,
is finite over V;,. Hence X, is finite and normal over V; and so X; =
V: x Y.

Let Y= X;.;Y;. : Y— XeCov X, since I is finite. Let U, =
@ Y(V;) x Y. Then the section V; x Yif—'—@» X, x Y, induces a map
U; =V, x Y— X, x Y defined over X. Thus the Zariski covering {U}
of Y refines the etale covering {X; x Y— Y}.

Now suppose X is a scheme with no embedded components, and
let v, ++-, . be the generic points of the irreducible components of
X. Then R,, the sheaf of rational functions in the Zariski topology,
can be indentified with @7, %;.(<,,) where %;: Spec (7,,) — X is the
canonical map. Let R% be the subsheaf of units of R,. There is
an exact sequence of sheaves

0—G, — Rt — Div,— 0

where G,, is the sheaf of units and Div, = Cokernel (k) is the sheaf
of Cartier divisors on X in the Zariski topology [12]. Since ay; is a
constant sheaf on the irreducible space Y = Spec (2,,), H(Yzurs &75,)
vanighes for ¢ > 0. In particular the long exact cohomology sequence
for any open set U £ X give an exact sequence

(1.4) 0— I'(U, G,) — I'(U, R%) — I'(U, Divy) —— Pic (/) — 0

since HY(Uj,., G,) = Pic(U), the group of isomorphism classes of
invertible #7;,-modules.

THEOREM 1.5. Let X be a regular, Japanese scheme with dim X <
2, U an open subscheme of X, X — X e Cov X;.

(1) If ye H(U,, G,) is a torsion element, then there is ¥ —
XeCov X; and @: Y — Xe Mor X,, such that 2*(y) = 0 in H(P™(U)u,
G,).

(2) If ye H(U,, G,) and n is any positive integer, then there
are Y— XeCov X;, p: Y — Xe Mor X;, and §e H(p™(U),,, G,) such
that ny = P*(y).

Proof. Since H\(Y.,, G,) = H'(Yz.:, G,) = Pic (Y) for any scheme
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Y[2; Exp. IX, §3], (1) and (2) may be phrased in terms of Pic (X),
Pic (Y), and Pic (U). Moreover we may assume that X and X are
connected, X a normal, integral X-scheme.

(1) By (1.4) there is a Cartier divisor De I'(U, Divy) such that
8(D) = y and nD = (f), f € I'(U, R}), where (f) denotes the Cartier
divisor of the rational function f. D is determined by a Zariski
covering {U;} of U and local equations f,e I'(U;,, R%) = K* such that
fiefite ' (U;NU;, G,) where K* is the group of units in the function
field K of X. Moreover we may assume that f-f7e I'(U; G,) for
all . Let Y be the normalization of X in L = KGf), ¢: Y — X,
V=9o7(U),Vi=9™(U), 9:=P*(f) € I'(V,, R}) and g=9*(f) e ['(V, R}).
Since Y is integral, {V;} and g, define o*(D)e I'(V, Div,). By con-
struction there is ge I'(V, Rf) with g” = g. But then the Cartier
divisor (7% + ®*(D) has local equations §; = §*-g; with gre I"'(V;, G..).
Since Yis normal, g; e I'(V,, &%), and 80 ((§ ) + *(D)) = 0 = ¢*(6(D)) =
®*(y). Finally the argument of Proposition 1.3 shows that Y —
XeCov X, as desired.

(2) Again we may assume that X is a normal, integral X-
scheme. Represent y by a Cartier divisor De I'(U, Divy) where D
is defined by local equations f,e I'(U; R3) = K*,{U},1<i<n, a
Zariski covering of U, such that f;-f7*eI(U;NU,, G,). Let L=
K(G fJiz1..my Y be the normalization of X in L, o:Y—X,V, =
P U), and V=9 (U). As in 1.3, Y— XecCovX,;. Moreover
w( :’\L/—f_‘—z" V—F)n € F(Vt N VJ" Gm) and so ln/?_i- %‘/vf}:—le F(V«bﬂ Vj, Gm) since Y
is normal. Thus ({¥f;} are local equations of a Cartier divisor
Ee I'(V, Div,). Clearly nE = @*(D) and so nd(F) = 0(®*(D)) = @*(y)
as desired.

The following result was pointed out by J. L. Verdier.

ProrosITION 1.6. Let X be any scheme, y a torsion element in

HYX,,, G,). Then there is Y25 XeCov X, such that ®*(y) =0 in
HI( Yet’ Gm)'

Proof. Let L be the invertible #7;-module whose class in Pic (X)
is ¢, s e I'(X, L®") the global section defining the isomorphism 7, — L®".
Then R = @7, L¥/(1 — s)(@7-, L¥) is a coherent faithfully flat sheaf
of ~y-algebras, and clearly L@, R = R as sheaves of R-modules.

Let Y = Spec (B). Then Y —— XeCov X; and ¢*(L) = .

More surprising and much more interesting is the next splitting
theorem for elements of Br (X), the Brauer group of X[9].
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THEOREM 1.7. Let X be a regular Japanese scheme with dim X <
2, ye H(X,,, G,). Then there is ¢: Y — XecCov X, with ®*(y) =0
in H¥(Y,, G,).

Proof. Grothendieck has shown that Br(X)< H%Y.,G,) and
Br (X) is torsion for any scheme X[9]. Moreover if X is regular
with dim X < 2, then Br (X) = H*X,,, G,) [10]. Thus we may assume
that X is connected and #n-y = 0 for some integer n. Since an
Azumaya algebra can be split locally (in the Zariski topology) by

finite etale coverings and X is noetherian, we can find X 2, X and
a finite Zariski covering {U;} of X such that (3|U)*(y) =0 in H 2(_Uie o G)

by Proposition 1.3. Thus it suffices to show that given X — Xe
Cov X;, y e H¥X,,, G,) an element of order n and a Zariski covering {U;}
of X such that y|U; =0 in HXU,,, G,), then there is Y- Xe
Mor X;, Y— XeCov X;, such that #*(y) = 0.

In the Leray spectral sequence for ¢;: X,, — X;.., B'¢,.(G,) = 0 since
the Zariski topology contains enough coverings to split elements of Pic.
Thus the exact sequence of low degree terms gives an exact sequence

O - H2(XZar, G*m) _‘7_—) HZ(Xet) Gm) I F(Xy Rzel*(Gm)) .

Since y is split by a Zariski covering of X, there is an element z¢
H*X,,., G,) of order n with j(z) = v.

The spectral sequence H*(Xyur, Heor(G ) = H(Xzar, G,) gives an
exact sequence ) )

0 — H*(Xuas, Gu) —— HXgur, G) —> H'(Xpar, Hpux(G,)) where
H}..(G,) = Pic. In particular (y) may be represented by a Cech cocycle
{Y:5}, yi; € Pie (U; N U;) with y;; + 9% = Y € Pic (U; N U; N U,), where
(U} is a finite Zariski covering of X. Since n-i(y) =0, we may
assume there are y, e Pic (U;) with v, — y; = n-y;; € Pic (U; N U;). By
Theorem 1.5, there is &: ¥ — XecMor X;, ¥ — XecCov X, and %;¢
Pic (7(U;)) with #»y; = *(y;) for all 7. Altering the Cech cocycle
{$*(4:9)} € Z({@~ (U}, Pic) by a({F. ™)), it suffices to split y in H(Xy,r, G')
by Y — X under the assumption that n-y;; = 0 in Pie (U; N U;) where
{y;;} is a Cech cocycle representing i(y). Again by Theorem 1.5
there is @: ¥ — X e Mor X;, Y — X e Cov X;, such that for each pair
1, 3, P*(¥:;) =0 in Pic (@ (U; N U;)). Thus we may assume that
¥y = 1(2), n-z = 0 for some z¢ H %(Xyar, Gn). Moreover we may assume
X is normal and integral by Proposition 1.3.

Represent z by the Cech 2 cocycle {u;}, un€ (VN V; NV, Gp)
with u;ujuuun =1 in D(V,NV;NnV, NV, G,) where {V}i is a
finite covering of X. Since nz = 0, we may also assume that there
are units v;€ I'(V; NV, G,) with v;-vit-v;, = uiy, for all 4,7, k. Let
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K be the function field of X, L = K(¥v;, &)iz:,;<» Where & is a primi-
tive mth root of unity, and n = p™m, (m, p) =1, if p = char K > 0,
% = m otherwise. Let Y be the normalization of X in L, ¢: Y — X.
The argument of Propositition 1.8 shows that @€ Cov X, and, of
course, there is a morphism : Y — X of X-schemes. Since ¥v;¢
I'(y=y(V;NV;), G, we may assume that the cohomology class ze
H*(Yyar, G) that we must split can be represented by {v;;} where v,;, €
rwv,nv,nv, pr,) and p, is the sheaf of nth roots of unity. Now
Y has a global section of order m where n = p™m, (m, p) =1, if p =
char L >0 and m = n otherwise. Hence g, is the constant sheaf
Z/mZ on Y[6; Exp. XI, §6]. Since Y is irreducible and a constant
sheaf on an irreducible space is flask, H*(Yj.., #t.) = 0. The Cech
cohomology spectral sequence then shows that H( Ve, M) =0 and so
z =0 in HYY;.., G,) as desired.

COROLLARY 1.8. Let A be an Azumaya algebra on X, X a regular

Japanese scheme with dim X < 2. Then there is Y - X e Cov X;
and a locally free coherent %y-module F' such that *(A) = End_ (F).

REMARK. Let X be a regular connected Japanese scheme with
dim X £ 2, and let K be a finite extension of the field of rational
functions on X. The Japanese assumption on X was only used to
show that the normalization of X in L, a finite extension of K obtained
by adjoining nth roots of elements in K, was finite over X. Thus
without the Japanese assumption Theorems 1.5 and 1.7 hold for
(n, p) =1 where p = char K > 0 (n = order of y in Theorem 1.5, (1)
and Theorem (1.7)) since in this case the above extensions are separable
and (2) of Proposition 1.3 did not use the Japanese assumption.

2. Finite cohomology. This section is devoted to determining
the structure of H*(X,, G,). The results when combined with the
splitting theorems of the previous section describe the relationship
between Br (X) and H*(X,, G,) for a regular Japanese scheme X with
dim X < 2.

THEOREM 2.1. Let X be a connected scheme, Y ——s X e Cov X;.
Then there are nmatural maps iy HY( Xy, Gp,x) — H*( Xy, P.G.y) and
N.: H (X, PG py) — H (X, G, 1) for n =0 such that N,i, is mul-
tiplication by rk. (P.%) where = = fppf, et, Zar, or f. Moreover
H"X;, G,) is a torston group for all n > 0.

Proof. Let » = fppf. Then 7, comes from the natural inclusion
Gm,X —'L') ¢*Gm,YWhere Gm,X’ @*Gm,lf € Xfppf'
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Let R be a ring, S a finite R-algebra which is free as an EB-module.
Define N: §* — R* where R*, S* are the units of R, S respectively by
setting N(u) = det (L,) where L, is the R-linear map of S defined by
left multiplication by the unit . Since L, is an isomorphism, its
determinant is a unit in R. The functorial properties of det show

that N is natural in B. Thus if ¥ — X is any finite faithfully
flat morphism, then @,/ is a locally free coherent sheaf of ~7y-modules
and N extends to a morphism of sheaves N: ¢, () — &5 [12; Lecture
10] which is natural with respect to base change of X. Thus it
extends to a map N:9.G,,— G, x<€ Mor X}ppf by commutativity of
the diagram below for any X, — X, e Mor X,

N
['(Y?Y( Xo, G y) — I'(X,, G x)

J l

F(YX X, Gn) —— I(X,, Go) -
X

If X is connected, then rank, (®.(<%)) is a constant and for any
X, — X, e 0bX,,,; the composite

[(X,y Goy) —— (Y X X, Guny) — I'(Xi, G x)

sends w to u™ where m = rank,; ((# X X)«(Trxx)) = rank, . (P«%))-
Thus N induces

N*: Hn(Xfppfy @*GM,Y) _— Hn(Xfppfy Gm,X)

for all n=0 and by universality N,1, is multiplication by rank, (?.(<%)).
The morphisms of sites X, — X, where * = et, Zar, or f gives a
map N: 9,G,, ,— @, € Mor X, which extends to N,: H Xy, PG y) —
H"(X,, G, y) with the desired properties. In particular the kernel
of 4, is torsion.

Finally we must show that H" "Xy, Gu) is torsion for all n > 0.
If Y— XeCov X, then ¢*: X, — Y, is exact and left adjoint to @,.
In particular

Hn(Yf; Gm,Y) —_ Hn( Yf} Gm,X)

is an isomorphism [1; II, 4.13] and so we will drop the subscript X
on G, y. We will use induction on n, n =1, to show that for a scheme
X, H'(X;, G,) is torsion. By Corollary 1.2 we may assume that X is
connected. Let ye H"(X;, G,). Thereis ¢: Y — X e Cov X, such that
P*(y) =0 in H*(Y,, G,) [1; II, 2.5]. Now the map ®* may be written
as the composite

HYX;, Gox) —2 HYX;, PuGny) = HY(Y;, Gony)
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where e, is the edge homomorphism of the Leray spectral sequence for
¢:Y— X, H(X;, R'9.(G, ) = H(Y,, G, ). By the above the kernel
of i, is torsion and so it suffices to show that the kernel of ¢, is
also torsion for n = 1. For n = 1, the exact sequence of low degree
terms shows that H'(X,, #.G,. ) is a subgroup of H(Y,, G, ). For
n > 1, any element in the kernel of ¢, is in d"(E ") for some 7,
2 <7 < n. Hence it suffices to show that H™(X,, R'¢,(G,)) is torsion
for 1<1<n—1and m = 0.

In general R'¢,(G,) is the sheaf in X, associated to the presheaf
X H(XX;Y;, G,y) for any XecOb X, [1; II, 4.7], and so is torsion
by the induction hypothesis. Hence, it is sufficient to show that
H™(X,, F) is torsion for any torsion sheaf Fe X, and m =0. Let
.F be the kernel of multiplication by # on F. Then F = lim ,F and
H™(X;, F) = lim H™X,, ,F') since the topology on X; is ;B-Zetherian
[1, II, 5.3 and_5>.4]. But multiplication by % is the zero map on ,F
and so by universality multiplication by % on H™(X,, ,F') is also the

zero map for m = 0. Since the limit of torsion sheaves is torsion,
H™(X,, F') is torsion for m = 0.

COROLLARY 2.2. Let X be a scheme, Y —— Xe Cov X;. Then
the kernel of H*(Xippe, Gn) — H*(Yipp:, Gn) ts torston.

Proof. As in the proof above it is sufficient to show that the kernel
of HYXippi, PuGrn) = H*(Yipps, G,) is torsion. But I'(X, R'e,G,) =0
since for any Xe Ob X, and any element ye HY(X Xy Yipor, Gu) =
Pic (X X, Y) there is a Zariski covering {U;} of X such that y|;,.yr =0
in H(U; X x Yipps, Gn) [12; Lecture 10]. Hence this map is injective.

We are now in a position to evaluate some of the cohomology groups
of &, in the finite topology. If G is a group or a presheaf on X, in
some topology, let G, and G(I) denote the subgroup or subpresheaf
consisting of torsion elements and elements whose order is a power
of [ respectively. For a fixed scheme X we have morphisms of sites

Xippe — X, and Xfppf—e—z—a X,.. Grothendieck has shown that ¢, induces
an isomorphism H*(X,,, G,) — H" (X, G») for all n = 0 [11; Appendix].
This immediately extends the results of the previous section to equi-
valent results about H* (X, G.),? =0, 1, 2.

The proof of the main theorem is based on the Kummer sequence

(2.3) 0— pty — G, —— G, — 0

where n is the nth power map. Since taking wth roots of global
units gives a finite faithfully flat extension, this is an exact sequence
of sheaves in both X, and X;,,,. We will leave it to the context to
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determine in which topology £, and &, are sheaves.

DErFINITION. A scheme X satisfies Sp(l) for some prime [ if for
any Ye ObX; and ye H' (Y, Gr), there is YeObX,, 7. Ve Mor X,
and 7€ H'(Y 0, G.) With 17 = 9*(y).

By Theorem 1.5 if X is a regular Japanese scheme with dim X <
2, then X satisfies Sp(l) for all primes /.

THEOREM 2.4. Let X be any scheme. Then H'(X,, G,) = Pic, (X),
and R't.(G,) is torsion free. There are exact sequences

0 — Pic, (X) — Pic (X) — I'(X, R'7.(G.)) —
HYX,, G,)) — FHYX...r, G,) — H' (X, R'T,G,) and
0 — F HYX,pe, G) — HYX oo, G) — (X, R?T,G,),

where F'H* (X, G,) s a torsion group. If Pic (X) is torsion, then T,
18 injective. If X satisfies Sp (1), then I'(X, R't,(G,)) is l-divisible and

Ts(D): H( Xy, Gp)(D) — (FH(Xippr, G))(0)
18 onto. If Pic(X) is torsion, then z.(l) is an isomorphism.

Proof. For any Y — Xe ObX,, the spectral sequence coming from
7t Xpppe — X, applied to the Kummer sequence gives a large diagram
with exact columns coming from the low degree terms of the spectral
sequences and all but the third row exact from the Kummer sequence:

0 0 0
rY,G, —s H\Y, 1) — HY(Y;G,) — H Y, G,)
do ; ;
(Y, G,) —— H'(Yipey ) — H'(Veppey Gn) — H'(Yipe, Go)

(2.9) Iy, Rc.pm,) — (Y, R't,.6,) — I'(Y, B't,.G,)

Hz(Yf’ #n) I Hz(Yf: Gm) -_— HZ(YJ": Gm)

Tk

FLHZ( Yfppf’ #n) '-J_*'> FIHZ( Iffppf; Gm) I— FIHZ( vappf; Gm)

H(Y,, R',G.) .
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The middle column suitably interpreted is the 6 term exact sequence
of the theorem. By definition of the filtration on the spectral sequence,

0 — F'H*(Yipor, G) — H(Yippr, G) — ES' & (Y, R0.G,)

is exact. By Corollary 2.2, F'H¥* Y., &), which consists of these
elements in H* Y:p,, G.) that are split by ¥ — Y e Cov Y, for some
Y, is a torsion group. Moreover H(Yi:, G.) = Pic (Y). Thus the
naturality in Y of (2.5), Proposition 1.6, and Theorem 2.1 combine to
show that HY(X;, G,) = Pic, (X) for any scheme X.

In order to show that R'r,(G,) is torsion free, it is sufficient to
show that R'r,(y,), the sheaf associated to Y — HY( Y, £t,) for Y —
XeOb X, is0[1; I14.7]. Sogiven Y— Xe Ob X, and y &€ H'(Yipyrs ta)s
we have n-i,(y) = 0. By Proposition 1.6, there is 72, YeCov Y;
with @*(i,(y)) = 0. Hence @*(y) = d°(u) for some uec I'(Y, G,). Ad-

joining an mth root of u to Y, we get 72, veCov Y, such that
F*(y) = 0 in H'(Y;ppe, #£.) by the exact cohomology sequence coming
from (2.3). Since there is a covering map of Y which splits y, the
associated sheaf is trivial. In particular if Pic X is torsion, then
H*X,, G,) contains a torsion free subgroup which contradicts 2.1
unless I'(X, R't.(G,)) = 0."

Now suppose X satisfies Sp (!). If I'X, R’z () — I'(X, R*t,.(G,))
is injective, then I'(X, R'c.(G,)) — I'(X, R't,.(G,)) is onto. Thus it is
sufficient to show that for any Y — Xe Cov X,, y€ H*(Yippr, ) such
that j.(y) = 0 in H*Yi,,:, G.), there is ¥— XeCov X, and Y—— Ye
Mor X, such that ®#*(y) = 0. Since j,(y) = 0, there is z€ Pic (Y) such
that d'(z) = y where d't H'(Y:ppr, Grn) — H*(Yipor, £) is the connecting
homomorphism coming from (2.3). Since X satisfies Sp (), there is ¥ —
XeCov X, ¥Y-—25YeMor X, and zc Pic(Y) such that [-Z = p*(z).
But then ¢*(y) = 0 since d'(l-z) = @*(y) = 0.

Finally we must show that

T (D) HY( X, Gu)(l) = (F'H (Xippr, Gu)) (D)

is onto. First note that for any presheaf of sets F' on X, Ue Ob X,
and any element ye HXF)(U), there is a covering V25U and an
element y, € F(V) which represents @*(y) in H}F)(V). This may be
seen by representing y by an element y, € F(V) such that »}(y,) =

p¥(y)e F(V Xy V) where ViU is a covering of U and p; is the
projection map onto the ¢th factor. Then @*(y) is represented by »(y,) €

F(V x V)where V XUV—£2—+V is a covering of V. Since p}(y) = p¥(yy),
y,€ F(V) represents 9*(y).

Now if H(X,, R't,G,)(l) = 0, then the exact long middle column of
(2.5) shows that 7,(l) is onto. So suppose 2 € H'(X,, R'z,G,) and l-x =
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0. Since H'(X,, R'7t.G,) = ﬁl(Xf, R7,k,), there is Y— XeCov X,
and ye I'(Y X, Y, R'z.G,) satisfying the cocycle identity which repre-
sents ¢ in H'(X,, R't,G,). Moreover we may choose Y so that for
some element ye¢ I'(Y, R't.G,) we have »*¥) — »F(¥) = ly. Since
R'7,G, is the sheaf in Xf coming from the presheaf H.,(G,), the
above remark and the observation that H'(H(F')) is the sheaf associated
to F shows that there is YI—SD»Ye CovY, and ze H(Y,,,, G.) =
Pic (Y,) such that Zz represents ®*(§). Thus since X satisfies Sp (I),
we may assume that there is 7,¢ I'(Y, R'r..G,) with I7, = 7 by taking
a refinement in Cov X, of Y — X if necessary. Altering the original
Cech cocycle y by the boundary pi(¥.) — »(¥) and denoting the
resulting cocycle by z,e€I'(Y X, Y, R't.G,), we find that [z =0.
Since R'r,.G,, is torsion free, z, = 0, and so y = 0.

COROLLARY 2.5. Let X be a regular Japanese scheme with dim X <
2. Then there is an exact sequemnce
0 — Pic,(X) — Pic (X) —> I'(X,, R'7,G,,)
— H¥(X,, G&,) — Br (X)— 0

where Br (X) ts the Brauer group of X and I'(X;, R't,.G,) is a vector
space over the rationals of dimension = dim, (Pic (X) @, Q). In par-
ticular if Pic, (X) = Pic (X), then H*(X,, G,) = Br (X).

Proof. By Theorem 1.7 every element of H*(X,,;, G,,) can be split
by a covering map of X in X;. Hence
F'H (Xippe, Gr) = H(Xippr, G) »
and by Grothendieck’s result this is Br (X). The dimension statement

follows immediately since the other terms are torsion groups.

COROLLARY 2.6 Let X be a regular Japanese scheme with dim X <
2. Then HY Xy, G.) = H (X ippe, Gr)-

Proof. The morphism z: X;,,: — X, induces a mapping of spectral
sequences between Cech and sheaf cohomology:

[H?(X;, H!(G,)) — H"(X;, G,)] — [H*(Xeppr, Hipr, (G)
= Hn(Xfppfs Gm)] .

The mapping between exact sequences of low degree terms gives
0— H%X,;,G,) — HYX, G, — H'X,, Hi(G,))

| J- |-

0— ﬁz(Xfppfy Gm) BE— Hz(Xfppfy Gm) —_— ﬁl(Xfppfy H}ppf(Gm)) .
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Moreover HXG,)(Y) = Pic, (¥). If e H(X,, H{G,)), then it can be
represented by y € Pic, (Y X5 Y) where Y— XeCov X,. Since Y X,Y
is finite over X, y can be split by a Zariski covering of X [12]. Thus
T.(x) = 0 and so 7, factors through H (Xippr, Gn)- Since 7, is surjec-
tive, we get the desired conclusion.

REMARK. The argument Bass uses to prove that K°(R) is a
finitely generated abelian group for R a finite Z-algebra [4; Theorem
18.6] may be copied to show that Pic (R) is a finite group if R is a
finite Z-algebra.
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