ON ABSOLUTE DE LA VALLÉE POUSSIN SUMMABILITY

B. T. Y. Kwee
ON ABSOLUTE DE LA VALLÉE POUSSIN SUMMABILITY

B. Kwée

Gronwall proved that \((C, r) \subseteq (V - P)\) for \(r \geq 0\), where \((C, r)\) and \((V - P)\) denote Cesàro and de la Vallée Poussin summability. It is proved in this paper that \(|C, r| \subseteq |V - P|\) for \(r \geq 0\).

1. Introduction. Let

\[
V_n = \sum_{k=1}^{n} \frac{(n!)^2}{(n-k)! (n+k)!} a_k \quad (n \geq 0).
\]

If \(\lim_{n \to \infty} V_n = s\), we say that the series is summable \((V - P)\) to \(s\).

If

\[
\sum_{n=1}^{\infty} |V_n - V_{n-1}| < \infty.
\]

The series \(\sum_{n=0}^{\infty} a_n\) is said to be summable \(|V - P|\).

Hyslop [2] proved that the \((V - P)\) method is equivalent to the \((A, 2)\) method defined by

\[
\lim \sum_{x=0}^{\infty} a_x e^{-nt} = s
\]

for all series \(\sum_{n=0}^{\infty} a_n\) which satisfy the condition \(a_n = 0(n^c)\), where \(c\) is any constant, and that the inclusion \((A, 2) \subseteq (V - P)\) is false without restriction.

Kuttner [3] has shown that \((V - P) \subseteq (A, 2)\) without restriction.

Gronwall [1] proved that \((C, r) \subseteq (V - P)\) for \(r \geq 0\), where \((C, r)\) denotes the Césaro summability of order \(r\).

In this paper, we shall prove

THEOREM A. \(|C, r| \subseteq |V - P|\) for \(r \geq 0\).

2. Proof of Theorem A. Since it is well-known that \(|C, r|\) implies \(|C, r'|\) for \(-1 < r \leq r'\), it is enough to consider the case \(r\) an integer. Now, writing

\[
V_n = v_0 + v_1 + \cdots + v_n,
\]

we find that

\[
\begin{align*}
v_0 &= a_0, \\
v_n &= \sum_{k=1}^{n} \frac{((n-1)!)^2}{(n-k)! (n+k)!} k^2 a_k \quad (n \geq 1).
\end{align*}
\]
Now write $\tau_k = \tau^r_k$ for the (C, r) mean of the sequence $\{ka_k\}$; thus the assumption that $\sum_{n=0}^{\infty} a_n$ is summable $|C, r|$ is equivalent to

$$\sum_{n=0}^{\infty} \frac{|\tau^r_n|}{n} < \infty.$$

If we take $((n-1)!/(n-k)!(n+k)!$ as meaning 0 whenever $k > n$, we deduce from (1) by n partial summations that, for $n \geq 1$,

$$v_n = \sum_{k=1}^{n} \Delta^r_k \left\{ \frac{(n-k)!(k^r)}{(n-k)!(n+k)!} \right\}(k+r)\tau^r_k.$$

Now it is well-known that in order that the series-to-series transformation

$$b_n = \sum_{k=0}^{\infty} a_{nk}a_k$$

should be that $\sum_{n=0}^{\infty} |b_n|$ converges whenever $\sum_{n=0}^{\infty} |a_n|$ does so, it is necessary and sufficient that

$$\sum_{n=0}^{\infty} |a_{nk}|$$

should be bounded. Thus it is enough to show that, for $k \geq 1$,

$$\sum_{n=k}^{\infty} \left| \Delta^r_k \left\{ \frac{(n-k)!(k^r)}{(n-k)!(n+k)!} \right\} \right| = O(k^{-r-1}).$$

It is easily seen by induction on r that

$$\Delta^r_k \left\{ \frac{(n-k)!(k^r)}{(n-k)!(n+k)!} \right\} = \frac{A^r(n, k)((n-1)!)^r}{(n-k)!(n+k+r)!} ,$$

where $A^r(n, k)$ is defined inductively by

$$A^0(n, k) = 1 ,$$

$$A^{r+1}(n, k) = (n + k + r + 1)A^r(n, k) - (n - k)A^r(n, k + 1).$$

Write $P_j(k)$ for a polynomial in k of degree not exceeding j, possibly different at each occurrence (thus $P_j(k)$ denotes a constant). We deduce from (4) by induction that

$$A^{2s}(n, k) = \sum_{j=0}^{s} P_{2s+1}(k)n^{s-j},$$

$$A^{2s+1}(n, k) = \sum_{j=0}^{s-1} P_{2s}(k)n^{s+1-j}.$$

Hence, uniformly in the ranges stated
\[A'(n, k) = \begin{cases} O(n^{(r+1)/2}) & (1 \leq k \leq n^{1/2}) , \\ O(K^{r+1}) & (n^{1/2} < k \leq n) . \end{cases} \]

Next, for large \(n \) uniformly in \(k \leq n^{2/3} \) we have, by Stirling's formula
\[
\frac{(n!)^2}{(n - k)!(n + k)!} = O(H(n, k)) ,
\]
where
\[
H(n, k) = \left(1 - \frac{k}{n} \right)^{n + k - 1/2} \left(1 + \frac{k}{n} \right)^{-n - k + 1/2} .
\]

We have
\[
\log H(n, k) = -\frac{k^2}{n} + O\left(\frac{k^3}{n^2} \right) .
\]

Now since we supposing that \(k \leq n^{2/3} \) we have
\[
\exp \left\{ O\left(\frac{k^2}{n^2} \right) \right\} = O(1)
\]
so that
\[
\frac{(n!)^2}{(n - k)!(n + k)!} = O\left\{ \exp \left(\frac{-k^2}{n} \right) \right\} .
\]

This will not apply if \(k > n^{2/3} \). Since we cannot then assert (5).
However, for fixed \(n \), \((n!)^2/(n - k)!(n + k)! \) is a decreasing function of \(k \) so that, for \(k > n^{2/3} \),
\[
\frac{(n!)^2}{(n - k)!(n + k)!} = O\left\{ \exp \left(-n^{4/3} \right) \right\} .
\]

Also, it is trivial that
\[
\frac{((n - 1)!)^2}{(n - k)!(n + k + 2)!} = \frac{(n!)^2}{(n - k)!(n + k)!} O(n^{-r}) .
\]

Combining these results, we find that
\[
A\left\{ \frac{((n - 1)!)^2}{(n - k)!(n + k)!} \right\} = \begin{cases} O(n^{-(r+2)/2}) & (1 \leq k \leq n^{1/2}) , \\ O\left(\frac{k^{r+1}}{n^{r+2}} \exp \left(-\frac{k^2}{n} \right) \right) & (n^{1/2} < k \leq n^{2/3}) , \\ O(n^{-1} \exp \left(-n^{-1/3} \right)) & (n^{2/3} < k \leq n) . \end{cases}
\]

Thus the sum (3) is
\[
O\left\{ \sum_{k \leq n < k^{3/2}} \frac{1}{n} \exp \left(-n^{-(1/3)} \right) \right\} + O\left\{ \sum_{k^{3/2} \leq n < k^2} \frac{k^{r+1}}{n^{r+2}} \exp \left(-\frac{k^2}{n} \right) \right\} + O\left\{ \sum_{n \geq k^2} \frac{1}{n^{(r+3)/2}} \right\} = O(I_1) + O(I_2) + O(I_3),
\]
say. It is clear that
\[
I_1 = O(k^{-r-1}),
\]
\[
I_3 = O(k^{-r-1})
\]
so we need consider only \(I_2\). Now for fixed \(k\)
\[
\frac{k^{r+1}}{y^{r+2}} \exp \left(-\frac{k^2}{y} \right)
\]
is increasing for \(y < y_0\) and decreasing for \(y > y_0\), where \(y_0 = y_0(k) = k^2/(r + 2)\). Hence
\[
I_2 \leq k^{r+1} \int_{k^{3/2} - 1}^{k^{3/2}} \frac{1}{y^{r+2}} \exp \left(-\frac{k^2}{y} \right) dy + \frac{k^{r+1}}{y_0^{r+2}} \exp \left(-\frac{k^2}{y_0} \right).
\]
The second term on the right of (6) is a constant multiple of \(k^{-r-3}\). The first does not exceed
\[
k^{r+1} \int_{0}^{\infty} \frac{1}{y^{r+2}} \exp \left(-\frac{k^2}{y} \right) dy.
\]
Putting \(y = k^2/w\), this becomes
\[
k^{-r-1} \int_{0}^{\infty} w^r e^{-w} dw = \Gamma(r + 1)k^{-r-1},
\]
hence the result.

REFERENCES

Received May 28, 1971.

UNIVERSITY OF MALAYA
KUALA LUMPUR
MALAYSIA
PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SAMELSON J. DUGUNDJI
Stanford University Department of Mathematics
Stanford, California 94305 University of Southern California
Los Angeles, California 90007

C. R. HOBBY RICHARD ARENS
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS
E.F. BECKENBACH B.H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY *
UNIVERSITY OF OREGON *
OSAKA UNIVERSITY *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
Catherine Bandle, *Extensions of an inequality by Pólya and Schiffer for vibrating membranes* .. 543
S. J. Bernau, *Topologies on structure spaces of lattice groups* .. 557
Eggert Briem and Murali Rao, *Normpreserving extensions in subspaces of \(C(X) \) .. 581
Alan Seymour Cover, *Generalized continuation* .. 589
Larry Jean Cummings, *Transformations of symmetric tensors* .. 603
Peter Michael Curran, *Cohomology of finitely presented groups* 615
James B. Derr and N. P. Mukherjee, *Generalized quasicenter and hyperquasicenter of a finite group* .. 621
Erik Maurice Ellentuck, *Universal cosimple isols* .. 629
Benny Dan Evans, *Boundary respecting maps of 3-mainfolds* 639
David F. Fraser, *A probabilistic method for the rate of convergence to the Dirichlet problem* .. 657
Raymond Taylor Hoobler, *Cohomology in the finite topology and Brauer groups* 667
Louis Roberts Hunt, *Locally holomorphic sets and the Levi form* 681
B. T. Y. Kwee, *On absolute de la Vallée Poussin summability* 689
Gérard Lallement, *On nilpotency and residual finiteness in semigroups* 693
George Edward Lang, *Evaluation subgroups of factor spaces* 701
Andy R. Magid, *A separably closed ring with nonzero torsion pic* 711
Billy E. Rhoades, *Commutants of some Hausdorff matrices* 715
Maxwell Alexander Rosenlicht, *Canonical forms for local derivations* 721
Cedric Felix Schubert, *On a conjecture of L. B. Page* .. 733
Reinhard Schultz, *Composition constructions on diffeomorphisms of \(S^p \times S^q \) .. 739
Richard Alan Slocum, *Using brick partitionings to establish conditions which insure that a Peano continuum is a 2-cell, a 2-sphere or an annulus* .. 763
James F. Smith, *The p-classes of an \(H^* \)-algebra* .. 777
Jack Williamson, *Meromorphic functions with negative zeros and positive poles and a theorem of Teichmüller* .. 795
William Robin Zame, *Algebras of analytic functions in the plane* 811