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In a series of papers Daniel H. Gottlieb defined and studied
evaluation subgroups of homotopy groups. In this paper we
develop techniques for calculating these subgroups for some
factor spaces. The calculations give information on the
vanishing of Whitehead products and the existence of cross
sections to certain types of fibrations.

The author is indebted to D. H. Gottlieb and J. Siegel for many
suggestions during this work.

With the exception of finite topological groups, all spaces are
assumed to be locally compact, path connected CW complexes with
base point. The base point of spaces A, B, ---, X, Y will always be
denoted by a,, b, *--, 2, . When the domain is clear the symbol z,
will also denote the constant function with image z,. 1, will denote
the identity map from A to A for any set A. Homology and eohomo-
logy groups are assumed to be singular with integer coefficients.
AV B and A x B will denote the one point union and Cartesian
products respectively.

The following can be found in [7] or [8] unless otherwise stated.

DeriNITION I.1. The evaluation subgroup G.(X) is the subgroup
of 7,(X) containing all elements « which can be represented by a map
f: 8"— X such that 1, v f: XX S"— X extends to a map ¢: X x S"— X,

The map ¢: X x 8" — X will be called an associated map for ac
G.(X).

Let M be the path component of the space of maps from X to
X containing the identity map. If w: M — X is the evaluation map
defined by w(f) = f(z,), then G, (X) = 0. (7,(M)) C 7 (X). G, (X) is
then clearly a subgroup. This alternate definition motivated the name
evaluation subgroup.

THEOREM L.2. G,(X) s the set of all aen,(X) such that there
is a fibration p: E— S*™* with X as a fiber and a = d(¢,.,) where
s = [Lgnt1] € 7,1 (S™"Y) and 0 is the boundary homomorphism in the
homotopy exact sequence for p.

CorROLLARY L.3. If G.(X) =0, any fibration with base S™* and
Jiber X admits a cross section.

DeriNiTION 1.4, P,(X) C 7, (X) is the set of elements ac 7,(X)
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such that [a, 8] = 0 for all ger,(X), all m, where [,] denotes the
standard Whitehead product.

THEOREM L.5. G (X)cC P.(X) for all n.

DeriNiTION 1.6, X is said to be a G-space if n,.(X) = G, (X) for
all n.

DerinNiTION 1.7. X is said to be a W-space if P,(X) = 7,(X) for
all n.

It is known [7], that an H-space is a G-space and clear from
Theorem I.5 that a G-space is a W-space. J. Siegel [13] produced a
finite dimensional G-space which is not an H-space. T. Ganea [5] gave
an example of a W-space which is not a G-space. A finite dimen-
sional W-space which is not a G-space is given in Section III. B of
this paper.

THEOREM L1.8. G(X) is contained in the center of w(X).

THEOREM 1.9.
0 for m even
P(S"Y =G (8)=4Z n=138, 0r7
2Z nodd, n+#1,3, or 7.

II. Factor spaces of topological and Lie groups. In this sec-
tion machinery is developed for the calculation of certain evaluation
subgroups. Unless otherwise stated Y will denote a simply connected
topological group and G a finite subgroup. G can be considered as a
group of homeomorphisms acting on Y by left multiplication. For
g€ G and y € Y the action will be denoted by «(y) = g-y; the orbit an
space of this action will be denoted Y/G. By 2.7.8 of [15] there is
isomorphism +: G — 7,(Y/G) and G is the group of covering transfor-
mations of the natural covering projection p: Y— Y/G. For any groups
K and L, Z(K) will denote the center of K and Z,(K) will denote
the centralizer of K in L. Let ¢e G denote the identity element and
the base point of Y. We recall the following theorems from [6].

THEOREM II.1. G(X) is isomorphic to the subgroup of the covering
transformations for the universal covering space which are homotopic
to the identity by a fiber preserving homotopy.

THEOREM 11.2. If h,: Y— Y 4s a homotopy of 1y, h, ts fibre pre-
serving if and only if h, commutes with each covering transformation.
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THEOREM II.8. If ge G N Z(Y) then +(g) € G(Y/G).

Proof. By Theorem II.1 it suffices to show that the covering
transformation /4 is homotopic to 1, by a fiber preserving homotopy.
Let o: I — Y be a path such that ¢(0) = g and ¢(1) = e¢. Consider the
homotopy h,: Y— Y defined by 4(y) = y-0(t). Then if 4, is any
covering transformation, k(4. (%) = k(9" y) = 9'-y-0(t) = 4, (h.(y))
and %, is fiber preserving by Theorem II.2. Since ge Z(Y) by hy-
pothesis, 2,(y) = y+0(0) = y-g = g-y = 4(y) for all ye Y. But h(y) =
y-0(l) = y-e = y, thus A, is the required homotopy and +(g) € G,(Y/G).

TurEOREM I1.4. If Z(G) lies in a path component of Zy(G) then
G\(Y/G) = Z(=(Y]G) = Z(G).

Proof. Let ge Z(G) then ge Z,(G). Since Z(G) lies in a path
component of Z,(G) there is a path ¢: I — Y such that ¢(0) =g, a(1) =e,
and o(t) e Z,(G) for all tel. Consider the homotopy &.(y) = o(t)-y
for all yeY. For any ¢'€G, h(s(y) =a®)-9g'-y=9 - 0@)-y =
Z,(h,(y)) since o(t) e Zy,(G); thus h, is fiber preserving by Theorem
IL.2. Now hy(y) = 6(0)-y = g-y = 4(y) and h(y) = o(1)-y = ey = y.
Thus %, is a homotopy from 4 to 1, and by Theorem IL1, «(g)€
G.(Y/G).

The following theorem is due to J. Siegel [12]. In this theorem
G need not be finite.

THEOREM II.5. Let Y be a Lie group and G any closed subgroup.
If p: Y— Y/G is the quotient map, p,7(Y)C Gi(Y/G) for all 1.

Proof. Consider the natural pairing p: Y/G X Y— Y/G. If ac
0,7T(Y) there is a map f: S*— Y such that a = [pof]. Then the

map ¢: Y/G x Si—l—x—f> Y/G x v Y/G is an associated map for «

and a € G;(Y/G) by Definition I.1.

COROLLARY II.6. For G a finite subgroup G.(Y/G) = w,(Y/G) for
n > 1.

Proof. Consider the long exact sequence for the fibration p: Y —
Y/G:

o T (Y) 2 1 (V]G) o 7y (G) — -

For n > 1,7, ,(G) = 0 since G has the discrete topology. Then by
exactness p, is onto and G,.(Y/G) = 7. (Y/G).
It can now be shown that many factor spaces of Lie groups are
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G-spaces.

THEOREM IL.7. If Y is a compact simply connected Lie group
and G a finite subgroup contained in a torus T in Y, then Y/G isa
G-space.

Proof. Z(G) < T and thus in a path component of Z,(G). By
Theorem II.4, G(Y/G) = Z(G) = 7,(Y/G) since G must be abelian.
That Gi(Y/G) = 7,(Y/G) follows from Corollary II.6.

DEriNITION II.8. G is a [p]-subgroup of Y for p prime if G is
the direct sum of a finite number of copies of Z, (the integers, mod p).

DeriniTION II.9. Y is said to be without p-torsion is the coho-
mology groups of Y do not contain any nonzero elements of order
divisable by ».

COROLLARY I1.10. If Y is a compact connected Lie group with-
out p-torsion and G is a [p]-subgroup of Y then Y/G is a G-space.

Proof. By Theorem 3.2 of [2], G lies on a torus in Y. Then
Y/G is a G-space by Theorem II.7.

CoroLLARY II.11. If Y is a compact simply connected Lie group
and G 1is of the form Z, or Z, P Z,, then Y/G is a G-space.

Proof. For Y simply connected any group of the form Z or Z,pZ,
must lie on a torus.

ITI. Calculations of evaluation subgroups.

A. Orbit spaces of S®. The following theorems calculate the
evaluation subgroups for the orbit spaces of S*® under the action of a
binary polyhedral group. These spaces provide a nice demonstration of
the use of Theorems I1.3 and II.4.

DerINITION III.1. < I, m, n > will denote the binary polyhedral
group generated by R, S, and T and satisfying relations R' = S™ =
T = RST.

These groups will be finite in the cases < 2,2, n >, <2,3,3 >,
<2,8,4>, and < 2,3,5 > having order 4n, 24, 48, and 120 respec-
tively. The following classical result is due to H. S. M. Coxeter (see
[2] or [3]).
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LemMMA IIL.2. The finite binary polyhedral groups are subgroups
of St

The orbit space S% < 2,8,5 > is the dodecehedral space which
provided the original counterexample to the first form of the Poincaré
conjecture (see [1], p. 217).

THEOREM III.3. G.(S}/G)=2Z, for G=<2,2, n>,n=2, <2,8,3>,
<2/8,4> and <2,8,5>.

Proof. In these cases Z(G) = Z, which can be taken as the sub-
group {1, —1} of the quaternians. But {1, —1} is also the center of
S? so by Theorem I1.3, Z, < G,(S*/G). By Theorem 1.8, G,(S/G) C
Z(G), thus G,(S%G) = Z(G) = Z,.

THEOREM II1.4. G,(S%/< 2,2,1>)=<2,2,1> = Z.

Proof. The group < 2,2,1 > can be taken to be the subgroup
{1, ¢, —7, —1} of the quaternians. The centrilizer of < 2,2,1> in S°
is the set of quaternians of the form @ + bi, a copy of S'. In parti-
cular Zs(< 2,2,1>) is path connected. Then, by Theorem II.4,

G.(§8°/<2,2,1>) = Z.

TueoreM III.5. For G any of the binary polyhedral groups
G.(S}GF) = 1, (S¥G) = 7, (S for n > 1.

Proof. This is immediate from Corollary I1.6 and the fact that,
since G is finite, S* is the universal covering space of S%G.

B. Complex projective spaces. Let CP",n =1 denote complex
projective n-space. Let p: S**' — CP" denote the usual fibration with
fiber S:. The base point of S** will be taken as (1,0,0, .-+, 0) and
S* will be embedded in S**! by () = (2, 0,0, .-, 0).

THEOREM IIL.6. G,(CP™) = 0 for all n.
Proof. Assume ¢: 8% x CP*— CP" is an associated map for ae
7,(CP"). Consider the following diagram:
E
7|
a/
/

/ .
St x cpr 2 op L K(Z,2) L K(Z, 20 + 2)
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where ¢ H*Z, 2; Z) is the fundamental class, E is induced from the
path fibration by ¢+, u € H}(CP") is a generator and # a lift of u. Let
o< H(S? be a generator and a*u = mo. Since # lifts u, (ug)*c"™ =
0. By direct calculation we have

(ug)*er+t = [(ug)*]"™' = (me Q1 + 1@ uw)**' = (n + )mo @ u".

The second equality follows from the fact that ¢|S®* x* = a and
é|* x CP* = 1, the others are standard. But "€ H**(CP") is a gen-
erator, so (n + 1)mo @ w" = 0 implies m = 0. Thus a is null homo-
topic. This proof was suggested by the referee.

In [1] it is shown that for all =, P.(CP™) c p,P,(S**) if r > 2.
In particulas CP® is a W-space. Since G,(CP?) # m,(CP%, CP® is an
example of a finite dimensional space which is a W-space but not a
G-space. Since G,(CP") < P,(CP") the above result implies:

CoroLLARY IIL.7. G,,.,(CP™) C P,,.,(CP") C PPy, (S™) = 27 for
"+~ 2, 3.

Using Theorem II.5 a lower bound for G,,.,(CP"™ can be obtained.
A new representation of CP" will be needed. Let U(n) be the space
of all n X n unitary matrices. Let i: U(n) x S'— U(n + 1) be given
by

0 0...0

i(4,2) =
A

D eee ©O O N

Using 7.8 of [17] it is easy to check that CP" = U(n + 1)/U(n) x S*
and there is a fibration U(n) — U(n + 1) —— CP".

THEOREM IIL.8. x!ZC G,,.,(CP").

Proof. The above fibration yields an exact sequence

e (U4 1) (CPY) = 7, (U(m) X 8)—— 72, (U(m+1)) -

Now 7,,+,(CP") = Z and 7,,(U(n) x S*) = m,,(U(n)) = Z,,. By the Bott
Periodicity Theorem =,,(U(n + 1)) =0 and 7,,,.,(U + 1)) = Z. The
above segment of the exact sequence then reduces to z-2, 7 2,

Z, — 0. Thus Kerd = n!Z and by exactness Im p, = n!Z. Then
by Theorem IL5, n!Z < G,,,,(CP").
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C. The Stiefel manifolds. In this section some evaluation sub-
groups of the Stiefel manifolds are computed and the inplications of
the evaluation subgroups on the James number is explored. A number
of these groups can be shown to be nonzero by checking the boundary
homomorphisms of the various fibrations used by Paechter (see [11])
in his extensive calculations of the homotopy groups of the real Stiefel
manifolds. This technique however yields a complete calculation for
very few groups. The Lie groups of the orthogonal, unitary, and
symplectic » X n matrices will be denoted respectively by O(n), U(n),
and Sp(n). There are natural embeddings O(n) — O(m), U(n) — U(m),
Sp(n) — Sp(m) for n < m.

DerFINITION II1.13. The real, complex, and quaternic Stiefel mani-
folds are defined respectively by

Ve = 0m)[O(n — k), W, = Un)/U(n — k) ,

and
X, = Sp(n)/Sp(n — k) .

The notation O, , will be used for any of these manifolds; in this
case d will denote the dimension of the scalar field over the reals.
There is a fibration O,,_, ,_, — O,,,—— S***. The following defini-
tion, due to I. M. James (see [9] and [13]), uses the boundary homomor-
phism of the long exact homotopy sequence of this fibration. ¢, ;€
Tam—1(S®™ ) will denote the class of the identity.

DEFINITION III.14. The James number O{m, k} is defined to be
the order of 0(¢yn—y) In 74, »(O0porrey) for 2 <k < m and in the real
case m = 3. By convention O{m, k} = 0 if d(¢y,_,) is of infinite order
and O{m,k} =1 if k=1 or in the real case if m = 2.

DEFINITION III.15. If 2 < k < m where m = 3 in the real case,
let 0<m, k> be the order of G4, _2(0,—r ). By convention 0<m, k> =
0 if Gyn2(Op_i ) is infinite and 0 < m, k> =1 if k=1 or in the
real case if m = 2.

Treorem 111.16. (a) If 0 < m, k> # 0, then O{m, k} divides
0< m,k>.

(b) If o< mk>=0and Gupys(Op_i i) 18 torsion free, O{m, k} =
0 or 1.

(¢) If O{m, k} =0, then 0 < m, k> = 0.

Proof. By Theorem 1.2, 3(¢;,—) is in Gyps(O,_. ;) and thus if
0< m,k> =0 the order of the group generated by 0d(¢,._.) must
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divide the order of G, _(0,,_, ;) proving (a). If 0 < m,k > = 0 and
Gin—-2(Op_i ) is torsion free, 9(¢;.—.) must be 0 or generate an infinite
group, thus O{m, k} =0 or 1 proving (b). Part (c) is clear from
Theorem 1.2.

THEOREM IIL.17. If k=1, m odd, then G,(V,..,.) is infinite.

Proof. Vi{im,k} =0 for k=2, m odd, by §25.6 in [17]. Then
by Theorem IIL16, (¢) V< m, k> =0 and G,_(V,_.,-.) is infinite
and the result follows by a simple shift of indices.

THEOREM IIL.18. Gup(W,..) s infinite for n — k=2, 2<1<
n — 1.

Proof. Consider the fibration U(n — k) LN U(n) -2, wke Lhe
homotopy exact sequence contains

T (U — B)) —5 T (U(n) 2 Toi(Waa)
T U —E)) — - .

By §24.5 in [17], U(2) is homeomorphic to S* x S*. Thus for 7 = 2,
Ty (U(m — k) = 7,,,,(S?) is finite (see p. 318 in [9]). For 1 = n — 1,
Ty, (U(n)) = Z since it is in the stable range of the Bott Periodicity
Theorem. But then 4, must be trivial and p, a monomorphism. But
then p.7,,._.(U(n)) is infinite and so is Gy, (W,,) by Theorem II.5.

The first nonvanishing homotopy group of V,, occurs in dimen-
sion n — k and is given by 7,_.(V,.) = Z if n — k is even or k=1
and 7,_(V,. = Z, otherwise (see §25.6 in [17]).

THEOREM III.19.

Z k=1,n=24, or8

2Z k=1,n even, n+ 2, 4, or 8
0 n—Fk even

Z, k>1,n—k=1o0r3.

Gn-—k(Vn,k) =

Proof. For k=1,V,,=S"" and the first two results follow
from Theorem 1.9. If n — k is even the Hurewicz homomorphism is
an isomorphism in dimension n—k and by Theorem 5.1 in [7], Gu_i(V..2)
must be torsion. But 7,_(V,,) is torsion free for » — k even and
thus G,_(V,:) = 0. Whenn —k=1,k>1,V,, = SO(n), the special
orthogonal group and V,, is a G-space. Thus =, (V,,) = Z, for
n —k=1. Now assume n — k = 3 and consider the fibration
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O(n — k) — O(n) — V.

There is a long exact sequence containing

e = T (O(M)) -2 (Vi) —— TO( — ) —> =+ .

Since O(n — k) is a group, 7,(O(n — k)) = 0 and p, is onto. But then
by Theorem IL5, G,_(V,..) = Tor(Var) = Z, for m — k= 38,k > 1.
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