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Consider a field k, the formal power series field &((#)) in
one variable over k, and a derivation D of k((x)) that maps
k into itself. We wish to replace x by another generator y
of k((x)) so that Dy has a particularly simple expression as
a function of y. This is accomplished subject to certain
restrictions on the differential field k, some deductions are
drawn, and there are extensions to the analogous problem
for power series rings in several variables.

We first consider a derivation D on a noetherian local ring R.
If M is the maximal ideal of R, then for any N = 1, 2, we have
DMN c ikP"1. Thus D is automatically continuous in the natural
topological ring structure of R, where a basis for the neighborhoods
of zero are the various powers of M.

THEOREM 1. Let R be a complete noetherian local ring containing
Q, M the maximal ideal of R and D a derivation of R such that
DMςt M. Then M has a set of generators yu * 9yn such that Dyι =
• = Dyn = 1.

There is an element xeM such that Dx$M. For any other
element yeM, either Dy or D(x + y) is not in M. Since x and y
generate the same ideal in R as do x and x + y, it follows that M
is generated by those of its elements x for which Dx 0 M, that is,
for which Dx is a unit in R. Now if x e M and Dx <$. M, we have
D(x/Dx) — 1 = xD(l/Dx) e M, so that M is generated by those of its
elements x satisfying Dx — 1 e M. Since R is noetherian, a finite
number of such aj's, say xu •••,#», will generate M. If we have
elements yl9 " ,yneM such that a?4 — y4 e Λf2 for each £ = 1, , n
then yu * ,yn also generate If, and we shall be done with the proof
if we can find such yu * ,yn such that Dy1 = ••• = Dyn = 1. To
do this, we shall show by a successive approximation process that
xί9 " ,xn may be replaced by elements which differ from these by
elements in successively higher powers of M in such a way that the
new Dxx — 1, , Dxn — 1 also belong to high powers of M, and we
shall then let each yi9 i = 1, , n, be the limit of the sequence of
Xi's thus obtained. Specifically, we are reduced to showing that if
®u " ,χn generate M and N^l is an integer such that for each
i — 1, , n we have Dxi — 1 e MN, then there exist zl9 , zn e MN+ι

such that each Dfa + ^) - 1 e MN+1. Since DMN+1 c MN, it suffices
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to show that the i?-module homomorphism induced by D

Σ Λ»ίι %ίn > MN/MN+ι,
*l + +*Λ=Λ r+l

according to which xl1 α£* is mapped into

i ^ - 1 ^ •••«;» + + iΛα?;i a&ΐαfr""1 + Λf *+ 1 ,

is sur jective. To do this it suffices to show that if Xu , Xn are
indeterminates then the Q-linear map δ from the vector space of
forms of degree N.+ 1 in Q[X1? , Xn] into forms of degree N that
is given by

δ(X£ ~- X**) = X£ ..- X

is sur jective. For this, we order the set of monomials Xp Xln of degree
N in G[-XΊ, , Xn] lexicographically, setting Xp . X> < X*1 ---X& if,
for the smallest p = 1, , n such that ip Φ j p , we have ip < j p . That
δ is sur jective follows immediately from the remark that if iu •••,
iΛ >̂ 0, ii + + in = N, and g = 1, , n is the largest integer such
that iq Φ 0, then X^ X> differs from δ(X}i Xϊ*XJ(iq + 1)) by
a linear combination of monomials that are less than X/1 X**.

COROLLARY. Under the same conditions as above, there exist
generators y, zu •• ,sw_1 of M such that Dy = 1 and Dz1 = ••• =
Us*-! = 0.

To prove this, jus t set y = yl9 zλ = y2 - ylf - - , zn^ = yn - y,.

The case of greatest interest for Theorem 1 is that of a formal
power series ring &[[#!, , xn\] in indeterminates xu , xn over a field
k of characteristic zero and a derivation D on this ring that sends k into
itself but does not send the maximal ideal M of the ring into itself.
Since any set of generators of the maximal ideal M of a noetherian local
ring R contains a minimal set of generators, in number dimRjMM/M2,
we see that in the present case new generators y,zl9 , zn^ may be
chosen for M such that our differential ring is the formal power series
ring k[[y, z19 , zw_i]], with the derivation extended from k by means
of Dy = 1, Dz1 = = Dzn^ = 0. We ask what the constants of this
ring are, that is, what are the elements to which application of D gives
0? Any element of k[[y, zl9 , zn^]] can be uniquely written ΣΓU/i(s)ί/*f
wher eeach fi(z) e k[[zl9 , zn^]]. Note that D maps k[[zu , 2W_J]
into itself and is obtained simply by applying D to the coefficients of
the power series, these coefficients being elements of k. We have
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D Σ MzW = Σ ((DUzW + ift(z)if-1)
t=0 <=0

= Σ ΦMz) + (i + l)fM{z)W .
t=0

Therefore we get ΣΓ=o fi(z)Vi constant if and only if for each i *> 0
we have Dfi(z) + (i + l)fi+1(z) = 0 In other words, the constants
of &[[?/, Zi, •• ,3Λ~i]] are the elements of the form

for arbitrary f(z) € k[[zl9 , 2»~i]J. The generators y,zu , £„_! of
the maximal ideal of k[[y,zl9 •• ,sll_1]] are of course not unique, but
may be altered by adding to each of y,zu , zn^ a constant in M,
that is an element of the above form, with f(z) having no term of
degree zero, provided the new elements we obtain have their linear
terms linearly independent over k.

To prove the next theorem, we shall have to restrict ourselves
to differential fields with certain special properties. For this purpose,
let us consider briefly an arbitrary ordinary differential field k and
a system of n first order linear differential equations in n unknowns
over k, that is, a system of equations Dyi — Σ?=ι ^aVi + bi9 i — 1, ,
n, where each aij9 b{ ek. By a solution of this system we of course
mean an %-tuple (yu , yn) of elements of some differential extension
field of k satisfying these equations. The totality of solutions in k
(that is, solutions with component functions in k), if any, is got as
usual by adding to a particular solution an arbitrary solution of the
corresponding system of homogeneous differential equations Dy{ —
Σi=iαίi% > i = It ' •> w> and, as usual, the solutions of the homogeneous
system form a vector space over the subfield of constants of k. That
this vector space is of dimension at most n is an immediate consequence
of the following result.

LEMMA. Let aij)i,j = l,*'*fn, be elements of the differential
field k. Then any solutions in k of the system of n first order
homogeneous differential equations in n unknowns Dyi = Σ?=i G*J2/J>

i = l ? . . . , n, that are linearly dependent over k are linearly dependent
over the subfield of constants of k.

yml,For suppose that the solutions zx = (yll9 , yln), , zm = (ym

ymn)> with each yiS e k, are linearly dependent over k. We must show
that's^ #*,2m are linearly dependent over the subfield of constants
of k. We may suppose that no proper subset of zu , zm is linearly
dependent over k. Choose cu •• ,emek such that cfo + + cmzm =
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0 and suppose, as we may, t h a t ct = 1. For i = 1, •••, n we have

Σ P = I cpy9i = 0, so t h a t

ΣΣ
p=l

n m

= Σ o,iS Σ cpypί
3=1 p=l

= 0 .

Therefore

0 = D

= Σ (De,)yPt + Σ cPDyvi
p=l J > = 1

= Σ
p=i

Since cL = 1, we have Σi7^(Dep)ypi = 0 for ί = 1, , n, or Σ ? = 2 ( ^ φ P =
0. Since 22, •••,«» are linearly independent over &, we have Dcp = 0
for p = 2, , m. Hence cu , cm are constant. Recalling that
Σ?=i CP^P ~ 0 completes the proof.

We say that the system of equations Dyt = Σ?=i aijVά + h^i —
1, •••,%, Λαs α /%ϊϊ sβέ of solutions in k if it has a particular solution
in k and if the corresponding system of homogeneous equations Όyi =
Σ?=iα</2/i, ί = If * ,^> has ^ solutions in Jfc that are linearly inde-
pendent (over k or over its subfield of constants). It is worth
mentioning the following result, which we shall not use, a result
that is an easy consequence of standard facts: The system of equations
Djfi — Σi=i OsijVj + bif i = 1, , n9 with coefficients aijf bi in the differ-
ential field k, has a full set of solutions in some finitely generated
differential extension field of k whose subfield of constants is algebraic
over that of fc.

THEOREM 2. Let R be a complete noetherian local ring containing
Q, M the maximal ideal of R, and D a derivation on R such that
DMaM. Let the differential field k = R/M be such that any system
of n first order linear differential equations in n unknowns with
coefficients in k has a full set of solutions in k, where n = dim*. M/M2.
Then M has a set of generators yl9 " ,yn such that Dyt~ ••• =
Dyn = 0.

The derivation on k is of course that induced by D via the natural
surjection R-*k. We denote this derivation on k, somewhat incor-
rectly, by the same letter D. For any N= 1, 2, we have DMNaMN.
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The map D on M induces a map Δ on the A-vector space M/M2, with
Δ(m + M2) — Dm + M2 for any meM. The operator Δ is not A-linear,
but it is additive, and it satisfies the relation Δ(ax) = (Da)x + a(Δx)
for all aek,xe M/M2. Fix a fc-basis alf •••,«» of M/M2. Then there
exist aiS ek,ί,j = l, ,n, such that for each i = 1, , n we have
Δdi = Σi=i α«αv For any ^ , • ••,%»€& we have

MA) = Σ ( φ ^ K + % Σ <*

= Σ ( # ^ ί + Σ a,SiUj )ai.

By our assumptions on k, there exist ^-tuples of elements of k, say
(un, , %!»), , (unl, , wΛn), linearly independent over k, such that
for each i, p = 1, , n we have Zh^ + Σi=i % < ^ = 0. If we let
ξP = Σ?=i ^PΛ> p = 1, , w, then we get Δξx = = f̂» = 0 and &,
• , ί» is a Λ-basis of M/M2. Now choose ^, , xn e M such that
ξi = α?{ + M2, i = 1, , n. Then ^, , xn is a set of generators for
M and Dxu •••, DxneM2. We have to show that xl9 * ,xn can be
modified so that we still have ξi = χi + M2, i — 1, , n, and in addition
have the stronger relations Dxι = = Dα?w = 0. To do this it suffices
to prove, in virtue of the usual successive approximation argument
and the completeness of R, that if N — 2, 3, and xl9 , xn is a
set of generators of M such that Dxu , Dα^ e MN, then there exist
zl9 , ̂  e MN such that i ) ^ + zj, , JD(Λ?Λ + zn) eMN+1. To prove
this, for each i = 1, , n write

for certain aUv..in e R, and try setting

with the bnv..in'8 elements of R to be determined. Since for each
i = 1, •••, w

- Σ o
Σ o Φ6«1...i>{1 •••»!• (mod

we will have JOfo + ^), , D(xn + zn) all in MN+1 if, for each i^
in, we have αWr..<Λ + Dbih...in e M. Passing from R to jβ/Λf = Λ, we
are reduced to the problem of finding elements of k with prescribed
derivatives. But that this is always possible is a consequence of the
assumption made on k (special case of first order linear differential
equations where each aiS = 0), except in the case n = 0, where the
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theorem is vacuous.

The case of greatest interest for Theorem 2 is, as for Theorem
1, that of a formal power series ring k[[xί9 •••,&»]] over a field k of
characteristic zero in indeterminates xl9 , xn and a derivation D on
this ring that sends k into itself and each x4 into a power series
with no term of degree zero. If the differential field k satisfies the
appropriate condition on the solvability of systems of linear differential
equations, then new variables yl9 9yn may be found such that
&[[«i, •••, «•]] = k[[yl9 •••, yn]] and Dyι = ••• = Dyn = 0. It is easy
to compute the subring of constants of this ring. We in fact do this
for a slightly more general case, where the variables ylf * ,yn may
satisfy certain analytic relations.

PROPOSITION. Let k be a differential field and let R be a differen-
tial extension ring of k which is a complete noetherian local ring
containing nonunits yLf " ,yn such that R = k + Ry1 + + Ryn and
Dyt = = Dyn — 0. Then the constants of R are just the subring
C[[yi, •••, y»]], where C is the subfield of constants of k.

Clearly each formal power series in yu , yn with coefficients in
C is a constant. Suppose conversely that x — ̂ ily...,in^aiv..iiny\l y^y
with each air..in in k, is such that Dx = 0. We would like to know
that this power series representation for x has the property that for
each N = 1, 2, 3, , if we consider the various ίl9 , in 1Ξ> 0 such
that ix + + in = N and aiv..in Φ 0, then the various elements
y\ι y%n e MN are actually linearly independent over k modulo MN+1.
This property of the representation of our given x is not necessarily
true to begin with, but working successively with N = 1, N = 2,
we can modify the α .̂ .^'s so as to make this property valid. This
being so, we can prove by induction on N — 0,1, 2, that all the
coefficients aiv..in of the power series representation of x are in C, as
follows. This fact is clear for N= 0, and if for a certain N>0 we
know that each nonzero aiv..in is a constant whenever it + + in <
N, then the congruence

Dx = Σ { D a h . . . i n W ---yln (modikΓ+ 1)
H+'"+in:==N

shows that Daiv..in = 0 if \ + + in = iV. Thus each ah...in is in C.
A rather stringent condition is imposed on k in the statement

of Theorem 2. That some such condition is necessary can be seen
from the example of the formal power series ring R = &[[#]], where
the differential field k contains an element a that is not of the form
— Db/b for any bek and the derivation D on k is extended to R by
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setting Dx = αα? Any other generator of the ideal Rx is of the
form y — b& + b2x

2 + , with bu δ2, €k,bxφ 0, and if Dy = 0
we get Dbi + bλa = 0, which is impossible. Or we may obtain a
similar counterexample, verified by a similar argument, by supposing
k to contain an element a which is not the derivative of any element
of k and then extending the derivation D on k to one on k[[x]] by
setting Dx = αα;2.

The remainder of this paper will consider extensions of the
derivation on a differential field k of characteristic zero to the formal
power series field k((x)), the field of quotients of the formal power
series ring in one variable &[[#]]. We begin with a number of well-
known remarks. First of all, k((x)) has a natural topological field
structure, depending only on its field structure and inducing the
usual topology on &[[#]], since the maximal ideal &[[#]]# of k[[x]] can
be characterized as the set of all u e k({x)) such that, given any v e
k((x)), there exists an integer n > 0 such that 1 + unv has an mth
root in k((x)) for an infinite number of positive integers m, and k[[x]\
is the set of all elements of k((x)) not having a reciprocal in &[[#]]#.
Any nonzero u e k({x)) has an order, denoted ord u, which is that
integer m such that we can write u — Σ^m <MΛ with each anek
and am Φ 0, and ord u does not depend on x. The element x which,
together with k, "generates" k{(x)) is certainly not unique, since it
can be replaced by any other element of order one. The field k is
of course determined to within isomorphism as the field &[[#]]/&[[#]]#,
but k is not necessarily determined as a subfield of k((x)); for example
if k = ko(ά), where kQ is a subfield of k and a is transcendental over
&0, then ko(a + x) could replace k.

We shall be interested in derivations of k{(x)) that map k into
itself and are continuous. Such a derivation is given by

D(Z «»O = Σ ((Dan)xn + nanx
n~ιDx) ,

for any {an}n^m c k. The derivation D is completely determined by
its action on k and the knowledge of Dx, which can be an arbitrary
element of k((x)). If we note that for any such D the set {ord Du —
ordw: uek((x)), u Φ 0, Du Φ 0} is bounded from below, we see that
there exist derivations D of k((x)) that map k into itself and are not
continuous, got for example by taking a transcendence basis {ua}aeA for
k({x)) over k and defining each Dua to be some specific element of k((x)),
subject to the condition that the set {oxάDua —oτάua}a^A is not
bounded from below. (We remark that we use here the well-known
fact that k({x)) has infinite transcendence degree over k. This can
be shown by a cardinality argument if k is at most countable and
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then easily extended to any k, but it may be worth mentioning that
an easy differential-algebraic proof of this fact can be based on the
well-known and elementary result that if k is a differential field of
characteristic zero and K a differential extension field of k having
the same subfield of constants, then elements of K whose derivatives
are in k are algebraically dependent over k if and only if a linear
combination of them with constant coefficients not all zero is in k.
For using the continuous derivation D on k((x)) that is given by
Dk = 0, Dx — 1, we see that the power series for {log (1 + cιx)}aQk>a¥t0

are algebraically independent over the subfield k(x) of k{{x)) since no
nontrivial linear combination with coefficients in k of their derivatives
{α/(l + ax)} is the derivative of an element of k(x). Or we may use
the well-known result that if k and K are as above then elements
of K whose logarithmic derivatives are in k are algebraically dependent
over k if and only if a nontrivial power product of these elements is
in k to show that the power series for e% eχ2, ex\ are algebraically
independent over k{x).)

The following two theorems concern the classification of continuous
derivations of k((x)) that map k into itself. The analogous problem
for derivations of the field of quotients k((xί9 , xn)) of the formal
power series ring k[[xu , xn]], where Dxu , Dxn are quite arbitrary,
seems considerably more difficult. Note the slight overlap (the case
r — 0) of the next result with Theorem 1.

THEOREM 3. Let k be a field of characteristic zero, D a continuous
derivation of the formal power series field k((x)) that maps k into
itself and does not send the maximal ideal of k[[x]] into itself. Then
there exists a unique nonnegative integer r and an element yek((x))
of order one (so that k{{x)) = k{{y))) such that Dy = ay~r, for some
nonzero aek. The element a is unique to within multiplication
by (r + l) t h powers of nonzero elements of k, and for given a the
element y is unique to within multiplication by an (r + l) t h root of
unity in k.

We must have ordDx ^ 0, for otherwise £>(&[[#]]#) c &[[&]]#.
Hence we can write Dx = ααΓr(l + Σ ϊ U anχn)> with r a nonnegative
integer and α, au α2, e k, a Φ 0. The &[[#]]-module generated by
D(fc[[#]]) is &[[#]]arr, proving that r is unique. Any element y e k((x)) of
order one is of the form y — bx(l + Σ ? = i ^ w ) , with 6, 6^ δ2, ••• zk,
b Φ 0. The leading term of the power series for Dy is bax~r, so that
Dy — br+1ay~r e ^[[α;]]^1"7* = &[[i/]]?/1~r. Thus the transition from x to
y multiplies a by δ r + 1 . It is now immediate that the existence of a
special y e k({x)) with the property prescribed in the statement of the
theorem and also the uniqueness statements about a and y will all
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be known if it can be shown that there exist unique bίf δ2, e ft
such that if y = x(l + ΣϊU K%n) then Dy = αjΓr For this particular
y we have

1)2/ = D(X + Σ M β + ι )

= Σ φδ»)*"+ι + (l + Σ (n + l)Kxήaχ-r(l + Σ <*„*•) ,

which we want to equal

αirr = ααΓ l̂ - (ΣA& ) + (SM*)' ] '

The condition we need is therefore

=t1 - dΛ"")+ ( I M - - I -
Both sides of this last equation have constant term 1. For any
integer m > 0, the coefficient of xm on the left is α~ίD&m .̂r-1 + (m +
l)6m + mb^^a! + . . . + 2δ1αm_1 + am (understanding bn to be 0 if n <
1), while the coefficient of xm on the right hand side is — rbm + (a
specific polynomial in bί9 , 6W_: with integer coefficients). Therefore
by letting m = 1, 2, 3, we successively find bu 62, eft such
that Dy = ay~r, and we see that these bl9 b2, are unique.

COROLLARY. If y is as above, the constants of k((x)) = k((y)) are
precisely the elements of the form

r + lV (r + iy2Γ (r + l)33!^ '

For any subset {cn}neZ of k such that c% = 0 if n is sufficiently
small, we have

= Σ Φ^.-r-l +

Therefore for Σ cnVn to be constant it is necessary and sufficient that
Dcn_r^ + nacn = 0 for all n, that is that cn — — Dcn^r^\(ncί) if nΦ
0 and c_r_L be a constant of ft. Therefore we must have cn = 0 if
w < 0 or n Ξ£ 0(mod (r + 1)), and the corollary follows directly, with
c = c0.

If we have a derivation of ft((#)) that sends both the field ft and
the maximal ideal of k[[x]] into themselves, then this derivation is
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automatically continuous and is the extension to k((x)) of a derivation
of &[[#]]. Theorem 2 is directly applicable if the differential equations
Dy = ay and Dy = a have solutions in k for any a e k. For a quite
general differential field k, where this condition is not necessarily
satisfied, nothing much can be said. However, complete information
is also available in the special but important case in which the
derivation on k is trivial.

THEOREM 4. Let k be a field of characteristic zero, D a nonzero
derivation of the formal power series ring in one variable k[[x]] that
is trivial on k and maps the maximal ideal of k[[x]] into itself. For
any y e k[[x]] of order one we can write Dy = 2/7Σϊ=o α*]Λ with r ^
1 an integer, a0, al9 ek, and α0 Φ 0. Here r and ar^ are uniquely
determined by D, independent of the choice of y, and a0 is determined
to within multiplication by the (r — l ) t h power of a nonzero element
of k. If r > 1 then y can be chosen such that Dy = yr/(a + cyr~ι),
with a, cek. If r — 1 then y can be chosen such that Dy — y/a with
aek, and here y is unique to within multiplication by a nonzero
element of k.

Let us write Dx ~ xrIΣ~=*<x«P%> with r an integer and a0, au e k,
a0 Φ 0. Then any y e k[[x]] of order one is of the form y — bx(l +
Σ"=i bnx

n) with b, blt b2, e k, b Φ 0. Since y == bx (mod &[[#]]af) we
have Dy = a^1b1~ryr(moά k[[x]]xr+1), which shows that Dy is of the
form Dy = 2/7Σ~=o a>nVn> with α0, au ek,ao = aob

r~K In particular,
r is unique. Since D maps &[[#]]# into itself, we have r ^ 1. In
the special case where y = bx, we verify immediately that an — anb

r~n~\
n = 0,1, 2, . To complete the proof of the theorem it suffices to
show that if we restrict ourselves to the case 5 = 1, that is y =
#(1 + Σ~=i &»#*)> then ar_! = ar^ and, furthermore, that there exist
certain bly b2, ek, unique if r = 1, such that we have an — 0 for
all n Φ 0, r — 1. Working out Dy in two ways we get

so that the an's and an's are related by the identity

+ Σ (w + i ) M w ) ( Σ ^
w = l / \w=0

(l + | i / ) '
n=0
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Comparison of terms of degree zero gives a0 = a0, which we already
know. To show that ar^ = ar^t it suffices to show that for each
integer m = 0,1, 2, the coefficient of xr~ι in the power series
expansion of

( l + Σ (n + l)bnxΛxm(l + Σ bNxNY~ris 1 if m = r - 1 ,
\ n = ί / \ 2V=l /

otherwise 0. But this last power series is xrym~ryr, where ' refers to
formal differentiation with respect to x. If m Φ r — 1 this power
series is xr(ym~r+iy/(m — r + 1), and the coefficient of xr~ι must be
zero since the derivative with respect to x of a formal power series
in x has no term in x~~\ On the other hand if m = r — 1 the coefficient
of xr~~ι in #V/2/ is clearly 1. So it remains only to show that by a
suitable choice of bu b2, •••, unique if r = 1, we can get all αn's
except α0 and αr_! to be zero. Now for any integer m > 0 the coefficient
of xm in the right hand side of the last displayed equation is

am + (a specific polynomial in α0, , αm_1? bl9 , bm^

with integer coefficients) + (m + 1 — r)bm

and this should equal am. Letting m — 1, 2, , r — 2 we successively
get the values of bu , δr_2 for which aλ = = αm_2 = 0, and they
are unique. We already know that αr_L = ar_L. We can now choose
6r_i to be an arbitrary element of k, except in the case r = 1 where
there is no 6r_x to worry about, and we then successively get unique
6r, br+ί, in k such that ar = αr+1 — = 0. This completes the
proof. Note that if r > 1, then for fixed α0, ar^ e k with a0 Φ 0 there
are many possibilities for our y of order one such that Dy — yr/(a0 -f
ar^yr~ι), all given by replacing y by jy(l + Σ?=r-i Kyn), with 7 any
(r — l) t h root of unity in k, δr_x an arbitrary element of k, and br,
br+ι, * polynomial functions of 6r_le

In the last theorem, and also in Theorem 3 if it happens that
Dk — 0, we can write D = f(x)d/dx, with f(x) e k{(x)). In the duality
between the one dimensional vector spaces over k({x)) of continuous
^-derivations and ^-differentials of k((x)), the basis for the space of
differentials that is dual to the basis D for the space of derivations
is dxjf(x). We have therefore also derived canonical forms for the
nonzero A -differentials of k((x)), and these are of the type yrdy/a for
r ^ 0, ady/y, and ((a/yr) + (c/y))dy for r > 1, with α, c e k, a Φ 0.
Note that the invariance of ar^ is simply the invariance of the residue
of dxjf{x). Note also that in these cases the constant subfield of
k{(x)) for the derivation D is the same as that for the derivation
d/dx, which is just k.

One can verify that if the k of Theorem 3 or 4 is the field of
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complex numbers (with trivial derivation) and the derivation D on
k((x)) is such that Dx is a convergent power series in x, then the y
of order one for which Dy is in canonical form can be chosen to be
a convergent power series in x. The analogous comment applies to
the application of Theorem 1 to the formal power series ring k[[xu ,
xn]]: if Dxu •••, Dxn are convergent power series, we can get yu •••,
yn to be convergent power series in xu , xn.
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