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It is shown that a map from S?+* to S? in the image of
the J-homomorphism sends particular types of diffeomorphisms
of 57 X S¢ into diffeomorphisms of S?+r x S¢. This is applied
to the problem of determining the diffeomorphism type of an
exotic (p + g + r + 1)-sphere obtained by attaching Dr+r+! x S¢
to S?tr x D1 via a diffeomorphism of Sr+r x Su.

The first section of this paper deals with the generalities of the
construction. In the next two sections we exploit these ideas in a
study of the plumbing pairing (compare [4]), and we show that the
pairing vanishes in an infinite class of cases (3.2) and some selected
low dimensions of other types (3.4). The last section of this paper
uses the basic construction to investigate the existence of smooth
semifree circle actions on homotopy nine spheres [5]. In particular,
it is shown that if 3° does not bound a spin manifold, then it has
no semifree circle action with 5-dimensional fixed point set. See [23]
for further nonexistence theorems concerning semifree circle actions
on homotopy spheres and some geometric applications.

1. Constructions for compositions. Let aer, . (S?) and ge
7,(SO,:,) be given. Then it is well known that @ induces a diffeo-
morphism of S? x §? and the composition g-acx,,.(SO,.,) induces a
diffeomorphism of S+ x S If « is in the image of J: 7,.(SO,) —
7,..(S?) we shall give a geometric procedure for passing from the
diffeomorphism induced by g to that induced by B-a. In all our
applications & will be the nontrivial homotopy class in 7,,,(S?).

PropoOSITION 1.1. Let X be an H-space, let vem.(SO,), and let
Bem,(X), where p = 2. If his the diffeomorphism of S* x S? induced
by v, the map w: 8" x S?— S? is projection, and ¢q: S x S? — SP+" is
the collapsing map, then the following formula holds:

W g = n*B-q*(B-J(7)) .

The dot represents multiplication in [S? x S”, X]. The above
result was proved for X a double loop space in [21, Appendix].

Proof. Without loss of generality the diffeomorphism %~ maps
*x D+ to itself by the identity (* is the basepoint). Thus if
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K=8x8S"yU*x D,

then % extends to a homeomorphim of K. It is easy to see that K has
the homotopy type of S?\/ S?*", since the map (=«, g): K — S? x Sr+"
deforms to a map into S? v S”" which induces isomorphisms in
homology (the maps 7w and ¢ are extensions of the maps on S? x S”
to K). An explicit homotopy inverse to the above map may be con-
structed as follows: Define g: S? v §**" — K so that ¢g|S" is inclusion
into * x S” and ¢ maps

Setr = D?P x S"yU S x D

by sending (x,y)eD? x D' to (o(x),y)e K< S” X D™, where p
maps D? to S? by collapsing the boundary. We then compute g*h*7*g
from its restrictions to S?* and S’; an argument like that of [21,
Appendix] shows that i*z*g has the desired form in [K, X]. The
proposition follows upon restriciting to S? x S-.

COROLLARY 1.2. Let f be a diffeomorphism of S* X S™ representing
v and let g be a diffeomorphism of S* X S? represented by G € w,(SO,)
(notation as in 1.1). Then the commutator diffeomorphism [1, X f,
gx1,] on S*x S§? X S" represents the homotopy class ¢*RQJ(7) € [S™ x S?,
SO, ...]-

Proof. By a direct computation it follows that the commutator
diffeomorphism sends (z, ¥, 2) € S*? x S? X S" into

@, [9o@) " "gom [ (%, )]z, ¥) »

where g,: S* — SO,,, is such that f(z, y) = (¥, gs(x)y) and the multi-
plication within the brackets comes from the group structure of SO,.,.
By 1.1 we know that the homotopy class of gxf = f*n*8 is the
product of the class of g,7, 7*8 with the class ¢*BJ(7), and the
corollary follows from this.

We shall need generalizations of 1.2 in §4. Suppose that & is a
diffeomorphism of S? x S? which is the identity near D2 x S’ (compare
[17, 2.3]). Then & is homotopic to a map sending (x, y) € S” x S’ to
(x, 7' (x)y), where I’ is a continuous map from S? into the space G4,
of self-maps of S? with degree + 1. Let B be the homotopy class in
7,(G,+1) SO obtained; it is immediate B is a pseudo-isotopy invariant
of h and that the formula g(hh) = B(k) + B(h;) holds. For any
integer s satisfying 1 < s < p — 1, the diffeomorphism % induces a diffeo-
morphism At of SP~* x S* x S? such that A*'|D x S* = h|D?x S* (for
some coordinate disk D in S** x S°) and A" =1 off D x S.

PropoSITION 1.3. Let h:S* X S*— 8? x 87 be a diffeomorphism
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which 1s the identity near D2 x S and let f be a diffeomorphism of
S? x 8™ induced by v € w,(S0,). If B e, (G,.,) ts the class associated to h,
then the commutator diffeomorphism [1, X f, h x 1,] of S? x S* x S~
18 equal to a diffeomorphism of the form k'*1 for some k on S x S?
which is the identity off D?t" x S°. Furthermore, the homotopy class
associated to k is the composition B-J(v) €, (G,yy)-

Proof. Pick a representative f of v which is the identity near
D7 x S°. Then the commutator above is the identity near the com-
plement of D? x D" x S?% and hence does have the form kf*’. The
homotopy class of &k may be computed from that of k! by a compu-
tation of the commutator similar to that of 1.2. Notice that — 3 is
the homotopy class associated to A~'.

Suppose that ¢ = 3 and the above diffeomorphism % of S? x S? is
equivariant with respect to the free action of S' on the second factor
by scalar multiplication. Then a diffeomorphism % of S? x S? is induced
on the quotient manifold, and a homotopy class S8 € 7,(G,) is obtained.
Given f and < as above, one may form the commutators [1, X f, & x1,]
and [1, X f, hx 1,] and obtain diffeomorphisms %k of S*** x S* and I
of S**" x S* the diffeomorphism % is equivariant with respect to the
action of S' on S% and ! is the diffeomorphism which it induces on
S+ ox S2.

ProposiTION 1.4. In the above mnotation, the homotopy class in
Tpir(Gy) determined by 1 is Bi(v).

The proof is straightforward.

2. Plumbing formulas. Throughout this paper < (M) will
denote the group of pseudoisotopy classes of orientation-preserving
diffeomorphisms of the smooth closed manifold M™*. Recall that there
is a canonical map o: I',,, — = (M) (compare [21, 1. 7]), whose image
we shall call 4; this map is 1 — 1 if M is a product of spheres
[21, 1. 7]. Furthermore, 4 is contained in the center of = (M) (com-
pare [17, p. 529]).

The plumbing pairing

Up'q: ﬁp(SOq) X ﬂq(SOp) e Pp+q+l

may be defined as follows. There are canonical maps of 7,(SO,) and
7,(S0,) into 2 (S” x S as noted previously and we denote the homotopy
and pseudo-isotopy classes by the same letter. Let f represent
u e 7,(S0,) and g represent v e 7,(SO,); without loss of generality f is
the identity near D% x S? and g is the identity near S* x D?. The
commutator [u, v] is thus represented by a diffeomorphism [f, ¢] which
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is the identity off D2 x D2, and hence [u, v] = o(7) €4, for some
Y€ lpigse Since ¢ is 1 — 1 for M = S?x S v is uniquely determined,
and we define o(u, v) to be this element v. The bilinearity of o follows
easily from the definition.

REMARK. Often the definition of the plumbing pairing o,, is
extended to 7,(S0,) X 7w,(SO,.,). This is done by taking ve I, .., to
be defined by the attaching construction

S?+q+1 = D x §° U[u,v]Sp x D,

(The diffeomorphism class of the above manifold is a pseudo-isotopy
invariant; compare [17, §5].) The fact that this extends the previous
definition follows from 2.1 below. If one of v, or », is not in the
image of 7,(S0,) in 7,(SO,.), the formula o(u, v, + v,) = o(u, v,) +
o(u, v;) may be false.

LEMMA 2.1. Let o(v)ed S (M) be given, and suppose Q*™ is
a closed smooth manifold which M™ separates into two components N
and P. Then the identification manifold NU,q,P is diffeomorphic to

Q&S

The proof of this follows exactly the same pattern as the more
specialized remark in [17, 2.3, p. 526].

We include another result on manifolds obtained by boundary
identification which will be used in subsequent proofs. Let M, N, P
be compact connected smooth manifolds with boundary, and let Q,, @,
be closed smooth manifolds such that oM = @, N = @, U Q. (a disjoint
union), 0P = Q,. If h and k are diffeomorphisms of @, and @, respec-
tively, then one can form the smooth manifold

X(h, k) = MU NU: Q -

LEMMA 2.2. Suppose there is a diffeomorphism @ of N mapping
Q, and Q, into themselves such that ®|Q, = and ¢|Q, =k'. Then
X(h, k) is diffeomorphic to X(h'~'h, kk').

Proof. Define the diffeomorphism @ piece by piece. Let @|M U
P be the identity, and let @| N = @', Then @ is a diffeomorphism
because it is consistent with identifications along the boundaries.

The pairing 7,, of Milnor-Munkres-Novikov [16, p. 583] has a
similar description, although for computational purposes it is best
described as the map 7, ,: 7,(SO,) X 7w (PD/O) — m,,(PD/O) for which
(e, B) = B+J(a). For our purposes it will be convenient to interpret
these pairings in terms of pseudo-isotopy classes of diffeomorphisms of
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a product of three spheres; other elaborations are obviously possible.
One may define pairings

0" 7,(S0,.) X 7, (S0,) —> I'pyq1s
7' ﬁp(S0r+1) X Fq+1 B F:a+q+1

via induced diffeomorphisms of S? x S " x S" in much the same way
that o and 7 are defined. One uses the fact that there are embeddings

Sp X Sq-—r X Dr+l [y Sp X Dq+1 (et Sp+q+1

and glues together S* x S x D"*' and the closure of its complement
in SP+**' via the diffeomorphism of the product obtained. We remark
that 7,(SO,) maps into [S*" x S, SO,] via maps fixed off DI" x D7;
likewise, I',,, acts via diffeomorphisms fixed off Dy X D-.

REMARK. Levine has defined a 4-linear map ¢ which generalizes
o and 7 to some extent (see [18, §7]; actually, ¢ is expressible in
terms of ¢ and 7). The result stated below could also be formulated
in terms of 6 and a related pairing d'.

PROPOSITION 2.3. Let :SO,,,— SO,., be the inclusion. Then
o'(a, B) = o(a, 1,8) and T'(8, @) = (46, @).

Proof. Let @, =S"x8S"" and let @, =S"xS% Let N=8*x N’
be the cobordism between @, and @, constructed from the
above embeddings; i.e. N’ = D' — Int S " x D"*'. Finally, let
M=S5"x8""x D+ and let P=D*x 8% Then St =
MU, NU,D and MU,N=8"xD**. If we can extend the
diffeomorphisms induced by o, and 7z on S? x S? and by o/, 7’ on
S? x S x 8" to diffeomorphisms of N, then the result will follow by
2.2. But let y: D x I— N’ be a proper embedding such that

(i) (S = D? x 1 and (D% x 1) & Int D%

(ii) (S x 8 = D X 0 and (D% x 0) & Int DL x D
Then 7,(SO,) and I',;, act on S? X N’ and N’ via maps which are
the identity outside the image of  and only depend on the D¢
coordinate. The map ac I',,, extends to S x N’ via natural product
extensions. On the other hand, there is an explicit embedding of N’
in R = R x R given by the relation

N ={, vl +]yf =1 and (2]|z]— 1)/4 + |y[* = 1/16}. (See
the figure below.) This smooth manifold is invariant under the
standard linear action of SO,,, on R**', and the restricted action on
the boundaries is again standard. In particular, the restriction to
S™ x 877" is merely the usual action on S” crossed with the identity on
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FIGURE 1

S?=*.  There are a homotopy class in 7,(SO,.,) which induces a diffeo-
morphism of S* x N’ with the right restrictions to the boundaries,
and this gives the desired extension of the map B. Since the pairings
o, 7 and o', 7’ are commutators in the restrictions of extendible maps,
the diffeomorphisms associated to them are extendible, and the argu-
ment is completed.

The Milnor-Munkres-Novikov pairing may be generalized to products
of three spheres in still another manner. Let p, q,  be three positive
integers, and let gex, (SO,), ae 'y, ... Represent B by a class
in [S?x 8% SO,] which is constant off D2 x D% and induces a diffeo-
morphism on S? X S” X S”. Represent « by a diffeomorphism of S? x S~
which is the identity off D x Dr.. Then the commutator [«, 8] is
the identity off D2 x D% x D7, and hence it determines an element
T8y @) Of Ipigirire

THEOREM 2.4. The pairing

Tt Tpeo(SO,) X Loy — Dpigirnn
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18 trivial.

Proof. Let T" be the n-dimensional torus. Then a pairing 7,
may be formed using maps which are fixed off products involving
(Dy)?, (DY) and D%, and an argument similar to 2.3 shows that
Ty = Tqe

If v is a pseudo-isotopy class of diffeomorphisms of 77 x T x S,
let X, be the closed smooth manifold formed by identifying two copies
of T* x T® x D™ (denoted by + and —) along the boundary via 7.
Let €7, (SO, and aeI',..,, be as in the definition of 7,. By a
standard argument [17, p. 540], X, and X;.,,_, are diffeomorphic.
However, the latter is merely X,., which is X, #3. by 1.1, and X,
is merely T° x {T* x S™** 4 %,}. We have the standard inclusions of
T° x T* x Dy into X,, and the diffeomorphism B’ from X;._, to X,
maps these to themselves by —pg.

There are canonical homeomorphisms of X, and X, with 77%7 x S,
and we claim that under these homeomorphisms the diffeomorphism
B’ corresponds to a map homotopic to the diffeomorphism of 7%+ x S+
induced by — B€m,,(SO,). First notice that under the canonical
homeomorphisms the standardly embedded T?+? x D"*' is mapped to
itself by the identity; hence the remarks in the above paragraph imply
G’ corresponds to — B on this piece.

Next, consider the homeomorphism

F: T?* x DIt —— T?% x DI

corresponding to the diffeomorphism g’ on the included pieces 77 x
D7, and let H= FB. Then H maps the boundary 77¢ x S" to
itself by the identity by the previous remarks, and there is no
cohomological obstruction to deforming 7, H into 7, rel the boundary
(which is why we replaced S” and S with 7”7 and 7%. Thus B’
corresponds up to homotopy to a fiber homotopy equivalence over
T?+1 whose restriction to T x D, agrees with the induced map of
—B and maps T x D_ into itself. An application of the Alexander
trick implies that this fiber homotopy equivalence is fiber homotopic
to —pB, and hence that g’ is homotopic to the map induced by —z3.
But for any highly homotopy associative and commutative H-space
H, the map (—pR)*: [T*** x S+, H] —[T*** x S"*', H] applied to any
element in the image of x,.,..(H) is the identity [21, Appendix].
Combining this with a little smoothing theory (e.g., [21, 2.2]), we
see that 7,8, @) must vanish.

PrOBLEM. Let D, be the topological group of diffeomorphisms
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of D™ which are the identity near the boundary (in the C* topology).
Then the map 7, factors through the group 7,(D,,,) and the Novikov
projection \: w,(D,y,) — Ipigirr:i [20, p. 227]. Is the associated map
into 7,(D,.,) trivial?

The above information has been assembled to prove the following
factorization formula relating the plumbing pairing ¢ and the Milnor-
Munkres-Novikov pairing <.

THEOREM 2.5. Let ve 7.(SO,)(r £ p — 2), a € 7,(SO,), and B € 7 ,(SO,).
If B is in the image of w,(SO,_.), then

T,.,,,HH("/, op,q(ay :8)) = 0p+r,q(aJ(7), ;8) .

Most of the interesting applications of the above formula occur
when » = 1. The condition on @ may be weakened to assuming that
the Samelson produet of v and B8 in SO,,, vanishes.

Proof. This basically reduces to an exercise in the algebra of
the group & = 27 (8? x 8 x S7). The homotopy groups involved in
the statement 2.5 all map into < canonically, and we identify a given
element with its image in <r. Also, there is the composite map

1,
01 Iy —2 (87 x 89 225 (8P x 8T x S,
the last map being cartesian product of a diffeomorphism with the
identity on S’.

By definition of the Milnor-Munkres-Novikov pairing, we have
the equation:

ola, B)T(v, o(a, B)) = o(a, BT .

Now g and v are both in the image of [S" x S¢, SO,,] in & (S” x S* x S").
Since B comes from SO,_, and v comes from SO,,, (a pair of com-
muting subgroups up to homotopy), these elements commute in the
above homotopy group. Hence we may continue to alter the last
expression in the equation:

yaga LT = yagaTy AT = (YayT)B(yarT) AT

However, by 1.2, vavy™ = aa, = a,x, where «, is the image of the
homotopy class of 7,,,.(SO,) given by aJ(v). Continuing the derivation,
we have
(rvav)B(rav )BT = aapaT BT
= a(,O'(a, 18):8“0—1:8—1 = CKOO'(C(, B)aglo(aOy B)
= Tp(al)’ O'(CL, :8))0(“, B)G(QW B) ’
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where 7, is as described preceding 2.4. Since 7, vanishes by 2.4, we
have shown that o(a, B)z(v, 0(B, B)) = d(«a, B), o(a,, B) and the theorem
follows upon cancelling o(a, B8) from both sides of the equation.

3. Special cases of Theorem 2.5. If n = 0,1, or 2 mod 8, then
7.,.(SO) = Z, Z,, and Z, respectively, and composition with the non-
trivial map %: S" — S** induces an epimorphism if » = 0 and an
isomorphism if n = 1. Therefore it is reasonable to expect that
Theorem 2.5 will have some nonempty applications; these are stated
in terms of Wall’s classification theory for highly connected almost
closed manifolds [26, 27].

In the above papers suitable Grothendieck groups &% and %+
were defined such that each almost closed (% — 1)-connected 2n- or
(2n + 1)-manifold M determined a well-defined element [M] e &7,. There
are also obstruction homomorphisms

ﬂ: 5”7%2” —_— an_l(ﬁ: Z>n2n+1 — 2n)

such that 0(M) is the diffeomorphism class of the boundary of M.
Now Z,* may be written Z@ < where Z< Ker 6 [26, Th. 2, p. 176],
and certain other elements are known to be either trivial or nontrivial.
No relations are known in general for <°2***, however; the obstruction
homomorphism in the case # = 4 has been studied by D. Frank [8,
p- 565]. Our techniques exhibit relationships between certain elements
in the image of the obstruction homomorphisms if » = 0,1, 2 mod 8
and n = 16. We refer the reader to Wall’s papers for the computa-
tions of the Grothendieck groups and the manifold invariants which
induce isomorphisms.

Let n = 8k, where k¥ = 1. In Wall’s notation let

(i) pe < have invariants 7/8(u) = 0e Z, ¥*/2() = 1e Z

(ii) ve @™ have invariants @Sga(y) = 0e€ Z, o) = leZ,

(ili)) &e &* have invariants @(&) = 0e Z,, py(§) = 1€ Z,

(iv) ke 2 have invariant o(f)(k) = 4€ Z,

(v) NeZm;* have invariants 7/8(\) = 0€ Z, ¥*/2(\) = 1€ Z,.

THEOREM 3.1. If n = 8k and k = 2, the above elements are related
by the compositions

(N = 0(k)-7, 6(k) = 6(5)-77,
6(¢) = 6(v)-m, 6(v) = 0(z0)-7 .
Note that 7 always represents the nontrivial map from S™*' to

S™ in our discussions.
One consequence of 3.1 is that the homomorphism 8 is completely
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determined for & ?* if » = 2 mod 8.

COROLLARY 3.2. Suppose n = 2(8), n >10. Then the obstruction
homomorphism maps < onto 0P, & I',,_, sending the element with in-
variants t/8 = se€ Z and ¥*/2=te Z, into s times the generator of 0P,,.

Proof. It is merely necessary to check the case s = 0,¢ = 1, i.e.,
the element )\ constructed above. But 0(\) = 6(y)-n-n-n-n by 3.1,
and this element vanishes since 7* = 0 in the stable homotopy groups
of spheres.

We shall show later that the truth of 3.2 for n = 10 follows from
results of Frank.

Proof of 38.1. Let wem, (SO, go stably to the generator of
7,-(SO) = Z and have Hopf invariant zero; since » = 0 mod 8 and
n # 8 such a class exists. In fact, « is in the image of 7, ,(SO,_;)
under the canonical mapping by standard results of homotopy theory;
thus 2.5 will apply to @ or any composition a-{({ e x,(S"™")) provided
r =1 and J(v) = 7 in that theorem.

The obstruction homomorphism and the plumblng pairing are
related as follows (compare [27, §12]):

0(e) = o(@, @) 0(v) = o(an, i.a)
0) = olican, ivan) 60N = oliaar, i*ar)

(74 denotes the homomorphism of 7.(SO,_;) to 7.(SO,) induced by in-
clusion). The composition formulas now follow upon successive appli-
cations of 2.5.

REMARK. The element £ e Z°2* may be written 4«’ [27, §12]
and hence by 3.1 we have 40(¢’) = 0(p)-7° = 4(30(p)- p), where pew, =
Z,, is the generator; it is obvious to ask whether 6(x') = 30(x)-p0
holds in general.

For convenience we summarize some specific low-dimensional results
on the obstruction homomorphism. All of these use the known mul-
tiplicative structure of the stable stems', and a few depend upon
results of Brumfiel and Frank [6, 8].

Let bSpin;,,, & Ig,., be the subgroup of homotopy spheres bound-
ing spin manifolds. There are natural splitting mappings s: Iy, —
0P;, and s": bSping,, — 0P, defined in [6, I] and [6, II] respectively.
Finally notice that the image of the obstruction homomorphism on
Tekt? is contained in bSpin,., since the manifolds representing
Grothendieck elements are highly connected.

1 T wish to thank M. Mahowald and M. Tangora for discussing these results with
me.
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LEmMMA 3.3. Let & and N be as wn 3.1. Then s'0(&) =0 and
sd(n) = 0.

This may be directly verified from the construction of the mappings
s’ and s. The latter statement has nonempty content only if n = 10
(otherwise (\) = 0 by 3.2).

THEOREM 3.4. (i) The kernel of the obstruction homomorphism
on & contains an element of order 2 if n = 8,9, 16, 17, 25, 33.

(ii) The kernel of the obstruction homomorphism < consists
of all elements with Arf invariant (i.e., @ in Wall’s notation) zero if
n =9, 17, 25.

(iii) The obstruction homomorphism maps <2 onto 0P, & [y,
and the tmage of an element ts completely determined by the index
invariant /8.

Notice that (iii) settles the single case left unresolved in 3.2.

Proof. (i) If n =8, we claim that the element 6(v) embeds in
R® with trivial normal bundle; the triviality of 4 then follows from
[11]. Let Q" be the manifold formed by plumbing the disk bundles
v (over S°) and B (over S°), so that 0@ = S}%,,. According to an
argument of Hirsch [10], Q" embeds in R* and the normal bundle
of the boundary is explicitly computable. For let A: @7 — S®\/ S° be
the standard homotopy equivalence and j the inclusion of S as the
boundary of Q; then by a generalization of a theorem of James and
Whitehead [12, 3.7, p. 206] the map %j is homotopic to the sum

[3s, 2ol + 2J(7) + % (B) -
Thus the normal bundle of the embedded boundary of Qv is
{8, 7] + BI(V) + 7J(B)} € T(BSOy) -

But the element #(v) may be written in the form o(z, 7, @), where
te (SO, classifies the tangent bundle and « generates =,(SO,) = Z
(compare [26, 27]). Since 7,7 = 0, the normal bundle of this plumbing
boundary is given by — i.aJ(ty)) = — i,aJ(r)7. On the other hand,
it is clear by a similar argument that — i,aJ(7) is the normal bundle
for an embedding of the exotic sphere o(z, @)e I';; in R®. But this
is in the metastable range, and every exotic 15-sphere embeds in the
metastable range with trivial normal bundle [11]. Thus we must
also have — i,aJ(tn) = 0, which proves our claim.

The case n = 9 is treated similarly. An argument like the pre-
vious one shows that 6(k) embeds in R* with normal bundle {7,
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where { is the normal bundle of the embedded homotopy 17-sphere
o(an, an); but { is trivial by the argument in (ii) and [2, Table I],
and hence 6(r) embeds in R¥ with trivial normal budle. An extended
investigation along the lines of [2] using results in [25, p. 164, line
7] and [25, p. 190] shows that the only exotic 18-sphere which embeds
in R¥ with trivial normal bundle does not bound a spin manifold;
hence the element 6(k) vanishes since it corresponds to a sphere which
does bound a spin manifold.

The cases n = 16, 17 follow from the relations given in 3.1 and
the fact that the subgroup 7,7 & 7, is contained in the image of
J [3, 18]. The case n = 25 follows from the fact that =,-7* & 7, is
also contained in the image of J. The case n = 33 follows because
T = 0 [24].

(ii) If » =9, we first note that the element 6(¢)e I, (fe &®
as in 3.1) embeds in R® with trivial normal bundle. For if we
repressent 6(£) as o(an, an), an argument like the preceding one shows
that its normal bundle in R* is given by

iy ([an, an] + and(an) + anJ(an)) .

But anJ(an) = (an),J(an) has order two, and hence the normal bundle
is merely 7.a,[n, 7]. Using [9] and [25, Prop. 2.5, p. 22], we see that
[7, 7] = [1s, Le]* = J(z9)*. Hence the normal bundle in R* is in fact
1.aJ(t5)7?; however, we have already noticed that <.aJ(zy) is the
normal bundle of an exotic 15-sphere embedded in R*. But results
of Kervaire [13], Levine [16], and Toda [25, pp. 104, 110] imply that
a homotopy 15-sphere always embeds in R* with a trivial normal
bundle and never embeds with a nontrivial normal bundle. There-
fore we have shown that 7,aJ(z,) and 7.aJ(7s)7* must vanish, and the
claim concerning 6 (&) follows immediately. Let p(8(¢)) & 7, be the
coset of the image of J containing the Pontrjagin-Thom constructions
on 6(&) [14]. Since (&) = o(am, 7) (v € m(SO,) classifies the tangent
bundle to S°) and J(an) factors in terms of J(«) and 7, we may apply
[8, Th. 2, p. 564]. In particular, p(6(f)) contains an element in the
Toda bracket B = {J(ay), B, ) for some g€ m,. But clearly J(a){%, B, )
is contained in B, and the indeterminacy of B is

J((,U?)'n'g + Tge?) = W57

On the other hand 7.7, & 74-»[25], and hence p(d(§)) contains an
element of 7,-7). Now the generators of m,-y are J(an* and %*-.
The latter cannot possibly be in »(6(£)) since it represents an exotic
17-sphere which does not embed in R®* with trivial normal bundle
[2] and hence p(8(¢)) = Image J. Hence 6(£) € 0P, and the vanishing
of 6(¢) follows since s’6(§) = 0 by 3.8.
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The cases n = 17, 25 follow from 3.1 and the previous remarks
on 7y,+n and m,-7n.

(ili) By the theorem in [8] used above, we have that p(6(\))
intersects the bracket C = {(J(an?), B, »*) for some g €x,. As before
we see that J(a){7*, B, ) S C and the indeterminacy of C is

J (avz)ﬂ'm + T =y

Since 7, = 0, we have 0e C and C = =,;»% but =, is contained in
the image of J, and hence 6(\) € 0P, as in the previous argument.
The vanishing of 4(\) now follows since sf(A\) = 0 by 3.3.

Of course, Theorem 8.1 reduces a great many computations of
obstruction homomorphisms to the computation of the coset p(6(y)) =
Ty,—.; unfortunately, an effectively computable formula for this coset
has not been discovered.

4, Semifree circle actions on homotopy nine spheres. It is
not known whether every homotopy sphere admits a smooth circle
action. However, every exotic 7-sphere has such an action which it
inherits from its description as a Brieskorn-Hirzebruch variety. Fur-
thermore, the Brieskorn-Hirzebruch description and a result of Bredon
[4] give semifree circle actions on any exotic 9-sphere which lies in
bSpin,,. We shall consider those which do not lie in bSpin,. The
proof of the following theorem uses some very explicit results and
does not generalize to homotopy spheres not in bSping, ., for arbitrary k.

THEOREM 4.1. Let 3° be a homotopy 9-sphere not bounding a spin
manifold. Then 3° has no semifree action whose fixed point set is
5-dimenstonal.

If we combine this result with the proposition proved in [22, §4],
we see that the fixed point set of a semifree circle action on 3°¢
bSpin,, can only be 1-dimensional. The problem of determining whether
actions with such fixed point sets exist may be reduced to homotopy
theory by [5]; however, an actual homotopy-theoretic computation
along the lines of [7] would be quite complicated and unrelated to
the central ideas of this paper.

Proof of 4.1. We shall base our argument on the techniques
developed in [5] and [23]. Suppose X° is a homotopy sphere having
a smooth semifree circle action with F*® as its fixed point set; thus
F* is an integral homology sphere. Then F° bounds a contractible
manifold K°® by surgery theory, and the equivariant normal bundle of
F® in 3° is the trivial complex plane bundle (since it is fiber homo-
topically trivial [5]). Let f: F x D*— 3° be an equivariant tubular
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neighborhood, let V = 3° — f(F x Int D¥), and let W = V/S*. Then
OW =F x S and as in [23, §2] there is a homotopy equivalence
h: (W, F x §)— (K x S, F x S%). The restriction of & to F' x S* ig
given up to homotopy by a class R(9, f) € 7,(G,) = 7y(F,) D 75(S0,). By
surgery theory (compare [21, 2.2]) the restriction of ~ to F x S* is
homotopic to a diffeomorphism ¢ fixed near the complement of D°x S?
where D* S F' is a closed disk.

We wish to determine the homotopy sphere 3° (at least mod bSpin,,)
acted on by @®. This may be done since % restricted to the boundary
is a diffeomorphism, and hence we have a simply connected surgery
problem. Actually, % corresponds to a relative homotopy smoothing
of the manifold pair F x S*—% K x S°, where i: F x S*S K x S is
inclusion and g is the previously discussed diffeomorphism. We can
compute the normal invariant of % as usual, and the processes of
passing to the total space of the circle bundle and equivariantly at-
taching F' x D* along F x S® yield a homotopy smoothing

W.3—— F x D"U3;S° — f(F x Int DY)

whose normal invariant may be determined from that of 2 by homotopy
theory as in [23, §2] (g is an equivariant diffeomorphism of F' x S°
covering g on F' x S?. It is immediate by direct computation of surgery
obstructions that the normal invariant of %2 in [K x S*F x S§%, G/0]
lies in the image of [K x S*F x S? G]. An elementary computation
then shows that the normal invariant of 4’ in 7,(G/0) must come from
an element in 7, which bounds a spin manifold. Hence

3= F x D'U; S8° — f(F x Int DY

modulo bSpin,, and it is thus necessary to show that the manifold
on the right does not bound a spin manifold.

Since the diffeomorphism ¢ of F x S* is fixed off Int D x S? we
may assume that the equivariant covering g is fixed off Int D® x S°
(it corresponds to a map [F® — D°] x S*— S' on this complement).
Therefore, by construction ¢ and § induce diffeomorphisms v and ¥
of S°x S§* and S°xS® respectively, and an argument based upon
Lemma 2.2 shows that

FxD'U;S° — f(F x Int DY) = §° x D*U:D° x S°.

If the diffeomorphism 7 extends to S° x D‘, then Lemma 2.2 implies
that the homotopy sphere constructed is standard and hence the original
2® bounds a spin manifold; we shall use Propositions 1.3 and 1.4 to
determine whether this is the case.

Notice that composition with the nontrivial map 7: S°— S*induces an
epimorphism from 7,(G,) to 7,(G;) by results of Toda [25, 5.1, 5.3, 5.8, 5.9,
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pp. 39, 40, 43, 44] and the natural splitting 7;(G,) = 7,(F,) @ 7;(S0,).
Futhermore, since 7, = 0 the fiber homotopy equivalence determined
by any element of 7,(G,) is homotopic to a diffeomorphism v, of S* x S?
which is fixed near D* x S%[21, 2.2] again), and hence g is explicitly
constructible from g, by Proposition 1.8. If ¥, is a diffeomorphism
of S§* x §* fixed near D* x S* which covers 7, then Proposition 1.4
allows one to construct ¥ from 7, in the same fashion. Let h: S* x S*
— 8" x S* be a diffeomorphism induced by the nontrivial class in
7,(S0,) = Z,, so that § may be written as the commutator [A x 1,,
1, x #].

Since 7' is fixed off D' x 8% results of Levine [17, 2.3] imply
that ¥, may be written as a product wv, where v extends to S* x D*
and v is fixed near the complement of DY x D3 (and hence corresponds
to an element of I'y). According to Proposition 2.3, [k x 1,1 X 7] is
pseudo-isotopic to 7(n, v) € I, Since this element is central, it is easy
to compute that

[hx 1,1 x 7 =[hx1,1X ult@®, v).

But [r X 1,1 X 7] extends to S® x D* because u extends to S* x D*.
Hence Lemma 2.2 implies that

S x D*U:D°* x S°
is diffeomorphic to
Sb X .DAUTU],”).DG X 83 = 377 .

But S, bounds a spin manifold (e.g., see [1]); since we have shown
that this sphere is the same as

F x D'U; 8° — f(F x Int DY)

and the latter is congruent to 2° mod bSpin,, the fact that 2°< b Spin,,
is immediate.

REMARK. Let %, be the map defined above with factorization uv.
The factor » may be shown to be nontrivial in certain cases if and
only if the exotic 8-sphere has a semifree circle action with 4-dimen-
sional fixed point set. Since such an action on the exotic 8-sphere
may be explicitly constructed using [8, Th. 3], the factor » can in
fact b