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It is shown that a map from Sp+r to Sp in the image of
the J-homomorphism sends particular types of diffeomorphisms
of S* X S« into diffeomorphisms of Sp+r X S«. This is applied
to the problem of determining the diffeomorphism type of an
exotic (p + q + r + l)-sphere obtained by attaching Dp+r+1 x Sq

to Sp+r x Dq+1 via a diffeomorphism of Sp+r X Sq.

The first section of this paper deals with the generalities of the
construction. In the next two sections we exploit these ideas in a
study of the plumbing pairing (compare [4]), and we show that the
pairing vanishes in an infinite class of cases (3.2) and some selected
low dimensions of other types (3.4). The last section of this paper
uses the basic construction to investigate the existence of smooth
semifree circle actions on homotopy nine spheres [5]. In particular,
it is shown that if Σ9 does not bound a spin manifold, then it has
no semifree circle action with 5-dimensional fixed point set. See [23]
for further nonexistence theorems concerning semifree circle actions
on homotopy spheres and some geometric applications.

1* Constructions for compositions* Let a e πp+r(Sp) and β e
πp(SOq+1) be given. Then it is well known that β induces a diffeo-
morphism of Sp x Sq and the composition β aeπp+r(SOq+d induces a
diffeomorphism of Sp+r x Sg. If a is in the image of / : πr(SOp) —•
πp+r(Sp) we shall give a geometric procedure for passing from the
diffeomorphism induced by β to that induced by β a. In all our
applications a will be the nontrivial homotopy class in πp+1(Sp).

PROPOSITION 1.1. Let X be an H-space, let jeπr(SOp), and let
β 6 πp(X), where p Ξ> 2. If h is the diffeomorphism of Sr x Sp induced
by 7, the map π: Sr x Sp —> Sp is projection, and q: Sr x Sp -— Sp+r is
the collapsing map, then the following formula holds:

h*π*β = π*β-q*(β-J(y)) .

The dot represents multiplication in [Sp x Sr, X]. The above
result was proved for X a double loop space in [21, Appendix].

Proof. Without loss of generality the diffeomorphism h maps
* x Dr+i to itself by the identity (* is the basepoint). Thus if
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K = Sp x Sr U * x Dr+1 ,

then Λ extends to a homeomorphim of K. It is easy to see that K has
the homotopy type of Sp V Sp+r, since the map (π, g):K->Sp x S p + r

deforms to a map into Sp V Sp+r which induces isomorphisms in
homology (the maps π and q are extensions of the maps on Sp x Sr

to K). An explicit homotopy inverse to the above map may be con-
structed as follows: Define g: Sp V Sp+r —»K so that g\Sr is inclusion
into * x Sr and g maps

gP + r = 2Jp χ gr y g,-i χ 2Jr+l

by sending (x, y) e Dp x Z)r+1 to (p(x), y) e K Q Sp x D r + 1 , where p
maps D p to Sp by collapsing the boundary. We then compute g*h*π*β
from its restrictions to Sp+r and Sr; an argument like that of [21,
Appendix] shows that h*π*β has the desired form in [K, X]. The
proposition follows upon restriciting to Sp x Sr.

COROLLARY 1.2. Leέ f be a diffeomorphism of Sp x £ r representing
7 αwd Ze£ g be a diffeomorphism of Sp x S g represented by β e πp(SOg)
(notation as in l l ) . T%eπ the commutator diffeomorphism [lq x / ,
g x l r ] o^ Sp x Sq x Sr represents the homotopy class q*βJ(j) e [Sr x Sp,
SOq+1].

Proof. By a direct computation it follows that the commutator
diffeomorphism sends (x, y, z) e Sp x Sq x Sr into

(a?, [goixj-'goπffa y)]z, y) ,

where βr0: S
2' —> SOg + 1 is such that f(x, y) — (x, go(x)y) and the multi-

plication within the brackets comes from the group structure of SOq+1.
By 1.1 we know that the homotopy class of gQπf = f*π*β is the
product of the class of goπ, τr*/S with the class q*βJ(y), and the
corollary follows from this.

We shall need generalizations of 1.2 in §4. Suppose that h is a
diffeomorphism of Sp x Sq which is the identity near Ώ\ x Sq (compare
[17, 2.3]). Then h is homotopic to a map sending (x, y) e Sp x Sq to
(x, hf(x)y), where h! is a continuous map from Sp into the space Gq+1

of self-maps of Sq with degree + 1. Let β be the homotopy class in
πp(Gq+1) so obtained; it is immediate β is a pseudo-isotopy invariant
of h and that the formula β(hjι^ = β(h^ + β(h2) holds. For any
integer s satisfying l^s^p — 1, the diffeomorphism h induces a diffeo-
morphism hίs] of Sp" s x Ss x Sq such that hίs]\D x Sq = h\DpxSq (for
some coordinate disk D in Sp~s x Ss) and h[s} = 1 off D x S.

PROPOSITION 1.3. Let h: Sp x Sq —>SP x Sq be a diffeomorphism
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which is the identity near Dp

+ x S9, and let f be a diffeomorphism of
Sp x Sr induced by 7 e πp(SOr). Ifβe πp(Gq+1) is the class associated to h,
then the commutator diffeomorphism [lq x f,h x l r ] of Sp x Sq x S r

is βguαί £0 α diffeomorphism of the form kίP] for some k on Sp+r x S9

which is the identity off DP^r x Sq. Furthermore, the homotopy class
associated to k is the composition β J(y) e πp+r(Gq+ί).

Proof. Pick a representative / of 7 which is the identity near
Dr

+ x Sp. Then the commutator above is the identity near the com-
plement of Dp x Dr x Sq, and hence does have the form kίP]. The
homotopy class of k may be computed from that of kίP} by a compu-
tation of the commutator similar to that of 1.2. Notice that — β is
the homotopy class associated to h~\

Suppose that q = 3 and the above diffeomorphism h of Sp x S3 is
equivariant with respect to the free action of S1 on the second factor
by scalar multiplication. Then a diffeomorphism h of Sp x S2 is induced
on the quotient manifold, and a homotopy class β e πp(G3) is obtained.
Given / and 7 as above, one may form the commutators [13 x /, h x l r]
and [12 x f, hx lr] and obtain diffeomorphisms k of Sp+r x S3 and I
of Sp+r x S2; the diffeomorphism k is equivariant with respect to the
action of Sι on S3, and ί is the diffeomorphism which it induces on
Sp+r x S2.

PROPOSITION 1.4. In the above notation, the homotopy class in
πp+r(Gz) determined by I is βj(j).

The proof is straightforward.

2* Plumbing formulas* Throughout this paper &(M) will
denote the group of pseudoisotopy classes of orientation-preserving
diffeomorphisms of the smooth closed manifold Mn. Recall that there
is a canonical map σ: Γn+1-+ 2${M) (compare [21, 1. 7]), whose image
we shall call Δ\ this map is 1 — 1 if M is a product of spheres
[21, 1. 7]. Furthermore, Δ is contained in the center of &{M) (com-
pare [17, p. 529]).

The plumbing pairing

σp,q: πp(SOq) x πq(SOp) > Γ P+q+l

may be defined as follows. There are canonical maps of πp(SOq) and
πq(SOp) into j2f{Sv x S9) as noted previously and we denote the homotopy
and pseudo-isotopy classes by the same letter. Let / represent
ueπp(SOq) and g represent veπq(SOp); without loss of generality / is
the identity near Ό\ x S9 and g is the identity near Sp x Dη

+. The
commutator [u, v] is thus represented by a diffeomorphism [/, g] which
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is the identity off D .̂ x Dl, and hence [u, v] = σ{i) e Δ, for some
7 e Γp+q+1. Since σ is 1 — 1 for M = Sp x Sq, 7 is uniquely determined,
and we define σ{u, v) to be this element 7. The bilinearity of a follows
easily from the definition.

REMARK. Often the definition of the plumbing pairing σp>q is
extended to πp(SOq) x πq(SOp+ι). This is done by taking 7 e Γp+q+1to
be defined by the attaching construction

Sp+q+i = DP+I χ S9\JiutvjSp x Dq+1 .

(The diffeomorphism class of the above manifold is a pseudo-isotopy
invariant; compare [17, §5].) The fact that this extends the previous
definition follows from 2.1 below. If one of vx or v2 is not in the
image of πq(SOp) in πq(SOp+1), the formula σ(u, vx + v2) = σ(u, vx) +
σ(%, v2) may be false.

LEMMA 2.1. Lei (7(7) e J g ^(ΛP) be given, and suppose Qn+1 is
a closed smooth manifold which Mn separates into two components N
and P. Then the identification manifold N\Jσ(r)P is diffeomorphic to

The proof of this follows exactly the same pattern as the more
specialized remark in [17, 2.3, p. 526].

We include another result on manifolds obtained by boundary
identification which will be used in subsequent proofs. Let M, N, P
be compact connected smooth manifolds with boundary, and let Ql9 Q2

be closed smooth manifolds such that dM = Qly dN = Qx (J Q2 (a disjoint
union), dP = Q2, If h and k are diffeomorphisms of Q1 and Q2 respec-
tively, then one can form the smooth manifold

X(h,k) - M\JhN\JkQ .

LEMMA 2.2. Suppose there is a diffeomorphism φ of N mapping
Qx and Q2 into themselves such that φ \ Qί = h! and φ\Q2 = k\ Then
X(h, k) is diffeomorphic to X(h'~ιh, kkf).

Proof. Define the diffeomorphism Φ piece by piece. Let Φ\M{J
P be the identity, and let Φ\N= <P~\ Then Φ is a diffeomorphism
because it is consistent with identifications along the boundaries.

The pairing τp>q of Milnor-Munkres-Novikov [16, p. 583] has a
similar description, although for computational purposes it is best
described as the map τv q: πp(SOq) x πq(PD/O) —> πp+q(PD/O) for which
τ(a, β) = β J(a). For our purposes it will be convenient to interpret
these pairings in terms of pseudo-isotopy classes of diffeomorphisms of
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a product of three spheres; other elaborations are obviously possible.
One may define pairings

σ': πp(SOr+1) x πq(SOp) > Γp+q+1

T : τΐp(SOr+1) x Γq+ι > Γp+q+ι

via induced diffeomorphisms of Sp x Sq~r x Sr in much the same way
that σ and r are defined. One uses the fact that there are embeddings

Sp x Sq~r x Dr+1 g S p x Dq+1 £ £^+«+1

and glues together Sp x S?~r x Dr+1 and the closure of its complement
in Sp+g+1 via the diffeomorphism of the product obtained. We remark
that πg(SOp) maps into [S9~r x S% SOP] via maps fixed off Dg

+~r x Ό\\
likewise, Γg+1 acts via diffeomorphisms fixed off Dq+r x Dr+.

REMARK. Levine has defined a 4-linear map δ which generalizes
σ and τ to some extent (see [18, §7]; actually, δ is expressible in
terms of a and r) . The result stated below could also be formulated
in terms of δ and a related pairing δf.

PROPOSITION 2.3. Let i: SOr+1 —• SOq+1 be the inclusion. Then
σ'(a, β) = σ{a, i*β) and τ'(β, a) = τ(i*β, a).

Proof. Let Q1 = Spx Sq~r and let Q2 = Spx Sq. Let N=SpxN'
be the cobordism between Qt and Q2 constructed from the
above embeddings; i.e. JSP = Dq+1 - Int Sq~r x Dr+ί. Finally, let
M = Sp x S ? " r x D r + 1 and let P = Dp+1 x S ?. Then Sp+q+1 =
M\JιN\JiD and MUi-ΛΓ = Sp x D ? + 1 . If we can extend the
diffeomorphisms induced by σ, and r on Sp x S g and by 0"', r ' on
S p x Sq~r x S r to diffeomorphisms of iV, then the result will follow by
2.2. But let ψ: Dq x I—> N' be a proper embedding such that

( i ) ψ-\Sq) - Dq x 1 and f (Dξ. x l ) s Int Ό\

(ϋ) ψ-1(Sq~r x Sr) = D g x 0 and i/r(D*+ x θ ) g I n t D Γ r x I>+.
Then πg(SOp) and JΓ ? + 1 act on Sp x N' and i\Γ' via maps which are
the identity outside the image of ψ and only depend on the Dq

coordinate. The map a e Γq+1 extends to Sq x N' via natural product
extensions. On the other hand, there is an explicit embedding of N'
in Rq+1 = Rr+1 x Rq~r given by the relation

iSΓ' = {(x,y)\ \x\2 + \y\2^l and (2|a?| - l)2/4 + \y\2 ^ 1/16}. (See
the figure below.) This smooth manifold is invariant under the
standard linear action of SOr+1 on Rq+ί, and the restricted action on
the boundaries is again standard. In particular, the restriction to
Sr x Sq~r is merely the usual action on Sr crossed with the identity on
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FIGURE 1

Sq~r. There are a homotopy class in πp(SOr+1) which induces a diffeo-
morphism of Sp x N' with the right restrictions to the boundaries,
and this gives the desired extension of the map β. Since the pairings
σ, τ and σ', τf are commutators in the restrictions of extendible maps,
the diffeomorphisms associated to them are extendible, and the argu-
ment is completed.

The Milnor-Munkres-Novikov pairing may be generalized to products
of three spheres in still another manner. Let p, q, r be three positive
integers, and let βeπp+q(SOr), cte Γp+q+r+1. Represent β by a class
in [Sp x S9, SOr] which is constant off Ό\ x Ώ\ and induces a diffeo-
morphism on Sp x Sr x Sr. Represent a by a diffeomorphism of S9 x Sr

which is the identity off Dl x DL. Then the commutator [a, β] is
the identity off Ό\ x D\ x D+, and hence it determines an element
τq(β, a) of Γp+q+r+ι.

THEOREM 2.4. The pairing

zq\ 7Γp+q(oUr) x Γq+r+ι > Γp+q+r+1
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is trivial.

Proof. Let Tn be the ̂ -dimensional torus. Then a pairing τq

may be formed using maps which are fixed off products involving
(D\Y, (D+Y, and D+, and an argument similar to 2.3 shows that

A = T<*
If 7 is a pseudo-isotopy class of diffeomorphisms of Tp x Tq x Sr,

let Xr be the closed smooth manifold formed by identifying two copies
of Tp x Tq x jDr+1 (denoted by + and - ) along the boundary via 7.
Let βeπp+q(SOr) and aeΓq+r+ι be as in the definition of τq. By a
standard argument [17, p. 540], Xa and Xβaβ-ι are diffeomorphic.
However, the latter is merely Xaτ, which is Xa%Στ by 1.1, and Xa

is merely Tp x {Tq x S^ftl7*}. We have the standard inclusions of
Tp x Tg x Dr

±

+1 into Xπ and the diffeomorphism β' from X w _! to Xa

maps these to themselves by —β.
There are canonical homeomorphisms of Xaτ and Xa with Tp+g x Sr+1,

and we claim that under these homeomorphisms the diffeomorphism
βf corresponds to a map homotopic to the diffeomorphism of Tp+q x Sr+1

induced by — βe πp+g(SOr). First notice that under the canonical
homeomorphisms the standardly embedded Tp+q x Dr+1 is mapped to
itself by the identity; hence the remarks in the above paragraph imply
βf corresponds to — β on this piece.

Next, consider the homeomorphism

corresponding to the diffeomorphism βf on the included pieces Tp+q x
DL+1, and let H = Fβ. Then H maps the boundary Tp+q x Sr to
itself by the identity by the previous remarks, and there is no
cohomological obstruction to deforming πτ H into πτ rel the boundary
(which is why we replaced Sp and Sp with Tp and Tq). Thus β'
corresponds up to homotopy to a fiber homotopy equivalence over
Tp+q whose restriction to T x D+ agrees with the induced map of
— β and maps T x D_ into itself. An application of the Alexander
trick implies that this fiber homotopy equivalence is fiber homotopic
to —/S, and hence that β' is homotopic to the map induced by —β.
But for any highly homotopy associative and commutative ίZ-space
H, the map (-β)*: [Tp+q x Sr+\ H] — [Tp+q x Sr+\ H] applied to any
element in the image of πq+r+ι(H) is the identity [21, Appendix].
Combining this with a little smoothing theory (e.g., [21, 2.2]), we
see that τq(β, a) must vanish.

PROBLEM. Let Dm be the topological group of diffeomorphisms
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of Dm which are the identity near the boundary (in the C1 topology).
Then the map τ'q factors through the group πp(Dq+r) and the Novikov
projection λ: πp(Dq+r) —> Γp+q+r+1 [20, p. 227]. Is the associated map
into πp(Dq+r) trivial?

The above information has been assembled to prove the following
factorization formula relating the plumbing pairing σ and the Mίlnor-
Munkres-Novikov pairing τ.

THEOREM2.5. Let 7 e πr(SOq)(r ^p-2),ae πp(SOg), andβe πg(SOp).
If β is in the image of πp{SOp-r), then

7r,p+(r+i(7f σPtq(a, β)) = σp+r,q(aJ(y), β) .

Most of the interesting applications of the above formula occur
when r — 1. The condition on β may be weakened to assuming that
the Samelson product of 7 and β in SOp+ι vanishes.

Proof. This basically reduces to an exercise in the algebra of
the group £%r = &(SP x S9 x Sr). The homotopy groups involved in
the statement 2.5 all map into £%r canonically, and we identify a given
element with its image in ̂ . Also, there is the composite map

p: Γp+q+1 -Ϊ-* &(SP x Sq) — &(S* x Sq x Sr) ,

the last map being cartesian product of a diffeomorphism with the
identity on Sr.

By definition of the Milnor-Munkres-Novikov pairing, we have
the equation:

*(α, 0)τ(7, σ(a, β)) = 7σ(α, ^ T ^ 1 .

Now β and 7 are both in the image of [Sr x Sq, SOP+1] in &(SP x Sq x Sr).
Since β comes from SOp^r and 7 comes from SOr+ί (a pair of com-
muting subgroups up to homotopy), these elements commute in the
above homotopy group. Hence we may continue to alter the last
expression in the equation:

However, by 1.2, 7αrΓ"1 = cca0 — <xoaf where a0 is the image of the
homotopy class of πp+r(SOq) given by aJ(i). Continuing the derivation,
we have

= aQσ(a, β)βa^ιβ~ι = aQσ(a, β)aoισ(ao, β)

= τp(a0, σ(a, β))σ(a, β)σ(aQ, β) ,
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where τp is as described preceding 2.4. Since τp vanishes by 2.4, we
have shown that σ(a, β)τ(y, σ(β, β)) = σ(a, β), σ(a0, β) and the theorem
follows upon cancelling σ(a, β) from both sides of the equation.

3* Special cases of Theorem 2.5* If n = 0, 1, or 2 mod 8, then
πn^(SO) = Z, Z2, and Z2 respectively, and composition with the non-
trivial map Ύ]\ Sn —• S71"1 induces an epimorphism if n = 0 and an
isomorphism if n = 1. Therefore it is reasonable to expect that
Theorem 2.5 will have some nonempty applications; these are stated
in terms of Wall's classification theory for highly connected almost
closed manifolds [26, 27].

In the above papers suitable Grothendieck groups Ŝ T and S?T+ι

were defined such that each almost closed (n ~ l)-connected 2n- or
(2n + l)-manifold M determined a well-defined element [M] e gfΛ There
are also obstruction homomorphisms

θ: &? > Γ^iθ: &r+1 > Γ2n)

such that Θ(M) is the diffeomorphism class of the boundary of M.
Now ^Γ may be written Z® &T' where Z^ Ker θ [26, Th. 2, p. 176],
and certain other elements are known to be either trivial or nontrivial.
No relations are known in general for S ,̂Γ+1, however; the obstruction
homomorphism in the case n' — 4 has been studied by D. Frank [8,
p. 565]. Our techniques exhibit relationships between certain elements
in the image of the obstruction homomorphisms if n Ξ= 0, 1, 2 mod 8
and n ^ 16. We refer the reader to WalΓs papers for the computa-
tions of the Grothendieck groups and the manifold invariants which
induce isomorphisms*

Let n = 8k, where k ^ 1. In WalΓs notation let
( i ) μe gfΛ

2w have invariants τ/S(μ) = 0eZ, χ2l2(μ) = leZ
(ii) ve£?Zn+1 have invariants φSβά(v) = 0eZ2y ω(v) = leZ2

(iii) ξe S?T+2 have invariants Φ(ξ) = 0e Z2, <pχ(ξ) = leZ2

(iv) ιceS?*lΐ* have invariant ω{f)(ιc) = 4eZ 8

(v) λG ̂ %

2;+4 have invariants r/8(λ) = 0eZ, χ2/2(λ) = l e Z 2 .

THEOREM 3.1. If n = 8k and k^2, the above elements are related
by the compositions

Note that η always represents the nontrivial map from Sm+ί to
Sm in our discussions.

One consequence of 3.1 is that the homomorphism θ is completely



748 REINHARD SCHULTZ

determined for <&ln' if n = 2 mod 8.

COROLLARY 3.2. Suppose n = 2(8), n > 10. Then the obstruction
homomorphism maps 5^Γ' onto dP2n £ Γ2n-i sending the element with in-
variants τ/8 = S G Z a n d χ2/2 = te Z2 into s times the generator of dP2m.

Proof. It is merely necessary to check the case s — 0, t — 1, i.e.,
the element λ constructed above. But 0(λ) = θ(μ) η η τ) τ) by 3.1,
and this element vanishes since η* = 0 in the stable homotopy groups
of spheres.

We shall show later that the truth of 3.2 for n = 10 follows from
results of Frank.

Proof of 3.1. Let α: € T Γ ^ ^ S O J go stably to the generator of
π^iSO) — Z and have Hopf invariant zero; since n = 0 mod 8 and
n Φ 8 such a class exists. In fact, a is in the image of πn-i(SQn-i)
under the canonical mapping by standard results of homotopy theory;
thus 2.5 will apply to a or any composition α ζ(ζe πh{Sn~1)) provided
r — 1 and J(τ) = 7] in that theorem.

The obstruction homomorphism and the plumbing pairing are
related as follows (compare [27, §12]):

θ(μ) = σ{a, a) θ(v) = σ{aη, i*a)

θ{ξ) - σ(ί*aη, i*aη) Θ(X) = σ(i*ocη\ i*caf)

(i* denotes the homomorphism of π*(SOk_ι) to π*(SOk) induced by in-
clusion). The composition formulas now follow upon successive appli-
cations of 2.5.

REMARK. The element /ce%?£HB may be written 4Λ;' [27, §12]
and hence by 3.1 we have Aθ(tc') — θ(μ)'T]3 = 4(3θ(μ) p), where peπz =
Z2i is the generator; it is obvious to ask whether θ(tc') = 3θ(μ)-p
holds in general.

For convenience we summarize some specific low-dimensional results
on the obstruction homomorphism. All of these use the known mul-
tiplicative structure of the stable stems1, and a few depend upon
results of Brumfiel and Frank [6, 8].

Let δSpinδfc+1 c Γ8k+ί be the subgroup of homotopy spheres bound-
ing spin manifolds. There are natural splitting mappings s: Γ8k^ —•
dP8k and s': &Spin8A.+2 —»dP8k+2 defined in [6,1] and [6, II] respectively.
Finally notice that the image of the obstruction homomorphism on
S^ik+t2 is contained in 6Spin16A;+2 since the manifolds representing
Grothendieck elements are highly connected.

1 I wish to thank M. Mahowald and M. Tangora for discussing these results with
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LEMMA 3.3. Let ζ and X be as in 3.1. Then s'θ(ξ) = 0 and
sθ(X) = 0.

This may be directly verified from the construction of the mappings
8f and s. The latter statement has nonempty content only if n — 10
(otherwise Θ(X) = 0 by 3.2).

THEOREM 3.4. (i) The kernel of the obstruction homomorphism
on Sfί*+1 contains an element of order 2 if n = 8,9, 16, 17, 25, 33.

(ii) The kernel of the obstruction homomorphism &2n consists
of all elements with Arf invariant (i.e., Φ in Wall's notation) zero if
Λ = 9, 17, 25.

(iii) The obstruction homomorphism maps 2?$ onto dP20QΓm

and the image of an element is completely determined by the index
invariant r/8.

Notice that (iii) settles the single case left unresolved in 3.2.

Proof, (i) If n — 8, we claim that the element θ(v) embeds in
R26 with trivial normal bundle; the triviality of θ then follows from
[11J. Let Q17 be the manifold formed by plumbing the disk bundles
7 (over S8) and β (over S9), so that dQ17 = S%,r>. According to an
argument of Hirsch [10], Q17 embeds in E26 and the normal bundle
of the boundary is explicitly computable. For let h: Qπ —> S8 V S9 be
the standard homotopy equivalence and j the inclusion of S16 as the
boundary of Q17; then by a generalization of a theorem of James and
Whitehead [12, 3.7, p. 206] the map hj is homotopic to the sum

[i8, h] + %J(7) + %J(β) .

Thus the normal bundle of the embedded boundary of Q17 is

i*{[βf 7] + βJ(i) + ΊJ(β)} e π16(βSO10) .

But the element θ(v) may be written in the form σ(τ, η, α), where
τ e π7(SO8) classifies the tangent bundle and a generates π7(SO9) = Z
(compare [26, 27]). Since i*τ — 0, the normal bundle of this plumbing
boundary is given by — i*aJ{τη) = — i*aJ{τ)η. On the other hand,
it is clear by a similar argument that — i*aJ(τ) is the normal bundle
for an embedding of the exotic sphere σ(τ9 a) e Γlδ in R25. But this
is in the metastable range, and every exotic 15-sphere embeds in the
metastable range with trivial normal bundle [11]. Thus we must
also have — i*aJ(τrj) — 0, which proves our claim.

The case n — 9 is treated similarly. An argument like the pre-
vious one shows that θ(κ) embeds in R27 with normal bundle ζη,
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where ζ is the normal bundle of the embedded homotopy 17-sphere
σ(cσ], ocη)\ but ζ is trivial by the argument in (ii) and [2, Table I],
and hence θ(κ) embeds in R27 with trivial normal budle. An extended
investigation along the lines of [2] using results in [25, p. 164, line
7] and [25, p. 190] shows that the only exotic 18-sphere which embeds
in R27 with trivial normal bundle does not bound a spin manifold;
hence the element θ(tc) vanishes since it corresponds to a sphere which
does bound a spin manifold.

The cases n — 16,17 follow from the relations given in 3.1 and
the fact that the subgroup πsi rj g π32 is contained in the image of
J [3, 18]. The case n = 25 follows from the fact that π^rf g π49 is
also contained in the image of J. The case n = 33 follows because
π63-γ = 0 [24].

(ii) If n = 9, we first note that the element θ(ζ)eΓπ (ζe%?9

18

as in 3.1) embeds in R2Q with trivial normal bundle. For if we
repressent θ(ξ) as σ(aη, aη), an argument like the preceding one shows
that its normal bundle in Rm is given by

ί*{[ocη, aη] + aηJ{aη) + aηJ{aη)) .

But aif]J(aΎ]) — {<Xfj)*J{arj) has order two, and hence the normal bundle
is merely i*a*[η9 η]. Using [9] and [25, Prop. 2.5, p. 22], we see that
[V> V] ~ [Is, Iβly2 — J(τ8)V2 Hence the normal bundle in R2Q is in fact
i*aJ(τ8)η2; however, we have already noticed that ί*aJ(τe) is the
normal bundle of an exotic 15-sphere embedded in Ru. But results
of Kervaire [13], Levine [16], and Toda [25, pp. 104, 110] imply that
a homotopy 15-sphere always embeds in Ru with a trivial normal
bundle and never embeds with a nontrivial normal bundle. There-
fore we have shown that i*aJ(τB) and i*aJ(τs)τ]2 must vanish, and the
claim concerning θ (ξ) follows immediately. Let p{O{ζ)) S π17 be the
coset of the image of J containing the Pontrjagin-Thom constructions
on θ{ξ) [14]. Since θ(ζ) = σ{aη9 τ) {τ e πs(SO9) classifies the tangent
bundle to S9) and J(arj) factors in terms of J(a) and η> we may apply
[8, Th. 2, p. 564]. In particular, p(θ(ξ)) contains an element in the
Toda bracket B = (J(aη), β, τ?> for some β 6 π7. But clearly J(a)<j], β, rf)
is contained in B, and the indeterminacy of B is

J{aη)-π, + π^η = π^η .

On the other hand π7 τr10 £ τr16 ^[25], and hence p(0(ξ)) contains an
element of ττ16 ^. Now the generators of π^rj are J{arf) and ψ rj.
The latter cannot possibly be in ρ(θ(ξ)) since it represents an exotic
17-sphere which does not embed in Rm with trivial normal bundle
[2] and hence p(θ(ξ)) = Image J. Hence θ(ξ) e dP18, and the vanishing
of θ(ζ) follows since s'θ(ξ) = 0 by 3.3.
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The cases n = 17, 25 follow from 3.1 and the previous remarks
on πu η and πΛ7*η2.

(iii) By the theorem in [8] used above, we have that p(θ(λ>))
intersects the bracket C = (J{ocη2), β', η2} for some βf e π7. As before
we see that J(ά)(η2, β', η2} gΞ C and the indeterminacy of C is

J(aγ)πί0 + πlΊrf = ττ17̂

2 .

Since 7Γ12 = 0, we have 0 e C and C = ττ17̂

2; but 7Γ17̂

2 is contained in
the image of /, and hence Θ(X) e dP2Q as in the previous argument.
The vanishing of 0(λ) now follows since sθ(X) = 0 by 3.3.

Of course, Theorem 3.1 reduces a great many computations of
obstruction homomorphisms to the computation of the coset p(θ(μ)) g
π2%_1; unfortunately, an effectively computable formula for this coset
has not been discovered.

4* Semifree circle actions on homotopy nine spheres* It is
not known whether every homotopy sphere admits a smooth circle
action. However, every exotic 7-sphere has such an action which it
inherits from its description as a Brieskorn-Hirzebruch variety. Fur-
thermore, the Brieskorn-Hirzebruch description and a result of Bredon
[4] give semifree circle actions on any exotic 9-sphere which lies in
6Spin10. We shall consider those which do not lie in &Spin10. The
proof of the following theorem uses some very explicit results and
does not generalize to homotopy spheres not in 6Spin8fc+2 for arbitrary k.

THEOREM 4.1. Let Σ9 be a homotopy 9-sphere not bounding a spin
manifold. Then Σ9 has no semifree action whose fixed point set is
^-dimensional.

If we combine this result with the proposition proved in [22, §4],
we see that the fixed point set of a semifree circle action on Σ9 &
6Spin10 can only be 1-dimensional. The problem of determining whether
actions with such fixed point sets exist may be reduced to homotopy
theory by [5]; however, an actual homotopy-theoretic computation
along the lines of [7] would be quite complicated and unrelated to
the central ideas of this paper.

Proof of 4.1. We shall base our argument on the techniques
developed in [5] and [23]. Suppose Σg is a homotopy sphere having
a smooth semifree circle action with Fδ as its fixed point set; thus
Fδ is an integral homology sphere. Then Fδ bounds a contractible
manifold K6 by surgery theory, and the equivariant normal bundle of
Fδ in Σ9 is the trivial complex plane bundle (since it is fiber homo-
topically trivial [5]). Let f:FxD*—>Σ9 be an equivariant tubular
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neighborhood, let V = Σ9 - f(F x IntD4), and let W - V/S1. Then
dW — F x S2, and as in [23, §2] there is a homotopy equivalence
h: (W, F x S2) -> (J5Γ x S\ F x S2). The restriction oΐ h to F x S2 is
given up to homotopy by a class R(Φ, f) e π5(G3) = rc5(F2) Θ π5(&03). By
surgery theory (compare [21, 2.2]) the restriction oΐ h to F x S2 is
homotopic to a diffeomorphism # fixed near the complement of D5 x S2,
where ΰ 5 S ί7 is a closed disk.

We wish to determine the homotopy sphere Σ9 (at least mod 6Spin10)
acted on by Φ. This may be done since h restricted to the boundary
is a diffeomorphism, and hence we have a simply connected surgery
problem. Actually, h corresponds to a relative homotopy smoothing
of the manifold pair F x S2 -^» K x S2, where ί: F x S2 S K x S2 is
inclusion and g is the previously discussed diffeomorphism. We can
compute the normal invariant of h as usual, and the processes of
passing to the total space of the circle bundle and equivariantly at-
taching F x D* along F x S* yield a homotopy smoothing

K'\ Σ9 > F x Dr\J-gS
9 - f(F x I n t D4)

whose normal invariant may be determined from that of h by homotopy
theory as in [23, §2] (g is an equivariant diffeomorphism of F x S*
covering g on F x S2). It is immediate by direct computation of surgery
obstructions that the normal invariant of h in [K x S2/F x S2, G/0]
lies in the image of [K x S2/F x S2, (?]. An elementary computation
then shows that the normal invariant of h! in π9(G/0) must come from
an element in ττ9 which bounds a spin manifold. Hence

Σ9 = F x £ 4 U^ S9 - f(F x Int D4)

modulo 6Spin10, and it is thus necessary to show that the manifold
on the right does not bound a spin manifold.

Since the diffeomorphism g of F x S2 is fixed off Int D5 x S2, we
may assume that the equivariant covering g is fixed off Int D5 x S3

(it corresponds to a map [F5 — D5] x S3—> S1 on this complement).
Therefore, by construction g and g induce diffeomorphisms 7 and 7
of S5 x S2 and SδxS* respectively, and an argument based upon
Lemma 2.2 shows that

FXD'UΊS" - f(F x Int D4) ~ S5 x D*\J-rD
Q x S3.

If the diffeomorphism 7 extends to S5 x D\ then Lemma 2.2 implies
that the homotopy sphere constructed is standard and hence the original
Σ9 bounds a spin manifold; we shall use Propositions 1.3 and 1.4 to
determine whether this is the case.

Notice that composition with the nontrivial map η: S5—>S4 induces an
epimorphism from τr4(G3) to πϋ(G3) by results of Toda [25, 5.1, 5.3, 5.8, 5.9,



COMPOSITION CONSTRUCTIONS ON DIFFEOMORPHISMS OF S* x S* 753

pp. 39, 40, 43, 44] and the natural splitting πt(Gz) ~ ^(F2) ζ&πi(SO3).
Futhermore, since π4 = 0 the fiber homotopy equivalence determined
by any element of π4(G3) is homotopic to a diffeomorphism 7i of S4 x S2

which is fixed near D4 x S2([21, 2.2] again), and hence g is explicitly
constructible from gt by Proposition 1.3. If τ\ is a diffeomorphism
of S4 x S3 fixed near DL x S3 which covers 7i, then Proposition 1.4
allows one to construct 7 from 7i in the same fashion. Let h: Sι x S4

—> S1 x S4 be a diffeomorphism induced by the nontrivial class in
KiiSOi) = Z2, so that g may be written as the commutator [h x 13,

Since 71 is fixed off Dt x S3, results of Levine [17, 2.3] imply
that 7i may be written as a product uv, where u extends to S4 x D4

and v is fixed near the complement of D\ x D\ (and hence corresponds
to an element of Γ8). According to Proposition 2.3, [h x 1,1 x v] is
pseudo-isotopic to τ{η, v) e Γ9. Since this element is central, it is easy
to compute that

[h x 1,1 x 7] = [h x 1,1 x u]τ(η, v)

But [h x 1,1 x 7] extends to S5 x D4 because u extends to S4 x D4.
Hence Lemma 2.2 implies that

S5 x D4UrD* x S*

is diffeomorphic to

Sδx D4\Jτ{η,v)D* x SZ = S%.

But JSΪ9 bounds a spin manifold (e.g., see [1]); since we have shown
that this sphere is the same as

F x D4\J-9 S
9 - f(F x Int D4)

and the latter is congruent to Σ9 mod 6Spin10, the fact that Σ9 e b Spin10

is immediate.

REMARK. Let y1 be the map defined above with factorization uv.
The factor v may be shown to be nontrivial in certain cases if and
only if the exotic 8-sphere has a semifree circle action with 4-dimen-
sional fixed point set. Since such an action on the exotic 8-sphere
may be explicitly constructed using [8, Th. 3], the factor v can in
fact be nontrivial. An explicit construction of the action will be
given elsewhere.
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