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Let .7, denote the class of meromorphic functions of
finite order 1 whose zeros lie on the negative real axis and
whose poles lie on the positive real axis. Let .7, denote
the class of functions belonging to ./, whose zeros and poles
are symmetrically located along the real axis.

In the study of certain aspects of the value distribution
properties of meromorphic functions of order 21 < 1, the class
A, A <1, has receatly been found to display certain striking
and useful extremal properties, while earlier results on the
subclass 95,1 < 1, have been important as a guide to the
possible values of their Nevanlinna deficiencies. In this note
the class 75, 1 > 1, is studied and it is concluded that certain
extremal properties displayed by .#Z, for i < 1 do not extend
to the case 2 > 1.

Introduction. This note is concerned with Nevanlinna’s theory
of meromorphic functions. We will assume familiarity with the
standard notation and terminology of that theory. The order )\ and
the lower order g of a meromorphic function f are defined by the
familiar relations

A= Af) = IimsupM; ©=puf) = lim inf log T'(r, f) .
log 7 7o log »

P00

In 1939, Teichmiiller [12] proved

THEOREM A. Let fe_ for 0N <1 and assume that the
zeros {a,} and the poles {b,} of f satisfy

(1) an:_bn (%:1,2"“)‘
If
(2) u=1-200,f),v=1-0d(, f)
then
N TN
(3) u_vzcos<—§—>.

Although the hypothesis (1) of Teichmiiller’s theorem is quite
restrictive, the theorem is important as a guide to possible relations

795
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between pairs of deficiencies of meromorphic functions of order less
than one. Indeed, A. A. Gol’dberg [7] later showed that (3) remains
valid for any meromorphic function of order less than one whose
zeros {a,} and poles {b,} satisfy

(4) || = [ba] (n=1,2---).

Then, in 1960, using an important lemma of Gol’dberg [7] on the
extremal growth properties of the functions in the class _#;, A < 1,
Edrei and Fuchs [4] characterized the possible values of the pair
(0(0, f), 6(ce, f)) for meromorphic functions of order less than one.
If v and v have the same meaning as in (2) then their result' is

THEOREM B. Let f be a meromorphic function of order N, 0 <
A< 1. Then, in addition to the trivial inequalities, 0 < u <1 and
0= v=1, uand v satisfy

(5) u? + v* — 2uwv cos T\ = sin® 7 .

If w < cosan, then v =1; and if v < cosT\, then w = 1. Further,
all values u and v compatible with these restrictions are actually
possible.

It is quite clear that Theorem B contains the results of Teichmii-
ller-Gol’dberg as a special case.

Although the extension of Theorem B to functions of order greater
than one having arbitrarily distributed zeros and poles seems an
exceedingly difficult problem, its extension to the class 73, 1 <A <
oo, is suggested by recent results of Hellerstein and Shea [8] which
characterize the possible values of the pair (4(0, f), 4(<, f)) [4(c, f)
denotes the Valiron deficiency of the value ¢ for f] for functions f
in this class and by the “symmetry” of the results giving bounds for
Valiron deficiencies and the results giving bounds for Nevanlinna
deficiencies of functions in _; (compare e.g., Theorems 1 and 2 [10]
and Theorems A and B [8]). In particular, Hellerstein and Shea [8]
obtained the following complement of Theorem A.

THEOREM C. Let fe._#«; for some finite non-integral value of :
and let g be the integer determined by

(6) g<A<qg+1.
If
(7) X=1-40,f), Y=1-A4(, f)

1 Edrei [1] has sharpened Theorem B by replacing 1 with z, throughout.



MEROMORPHIC FUNCTIONS WITH NEGATIVE ZEROS 797

and (1) holds, then

TN
_“—_,C‘)qsg—zl)‘ (q even)
(8) X=Y<
| Jeos(5)] .
o efen( )

The main purpose of this note is to show that Theorem C does
indeed suggest the correct extension of Theorem A.

For convenience denote by .7; the class of functions belonging
to _#; whose zeros {a,} and poles {b,} satisfy (1). Moreover, in each
of the following theorems we will assume that \ satisfies (6) for some
integer ¢ = 1 and that k& = 2[(¢ + 1)/2]. We then prove

THEOREM 1. Let fe.7; and assume that w and v are defined
by (2). Then for any p satisfying

LEP=EN
we have
o)
—1gp=
(9) w=v= 4“%”@!+k—1 (k-l2p=h
M k<p=k+1).

E+1

THEOREM 2. Let fe.9; and assume that X and Y are defined
by (7). Then for any o satisfying

H=EP=N
we have
[w% )I k—1=<p=<h
10) X = Y;J icos( >l

)m% )‘ k<o=k+1).
k1
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THEOREM 8. Let fe.7; and let N(r) denote the common value
of N(r,0) and N(r, «). Assume that

11) lim _N®_ _
== T(r, f)
Then
A
jeos(Z)|
— —1<r<k)
(12) 1= pleos(ZH) + 61
o
M k<nN<k+1)
k+1
(13) T(r, f) = @ + o(L))r*y(r) (r — o0)
and
(14) n(r, 0) = n(r, o) = (WL + o(1))r*y(r) (r — o)

where (r) is a slowly varying function; i.e.,

(15) 1im Y07 — 1 for every o > 1.
-

We remark that Theorem 2 sharpens Theorem C by taking into
account the lower order of f while Theorem 3 extends a tauberian
result of Edrei and Fuchs [5, Theorem 1] to the functions .7, 1 >
1. This latter observation together with Theorem 4 of [8] suggest
that the tauberian result of Edrei and Fuchs may be valid for higher
orders.

1. Basic lemmas. The proofs of Theorems 1 — 3 depend on three
lemmas which we now introduce. The first involves the notion of
Pélya peaks.

LemmaA 1. Let G{t) be a real, continuous, non-decreasing, utn-
bounded function defined for t =t, >0, of order N and finite lower
order (8. Then to each finite p satisfying p = 0 <\ corresponds an
increasing, unbounded, positive sequence {r,} called a sequence of Pélya
peaks of the first (second) kind, order, p and a triple of positive
sequences {¢,}, {r.}, and {r)} such that
log G() ¢ log G(O)

2 = 1 = 1
A hrtriiup log ¢ , U hrlrl;nf log ¢
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1.1) lims, = im 22 = ; lime, = lim22 = 0
T P

and such that

Gy = @ +e)(L) Gy =t
(1.2) T )
(6o za-e)(l)ow) mzt=m).

n

For a proof of this lemma the reader can consult [1], [2], [4],
and [11].
The next lemma is due to Shea [11, Lemma 3].

LevMma 2. Let W(z) be an entire function having only mnegative
zeros which is a finite or infinite product of primary factors of genus
q. If

(1.3) K,(t,7,p) = (;1—)1(9”1 rsingg + tsinlg + DB (> o 15 < g

T t t*+ 2trcos B+ 1°
then
1 (6 . =
(1.4) ?ES log | h(re®)|do = S N(t, 0K, ¢, 7, B)dt
and
(1.5) %irp_ng(t, 0Kt r, 8 = N, 0) .

Moreover, if

_ola+1
(1.6) k_%_?J
then
- cos(ﬁ — B)p
| (K, 1, ) + Kofs, 1w — s = 22/
1.7 ' cosl‘éﬂ

k—1<p<k+1 0<|Bl<7).

We remark here that while (1.7) is not explicitly stated in [11],
it is an easy consequence of an elementary contour integration and
the fact that
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_ 2 4 8sin(k+1)pB—sink— 1B
K,(s 1 K(s, 1,7 — B) = Zs7*
q(S’ ’B)+ q(S’ s T B) $ 84——282COS2,8+1

O <|Bl<m.

The following is our main Lemma.

LEMMA 3. Let

(1.8) () = ﬁ (1 —

e[ £ ]

denote a convergent Weierstrass product of genus q =1 having only
negative zeros a,, let

(1.9) 9@ = 7

and let k = 2[(q + 1)/2]. Then for each r > 0 there ewist functions
o, =0 r) 1=20,«+, k and x = x(r) satisfying

(1) 0Sa =< —2
2(k
(1-10) 2j — 1 ( 2?21 k
ii I Rl S P 1 x
W - = “’—2(k+1)” TEh Ty
() a; =7 — ap 3=0,--,k
iv) x() =11 a, =0 and 0 otherwise
such that if a(r) = (@, -, @), of
k .
(1.11) Hys, a(n) = 2 (= DI{K(s, 1, @) + Kifs, 1, @ — ay)}
and if
(1.12) N@® = N(t, 2) = N, o)
g
then

(1.13) T(r, g) = ——S N(t)H<__, a(r))dt + 2y(")N () + n(z,r, R)
where

B[( ) e, 0 + (% ) T@R, g) |

ﬂl%

e (Y e, 0 + (212, 0]
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holds whenever

(1.15) 0<2r<r< -]2-1%
(B > 0 is an absolute constant).

Further, if af, -+, ai demote any k + 1 constants satisfying
inequalities (1.10) (1)—(iii) then

k s4k
(1.16) His o)z o0 >05%1)
and
(L.17) T(r, g) = irN(t)H,,<i, a* )it + 2" N()
r Jo r

where x* =1 if af =0 and 0 otherwise.
We omit the proof of this Lemma since it parallels so closely the
proofs of Lemma 3.3 and Main Lemma of [10].

2. The growth of functions in the class .#;. In this section
we make some observations concerning the relative growth of functions
in the class _#; which are necessary for the proofs of Theorems 1

and 2.
If fe_#; and f(0) = 1, then, as is well known, we can write

me(2 0

lIE(-bz-n, q)

= e*79(2)

(2.1) f@) = e

where E(u, ¢) is the Weierstrass primary factor of genus ¢, where ¢
is the smallest nonnegative integer for which

2.2) S(tm+ i) <

la, [ b, "+

and where Q) is a polynomial of degree d <\. If d >gq, f is
dominated by the exponential factor ¢¢” and it is easy to show that

(2.3 T(r, f) ~ T(r, €% ~ ar? (0 < a = constant)
and that
2.4) lim N0 _ gy Ny ) _ g

e T(r,f) = T(r,f)

Thus the asymptotic behavior of 7(r, f) and of the ratios
N(r, 0)/T(r, f), N(r, =)/ T(r, f) is completely determined when d > q.
Accordingly, there will be no loss of generality if, in the remainder of
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this section, we assume that d < q. (Of course if, as in the hypotheses
of Theorems 1 — 3, we assume that M\ satisfles (6) then d < ¢ is
immediate.)

We will now obtain lower bounds on T(r, f). To that end assume
that ¢ = 1, set &k = 2[(q + 1)/2], 4(t) = N(¢, 0) + N(¢, ), and choose

[_l,ﬁ] if k=450=1,2 -+
25) &) =
= —Zu[5 =] itE=wrzo=01,.

21712
Then
| 76, ) = mtr, ) + Ner, =)
1 0 -
0y = o=\ log| e |d8 + Ner, =) |
_ 2i§ log |g(re’”) |d6 + Nr, o) + —1—5, Re Q(re*)de .
T J & () 2 Yo

To obtain a lower bound for the first integral on the right hand
side of inequality (2.6), we observe that f e _#; implies that |g(re®)|
is an even function of ¢ and apply Lemma 2 to get
@.7) LS log | g(re?) | df = Lkigr-/!@—dt — Nir, =)

2 Jem 2 Jo ¥

if k=4/,,=1,2, ---, while

(2.8) | oglgrelao = 2| A0t 1 N, 0
2 Je o Jo tk
ifk=4r4+2,=0,1,2,.--.
To estimate the second integral on the right hand side of in-
equality (2.6) write

(2.9) Q@) = az? + -+ a=0.
Thus,

(2.10) Re Q(rei) = |a|r? cos (v + db) + o(r?) (r— )
where + = arga. Since

2.11) %meos (f +2/6)d0 =0  for j=1,2, -

and since d < ¢ < k, it follows from (2.10) and (2.11) that

2.12) J_S Re Q(rei")do = 0(r+—) (r — o) .
2w Jew



MEROMORPHIC FUNCTIONS WITH NEGATIVE ZEROS 803
Thus (2.6)—(2.8) and (2.12) imply that

(2.13) —Tf" Dz L A0z 101 (r—eo).

k—1 = or otk

In view of the fact that

@.14) Z(|an11"“l + tbnll’““l> = oo

The integral in (2.13) tends to -« with », so that

(2.15) lim L0 S) o and p(f) =k - 1.

roe Rl
Moreover, in view of the obvious inequalities
2.16)  T(r,9) = T(r, fe=%) = T(r, f) + O(") = T(r, 9) + O(r’)
(2.15) implies that
(2.17) T, f) ~Tr,g) ifd<k—-1.

Note that for ¢ odd, ¥ = ¢ + 1, so that (2.17) is always true by
virtue of our assumption on d.

We conclude this section with a final observation concerning
functions in . ;. We will show that fe 73, ¢(= 2) even, and Q)
of degree ¢ imply that up(f) = q.

To that end, we start from the well-known representation

o " o 1 zQ+l
2.18) log h(z) = (— 1) SO n(t, _};)mdt (|arg z| < )

due to Valiron [13, p. 237], valid for any canonical produect A(z) of
genus ¢, having only negative zeros. Thus, since f e .7, implies

(2.19) fz) = 2@ k}(L(—Z)z) — 2g(2)

for some canonical product A(z) of genus ¢, having only negative
zeros, we have

(2.20) log | f(re®®)| = log |g(re®)| + Re Q(re*)
where, in view of (2.18)
1
'n(sr, —>
; = h/ s*cos (q + 1) — cos (g — 1)0
2.21) 1 N =2 daé
( ) loglgtre™)] So s? st — 2s%cos 20 + 1

o<lo <.
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Note that there exists ¢ = ¢(q) > 0, independent of r, such that

log [g(re)| > 0

(2.22) for el _[ 3 c 3 ] [371' 3 ]
=1 -2E g — 28 4 ¢ 20 e, 2T e
° ! 29 2¢ Ul 20

Since by assumption Q) = az? + -+, a # 0, g(= 2) even, we have
(2.23) Re Q(ret?) = |a|r?cos (v + g8) + o(r?) (r — )

where + = arga. Since cos (v + ¢d) = 0 for § = — 37/2q or for 0 =
37/2q, there exists a measurable subset & of I, independent of r,
such that

(2.24) cos (y +qf) >0 for 6e& .

It now follows from (2.21) — (2.24) that
(2.25) T(r, f) = m(r, f) = Llog [ f(re’)|d6 = Kr'(1 + o(1))  (r— o)

for some positive constant K, depending only on ¢. This clearly
implies that p(f) = gq.

3. Proof of Theorems 1 and 2. Let p be any number
satisfying
(8.1) L=Pp=N\.

Since we are assuming A\ is non-integral, it is sufficient to prove (9)
and (10) for k-~ 1< p<k+1,0# k. Thecases o=k k—-1,k+ 1
will then follow by continuity.

Proof of Theorem 1. Let o be any number satisfying

timm sup TZ%

where N(r) denotes the common value of N(», f) and N(r, 1/f). Then
for ¢, (=t,(0)) sufficiently large we have
(3.2) N@r) < oT(r, f) =t

Denote by {r,} a sequence of Pdlya peaks of the first kind, order p,
for T(r, /) and let {e,}, {r.,} and {r]} be the associated sequences.
Since

<o

i, r

(3.3) lim#, = lim== = lim-* = o
’
r, 7,
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we can choose 7, so large that for n = n,

3.4) ¥ = 4r, and %’rn > =t .

Fix n = n, and set

(3.5) T:Z'n'—"r;,’l':’)"nandRan:—é—’rf,[.

With this choice of 7,7 and R, 27, <7, < (1/2)R,.
If k—1<p<kand qis odd, then £ — 1 = ¢ and (2.17) implies
that

(3.6) ICr, ) ~ T(r, 9) (r— o).

If t—1<p<kand qis even, then (3.1) implies that u(f) <k (=
¢). Thus the concluding observation of §2 implies that dgQ(z) = d =
g — 1 =k — 1; hence, by (2.17), (3.6) is valid.

If, on the other hand, k< p <k + 1 (i.e., ¢ even, ¢ = k), then
we can assume that

3.7 ra = o(T(rs, 1)) (n — o0)

(cf. the proof of Lemma 1). Consequently, (2.16) implies that (3.6) is
valid along the sequence {r,}.

Thus, if £k — 1< p <k+ 1,0+ k, the above remarks and Lemma
3 imply that

(L + oW Ty, ) = = "NOH(L, atr) )it + 2r)NGr)
. + (T, 72y Bu) (n = e9) -

Using (3.2), (1.16) and the nature of the sequence {r,} we find that

iSR: N(t) Hq<7f’_ oc(rn))dt + 2x(r,)N(r,)

’
Va7 n

< E_S T(, f)Hq(i, a('rn)>dt + 2x(r)o T(r,, f)
(8.9) Tul7n Tn

< 1+ oo H{E]T (LY B (L, atd)ae + 2]

PR A

< (U + )0 Ty, N[ s Hifs, atr)ds + 200 -

Using (1.7), (1.11) and (1.10) (iii), (iv) we find that
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ﬁ s Hy(s, a(r.)ds + 2(r,) = Z (— 1)3@
(3.10) cos( p)
= W];T___P—N{Z(H 1)%”2 cos (izr— — ao)p T k- 1} .
2

Thus from (3.8) — (3.10) we deduce that
@ + o) T(r,, 1)

@1y =0+ e)oTir, f)—t

F@{Z(_ 1)#2 cos (% - ozo>p k- 1}

+ 77(7‘-'/” /rm Rn) (% - OO) M

If t—1<p<k, we use (1.14), (3.5), (3.6) and the nature of the
sequence {r,} to get

0 S 7(e., ., R = 2B{(22) " T2, 1) +( =) T@R., 1)}

(8.12) < 242 BT(r,, f){( >p S ﬂ) “P}

P ¥
= o(T(r, 1)) (n— o) .
If k<p<k+ 1, then we use (1.14), (3.7), and the obvious inequality
T(r, 9) = T(r, f) + O(r")
to get

) TeR., 1}

0 < 7(Tw, Tay R,) B{(T > T(2c,, f) + (R

n n

@13 +o{(Z) e + <£ ) (2r.)}

n

< 25BT(r,, f){(n)” ‘i (j'r:_)} + o(T(r, f)

= o(T(rs, 1)) (n— o0) .
Combining (3.11) and (38.12), (3.13) we obtain
1+ o) < (1 + 5”)0T_ln—p{2(_ 1) cos ('75[‘ - ao>,0 +
(3.14) |cos ——)!
+k—1}+o(1) (n — o) .

For k — 1< p <k, (1.10) (i) implies that
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3.15) (= 1) cos ('725 — @) = (— D COS( ’) - lcos(7p>’

Thus for ¥ — 1 < p < k (3.14) and (8.15) imply that

(3.16) 1§0—__‘cos(1“_2“i)[{2{cos(n;>l + k——l}.
If t<p<k+1, it follows immediately from (3.14) that
(3.17) l<ok+1

| cos( ’;f’) f

The assertion from Theorem 1 now follows from (3.16) and (3.17)
and the definition of o.

Proof of Theorem 2. First we observe that if k¥ <o <k +1; that
is, if ¢ is even and ¢ < 0 < ¢ + 1, then (10) is an immediate consequence
of (8) and (3.1) since |cos(wp/2)]/(k+ 1) is a decreasing function of p.

Thus the case £ — 1 < o < k remains. First we remark that if
A, and g, denote the order and lower order of N(r) then, since A\ is
non-integral, g, < <\ =\,

Let {r,} be a sequence of Polya peaks of the second kind order p
for N(r) and let {c,}, {r.} and {r)} be the associated sequences. Set
afr =0,af =(0—k+2)20/2r5=1, -+, k/2 and use (1.16), (1.17) and
(8.6) to obtain

1+ o(l)lf’Z’(rn, f) = T(r., 9)
‘1‘5771\7(15)1{‘,(;—, a*)dt + 2N(r,) (1 — o) .

n /r?'b

(3.18)

By the nature of the sequence {r,}, (1.1) and the choice of «;,
.,a,’é<

lg’f‘N(t)Hq(i, a*)dt + 2N(r,)
Pudrh,

n

S DT
3.19) = (1 — e)N(r, ){S "0 H(s, a*)ds + 2}

a— e,,)N('r”){S °H,(s, a*)ds + 2 + 0(1)}
{2 cos ”P\[ k-1

~ &) N(r)
COS '

+ o(1) (n— o).
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Combining (3.18) and (3.19) we obtain
(L + o) T(r,, )
2lcos( P+ k-1
= (1 — &)NGr,) (%))
jeos(%)]
2

In view of (1.1), the case for £ — 1 < p < k now follows from
(3.20) by dividing by T(r,, f) and letting n — co.

(3.20)
+ oQ1) (m — o) .

4. Proof of Theorem 3. First, we observe that hypothesis (11)
together with (9) and (10) implies that g =\ and that L is given
by (12). The fact that g = )\ and that A satisfies (6) implies that

(4.1) r? = o(T(r, 9)) (r — co)
and hence, in view of inequalities (2.16), that
(4.2) I(r, f) ~ T(r, 9) -

Conclusion (13) now follows from (4.1) and Lemma 38 in virtually
the identical way in which the proof of Theorem 1 of [9] follows
from Lemma 1 of [9] and (1.16) of [9]. Once (13) is established it
follows easily from (11) that

(4.3) N(r, 0) = N(r, =) = (L + o(1))r*y(r) (r— o),
where +r(r) satisfies (15). A straightforward tauberian argument [see

e.g. 5, §6] then yields (14).

5. Concluding remarks,
1. Let ¢ (= 1) be a given positive integer, k = 2[(g + 1)/2], 1
and ) any numbers satisfying

E—1=sp<x=q+1
and
P
[cos(%7)

(5.1) o(0) = ﬁ2{cos(lgﬂ)j k-1

s (F)

E+1

k—1<0=h

k<p=<k+1).

Then, proceeding along the lines of §6 of [10], it is not difficult
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to construct functions g(z) belonging to .77, having lower order g,
such that

(5.2) X=Y=mino(0) <maxoc() =u=7v.
p=p=2 psp=2
The functions will be of the form
h(z)
.3 = M=
(5.3) 9(z) 2

where h(z) is a canonical product of genus ¢ having only negative
zeros. In view of (6.2) such functions clearly show that Theorems 1
and 2 are best possible and also show that the bound on the lower
order of functions in _#; given by (2.15) is sharp.

2. In the introduction we alluded to the difficulty of extending
Theorem B, the “ellipse” problem for meromorphic functions, to
functions of order greater than one. While the functions in the class
A, v < 1, are the “extremal” functions for the solution to the
“ellipse” problem for meromorphic functions of order A < 1 (as indicated
in the proof of Theorem B and by the examples showing the best
possible nature of inequality (5)), this does not appear to be the case
if » > 1. Indeed, whatever the solution to the “ellipse” problem for
functions of order N, lower order p =1, estimates obtained by Edrei
[1, Theorem 4a] (see also [3], Theorem 1) show that for such functions

(5.4) %+ v = max — S0 TO] 0< A<12);
#0240 + %‘ sin ﬂpl

hence, the “extremal” functions, of say regular growth (i.e., M = ),
would have to satisfy

(5.5) % + v—0 as A — g = a positive integer .

However, as indicated by Theorem 1, the functions in .77 having
regular growth satisfy

(6.6) liminf(u + v) = 2/(¢ + 1) as A —q = a positive, even integer .

Thus, the behavior of functions in .77 for A near positive, even
integers indicates that the class _#; is probably not the class of
“extremal” functions for the solution to the ¢“ellipse” problem for
meromorphic functions of order \ > 1.
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