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THE USE OF MITOTIC ORDINALS IN CARDINAL
ARITHMETIC

ALEXANDER ABIAN

In this paper, based on the properties of mitotic ordinals,
some results of the cardinal arithmetic are obtained in a rather
natural way.

In what follows, any reference to order among ordinal numbers
is made with respect to their usual order. Thus, if u and v are
ordinals then u ^ v if and only if u g v if and only if "uev or u = v".

DEFINITION. A nonzero ordinal w is called mitotic if and only
if it can be partitioned into W pairwise disjoint subsets each of type
w. Such a partition is called a mitotic partition of w.

For instance, ω is a mitotic ordinal since ω can be partitioned
into denumerably many pairwise disjoint denumerable subsets R{ with
i = 0, 1, 2, , where the elements of Rζ are precisely the ordinals
appearing in the ΐ-th row of the following table:

0 1 3 6 . . .

2 4 7 . . . .

5 8

9

Clearly, each J2f is of type ω.

LEMMA 1. Let w be a mitotic ordinal. Then w is a limit ordinal.
Moreover, for every element Si of a mitotic partition (Si)iew of w we
have:

(1) U Si = sup S{ = w .

Proof. Since Si is of type w we see that St is similar to w. Let
fi be a similarity mapping from w onto £ {. But then by [1, p. 302]
we have x g fi{x) for every xew. Now, assume on the contrary that
w is not a limit ordinal and let k be the last element of w. But
then clearly, k = fi(k) and therefore k e S^ However, since 1 is not
a mitotic ordinal, we see that the mitotic partition of w must have
at least two distinct elements, So and Si. But then ke So and k e Si
which contradicts the fact that So is disjoint from S^ Thus, our as-
sumption is false and w is a limit ordinal.

1



2 ALEXANDER ABIAN

Next, since the similarity of w to S< implies the existence of a
one-to-one mapping fi from w onto St such that x ^ /*(#) for every
x e w, we see that \J w ^ St and therefore U w — U fi>< since 5< £
w. On the other hand, since w is a limit ordinal by [1, p. 323] we
have \jw = w. Hence, (1) is established.

Based on the natural expansion [1, p. 355] of ordinals we prove
the following lemma.

LEMMA 2. Let w be a mitotic ordinal and let ωen be the last
term of the normal expansion of w. Then

(2) W = ώ*n

Proof. Let w = u + ωen and let (Si)iew represent a mitotic par-
tition of w. From (1) it follows that for every ίew, we must have
(u + v) G Si for some v < coen. But then (2) follows from the fact
that (Si)iew is a family of pairwise disjoint elements St.

LEMMA 3. For every nonzero ordinal e the ordinal ωe is mitotic.

Proof. Since a) < ωe we see that there is a mitotic ordinal of
type coh such that h ^ e. Let P be the set of all mitotic partitions
of mitotic ordinals of type ωh which are less than or equal to coe.
Partial order P by ^ * as follows:

if and only if Su. S Sυ. for every ie(ωu f] ωv).

Let ((SUi)ieω*)ueA be a simply ordered subset of (P, ̂ * ) . But
then it is easy to verify that (ULeiM SUi)ieo)ϋA is a mitotic partition
of the ordinal O)ΌA. Hence every simply ordered subset of the non-
empty partially ordered set (P, <**) has a least upper bound. Con-
sequently, (P, <£*) has a maximal element (Mi)ieωk where ωk is a
mitotic ordinal such that k ^ e.

Let (Mi) denote the mitotic partition (Mi)i6ωk of ωk, i.e.,

( 3 ) (ilf4) = (ΛΓ*)*eβ* .

To prove the lemma it is sufficient to show that k = e. Assume
on the contrary that k < e. Thus ωkω <̂  ω%

For every neω, let (Λf<)w denote the mitotic partition given by
(3) where each entry is augmented on the left by ωkn. But then

(MJO (Af,)l (ΛQ3
(AΓ«)2



THE USE OF MITOTIC ORDINALS IN CARDINAL ARITHMETIC 3

is clearly a mitotic partition of ωkω = ωk+1. But since ωk <̂  ωkω <
ωk+1 <^ ωe we arrive at a contradiction. Thus, our assumption is false
and k = e.

LEMMA 4. The sum of finitely many pairwίse equipollent mitotic
ordinals is a mitotic ordinal.

Proof. Obviously, it is sufficient to prove that the sum of two
equipollent mitotic ordinals is a mitotic ordinal. Let (Ri)ieu and (jS<)ie?
represent respectively mitotic partitions of mitotic ordinals u and v
where u = v — c. Now, let

Ri = (n, n, r2, •) and Si = (s0, sx, s2, •) •

Consider

fl* = (n, n, r2, . ., (u Ri) + s0, (uRi) + 819 (ϋRi) + s2, . . •).

Clearly, Ht S (^ + v) and JHi is of type u + v for every i 6 c.
But then observing that u + v •=. c we see that (Hi)iee is a mitotic
partition of the ordinal 6̂ + v. Thus, u + v is mitotic, as desired.

THEOREM 1. An infinite ordinal is mitotic if and only if it is
equipollent to the last term of its normal expansion.

Proof. Let w be an infinite ordinal. Without loss of generality
we may assume that the normal expansion of w has two terms and
is given by:

(4) w = ωam + ωen .

Now, if w is mitotic then by (2) we see that w is equipollent to
the last term of its normal expansion. Conversely, let w be equipol-
lent to the last term of its normal expansion. But then clearly,

(5) w = ωam — ωen .

However, since ωam is a finite sum of summands each equal to ωa,
in view of Lemmas 3 and 4, we see that ωam is mitotic. Similarly,
o)en is mitotic. But then again, from (5), (4) and Lemma 4, we see
that w is mitotic, as desired.

From Theorem 1 it follows that each of the following ordinal
numbers is mitotic:

ωω, ωω + ω, ω? + ωl9 ω™ + ω2ωLω, .

Also, since the normal expansion of every infinite cardinal has
one term, from Theorem 1, we have:
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COROLLARY 1. Every infinite cardinal is mitotic.

Next, based on the properties of mitotic ordinals we derive some
results pertaining to the cardinal arithmetic

THEOREM 2. Let w be a mitotic ordinal and (Ci)iew a nondecreasing
sequence of type w of cardinals cίΛ Then

(6) ILeWC i = (ΐli^Cif.

Proof. Let (S<)ί6w be a mitotic partition of w. Since (Ci)iBυ, is
nondecreasing, we have

Π c i ̂  Π fa \ G i e Sj} f o r e v e r y j e w
iew

and since the right side of the above inequality is a subproduct of
the left side, we have

(7) Π ̂  = Π {Ci \Ci e Sj} f o r e v e r y j e w .
iew

On the other hand, in view of the general commutativity and asso-
ciativity of the infinite product of cardinal numbers, we have

(8) Uci = ΊI(U{ei\eteSi}.
iew jew

But then (6) follows readily from (7) and (8).
Based on Theorem 2, we prove a theorem which extends a result

of Tarski-Hausdorff [2, p 14] to the case of a nondecreasing sequence
of cardinals.

THEOREM 3. Let w be a mitotic ordinal and (Ci)iew a nondecreasing
sequence of type w of nonzero cardinals c{. Then

(9) Π ^ = (supc,)-.
iew iew

Proof. Since c{ si sup{ei0Ci for every iew, we have

(10) Π Ci ̂  (sup df .
iew iew

On the other hand, for establishing (9), we may assume without loss
of generality, that ci > 1 for every iew. But then we have:

(11) (sup cζf :S (Σ cf ^ (Σ cy
iew iew iew

and then (9) follows readily from (6), (10) and (11).
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Thus, Theorem 3 is proved.
Let us observe that the formula analogous to (9) for the sum of

an (not necessarily nondecreasing) infinite sequence (Ci)iev of type v
(not necessarily mitotic) of nonzero cardinals c{ is given by:

(12) Σ Ci = v sup Ci.
i e v lev

REMARK. In the arithmetic of ordinal numbers infinite sums and
products of ordinals are respectively equal to the limit of their partial
sums and partial products. In fact, in ordinal arithmetic, evaluation of
the result of an infinite operation as the limit of those of partial ones
is a general method. In contrast to this, in the arithmetic of cardinal
numbers infinite sums and products of cardinals are not equal, in
general, to the limit of their partial sums and the limit of their
partial products respectively. However, as shown below, in cardinal
arithmetic, infinite sums of cardinals and products of nondecreasing
cardinals are respectively equal to the sum of their partial sums and
to the product of their partial products (this, in general, is not true
in ordinal arithmetic).

The statement concerning an infinite sum of cardinals can be
given as a corollary of (12).

COROLLARY 2. Let {ci)ίev be an infinite sequence of type v of
nonzero cardinals ci9 Then

(13) Σ d = Σ (Σ Ci) .

Proof. From (12) it follows:

Σ (Σ ci) = Σ ^'cu = v-v sup Ci = v sup Ci = Σ Gi

Next, based on the properties of mitotic ordinals we prove the
following theorem.

THEOREM 4. Let u he limit ordinal and (Ci)ieu a nondecreasing
sequence of type u of cardinals cim Then

(14) Πc,= Π(D».
i<.u j<u i<j

Proof. Without loss of generality, we may assume that the normal
expansion of u has two terms and is given by

u = ωep + o)hq .

Hence, by Lemma 3, without loss of generality, we may assume
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that u is a sum of two mitotic ordinals w and r, i.e.

(15) u — w + r with W ̂  r ^ ^ 0

Thus, to prove (14), it is enough to show that

(16) Π c< = Π ( Π c<) .

However, since u is a limit ordinal and c3- rg IL<i+ic; f° r every
i < u, we see that the left side of the equality sign in (16) is less
than or equal to the right side. Thus, it is enough to show that
the right side is less than or equal to the left side.

Since w and r are both mitotic ordinals, in view of (15) and (9)
we have:

Π (Πci) = .Π(.Πci) Π (Π e{)
j<w+-r i<j i<w ί<j o <r i<.w-\-j

^(supc i)
s Π(Πc i.Π<W1)

i<w j<r j<w i<j

g (sup βff (sup e{)" (sup ew+if
 =r

i iw i<r

pc^)7

r

= Π e c Π ί . + i =.Π<>«

as desired.
Finally, based on (14) we obtain the formula analogous to (13)

for the product of cardinals.

THEOREM 5. Let (c{)i<v be an infinite nondecreasing sequence of
type v of cardinals <v Then

(17) Π * = Π (Π C)

Proof. As the proof indicates, without loss of generality we may
assume v — u + 1 where u is a limit ordinal. But then from (14) it
follows:

Π ci = (Π Φu = Π (Π d) cu = Π (Π ct).
ί<u+l ί<n j<u i<j j<u+l i<j
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FILTRATIONS AND VALUATIONS ON RINGS

HELEN E. ADAMS

The concept of a multiplicative filtration on a ring is
generalized so as to include among filtered rings, rings with
valuation, pseudovaluation and semivaluation. The general-
ized filtration induces a topology on the ring, and it is shown
that the Hausdorff completion of the resulting topological
ring can be described by an inverse limit. The paper finishes
with an example illustrating the theory.

!• Definitions and immediate consequences* In this section

we define a generalized filtration and generalized pseudovaluation on

a ring and show that a pseudovaluation induces a filtration on a ring.

If A and B are subsets of a ring we shall write AB to mean the

set {xy: x e A, y e B}. By an ordered semigroup we mean a semigroup

which is partially ordered as a set such that the ordering relation is

compatible with the semigroup operation. A directed semigroup is an

ordered semigroup which is directed above as an ordered set; and a

quasi-residuated semigroup (Blyth and Janowitz [2]) is an ordered

semigroup T with the property: given any s, te T, there exists ue T

such that ut ^ s and tu ^ s.

Let R be a ring and let S be a directed semigroup with the property:

(1.1) given any s e S, there exists teS such that t Ξ> s.

A filtration on R over S is a set of additive subgroups {Ps}se<? of R,

indexed by S, with the following properties:

(1.2) if s, t e S such that s ^ t, then Ps § Pt;

(1.3) for any s,teS, PsPt £ Pst;

(1.4) given xeR, s e S, there exists te S such that xPt £ Ps and

Ptx £ Ps

Note that Πβes-P* is a two-sided ideal of i? For a treatment of

the classical multiplicative filtration on a ring, see Atiyah and

Macdonald [1] and Northcott [6].

The following lemma gives a less general form of a filtration

which will be shown to arise from a pseudovaluation on a ring. The

proof of the lemma is straightforward.

LEMMA 1.1. Let S be a quasi-residuated, directed semigroup. Let

{Ps}ses be a set of additive subgroups of a ring R such that (1.2),

(1.3) hold, and (lΛ')\JaeSPβ = R.

Then {Ps}ses is α filtration on R.
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The following definition of a pseudovaluation on a ring allows us
to treat at the same time Manis [5] valuations and pseudovaluations
(Mahler [4]) on commutative rings, and semivaluations (Zelinsky [7])
on fields.

Let S be a quasi-residuated, directed semigroup, and let So be
the disjoint union of S and a zero element Os with the properties:
OSOS = Os; and, for any s e S, Os> s and sθs = Os = Oss. A pseudo-
valuation on a ring R into So is a map φ of R into So such that: for
all a, beR,

(1.5) ?>(α&) ̂  ?>(αM&);
(1.6) if s G S such that s ^ <ρ(α), φ(6), then φ(α - b) ̂  s;
(1.7) ^(0) = Os;
(1.8) the set φ(i2)\{O,s} is nonempty.
Let φ: R —» So be a pseudovaluation on a ring i2. Define, for

any s e S ,
(1.9) Ps = {x: xeR,φ(x) ^ s}.

Then, from Lemma 1.1:

PROPOSITION 1.1. The family of subsets {Ps}ses of R, defined in
(1.9), is a filtration on R.

2* The completion of a ring with respect to a filtration*
Throughout this section, R is a ring with filtration {Ps}se(S. It will
be shown that the filtration {Ps}se<s induces a topology JT' on R com-
patible with the ring structure of R, and the completion of (R, ̂ ~)
will be explicitly defined both algebraically and topologically.

From Bourbaki [3, III §1.2, example], the set {Ps}s6s is the funda-
mental system of neighbourhoods of the zero for a uniquely determined
topology J?" on R, addition in (R, J7~) is continuous, and j?~ is
Hausdorff if and only if Πse^Ps = {0}. Further, multiplication in (R,

is continuous by the definition of a filtration and [3, III §6.3,
) and (AVΠ)]. Hence (R, ^~) is a topological ring and, as such,

admits a Hausdorff completion.

Now the Hausdorff completion of a topological ring is just the
Hausdorff completion of the ring considered as an additive topological
group [3, III §6.5]. Multiplication is then defined on the completion
by a continuous extension of multiplication on the associated Hausdorff
ring, in this case the factor ring R/f\seS Ps.

But in this case we already have, from [3, III §7.3, Proposition
2, Corollary 2], that the Hausdorff completion of the additive topological
group (R, JT") is isomorphic, both algebraically and topologically, to the
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Haυsdorff group (R, J?~) where R — lim R/Ps and J?~ is the usual topology

induced on R by the topology ^~ on R. Hence the Hausdorff com-
pletion of the topological ring (R, ̂ ~) is isomorphic to the Hausdorff
ring (R, ̂ Γ, x) where x denotes the multiplication constructed on
R by means of a continuous extension of multiplication in R/Γ\ae& Ps.
The main aim of this section is to define explicitly the multiplication
x This is not a straightforward task since each factor group R/Ps,

S G S , in the direct product J[seS R/Ps, is not a ring.

For reference we define the topological group (R, J7~) explicitly
[3, III §7]. Now R = {{ξs}SeSellsesR/Psl for all s,teS such that
s is t, ξt £ ξs}. That is, the elements of R are sets of subsets of R,
indexed by S, and written {ξs}seS where: for each seS, ξseR/Ps; and,
for any s, t e S such that s ^ t, ξt £ ξ8. Note that, for each xeR,
{X+ Ps}ses £ R Equality and addition in R are defined as follows: Let
{£,}.es, {V)ses£R- Then {ζs}seS = {ηs}SQS if and only if, for each s e S,
ίβ = ί7β; and {ξs}seS + {%}seίS = {is + ys}ses- When there is no risk of
ambiguity, {ξs}SQs will be written as {£J.

The topology ^ is defined on R by inducing the usual quotient
topology on each R/Ps, s e S, then inducing the usual product topology
on ]JseSR/Ps, and finally restricting this topology to R, considered
as a subspace of ΐ[seSR/Ps

Let teS and let ft: R—>R/Pt be the canonical projection defined
thus: For any {ξs}seS£R> ft({ξs}Ses) = &. Since JB/P* is discrete [3,
III §7.3], the set Pt - fτι(Pt) = {{fJ.β5eS: & - PJ is an open set in
(R, Jf~), containing the zero {Ps}ses of R.

Further, it is easily checked that, for each t e S, Pt is a subgroup
of R. Hence the set of subgroups {Pt}tes of R forms a fundamental
system of neighbourhoods of the zero of (R, 3") and thus, by [3, I
§2.3, Example 3], defines the topology j?~ on R.

Next we define a multiplication "*" in R, and show that * is in
fact the required multiplication x . When there is no risk of ambiguity,
we shall omit the multiplication sign *. Note that if each of the
subgroups P8, se S, were a two-sided ideal of R, then multiplication
in R would be as simple to define as addition: but this is not the
case.

Let {ζs}ses, {y]s}seS£R. Let {£.}.es*{i?.}.β5 - {Ωs}seS where {Ωs}seS is

defined as follows: Let seS. Then by (1.1) there exists teS such
that f ^>s. Choose xx e ζt9 yι e ηt. From (1.4) there exist u,veS such
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that xJP% £ P8, Pvyί § P s. Let we She such that w ^>t,u, v. Define
Ωs = xy + P s where α? e ξw, y e ηw. The following two lemmas show
that Ωs is well-defined and independent of the particular choice of w.

LEMMA 2.1. With w chosen, the coset Ω8 does not depend upon
the choice of x and y.

Proof. Let x, xf e ξw; y, y' e rjw. Now

(2 2) XV ~ χfyf = ^ ~ x^Vl + X^v ~ y^
+ (x - x')(y - y,) + {xr - x,){y - y') .

It is easily checked that each of the summands of (2.2) belongs to
Ps. Hence xy — x'y' e Ps and the lemma follows.

LEMMA 2,2. Let the notation be as above. Let f,geS such that,
for all a', a" e ζf and for all V, b" e ηg, a'V - a"b" e Ps. Then
Ωs = ab + Ps for any aeξf, beηg.

Proof. Let aeξf, be ηg. Let he S such that h*zw,f, g. Let
ceξh,de ηh. Then, by Lemma 2.1, Ωs = cd + Ps since ceζw,de τjw.
But ab — cde Ps since a, ceξf and b, deηg. Hence Ωs = ab + P s

COROLLARY. The definition of Ωs is independent of the particular
choice of w.

Proof. Let vf e S be another possible choice for w (with possibly
different £, u, v, xl9 yt). Then, by Lemma 2.1, Lemma 2.2 holds for
f = g = wr, and the corollary follows.

LEMMA 2.3. In the above notation, {Ωs}seSe B.

Proof. By the definition, for each seS, Ωse R/Ps. Let λ, μ e S
such that λ >̂ μ. Then, by Lemma 2.1, there exist m, ne S such that
Ωλ = x'y' + Pλ for any x' e ξm, y' e ηm) and Ωμ = x"y" + Pμ for any x" e ξn,
y"eηn. Let qeS such that q ^ m, n; and let xeζq, yeηq. Then
Ωλ = xy + Pλ and β^ = xy + P^. Hence β ; g β^ since P^ g P^. Therefore

PROPOSITION 2.1. With the multiplication defined above, R is a
ring which is commutative [if R is commutative and has identity
{1 + P8}8es tf R has identity 1.

Proof. We already have that R is an additive Abelian group,
(i) Using the definition of multiplication in R and the directed
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property of S, it is a straightforward task to show that multiplication
in R is associative and that both distributive laws hold. Hence R
is a ring which, by the definition of multiplication, is commutative if
R is commutative.

(ii) Let R have identity 1. As noted before, {1 + Ps}seSeR.
Again, using the directed property of S and the fact that, for each
s G S, 1 G 1 + P8, it is a straightforward task to show that {1 + Ps}ses
is the identity of R.

Next we show that {Pβ}βe5, the fundamental system of neighbour-
hoods of the zero of (jβ, J7"), is in fact a filtration on (R, *) which
defines the topology ^ as at the beginning of §2; and hence the
multiplication * is continuous in (R, J7~, *). We need the following
preliminary result.

LEMMA 2.4. Let xeR, te S. Then there exists ue S svxh that
{x + Ps}ses * Pu S Pt and Pu * {x + Ps}seS g Pt.

Proof. By (1.4) there exists veS such tha t xPv g Pt; and by
(1.1) there exists weS such t h a t w2 >̂ t. Let ueS such t h a t u ^
v, w. Let {^s}se5 e P t t; t h a t is, ^ = Pu. Let ^ G X + P t t, ̂  G P t t . Then
a?i2/! G ̂  since P t t g P, Π Pw, and so a?Ptt g Pt, PUPU g P,. Therefore,
for all α;', a?" G X + P u and for all y\ y" e γu, x'y' ~ x"y" e Pt.
Hence, by Lemma 2.2, with / = g — u, s = t, a = xλ and b = y17

{x + P J {ηs} = {Ωs} where Ωt = Pt: t h a t is, {x + P J {)?s} G P ί β Similarly

Pu{χ + P J s P , .

PROPOSITION 2.2. {PS}S€S is a filtration on R which defines the
topology J?~.

Proof, (i) S is a directed semigroup with property (1.1) and, as
noted, each Ps, s e S, is an additive subgroup of R.

(ii) Let t,ueS such that u^t. It is easily checked that Pu g P f.
(iii) Let t,ueS Again, it is easily checked that PtPu g P ί u .
(iv) Let {f J eR, te S. We must show that there exists r G S

such that {ζs}Pr g P t and Pr{fs} g P t , L e t w e S such that w2 ^ ί and
let x e ξw. Then {ζs} - {α; + P J e Pw. By Lemma 2.4 there exists ueS
such that {x + PS}PU^ Pt. Let r e S such that r ^ u, w; and let
{ζj G Pr. Now {fj{ζj - ({fj - {x + PJ){ζs} + {x + Ps}{ζs}; ({?.} - {a +
PJ){ζs} G P w P r g Pwr g P, by (ii) and (iii); and {α; + Ps}{ζJ G {α; + P J P . g Pt

since r ^ w. Hence, by (i), {fs}{Q G P,. Similarly Pr{fβ} g P,. This
completes the proof.
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THEOREM 2.1. The Hausdorff completion of (R, J?*~) is ίsomorphic

to (R, JT, *).

Proof. By [3, III §7.3, Proposition 2], the mapping i:R—>R

given by: for all xeR, i{x) = {x + -Ps}s6s> has an image which is dense

in (R,β~). From [3, III §6.5 and III §7.3, Proposition 2, Corollary

1], the mapping i:R~^(R, x) is a ring homomorphism. Hence

i{xy) = i(x) x i(y). But

') = {XV + Ps}ses = & + P.}seS*{y + PeheS = Φ

Thus the multiplications * and x , which are continuous in ^ ~ , agree

on the dense subset i{R) of (R, JT"). Therefore, by the principle of

extension of identities [3,1 §8.1], * and x agree on R. Thus (R, j ^ , *)

is the Hausdorff completion of (R, J7~).

3* Example* In this section we illustrate our theory with a
semi valuation on the field Q of rational numbers (Zelinsky [7]).

We shall reserve the sign " ^ " for the usual ordering on Q and
shall denote the usual absolute value of the rational number x by
\x\. Define S = {x: xe Q, x > 0}. Order S as follows: For all a, he S,
a ^ b if and only if ab~ι e I (the set of natural numbers). Then
(S, ^ ) is a quasi-residuated, directed semigroup under multiplication.
Define a mapping φ: Q —»SQ as follows: For all xe Q\{0}, φ{x) = \x\;
and ^(0) = 0^. Then it can easily be checked that φ: Q —> So is a
pseudovaluation on Q, (In fact, φ is a semivaluation on Q, from
Zelinsky [7]).

PROPOSITION 3.1. The completion of Q with respect to φ is iso-
morphic to the ring of formal series ΣΓ=.i ί! &; where a,h e Q, 0 ^ αx <
2, αtid, /or eαcft i G I\{1}, α̂  e {0, 1, , i}.

Proof. We shall use the notation of §§1 and 2 throughout. Now,
for each s e S>

Ps = {x: xe Q, φ(x) ^ s} = {ms: me Z} .

We shall use the fact that, for all p, qe I, p\ ^ p ^ p/q and #>! ^

(p - 1)!: that is, for all {£β},6se Q, £*: S ίp £ ίP/<7 and fp! £ ^ - D , .

( i ) Let {fs}Se,e0.

Let α?i G ί2 Then there exists a unique α ^ β such that 0^aι<2
and #! — αx G P2. Suppose that ίuj G ς2 and α[ G Q such that 0 ^ a[ < 2
and »; - a[e P2. Then
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Uι — al = 0»[ - a[) - (Xi — cθ + (»i - #ί) e P 2 .

Hence αx = αί, and so ax is independent of α̂ . Then ζ2 — αx + P2.

Let #2e f3! - (αL + P8I). Since f3! § f2 and P3 ! S P2, we have
2̂ e f2 — (αi + Pύ = PE Hence #2/2 is an integer. Let α2 e {0,1, 2} such

that α2 ΞΞ &2/2 mod 3. Then ζ3ϊ = α : + 2α2 + P 3 ! .

Next, suppose & e I\{1, 2} such that ζkι = at + Σfe 1 ί ! ^ + Ph\ where
αi e {0, 1, , i} for each i e {2, 3, , k — 1}. As before, we can show
that there exists ake {0, l , k} such that f ( f c +i) !=

:α 1+Σt=2^ α*+P(fc+i)i.
Further, each a{ is unique.

Let S G S . Then there exist unique p, qe I such that s = p/q and

(p, g) - 1. Now £,, S fP/ff. Hence f. - Σ C ί '̂ r ^ + ̂ s

Suppose that {5,}βeS and {^s}se5e S define the same set of aiy iel.
Then, for each se S, ξs = Vs Hence {ζs}ses defines a unique set of ai9

ie I.

(ii) Let {αjiez be given such that a^Q, 0 ̂  αx < 2 and, for
each ΐel\{l}, α<e {0, 1, •••, i} Let s e S . Then, as before, there
exists a unique pel such that j> ̂  s. Define ξ8 = Σf^ί1 ^ α^ + -Pe-
lt is a straightforward task to show that {fs}se(SGQ.

Thus far we have established a one-one correspondence between
the elements of Q and formal power series ΣΠ=i aι ^ where α : e Q,
0 ^ ^ < 2, and, for each i e I\{1}, ̂  e {0, 1, , i}.

(iii) Let {ίs}se5?{^s}s6s e 0 correspond to the series ΣΓ=1 H βj>ΣΓ=i ί! δ*
respectively. Now {fs}seίS + {̂ s}se>s = {ζs + ̂ s}se>s. Hence we can define
addition of the series as would be hoped: ΣΓ=i H '<L% + ΣΠ=i ̂  &< =
ΣΠ=i ί! (α« + δi) where at the ith stage αέ + δ< is reduced modulo (i +1)
and the integral part of (α< + δ<)/(i + 1) carried on.

Let {Ωs} = {£,} {57J. Let SG S. Then there exists t e S such that,
for all x e ξt, y e 07,, β s = O T/ + P s - Σ*=ί ϋ α* ΣfcΊ1 ϋ δ< + P s for some
k G /. Hence we can define multiplication of the series in the usual
way, taking care to correct each term as described for the addition.
This proves the proposition.

REMARK. The above example illustrates that the definition of
multiplication * in R in §2 cannot be obviously simplified. For
example, if {ζs}seS = {5 + PS}SQS and {ηs}seS = {3 + P8}seS, then {Ω8}8GS =

{ξ.}.es{V*h*s = {15 + P.Us. Now & = 1 + P2 = %, but ί34 = 3 + P4:
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that is, it would not have been sufficient to choose the w of §2 such
that w2 >̂ s.

I would like to thank my supervisor, Dr C. F. Moppert, for his
many valuable suggestions.
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GEOMETRIC ASPECTS OF PRIMARY LATTICES

BENNO ARTMANN

The incidence structure derived from a primary lattice with
a homogeneous basis of three ^-cycles is a Hjelmslev plane
of level n. A desarguesian Hjelmslev plane H{R) is of level
n if and only if R is completely primary and uniserial of
rank n.

Introduction* The classical correspondence between vector spaces,
projective spaces and complemented modular lattices was extended to
finitely generated modules over completely primary and uniserial rings
and primary lattices by Baer [5], Inaba [7] and, recently, by Jόnsson
and Monk [8]. In these extensions, however, an analogue to the
classical projective space is missing. It is shown in the present paper,
that the appropriate concept is that of a Hjelmslev space as defined
by Klingenberg [9], [10] and by Luck [11]. To be correct, this is
only shown for the case of a plane geometry, namely Hjelmslev planes
of level n, corresponding to primary lattices with homogeneous basis
of three ^-cycles, and to free modules R\ Also, we have the complete
correspondence only in the desarguesian case. The restriction to this
case is justified, as the author believes, by the fact it is well known
to be typical for higher dimensional spaces in the classical theory.

In the non desarguesian case, there is a coordinatization theory
for Hjelmslev planes of level n given by Drake [6], but this does not
seem to lead to a construction of a lattice from the plane. Every
primary lattice with a homogeneous basis of three π-cycles, however,
leads to a Hjelmslev plane of level n (Theorem 2.13). Planes of level
1 (ordinary projective planes) and of level 2 (uniform Hjelmslev planes)
can be shown to be obtainable from lattices. For uniform planes,
this was done by the author in [2]. A combination of Theorem 2.13
with results of [4] shows that a desarguesian Hjelmslev plane £έ?(&)
is of level n if and only if & is completely primary and uniserial
of rank n.

0* Definitions*

0.1. Let <%* — (p, ©, /) be an incidence structure consisting of a
set p of points, a set © of lines and an incidence relation J S j j x ® .
We say that two points p, q of έ%f are neighbors, p ~ q, if there
are two different lines G, H such that p, q IG, H. Neighborhood for
lines is defined dually. A mapping φ: Sίf —* £έf* is a morphism of
incidence structures, if it maps points on points, lines on lines and

15
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pIG implies φpIφG.
An incidence structure J%^ is called a projective Hjelmslev plane,

short if~plane, if it satisfies the axioms [9, Def. 0]:
(i ) For all points p, q of Sίf there exists a line G of Jg^ such

that p, qIG.
(ii) For all lines G, H of 3^ there exists a point p of £ϊf such

that pIG, H.
(iii) There exists an ordinary projective plane & and an epi-

morphism a: H—> ^ such that ap — aq is equivalent to p ~ q, and
aG = aH is equivalent to G ~ H.

Using (iii), we see that neighborhood is an equivalence relation and
the factor structure £ίf\~ — £>ίfτ is a projective plane isomorphic to &.
We call 2ίf' the canonical epimorphic image and the projection
φ: Sίf —* £ίf* the canonical epimorphism of ^f\ In [9] it is shown that
this set of axioms is equivalent to the ones used in [1] to define Zf-planes.

0.2. We deal with modular lattices with universal bounds N and
U. The lattice operations are denoted by V, Λ and we make the
convention that Λ shall bind closer than V, that is a V b Λ c = αV
(5 Λ c). L(a, b) is the interval of elements x such that a ^ x ^ 6.
We use a \> b to denote independent join, i.e. to indicate a Λ b — N.
A cycle a e S^ is an element such that L(N, a) is a chain. A cycle
of dimension k is a fe-cycle.

Definition [8, Def, 4,2 and Def. 6.1]: A lattice S^f is said to be
primary, if:

( i ) Sf is modular of finite dimension.
(ii) Every element of ^f is the join of cycles and the meet of

dual cycles.
(iii) Every interval in ^f that is not a chain contains at least

three atoms.
Furthermore, we make the assumption
(iv) There are three independent ^-cycles alf α3, α3 such that U —

&i C" ̂ 2 N> α3 for the greatest element U of ^f. This means that J^
is of type (0, •••, 0, 3) in the sense of [8, Def. 4.10]. By [8, Lemma
6.4] it follows, that the a{ are pairwise perspective. Hence they form
a homogeneous basis of order three of J^f (for a definition of that
concept, see [1, Def 1]). Since the dual J5P of a primary lattice Sf
is again primary [8, Cor. 6.2], and the type of Sf is equal to the
type of 5 ^ [8, Cor. 4,11], we may use duality in deriving results
from (i)—(iv).

For the rest of this paper, ^ will always denote a lattice satis-
fying (i)—(iv), i.e. a primary lattice with a homogeneous basis of
^-cycles al9 α2, α3. For {ΐ, j , k) = {1, 2, 3} we put A{ = a5 ^ ak. Since
the geometric dimension of ^f [8, Def. 5.1] is three, £? may be
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non-arguesian.

1* The i ΐ plane &?{£?).

1.1. Points and lines in S^ * Let q be the set on ^-cycles of
&, and

p = {p e =2̂  | there is i e {1, 2, 3} such that p ^ A{ = U} .

Every p e p is perspective to some ai9 hence is w-cycle. For an w-cycle
q, assume qΠAi^Nφqf] Ak. Then we have q A At A Ak = g Λα^ ^
JV since g is a cycle, and by the same reason q A A3 = N. Therefore
L(q, q V Aj) has dimension n and q </ Aj — U. Hence we have p = q.

By duality, we get: The set of dual cycles of ^f of codimension
n is equal to the set

G = {Ge£f\ there is i e {1, 2, 3} such that G ^ α i = 17} .

We call p the set of points of £f and © the set of lines of £f.

1.2. Geometric elements. Every Element of c^7 which is the
join of independent points is said to be geometric [8, Def. 5.1]. By
definition, aly α2, α3 and Al9 A2, Az are geometric. From [8, Thm. 5.2]
we derive (FC) (a) For every b e {aly a2, α3, Al9 A2, A3} and every

x e £f with x Ab = N, there exists # ^ α? such that y χ> 6 = Z7.

Since the dual (b) of (a) is true as well, ^f satisfies the condition
(FC) of [1, p. 77].

Let G be a line of J*f, say G C- α< = ^ and r = G Λ -4̂ . and s =
G Λ Ay. We claim that r and s are points such that G = r ^ s.
Obviously we have α< Λ (r V s) = JV. Then, a^V r = diV G Λ Ak =
(α̂  V (?) Λ i i = A&, so that r and a3- are perspective with center α*.
Hence r and s are points. From α̂  V (r V s) = Afc V A3 = Z7 and r V
s ^ G w e get r V s = G by the indivisibility of complements.

In particular, every line of Sf is geometric.
Since the independent join of three points is U, and it is easy to

see that the independent join of two points is always a line (by (FC)
and [1, Lemma 8]), points and lines make up all geometric elements
of £f except for N and U.

1.3. For a line G and a point p ^ G, the interval L(p, G) is a
chain. Proof: Consider two points r, s such that r </ s — G. For
at least one of them, say r, we have r Λ p — N. Then r ^ p = G
and we have L(p, G) = L(JV, r), the assertion.

1.4. Neighbors of p on (?. Again let p be a point, G a line and
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p ^ G. We use < to denote the covering relation in £f. Let N —
z0 < zλ < < zn = p be the chain of elements less than or equal to
p, and let p = y0 ^ S yn — G be the chain of elements between
p and G.

L E M M A . For every i e {0, l , n} there exists a point c^^^G such
that yi = p V ct and zn_i = p A c*.

Proof. For every i, p is a maximal cycle contained in y{ [8, Cor.
4.7]. By [8, Thm. 4,8] p has a relative complement Xι in L(N, y^)
and by [8, Lemma 6.4] there exists a cycle c{ such that yi = p ^
xi = p v a = Xi \> Ci. Since cf and p are perspective, c{ is an ^-cycle,
hence a point. Counting the relative dimensions shows p /\ c{ — zn_^

1.5. Let G and if be two lines and p a point such that p ^
G Λ H. By the last lemma, there is a point q ^ G such that p V
q = G A H. This and the dual statement yield

(S) (a) For points p, q of Jsf and a line G with p V q ^ G there
exists a line ϋ such that pV q = G Λ H.

(b) For lines G, H of ^ and a point p ^ G Λ H there exists a
point q such that p V q = G A H.

1.6. In [1, p. 77/78] it was defined: A modular lattice with a
homogeneous basis of order three consisting of cycles is called an H-
lattice, if it satisfies (FC) and (S). By 1.2 and 1.5, ̂ f is an iϊ-lattice.
From an ίZ-lattice an incidence structure (p, ©, I) is derived by defining
p and @ as in 1.1 and incidence by the ordering of the lattice. Using
Theorem 1 of [1], we can now state:

PROPOSITION. J^f is an H-lattice and the incidence structure
£ίf — ̂ f{£^) = (p, ®, I) derived from £^ is a protective H-plane.
Two points p, q of J^f are neighbors in 3ίf if and only if p A q > N,
two lines G, H are neighbors if and only if G V H < U.

More information about ^f will be given in the next section.

2. ^( jSf) is of level n.

DEFINITION 2.1. (cf. [3] and [6]) Let £ί? and ̂ T7* be iί-planes with
canonical epimorphisms φ: ̂ f —> 3έff and fc: £%f*—+(^f*)f onto ordinary
projective planes. Let ψ: 5ίf-+3ίf* be an epimorphism and λ: {3ίf*)r-*
^ff an isomorphism. If φ = Xitψ we say C9^ has a refined neighbor pro-
perty defined by ψ: <^f—>έ/έf *. We define p = q by ψp = ψq and G =
H by ψG = ψH. Then = is called a refined neighbor relation in
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We say = is minimal provided the following conditions hold:
(M) Let p, q be points on G and p on H.
(a) If p = q and G ~ H, then q is on H.
(b) If p ~ g and G = H, then g is on iϊ.
(c) There exist distinct points a and 6 and distinct lines A and

B such that α == b and A ^ B.

DEFINITION 2.2. The ordinary protective planes make up the
class of protective iϊ-planes of height 1. Suppose Sff is an iϊ-plane
with a minimal neighborhood defined by ψ: £ίf -+ Sίf*, where §ίf* is
of height n - 1. Then one calls 3ίf an iί-plane of height n.—It is
suitable to denote an ίf-plane of height n by Jgζ and by ^ _ i the
plane and by ψn-19 φn-ί9 ^n~ι the maps which define the minimal neigh-
borhood in <%%,. Proceeding thus we obtain, for every ϋf-plane of
height n, the following commutative diagram

ψn-2 ψl

ψn \ψn-l \ψl

λn-l λn-2 λl

We set μk = ψk ψ^ψ^ and take μn to be the identity on
We denote by (~ k) the refined neighborhood defined by μk: <§ίfn

in

DEFINITION. 2.3. If Jg^ is an H-plane of height n, then the H-
planes ^f{ in the defining sequence of £(?» are of height ί. The notion
of (~ ^-neighborhood is defined in <%? as in Jgζ. A fc-segment in Stf\
is the nonempty intersection of a line with a class of (~ fc)-neighbor
points. An ίZ-plane £ίfn of height n is called of level n, if the follow-
ing axiom of reciprocal segments holds in every plane <%% of the
defining sequence of Jgζ:

(RS) (a) For all lines G, H of ^ , the set of common points of
G and H is a ^-segment, for some ke{l,2, , i).

(b) G(~ Λ)Jϊ if and only if the set of common points of G and
H contains an (i — &)-segment.

REMARK. For the change of (N) [3, p. 175] to (RS), see [4].

2.4. If the cycles α, of ^f are of dimension 1, then £if(£^) is
an ordinary projective plane (an ff-plane such that two points p, q
are neighbors if and only if p = q), hence an ff-plane of level 1. If
the α< are bicycles, that is of dimension 2, then by 1.5 every point
of 3tf{Ji?) has at least one proper neighbor and by [2, Satz 3],
is a uniform iί-plane, that is of level 2 [3, p. 179].
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We are going to apply induction to show that £{f{£?) is of level
n if the a{ are ^-cycles. We may assume n > 2. First we have to
show that 3ίf(£f) is of height n.

2.5. Let di cover bt and B — bι V b2 V b3. Then δx, ί>3, δ3 form a
homogeneous basis of JS^* = L(iSΓ, 5) (cf [8, Cor. 4.13]). By [8, Cor.
4.4] J?f* satisfies (i) and (ii) of Def. 0.2. Moreover, every interval
of Jzf* is an interval of ^f, so £f* satisfies (iii) as well. Hence
££** is a primary lattice with the homogeneous basis bl9 b2, 63 of three
(n - l)-cycles. Let the derived H-plane be ^ T * = <^T(j^*) = ft)*, ©*, I ) .

Let p be a point of ^ = ^ ( ^ ) and G be a line of JT 7 . We
define

f:

by

ψp = p A B and τ/rG = G Λ B .

In the following paragraphs, we will show that α/r is an epimorphism.
If p <; G, then p ΛB ^ G Λ B, so the fact that α/r preserves in-

cidence is trivial.

2.6. Let p be a point of £ίf, say p s> A{ = U, and let B{ — bά V
&fc. Then (p A B) V B* = B, and ^ maps £ into £*. We want to show
that it is onto. Let p* be a point of < ^ * , say p* V B{ = B. Then
p* Λ At — N, and by [8, Thm. 5.2], p* is contained in some comple-
ment p of Ai. It follows pep and ψp = p*.

2.7. Let G be a line of ^ , say G ^ α ^ Z7, and G Λ i i = s
and G A Ak = r as in 1.3. We have ί) {V r ^ 6̂  and ^ V s ^ δfe, hence
hV (G A B) = (biV G) A B = B. Since G A B Ah = N,ψ maps ©
into ($*. Again we have to show that it is onto. Let G* be a line
of < ^ * and G* = r* ^ s* for two points of < ^ * . There exist points
r, s of ^ such that r Λ B = r* and s Λ £ = s* For G = r V s
we have α/rG = G*.

2.8. Since p ~ q in ^g^ means p A q > N m £f, we have p ^ q
in < ^ if and only if ψp — α/rg in ^g^*.

We want to show that the same is true for lines. Assume G ~
H in 3ίf. We know that this means G Λ H> p for some common point
p of G and if. Let a; be a cycle ^ G such that G A H = p ^x.
We may assume G Φ H, hence the dimension of x is at most n — 1.
Therefore x ^ G A B and x ^ H A B, and we have
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G Λ i ? Λ ΰ = ( P v ^ ) Λ S

= v Λ B V x

= # V x ,

and from x > N we deduce ^G ~ φH.
Now let G Φ H in Jg^, then G Λ H = p for a unique point p.

There are points r, s of ^ such that G = p \> r and H = p ^y s.
From this we derive ^p V ψr V ψs ^ α/rG V ψH, and since τ̂ p, ̂ rr, ψs
are three independent (w — l)-cycles, it follows GΛBvHΛB = B,
hence ψG Φ ψH.

Thus we have arrived at: G ~ H in ^ if and only if ψG
in

2.9. By 2.5 - 2.8 we know:
ψ: £ίf —• Jg^* is an epimorphism and

p ~ q if and only if τ/rp —
G ~ H Ίϊ and only if ψ(?

Now, for n — 1 > 1, we may repeat the procedure and, changing
notation to £ίf = ^gζ, < ^ * = J^t_! and ^ = ^ ^ ^ get a sequence

^tt-2 ^1

where the final incidence structure S^[ is an ordinary projective plane.
The mapping

is an epimorphisms such that

p ~ q in ^g^ if and only if μφ = μλq in Jgf and

G - JET in ^ T if and only if μ,G = /^.iϊ in

Now the canonical epimorphism φn: £ίfn —> ̂ ς ; is universal with the
property (*), hence we have a unique isomorphism ψ: J ^ ; —> ^gt such
that /̂ i = 09>Λ. By the same reasoning for £έfn-γ and ^x:
we get the following commutative diagram

fn-i
\

If we put λ ^ - θ~ιr], we have ^ , - K-i<Pn-iψn-i and ̂ n ^ :
defines a refined neighborhood in 3ίfn. Clearly, the same is true for
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all ψii <%^ί^ι—> Sίfi (1 <Ξ i < n). Thus we arrive at a commutative
diagram as required in Definition 2.2 We did not yet show that
the refined neighborhood defined by ψn-λ: £ίfn —> Sl?^ is minimal.
Without knowing this, we define μ{ and (~ i) as in 2.2β

2.10. In order to prove the axioms (M) and (RS) of Definitions
2.1 and 2.3, it is useful to have an alternative description p(~ i)q
and G(~ i)H in Stf = <%?(£*).

( i ) Let N = p0 « pλ < pn_ 1 « p B = |) and ] V = g o « . «
g% = # be the chains of elements below the points p and q. We have
tn-iP — P Λ B = pn_19 hence ^ - i P = Ψn-iQ if and only if pn^ = g%_lβ

Repeating the argument we obtain μj> = Pn which yields μφ = μ&
if and only if p{ = qi9

(ii) Let G, H be lines of 3(f(£f) and p, r, s be points such that
G = p \> r and H = p \> s. Let r*, ŝ  be defined like pτ in (i), and
p = x0 < xι < " - < xn = G. If ^^G = //ifl, then

and

Hence p C- ri — %i S G A H and from Lemma 1.4 we get
( + ) There exists a point g such that pn_{ = qn^ and

Conversely, assume ( + ). There exists a cycle r< such that p V q =
p ^yTi — Xi and points r, s such that r{ ^ r ^ G and r* ^ s ^ i ί [8,
Thm. 4.8]. From this we derive G = p ^r and H — p \> s and

Letting G = gQ < ^ < < gn = U and H = hQ < - - < hn = U we
may equivalently say

^•G = μ%H if and only if gn^ = /ι%_,- .

Or, using p = y0 <t - < yn = H:

μ{G — μ{H if and only if ^ = y{ .

2.11. We are now ready to verify that ψn^: J%^Λ —> ^ ^ _ i defines
a minimal neighborhood in ^g^.
(Ma) From p A B = q A B it follows that p and q cover p A q.
Hence p V q covers p and #. Now if G V H <U, then G A H > p
and since L(p, G) is a chain, we have
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p <pV q^G A H,

hence q ̂  H.
(Mb) Let Xi and yt be as in 2.10. By 2.10 (ii) we know xn-x — yn^.
Now if p ~ q, then p\/ q < G, hence p V q ̂  xn-i = 2/»-i which implies

(Me) Taking i = 1 in 1.5 we get points with the desired property.
By duality, we have lines G Φ H such that G V H is a cocycle of
codimension n — 1, hence ψn^G = ψn^H.

2.12. The axiom of reciprocal segments. By 2.10 (i) an ί-segment
is a set of points on a line G such that p* = q{ for any two points
p, q of the set.
(RSa) Let p ^ G A H and p*, $< as before. Assume G Λ H = xn^.
Then for every point q ̂  H we have that

p Λ q ̂  Pi implies g ̂  G, and

p A q < Pi implies q ̂  G, since otherwise G A H > xn-i

Hence the set of points incident with both G and H is an i-segment.
(RSb) By 2.10 (ii), μ{G = μt H if and only if G and i ί have (at least)
an i-segment in common.

THEOREM 2.13. The H-plane β^(^f) derived from a primary
lattice L with a homogeneous basis of three n-cycles is an H-plane of
level n.

Proof. By 2.9, ψv_L: <%t —• ^ t - i defines a refined neighborhood
in £ίfn which is minimal by 2.11. By 2.12, the axiom (RS) of reciprocal
segments holds in £έfn. Since Sf?^ is derived from a primary lattice
with a homogeneous basis of (n — l)-cycles, we may assume that έ%f%-γ

is of level n — 1. But then Sίfn is of level n

3* Desarguesian iϊ-planes of level n.

DEFINITION 3.1. [8, Def. 6.6]. A ring & (associative with unit)
is said to be completely primary and uniserial if there is a two-sided
ideal s$? of & such that every left or right ideal of & is of the form
S^fk (where J^° = ̂ ) . The rank of such a ring is the smallest
integer k such that s$fk — (0).

It is a simple exercise to verify that a completely primary and
uniserial ring is an ff-ring in the sense of [9 Def. 9].

DEFINITION 3.2. Let & be a completely primary and uniserial
ring of rank n. The lattice £f{3if*) of all submodules of the
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left) module ^ 3 is primary [8, Thm. 6.7] and has the homogeneous
basis a, = ^?(1, 0, 0), α2 = ^ ( 0 , 1, 0), α3 = ^ ( 0 , 0,1) of π-cycles. Let
3ίf{&) = ^(Jδ^C^?3)) be the H-plane derived from £f(&*). It is
easy to check that this plane is essentially the same as defined by
Klingenberg [9 Def. 10] via homogeneous coordinates. An iϊ-plane

is called desarguesian if there exists an if-ring & such that
is isomorphic to £ί?{&)> the latter defined as in [9].

THEOREM 3.3. If έ% is a completely primary and uniserίal ring
of rank n, then the H-plane £ίf{&) is of level n.

Proof. Theorem 2.13 and Definition 3.2.

3.4. In [4] it is shown: If ^f = £έf{&) is a desarguesian H-
plane of level n, then <% is a completely primary and uniserial ring
of rank n. We combine this with 3.3:

COROLLARY. A desarguesian H-plane βέ?{&) is of level n if and
only if & is completely primary and uniserial of rank n.

3.5. Since the lattice £^(&z) defined in 3.2 is arguesian, we
have a correspondence between completely primary and uniserial rings
of rank n, arguesian primary lattices with a homogeneous basis of
three w-cycles and desarguesian iί-plane of level n as in the classical
theory of projective spaces. With the appropriate definitions, it should
be not too hard to verify the analogues correspondences for finite
dimensional iϊ-spaces. The coordinatization theorems relevant for this
can be found in [7] and [8] for lattices and in [10] and [11] for
Hjelmslev spaces.
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DETERMINING A POLYTOPE BY RADON PARTITIONS

MARILYN BREEN

In an extension of the classical Radon theorem, Hare and
Kenelly have introduced the concept of a primitive partition,
allowing* a reduction to minimal subsets which still possess
the necessary intersection property.

Here it is proved that primitive partitions in the vertex
set P of a polytope reveal the subsets of P which give rise
to faces of conv P, thus determining the combinatorial type
of the polytope. Furthermore, the polytope may be recon-
structed from various subcollections of the primitive partitions.

2* Preliminary results* Throughout, | P | denotes the cardinality
of P. If P is a set of points in Rd, A U B is a Radon partition for P
iff P = A\J B,AΓ) B = 0 , and conv A Π conv B Φ 0 . Each of A and
B is called half a partition for P and each element of A is said to
oppose B in the partition. The Radon theorem says that for P^Rd

having at least d + 2 points, there exists a Radon partition for P.
When P is in general position in Rd and P has exactly d + 2 elements,
the partition is unique.

In [2], Hare and Kenelly introduce the concept of a primitive
partition: For PξΞ:Rd, A{J B is a Radon partition in P iff A (J B is
a Radon partition for a subset S of P. We say that the Radon parti-
tion A U B extends the Radon partition A' (J B' iff 4 ' e A and J3'<Ξ j?.
Finally, i u δ is called a primitive partition in P, or simply a primi-
tive, provided it is a Radon partition in P and A\J B extends the
Radon partition A' LJβ' iff A! = A and Bf = U. It is proved that
each Radon partition extends a primitive partition having cardinality
at most d + 2.

Theorem 1 follows immediately from the results of Hare and Kenelly.

THEOREM 1. Let P denote a set of d + 2 points in Rd and let
A\J B be a primitive for P. Then \ A\ + \B\ = d + 2 iff P is in
general position.

COROLLARY 1. // A U B is a primitive for P, P^Rd, then A{J B
is in general position in Rk for some k ^ d, and \ A\ + \B\ = k + 2
for this k.

THEOREM 2. If Pξ^R1 and A\jB is a primitive for P, then
dim (conv A Π conv B) = 0.

27
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Proof. By the corollary to Theorem 1, A (J B is in general posi-
tion in Rk for some k ^ d.

Recall that dim (aff A Π a O ) = dim aff A + dim aff £ - dim
(aff A + aff 5). Letting i = |A| and I = |B|, for points in general
position, this is equal to (i — 1) + (I — 1) — k — j + £ — k — 2. Also,
for k + 2 points in general position, the partition is unique, and so
j + j — & 4- 2, and the above is zero.

3* Reconstructing polytopes* Our goal is to establish the rela-
tionship between faces of conv P and primitive partitions for P.
Throughout, P denotes the vertex set of a convex polytope in Rd,
and \P\ = n.

THEOREM 3. If SξΞ^P and conv S is a face of conv P, then S
is not half a Radon partition for P.

Proof. Assume conv S is a proper face, for otherwise the result
is trivial. Let H be a supporting hyperplane to conv P for which
H Π conv P = conv S. Assume P S cl (!?+), the closure of the open
half-space H+. Then P - Sg£Γ+, and conv (P ~ S) Π conv S = 0 .

The following definitions are useful in obtaining a converse to
Theorem 3.

DEFINITION. Let S^P. Then we say conv S cuts conv P (or
S cuts conv P) iff one of the following is true: Either (1) dim aff
S = d or (2) dim aff S ^ d — 1 and any hyperplane containing S cuts
conv P.

DEFINITION. If S § P and conv S cuts conv P, then a subset Γ
of S is said to be a minimal cutting subset of S for P iff conv T
cuts conv P and no subset of S of cardinality less than | T\ cuts conv P.

THEOREM 4. If \P\ = n^d + 1, and Sξ^P, then the following
is true: conv S is a face for conv P iff for A g S , A is half a primi-
tive for P only in case all the elements opposing A in the primitive
are also in S.

Proof. If conv S is a face for conv P, then by Theorem 3, S
cannot be half a Radon partition for P Thus if A g S and A is half
a primitive for P, some of the elements opposing A must lie in S.
We must show that all the elements opposing A lie in S:

Suppose not, and let A U B be a primitive for P with 4 g S , 5 f ]
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S Φ 0 , and B f] (P ~ S) Φ 0 . Since A (j B is a primitive, conv A Π
conv (5 Π S) is empty. Thus any point in conv A Π conv B cannot lie
in conv S. Yet i g S , so conv A S conv S, and we have a contradic-
tion. Our supposition is false, and all members of B lie in S.

Conversely, suppose SζΞP has the property that for 4 g S , 4 is
half a primitive only in case all the elements opposing A in the primi-
tive come from S.

Let xeP ~ Sφ 0 .
First we assert that x £ aff S. If x e aff S, then reduce S to a

(k + l)-subset T g S such that affT=affS, where A; = dim aff S.
Then conv T is necessarily a simplex. Since T U {#} is a (A: + 2)-subset
of Rk = aff (Γ U {α}), there is a Radon partition for Γ U {x}. Let Ao U Bo

be a primitive for T U {#}. Necessarily a? appears, since T is a simplex.
Assume x e Z?o. Then Ao is a subset of T (and thus a subset of S)
which is half a primitive for P. Yet x opposes Ao and x is not in £,
contradicting our hypothesis. Thus we have proved that for x in
P ~ S,x$ aff S. Also, this implies that S - P Π a f f S and dim aff

We assert that S lies in a proper face of conv P. Assume that
S does not lie in a proper face of conv P to reach a contradiction.
Let x e P ~ S. US does not lie in a face of conv P, then conv S
necessarily cuts conv P. Choose S ' g S to be a minimal cutting sub-
set of S for P. Let p be in conv S' and interior to conv P. We
will show that a subset A of S' is half a primitive partition A U B
for P, where S g S :

Consider the ray from x through p. Since p is interior to conv
P, this ray intersects bdry conv P at a point v beyond p. Clearly
v$ aff S, or else x e aff(SU {v}) = aff S, a contradiction since x g. aff $.
Now # lies in a facet P7 of conv P. Choose exactly d vertices T in
F such that v e conv Γ and ϊ7 determines a simplex.

Let Q = Γ U S' U {̂ }. Consider the polytope conv Q. We will
show that S' is half a partition for Q:

By minimality of (S'|, it follows that aff Sr Π conv P = convS'.
For otherwise, conv S' is not in a face for the polytope aff S' Π conv P
(since the dimensions are the same), and some proper subset of Sr

must cut aff S' Π conv P. Thus a proper subset of S' cuts our original
polytope conv P, contradicting minimality of S'. This implies also
that aff S' Π conv Q = conv S\

To show that convS' Π conv (Q — S') ^ 0, it suffices to show
that aff S' Π conv (Q ~ S') Φ 0 . Assume that the intersection is empty
to reach a contradiction. If the intersection is empty, then strictly
separate aff S' from conv (Q ~ S') by a hyperplane if. Since H Π aff
S' = 0 , J5Γ must be parallel to aff S'. Let J be a hyperplane parallel
to H and containing aff S'. Clearly J f] conv (Q — S') = 0 , so J is a
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supporting hyperplane for conv Q such that J Π conv Q = conv S', and
conv S' is a face for conv Q. However, this is a contradiction, for
the segment [x, v] intersects conv Sf at p. Our assumption is false,
conv S' Π conv (Q ~ S') is not empty, and S' is half a partition for Q.

Let A U B be a primitive inside S' U (Q — S') We claim that a?
necessarily appears in J5, for otherwise we have BξΞ=T, but conv T
is a face for conv Q so by the first part of this theorem, 4 g Γ also.
But we chose T to be a simplex, so there is no primitive for T; we
have a contradiction, and x must appear.

Recall that x g S. Thus Bξ£S since x e B. At last we have con-
tradicted our hypothesis, for A U JS is a primitive such that i g S
and £§£S. Our assumption that S does not lie in a face of conv P
is false, and S does indeed lie in a face.

To complete the proof, it remains to show that conv S is a full
face of conv P. Select a face F of conv P having minimal dimension
for which SξΞ=F. Clearly S cannot lie in a proper face of the polytope
F. Thus, F S a f f S , so P f] F^P Π aff S = S, and vert F = S, fini-
shing the proof.

COROLLARY 1. For a sίmplicial polytope conv PandS^P, conv
S is a face for conv P iff no subset of S is half a primitive for P.

The proof to Theorem 4 required a construction which we will
need again, and for this reason we list it as a corollary:

COROLLARY 2. Let SξΞ;P,xeP~affSφ 0 . If S does not lie
in a face of conv P, let Sf be a minimal cutting subset of S for P.
Then aff S' Π conv P = conv S'. Moreover, S' is half a Radon parti-
tion for a subset Q of P where xeQ, and Q may be chosen so that
Q ~ [Sr U {x}] is a simplex and lies in a facet of conv P. For any
primitive A U B inside S' U [Qr - S'] with A^S',xeB.

COROLLARY 3. // P is in general position, S half a Radon parti-
tion for P, xe P ~ S, and S' a minimal cutting subset of S for P,
then S' is half a primitive for P, and this primitive may be selected
so that x still appears.

DEFINITION. We say that it is possible to reconstruct the polytope
conv P iff for each face F of conv P we can determine the unique
subset S of P such that conv S = F.

The author wishes to thank the referee for the following obser-
vation: Let μ determine the collection of all sets SQP for which conv
S is a face for conv P. Since μ is a complete lattice under inclusion,
and each maximal chain in μ is of length d + 2, beginning with 0
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and ending with P, we can determine the dimension of each face
conv S from its position in any maximal chain. The lattice μ also
determines all inclusion relations between faces and hence gives the
combinatorial type of conv P.

Therefore, when the definition of reconstruct is satisfied, the
combinatorial type of the poly tope is revealed.

DEFINITION. Let Pu P2 be vertex sets for two polytopes conv Pί9

conv P2, and let Ru R2> denote the set of primitive partitions for Pu P2

respectively. We say that R, is isomorphίc to R2 iff there is a one-
to-one map ψ of Pi onto P2 having the following property: A U B is
a primitive for P1 iff ψ(A) U ψ(B) is a primitive for P2.

The following corollary is a direct consequence of Theorem 4.

COROLLARY 4. Let Pl9 P2 be vertex sets for polytopes, Ru R2 their
respective primitive partitions. If Rλ is isomorphic to R2, then conv
Px is combinatorially equivalent to conv P2. Thus it is possible to
determine the combinatorial type of a polytope from the Radon parti-
tions of its vertex set.

The following example shows that the converse is false. That
is, two polytopes may be combinatorially equivalent although their
vertex sets have non-isomorphic Radon partitions.

EXAMPLE 1. Let {1, 2, 3, 4} be the vertex set for a square which
is base for two distinct bipyramids conv Pi and conv P2. Let {5, 6}
be the remaining vertices for conv Pίy and let the segment [5, 6] pass
through the center of the square. The primitives for Pγ are

{ 1 , 3} U {2, 4} ,

{ 1 , 3} U {5, 6} ,

{2, 4} U {5, 6} .

Now let {7, 8} be the remaining vertices for conv P2, where the
segment [7, 8] intersects the base within [2, 4] Π rel int conv {1, 2, 3}.
The primitives for P2 are

{ 1 , 3} U {2, 4}

{ 1 , 2, 3} U {7, 8}

{2, 4} U {7, 8} .

The primitives for Pu P2 are not isomorphic, yet the map ψ from
Pi onto P2 defined as the identity on {1, 2, 3, 4}, π/r(5) = 7, <f (6) = 8, sets
up a one-to-one correspondence between faces and is inclusion pre-
serving«
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Even for points in general position, combinatorial equivalence of
conv Pu conv P2 does not imply that Rx is isomorphic to R2. However,
in case we have exactly d + 2 points in general position in Rd, the
implication does hold.

COROLLARY 5. For i = 1,2, let conv Pi be a simplicial polytope
having d + 2 vertices, and let Rι be the unique Radon partition for
Pi. Then combinatorial equivalence of conv Pu conv P2 implies that Rx

is isomorphic to R2.

It is interesting that Corollary 5 may be used to obtain the fol-
lowing familiar result.

COROLLARY 6. Consider the collection & of all sets P in Rd con-
sisting ofd + 2 points in general position with no point of P interior
to conv P. Then there are exactly [d/2] possible Radon partitions for
P in ^ and each one determines a distinct polytope conv P. There-
fore, there are exactly [d/2] simplicial polytopes having d + 2 vertices.

4* Reductions* Of major interest is the problem of obtaining
a minimal subcollection of primitive partitions for P which will deter-
mine the combinatorial type of conv P. The following theorems are
concerned with one kind of reduction.

For xe P, let ^ x denote the subcollection of primitive partitions
for P defined in the following manner: A\J B belongs to <g% iff either
(1) x appears in A U B or (2) \A\ + |J5| ^ d + 1.

Theorems 5 and 6 show that conv P may be reconstructed from <g%.

THEOREM 5. For xeP and S g P ~ {x}, conv S is not a face for
conv P iff there is some member A[j B of ^ x such that AξΞ S, Bξ£S.

Proof. By Theorem 4, if a subset A of S is half a primitive
A U B for P, and B^S, conv S cannot be a face for conv P.

Conversely, suppose that x is a specified point in P, SξΞ P ~ {x},
and conv S is not a face for conv P. We consider cases:

Case 1. If S lies in a facet F of conv P, then by a fundamental
property of polytopes, conv S cannot be a face for F. Using Theorem
4, since conv S is not a face for the polytope F, a subset A of S must
be half a primitive A\J B for vert F, with B§=S. Moreover, since
F is (d — l)-dimensional, |A| + |JB|^d + l, and Condition (2) is satisfied.

Case 2. If S does not lie in a facet and if xe affS, then as in
the proof of Theorem 4, let dim aff S — k ^ d and reduce S to a
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(k + l)-subset T of S such that aff T = aίf 5. Conv T is necessarily
a simplex. Since T U {#} is a (& + 2)-subset of jβ* = aff (Γ U {%}), there
is a Radon partition for T [j {x}. Let A U i? be a primitive correspond-
ing to this partition- Necessarily x appears since conv T is a simplex.
Assume xeB. Then A g ^ S S , and Condition (1) is satisfied.

Case 3. If S does not lie in a facet and if x & aff S, then we
may call on the technical corollary following Theorem 4 to obtain a
subset S' of S and a subset Q of P having the property that £' U
(Q ~ S') is a Radon partition for Q. Moreover, if A U B is a primi-
tive inside S'U (Q ~ S')> then x appears in B. Thus AQS, B^S,
and a? opposes a subset of £ in this primitive. We have satisfied
Condition (1) and completed the proof of the theorem.

For x in P, Theorem 5 allows us to recognize all faces of conv P
not containing x by listing the primitives in which x appears plus the
primitives having ^ d -f 1 points. Our next problem, of course, is
recognizing the faces containing x, and we would like to be able to
do this from the same collection of primitives. Happily, the next
theorem shows that this is possible.

THEOREM 6. For Tξ^P and x in T, conv T is not a face for
conv P iff there is some member A{j B of ^ x such that Aξ^T, B£T.

Proof. Certainly if there is a primitive Al) B with AξΞ:T and
Bξ^T, then by Theorem 4, conv T cannot be a face for conv P.

Conversely, assume that conv T is not a face for conv P and x e T.
Again, we must consider cases:

Case 1. Now if T lies in a facet F of convP, repeating the
argument in Case 1 of Theorem 5 shows that Condition (2) is satisfied.

In the remaining cases, assume that T does not lie in a facet for
conv P. L e t S ^ T - {x}:

Case 2. If S is contained in a facet F but conv S is not a face
for conv P, then by repeating the argument in Case 1 of Theorem 5,
Condition (2) holds.

Case 3. Suppose S is contained in a facet and conv S is a face
for conv P. Recall T = S I) {x} is not a face, for we are assuming
that T does not lie in a facet. By Theorem 4, there is a primitive A[j B
for P with AQS{J{X) = T and Bξj£S\J{x}. Moreover, since convS
is a face for conv P, a subset C of S is half a primitive C U D for
P iff ΰ g S . This implies that x must appear in A, for otherwise
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we would have i g S and ΰ g S , a contradition. Thus A g Γ , £ ^ Γ ,
and x appears, satisfying Condition (1).

Case 4. If conv S is not in a facet for conv P and x is in aff S,
then unfortunately it is necessary to consider subcases:

(4a) If dim aff S = d, then since T Φ P, there is some y e P ~ T
and necessarily y is in aff S. Let T' be the vertex set for a cϋ-dimen-
sional simplex, xeTf^T=Sl] {#}. Then T' U {y} is a set having
d + 2 points in R\ so there is a primitive A u 5 for T" (J {#}. Certainly
?/ appears (since T' is a simplex). Assume y e B. Then A g Γ ' S Ϊ 7 ,
and Bξ£T. Now if | A\ + | J5| — d + 2, then α; appears and Condition
(1) holds. I f | A | + |J5|^fl! + l, then Condition (2) holds.

(4b) Similarly, if dim aff S = k < d and if there is some y in
(P f laf ϊS)- T, let T' be the vertex set for a ^-dimensional simplex,
xe T'QT, and repeat the above proof.

(4c) If dim aff S = k < d and if ( P n a f f S ) - Γ = 0, then select
a point y e P ~ aff Si. (This is possible since T ^ P.) Again, let T"
be the vertex set for a ^-dimensional simplex, x in T' g T.

Now we want to use our old friend, the corollary following The-
orem 4, but first we must make a few adjustments.

Let conv R be a new poly tope, where R = P — (aff T ~ T') We
have thrown away the vertices in aff T except for those in T". Notice
that x remains. Also y remains since y g aff S = aff T.

We assert that T" does not lie in a face of conv iϋ: If T" is in
a face, then let the hyperplane H support conv R with T' g if. Then
aff Γ 'SJBΓ But aff T' = aff T, so aff Γgff, and H supports conv
P ΞΞ conv (R U Γ) with Tξ^H. But Γ does not lie in a face of conv
P by hypothesis. We have a contradiction, and Tf does not lie in a
face of conv ϋ?.

We are ready for the corollary to Theorem 4. I" does not lie
in a face of conv R, and y is in i2 ~ aff Γ'. Thus there is a subset
T" of T' which appears as half a Radon partition for a subset Q of
iϋ, where y eQ. Moreover, Q may be chosen so that Q ~ {T" (J {?/})
is a simplex and lies in a facet of conv i?. For any primitive A{] B
inside T" U (Q ~ T") with A g T;', yeB.

Now if a? is in T", and if x e i , then we have i g ϊ 7 , B^T (since
yeB)y and α? appears in the primitive, satisfying Condition (1). If x
is in T" but a; is not in A, then by our minimality condition of T",
no proper subset of T" may cut conv R, so conv A cannot cut conv
Rf and likewise, conv A cannot cut conv Q. Then conv A must lie in
some face of conv Q, and certainly conv A Π conv B must lie in the
boundary of conv Q. By Theorem 1, Corollary 1, necessarily \A\ +
B\ S d + 1, satisfying Condition (2).

We still need to examine what happens in case x does not appear
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in T". Again by the corollary to Theorem 4, aff T" Π conv R = conv T".
Now conv T is a simplex, T" S T\ and a; e T. If a; is not in T",
then a? g conv T", and so α; g aff ϊ7". By the very choice of T", conv T"
cuts conv iϋ, and so conv T" does not lie in a face of conv R. Also
αe.B~af fT", so there is a subset Γί3) of T" which is half a
partition for a subset of R (by the corollary). Let C U -D be a cor-
responding primitive. Then C^Tm and re e Zλ Not all of D can lie
in T', for if it did, we would have a primitive C U D in the vertex
set of the simplex T', and this is ridiculous. Thus, D §£ T', but D^R,
and the only points of T7 in i2 are those in T\ Thus, D g T. To
review, CQT, D§=T, and # appears in D, satisfying Condition (1),
and completing Case 4c.

Case 5. If S is not in a face and # is not in aff S, then as in
Case 4c, reduce conv P to a new polytope conv R, where R = P ~
(aff S ~ S'), and where S' is the vertex set for a A:-dimensional simplex
with k = dim aff S. By our earlier argument, S' does not lie in a
face of conv R. Also, xe R and $ g aff Sf. Then by the corollary to
Theorem 4, a subset S" of S' appears as half a partition for a subset
Q of iϋ. Let A U β be a corresponding primitive. Then by the corol-
lary, A<^S" and α e JB. Moreover, E g Γ = S U {α;}, for if B g Γ , we
would have 4 g S ' , S g T i l Q = S'U {#}. But S' determines a simplex
and ê  g aff £', so S' U {x} determines a simplex and has no primitives.
Thus A g Γ j ΰ ^ ϊ 1 , and x appears in B, satisfying Condition (1) and
finishing Case 5.

This completes the proof of Theorem 6.
At last we have obtained a reduction in the number of partitions

necessary to reconstruct an arbitrary polytope. Combining Theorems
5 and 6, we have the following corollaries:

COROLLARY 1. The combinatorial type of conv P is determined
by ^ x for any x e P.

COROLLARY 2. For P in general position and x e P, the combin-
atorial type of conv P is determined by the primitive partitions for P
which contain x.

5* Locating points* Another approach to the problem of obtain-
ing a minimal collection of primitive partitions which determine conv P
leads to the method of reconstructing a polytope by locating vertices,
one at a time.

DEFINITION. Let P U {x} be the vertex set for a polytope in Rd

and assume that we have reconstructed conv P. We say that we



36 MARILYN BREEN

locate x relative to conv P iff we are able to reconstruct conv (P U {#}).

DEFINITION. Let P be the vertex set for a polytope in Rd and
let x be a point not in P. For F a facet of conv P, we say x is
beyond F iff x is in the open halfspace of HF not containing P (where
ίZ^ is the hyperplane determined by F). For E a face of conv P, we
say x is beyond E iff α? is beyond JF for every facet F containing E.

To reconstruct conv P by locating vertices, one at a time, first
select 8L (d + l)-subset S of P for which there is no primitive. (Clearly
S determines a simplex.) The following theorem describes the pro-
cedure for locating additional points.

THEOREM 7. Let P U {x} be the vertex set for a polytope, and
assume that we have reconstructed conv P. Then to reconstruct conv
(P U {x}), it is sufficient to consider the primitives A\J B for P U {x}
such that A lies in a face of conv P, xe B, and x opposes no proper
subset of A in a primitive.

Proof. Using Theorem 5.2.1 of Grϋnbaum [1], we see that to
establish the faces for conv (P U {%}), it suffices to examine the faces
for conv P.

For S g P and conv S a face for conv P, S determines a face for
conv (P U {x}) iff no subset A of S appears as half a primitive A\J B
with x in B. Also, S U {x} determines a face for conv (P U {x}) iff for
every primitive A\J B with 4 g S and x in B, then 5 g S l i {x}

However, if there is one primitive Ao (J Bo with Ao £ S, x e Bo, and
ΰ o g S U {x}, then by general position of the points involved, xe aff S,
x lies in every face containing S, and $ U {x} determines a face for
conv (P U {#})• Therefore, if one primitive with i o 9 S and x in i?0

satisfies B0S S I) {x}, then every primitive with 4 g S and # in i?
satisfies S g S U {#}, and it is easy to determine all faces of conv (P U
{x}) from those listed.

As the following example illustrates, the construction in Theorem
7 allows us to locate x relative to conv P but does not allow us to
locate x relative to conv Q, where Q £ P.

EXAMPLE 2. Let {1, 2} U {3, 4, 5} be the primitive partition for the
set P = {1, 2, 3, 4, 5} in R\ and let 6 lie beyond the face conv {1, 4, 5}.
This does not determine the location of 6 relative conv Q, Q = {1, 2, 3, 4},
for 6 may or may not lie beyond the edge [1, 2] of conv Q.

REMARK. It is easy to find examples for which the subcollection
of primitive partitions described in Theorem 7 is minimal. Moreover,
at each stage of the construction at least one primitive is required
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to locate an additional vertex. Thus at least n — (d + 1) primitive
partitions are needed to reconstruct conv P. This lower bound is
always attained for simplicial polytopes having d + 2 vertices.
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DERIVED ALGEBRAS IN Lx OF A COMPACT GROUP

DAVID S. BROWDER

Let G be a compact topological group. In this paper, it
is shown that the derived algebra Dp of LP(G)(for l^p<oo)
is contained in the ideal Sp of functions in LP(G) with
unconditionally convergent Fourier series. It is also noted
that this inclusion can be strict if G is nonabelian. Finally,
it is shown that the derived algebra of the center of LP(G)
is always equal to the center of Sp, generalizing a known
result that Dp = Sp when G is compact and abelian»

In general, let (A, || \\A) be a Banach algebra which is an es-
sential left Banach L1(G)-module in LJfi) under convolution. For
convenience and with no loss of generality it is assumed that

I I / I U ^ II/Hi for every fe A.

This paper investigates the relationship between the derived
algebra of A and the ideal in A of functions with unconditionally
convergent Fourier series. Bachelis has shown in [1] that in case G
is abelian and A is equal to LP(G), for 1 <̂  p < ©o, the two algebras
coincide.

Bachelis' result is generalized to the derived algebra of the center
of LP(G) and it is shown that for the compact group Si~ and A —
Lp{Si°°) with p Φ 2, the derived algebra is strictly contained in the
ideal of functions in Lp(Si°°) whose Fourier series converge un-
conditionally.

Notation throughout will be as in [4]. Σ will denote the dual
object of G, the set of equivalence classes of continuous irreducible
unitary representations of G. For each σ e Σ, Hσ will denote the
representation space of σ (of finite dimension dσ) and g7 (Σ) will denote
the product space ]JσeΣB(Ha). Important subspaces of &(Σ) referred
to in the text include:

( i ) Ϊ?O(Σ) = {E - {Eσ}: || Eσ \\op is small off finite sets}
( i i ) &JΣ) = {E= {Eσ}: \\E\l = Σ α e . i . II Ea \\Φl < oo}
(iii) &2(Σ) = {E= {Eσ}: \\E\\t = ΣoeΣdσ || Eσ | |J a < - } .

For feL.iG), f has Fourier series / ~ Σ σ e Σ dσ tτ{AσU
[σ)) where

Aσ e B{Hσ), U{a) G σ. The Fourier transform / of / has the property
that f(σ) = A\ and hence:

The author wishes to thank Professor Kenneth A. Ross for
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many helpful conversations on these matters, Professor Gregory
Bachelis for suggesting a shorter proof of (3.8), and the referee.

This paper is based on results in the author's doctoral disserta-
tion at the University of Oregon, June, 1971.

1* The derived algebra* We begin by defining the derived
algebra DA for an essential left Banach L1(G)-module A, and noting
a few of its properties.

DEFINITION 1.1. life A, we define

βeA H o l l -

a n d l e t

DΛ = {feA:\\f\\DA< » } .

The following facts are easy to check.

PROPOSITION 1.2. ( i ) (DA, || \\DA) is a Banach algebra and a

left Banach Lι(G)-module in LX(G) under convolution.

( ϋ ) \\f\\A^\\f\\DA for every feA.

(iii) If we denote the set of trigonometric polynomials by T(G)
then we have

I I / I k = sup „ ! „ '̂  for every feA .
szrw \\g\L

We next give a characterization of DA which is due essentially
to Helgason ([3], Theorem 2).

THEOREM 1.3. (Helgason)

DA = {feA: fEeA, for every Ee &0(Σ)} .

Proof. Suppose feA and that for Ee ξ?0(Σ),fE = gE for some
gEeA. Then the linear map E—*gE of %Ό(Σ) into A has closed
graph and is therefore continuous. In particular, there exists a
constant k > 0 such that

\\f*h\\A^ fc||£|L for every he A.

Consequently, / belongs to DA.
Conversely, if feDA then the continuous map g —>/* g of A into

A extends to a continuous map E—*hE of &0(Σ) into A. Then the
element fE — hE belongs to A for every Ee ^(Σ).
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This characterization of DA gives two more properties of DA.

COROLLARY 1.4. ( i ) DA is an ideal in L^G) and
(ii) DA is a right ideal in

We denote by C(G) the algebra of continuous complex valued
functions on G, and by K(G) the algebra of functions on G with
absolutely convergent Fourier series (see [4], Sect. 34).

For 1 ^ p < co, the derived algebra of LP(G) is denoted by Dv.

EXAMPLES 1.5. ( i ) DK{G) = K(G),

( i i ) D C ( G ) = K(G), and
( i i i ) D p = L2(G) for l^p^2.

Proof. First we show (i). Let / belong to K{G) and g to T(G).
T h e n | | / * fir I k = Wfΰ Ik ^ I I / I L I I £ I L = I I / I U I I S I L . H e n c e , b y ( 1 . 2 ) ,
/ belongs to DK[G).

To see (ii), observe that since || ||w ^ || |U(<?) o n K(G)> it follows
that ϋΓ(G) = DK{G)(zDC{G). Conversely, let feDC{G) with Fourier series
given by

For each σeΣ, let Fσ be the unitary matrix such that VσAσ — \Aa\.
For F c i 1 , a finite set, define:

g - Σ 4
σeί1

Then g e T(G), \\ g |U = 1 and we have:

Σ dσ || A σ \\Φι = Σ ώ > \ A σ \ = \f*g(e) \ £ \\f*g | | . ^
aeF σe F

Hence |]/|U ( G ) ^ | |/IUC ( ( ? ) and feK(G).
To prove (iii), we use the facts (see [4], 36.10, 36.12) that A =

Lt(G) and

2~1/2H/II2 ^ l l/ ik =S 11/11, for every /eL2((?) .

It 1 < v ^ 2 and / e I/2(G), then for # e Γ(G) we see that

Hence, we conclude that | | / | U p ^ | | / | | 2 and

» The ideal in A of functions with unconditionally con-
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vergent Fourier series* Let d^ denote the family of all nonvoid
finite subsets of Σ. For Fe^, let D(F) = ΣioeFdσχσ. For / in
L1(G)f f* D(F) is the finite partial sum of the Fourier series of /
consisting only of terms involving elements of F. We say that / in
A has unconditionally convergent Fourier series in A whenever

lim | | / - /

We denote by SA the family of all functions in A with this property.
If we also define

lSA - s u p \\f*D(F)\\A,

then the following facts are easily verified.

PROPOSITION 2.1. ( i ) If feSA, then \\f\\SA < oo.

(ίi) (SA, || \\sA) is a Banach algebra.
(iii) \\f\\A^\\f\\sAfor every feA.
(iv) IffeSA,th4m\imFβJr\\f-f*D(F)\\SA = 0.
(v) SA is an essential left Banach L1(G)-module in LL(G) under

convolution.

Since SA satisfies the conditions we have postulated for A, we
may compute its derived algebra.

THEOREM 2.2. ( i ) DSA = DAnSAa<nd\\f\\DSA = \\f\\DAfσrfeDSA.

( i i ) SsA = SA (isometry).

Proof. Suppose / belongs to DSA. Then for feSA and ge T{G)
we have

\\ΰ\U ll&ll-

Hence we have | | / | U 4 g H/iUS κ< °°> and thus / belongs to DAf]SA.
Conversely, if feDA Π SA then for ge T(G) and Fejf, we have

Thus it follows that | | / | U ^ ^ 11/11^ < °°> and / belongs to DSjL.
Part (ii) follows immediately from (2.1, iv).

3. Central derived algebras. Let Az denote the center of A.
Then Az = L\(G) Π A and (A% \\ \\A) is an essential Banach L'-module
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in Ll(G) under convolution. Before we investigate the derived algebra
of A% we prove a useful proposition.

PROPOSITION 3.1. For Ee ^ΛΣ), define a function φE on Σ by:
φE(σ) — l/dσtr(Eσ) for every σeΣ. The map E—>φE is an isometric
isomorphism of

( i ) &l(Σ) onto L(Σ),
(ii) ^o(Σ) onto cQ(Σ), and
(iii) &ά(Σ) onto coo(Σ).

o

For feLz

L(G), let f(σ) = l/dσ tr(f(σ)) = <P}(σ), so that f has Fourier
o o

series ΣσeΣdσf(σ)χσ. Then the map f—»f is the Gel9fand transform
Az, Σ is the maximal ideal space of A% and

(iv) | | / | L = | | / | L for every feLl(G).

Proof. Let E belong to &£(Σ). By Schur's lemma we have

( 1 ) Eσ = φE{σ)Idσ for σ e Σ .

It follows that

(2) I I # I L = Halloo.

Clearly the map E—>φE is linear and carries r£Z>(Σ) isometrically
onto IΛΣ). By (1), E—>φE is multiplicative. By (2), the image of
&oz(Σ) is co(Σ), and the image of ^{Σ) is cw(Σ). The rest of the
proof is analogous to ([4], 28.71).

DEFINITION 3.2. For / in A% let

The derived algebra £^A of Az is defined as

The following properties of 3>A are easily proved.

PROPOSITION 3.3. ( i ) (&A, I! IU4) is a Banach algebra and an
Ll(G)-module under convolution.

(ii) l l / I U ^ I I / H ^ / o r every fe A'.
o

(iii) \\f\UΛ = suτ?geτz[G)\\f*g\\J\\g\\oa for every feAz.

( iv) D'A<z&A.
Helgason's characterization (1.3) has an analogue in the central

case. We omit the proof since it is exactly like that of (1.3).
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THEOREM 3.4. (Helgason)

3?A = {/e Az\ fφ e (AZ)Ό for every φ e co(Σ)} .

We next prove that the center Si of SA is always contained in
&A. To do so, we use the following well known fact which follows
from a theorem of Seever ([6]).

FACT 3.5. Let X be a discrete topologίcal space and M a Banach
space. If T: M-^l^X) is a bounded linear map whose image con-
tains the characteristic function of every subset of X, then T is onto.

We also use the following lemma which states that every element
of L(Σ) is a multiplier for Si.

LEMMA 3.6. If feSl and φel^{Σ), then there exists geSl such
o o

that g = φf.

Proof. Let / belong to Si, and denote by M the collection of all
o

φel^Σ) such that φfe(Sl)0. Then Mis a Banach space under the
norm

II ̂  II = II 9 lloo + II g \\SA where g = φf .

To show M — loo(Σ), it suffices by (3.5) to show that for Δ c Σ, the
characteristic function φ of Δ is an element of M. To establish
this, we note that the net {f * D(E): Eΐlΐίite(zΔ} is Cauchy in Sj, so
there is a function g in Si such that

lim \\g-f*D(E)\\SA = 0.

£-finitecj

o o

We conclude that g = φf and hence, φ belongs to M.

THEOREM 3.7. Si c &A.
o

Proof. Suppose / belongs to si. Then for φ eco(Σ) czL(Σ), φf
belongs to (Sz

4)° and hence to (Az)° by (3.6). Therefore fe&rA by
(3.4).

We now restrict our attention to the case of A = LP(G) for 1 ^
p < co. As before we write DA = Dp; we also write SA = Sp and
&A — £&p. To compare Dv and Sp we use the following.
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LEMMA 3.8. Let l^p<oo. If feLp(G) and \\f\\Sp< °°> then

feSp.

Proof. Let / belong to LP(G) with | | / | | 5 p < ©o. Suppose / has
Fourier series

For φeLp(G)* and any nonvoid finite FczZ+, we have

j e F 3 3

Hence, we see

sup
i

Σ <P(dβJ
jeF

which implies

^\φ(dσjtr(AσίU^:Σ
Thus the Fourier series of / is weakly subseries Cauchy and, since
LP(G) is weakly complete, the series is weakly subseries convergent.
Therefore, by the Orlicz-Pettis theorem ([2], p. 60, or [6], p. 19) it is
norm convergent and unconditionally convergent to some g e LP(G).
Comparing transforms, we see that / = g and consequently, / belongs
to Sp.

Finally, we state the main result of this section, generalizing
the abelian result of Bachelis.

THEOREM 3.9. Let 1 ̂  p < oo. Then we have
( i ) Dp(zSp, and
(π) &P = S;.

Proof. Observe that \\f\\Sp<>\\f\\Dp for every feDp, and that
ll/llsp ^ ll/IUp for every fe&p. The theorem now follows from
(3.8)/

4* Jpζ°° as a source of examples* Throughout this section G
will denote Si°° = Π^o ^> > where S^z is the symmetric group on three
symbols. Using this group we demonstrate that Bachelis' result
does not extend to the non-abelian case.

THEOREM 4.1. Let G = S^Γ and 1 ̂  V < °° Then
( i ) Dp — Sp if and only if p = 2, and
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(ii) Ώp — Lp if and only p = 2.

Proof. By (1.5, iii) and (3.9), we have

L2(G) = D2czS2czL2(G) .

Suppose p Φ 2. Observe that (ii) follows from (i) because

DpdSp(zLp.

Note also that | | / | | 5 p ^ II/IU^ for every feDp. Hence to prove that
Dp Φ Sp it is enough to find sequences {f{n)} in Dp and {g{n)} in T(G)
such that

II fin) * π{n) II
( i ) WJ * ^ UP • co a s w > co .

II^ΊUI/^lk
We select these sequences as follows. Let σ be the representation
class on S^% of dimension 2 (see [4], 27.61). For / and g in
which will be specified later, form

J W — 11 / Vbk)

and

g{n)(χ) = Π

where 5 e G is given by g = (#1, #2, •••)• Then / ( w ) and βr(?i) are
elements of Tσ(«) (G) where σ{n) is the element of ΣG given by

ί7jσU)) = U™ (x) (x) f/a ̂  for every α e G .

It is easily verified that

ll/ ( ) *ί7 ( Ί l p = \\f*g\\n,,

and

Hence, to show (1) it suffices to find / and g in Tσ(£%) such that

\\f*9 > 1 .

Let βr = 2u[l] + 2 ^ ^ and note that || g |U = 1. The rest of the
argument divides into two cases.
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Case 1. 1 <£ p < 2. In this case we let / = 2χσ so that f * g =
g, and we compute

(see [4], 27.61)

Also, we have

ί 9 \\p J
~\llP

J '
and therefore we conclude

= 2llP~112 > 1 .

Case 2. 2 < Ό < ©o. In this case we let / = 2iu[o] + 2uiΐ). Then
f*g= — 2^ίo} + 2^2^ and so we have

ιι/ιι, = ̂ ( 4
Therefore, we conclude

and
ό /

\f*9

g \U
= 21/2~1/p > 1 .

The question naturally arises as to whether DA is equal to ϋ ^ .
The next example shov/s that in some cases the answer is no.

THEOREM 4.2. If G =
if p = 2.

πώ 1 ^ p < 47 £/wm D; = ^ i/

Proof. By (1.5, iii) and (3.3, iv) we have

Suppose p Φ 2. Since Dz

pcz^fp and || ||1?-p ^ || 1^ on D)>, to show
that Dp Φ 3iv, it suffices to find sequences {fίn)} in Dz

p and {̂ (π)} in
T(G) such that

-> co a s n •

As in the proof of (4.1) we construct t h e sequences by choosing /
and g on S% as follows. First , let / = 2χσ. Then f*g = g for any
ge Tσ{Si), and | | / | | p - 2 [(2p + 2)/6]1/2). Also we have / ( ί i ) - 2nγyn) and
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II fin) \\<*p = II f{n) UP - II/lip- As before, it suffices to find g e Tσ(Sζ)
with the property t h a t

1 I ~ I I

> 1 .
HfflUII/ll,

Again we consider two cases.

Case 1. 1 <£ p < 2. Let # = 2^i

(") + 2m|J). Then as in (4.1), Case 1,
we have

II Q \\v — Ol/p-l/2= 2up~ιί2 > 1 .
I I 0 1 1 - 1 1 / U P

Case 2. 2 < p < 4. Let g = 2u[ί + 2wi?} Then || g |U = 1 and

Therefore we see

Finally, we observe that for G = ^f °° we have the following.

THEOREM 4.3. K{G) g Sσ((?).

Proof. Since | | / | | w ^ | | / IU ( σ , for / is K(G), it follows that

XΛ-\Ur; — &K{G) ^— &C(G) *

Also, since | | / |U σ ( G ) ^ || / IU^) for / in K(G), to show that K(G) Φ

SC(G)> we need only find fe Tσ(<9^) such that

> 1 .
11/

If we let / = u[l] + u&\ then we have | [/ |U = VΎ and H / H , , ^ ^ 2.
Hence, the proof is complete.

The techniques used to prove (4.1) — (4.3) can also be applied to
show the following.

THEOREM 4.4. If G = ^f°° and 1 ^ p < °°, ί/^

= Lp(G) i/ and only ifp = 2.
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5* Open questions*

(5.1) Is T(G) dense in DAΊ If so, then it can easily be shown
that DDA is isometrically isomorphic to DA. One easily shows that
the density of T(G) is equivalent to the condition that SDA = DA.

(5.2) Another question of interest is whether or not DA is self-
ad joint (that is, closed under /—•/, where f(x) = f{%~1)) whenever
A is. Equivalently, is DA a left ideal in i?0 (Σ) when A is self-
adjoint?

(5.3) Are there any conditions on a compact non-abelian group
G sufficient to imply that Dv = Sp for p Φ 2?
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UNIMBEDDABLE NETS OF SMALL DEFICIENCY

A. BRUEN

We construct some new geometrical examples of unim-
beddable nets JV of order p2 with p an odd prime. The defi-
ciency of N is p — j where either j — 0 or j = 1. In particular,
the examples show that a bound of Bruck is best possible
for nets of order 9,25. Our proof also shows that deriving
a translation plane of order p2 is equivalent to reversing a
regulus in the corresponding spread.

2* Background, summary* Let N be a net of order n, degree
k so that N has deficiency d = n + 1 — k. Let the polynomial f(x)
be given by f(x) = x/2[x3 + 3 + 2x(x + 1)]. The following result is
shown in [1].

THEOREM 1 (Bruck). Suppose N is a finite net of order n, de-
ficiency d. Then N is embeddable in an affine plane of order n
provided n > f(d — 1).

Thus a net of small deficiency is embeddable. However, as is
pointed out in [1], little is known concerning the bound above. It
is our purpose here to remedy this. In Theorem 2 we describe a
construction used in [2] to obtain maximal partial spreads W of
PG(3, q). W yields a net N of order q2 and deficiency q — j where
either j = 0 or j — 1. Our main result is that JV is not embeddable
if q = p is an odd prime. This will show that Brack's bound is best
possible for nets of order 9,25 and is fairly good, if not best possible,
for other nets of order p2.

3* The construction* For definitions and proofs of Theorems

2, 3 we refer to [2].

THEOREM 2. Let S be a spread of Σ = PG(3, q) with q ^ 3, such
that S is not regular. Let u be a line of Σ with u not in S, such
that the q + 1 lines A of S passing through the q + 1 points of u do
not form a regulus. Let Wλ be the partial spread of Σ which is got
by removing A from S and adjoining u: in symbols WΊ — H U {u}
where H = S — A. Then there exists a maximal partial spread W
of Σ which contains Wλ. Furthermore, either

(i) W = W, so that I W\ = q2 - q + 1 or
(ϋ) W = WΊ U {v} where v is a line of Σ which is skew to each

line of WΊ. In this case \ W\ = q2 — q + 2.

THEOREM 3. For any (prime power) q ^ 3 there exist examples of
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case (i). For any odd q with q Ξ> 5 there exist examples of case (ii).

We can think of Σ in terms of a 4-dimensional vector space
V' — V4(q) over GF(q). The points and lines of Σ are precisely the
1-dimensional and the 2-dimensional subspaces of V respectively. The
lines or components of W in Σ correspond to the components of a
maximal partial spread W of V, that is, a maximal collection W of
2-dimensional subspaces of V such that any 2 distinct members (com-
ponents) of W have only the origin of V in common. For a proof
of the next result see [7, p. 8], [4, p. 219].

THEOREM 4. Let U be a partial spread of V = VA(q) having ex-
actly k components. Then there is defined a net N = N(U) of order
q2 and degree k. The points of N are the q* vectors in V. The lines
of N are the components of U and their translates (cosets) in V.
Furthermore, if U is a spread of Vy then N(U) is a translation
plane.

Our main result is that if W is the maximal partial spread of
Theorem 2 and q is an odd prime, then N(W) is not embeddable.

4* The main result* In what follows, if J is a set of vectors,
then {J} will denote the subspace spanned by the vectors in J.

LEMMA 5. Let Σ = PG(3,q) and let (F, +) = V4(q) be the cor-
responding vector space. Let a, 6, c be 3 distinct and pairwise skew
lines of Σ. Then we may choose a basis eu e2, e3, e4 of V in such a
manner that a corresponds to {ey, e2}, b corresponds to {ez, βj and c cor-
responds to {eι + β3, e2 + e4}.

The following is crucial in our argument.

THEOREM 6. Let n be a square and let N be a net of order n and
deficiency λ/ n + 1, which is embedded in an affine translation plane
π. Suppose further that N is embedded in another affine plane πx.
Then πι is also an affine translation plane.

Proof. πι is related to π by Ostrom's technique of derivation
(see [2, p. 383] and [6, p. 1382]). From this the result will follow, for
it is easy to show that a plane π1 obtained by deriving a translation
plane π is itself a translation plane [4, p. 224].

We revert to the notation of Theorem 2. Recall that If is a
maximal partial spread of Σ = PG(3, q) with q ^ 3. W = H (J {u, v}
where (sometimes) u = v. H is a partial spread contained in the
nonregular spread S of Σ. H contains exactly q2 — q lines. Since
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q ^> 3 we have \H\ — q2 — q > 3. Thus if contains 3 pairwise skew
lines a, b, c which we will refer to as the fundamental components.
Corresponding to Σ we have V = V4(q). As in Lemma 5 we have a
basis el9 e2, e3, e4 of V with a = {e1} e2}, b = {β3, ej, c = {e1 + e3,

 62 + e4}.
Let L = {β1? e2} and ΛΓ = {e3, β4}. We can write F = L 0 M the direct
sum of L and M. Each vector in F is uniquely expressible as an
ordered pair (x, y) with x in L, y in M. The fundamental components
are then sets y = 0, x = 0, y = x respectively. In the sequel it will
be convenient to identify M with L and write V = L 0 L. We also
let 0 denote the null vector in L, so that (0, 0) is the null vector
of V.

THEOREM 7 (Main Result). Let W be the maximal partial spread
of PG(3, q) constructed in Theorem 2. Assume that q = p ^ 3 is a
prime. Then the net N = N(W) obtained from W as in Theorem 4
has order p2 and deficiency p — j where either j = 0 or j = 1. More-
over, N is not embeddable in a plane.

Proof. By way of contradiction assume that N is embeddable
in an affine plane πλ. Choose the origin of πι to be the origin of V.
In the construction of W recall that HaS. Denote the translation
plane obtained from S by π. Thus iV(jHΓ) c π. Also N(H) c N( W) c πλ.
Therefore, by Theorem 6, πγ is a translation plane. We may use the
fundamental components α, b, c to set up Hall coordinates for πι using
the set L (see [5]). Actually it is easy to see that a vector λ has
in πx Hall coordinates (s, t) if and only if λ has vector space coordinates
(s, t) in F = L 0 L . Also the Hall addition is precisely the vector
space addition + on L (see [7, p. 4]). Thus the translation plane πγ

is then coordinatized by a quasifield Q = (L, +, •)• Those lines of
π1 through the origin which are also lines of N = N( W) correspond
to the components of W. Let { be a line of πι through the origin
of πL such that I is not a line of N. Then I consists of all points
with coordinates of the form (x,x.m) for some m in L. Since Q is
a quasifield we have (x + y).m — x.m + y.m. Therefore ί is a set
of p2 vectors in V which is closed under addition. Since p is a
prime, I is a 2-dimensional subspace of V. And I has only the origin
of V in common with any component of W. Thus I yields a line of
PG(3, q) which is skew to each line of W. But this is a contradiction,
since W is maximal.

Comments. 1. Our argument in Theorem 7 above can be modified
to show the following. Let πγ be obtained from the translation plane
π of order p2 by deriving with respect to a derivation set D of p + 1
points on the line at infinity. Then the p + 1 lines of π joining the
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origin to D yield a regulus in the spread corresponding to π. Thus,
in this case, derivation implies reversing a regulus. It can be shown
(see [2]) that reversing a regulus implies derivation for translation
planes of order g2, whether or not q is a prime. Thus the procedures of
derivation and reversing a regulus are equivalent for the case of trans-
lation planes of order p2. However, as is proved in [3], they are not in
general equivalent if q is not a prime. The reason is that I above
is not always a subspace in this general case. So it is not clear
whether or not N is embeddable if q is not a prime.

2. For q — p we have shown that N — N(W) is unimbeddable.
However except for p — 3, 5 we do not know whether N(W) is con-
tained in a larger net or even whether there exists a transversal T
of N (that is, a set of p2 points of N no two of which are joined by
a line of JV) However, it follows from the work in [2], [6] that T
would have to be an affine subplane of π having order p.

3. For p = 3, N(W) has deficiency 3 or 2. By Theorem 3.3 in
[2], N(W) must have deficiency 3. We have shown that N(W) is
not embeddable. It follows that N(W) is not contained in any larger
net, and that the bound in Theorem 1 is best possible for nets of
order 9.

4. For p = 5 we can obtain an unimbeddable net N — N(W) of
deficiency 4 using Theorem 3. By Theorem 1, N is not contained in
a larger net and so Brack's bound is also the best possible for nets
of order 25. Another way of putting it is to say that we have
produced a maximal set of 20 mutually orthogonal latin squares of
order 25.
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UNICOHERENT COMPACTIFICATIONS

M. H. CLAPP AND R. F. DICKMAN, JR.

In this paper we give necessary and sufficient conditions
for the Freudenthal compactification of a rimcompact, locally
connected and connected Hausdorff space to be unicoherent. We
give several necessary and sufficient conditions for a locally
connected generalized continuum to have a unicoherent com-
pactification and show that if such a space X has a unicoherent
compactification, then γX is the smallest unicoherent com-
pactification of X in the usual ordering of compactifications.

A connected topological space X is said to be unicoherent if, H> K
is connected whenever X — H + K where H and K are closed connected
sets. A continuum is a compact connected metric space and a gen-
eralized continuum is a locally compact, connected, separable metric
space. By a mapping we will always mean a continuous function.
If 2? is a subset of a space X, the closure of B in X will be denoted
by clx B and the boundary of B in X will be denoted by Fr x B. An
open set (respectively, a closed set) of a space X will be called a
7-open (respectively, 7-closed) subset of X provided it has a compact
boundary in X. A space is rimcompact (or semicompact) provided
every point has arbitrarily small neighborhoods with compact bound-
aries. All compactifications considered here are Hausdorff.

In [7] K. Morita showed that for any rimcompact Hausdorff
space X there exists a topologically unique compactification jX of X
satisfying:

(a) For every point x of yX and every open set R of ΎX con-
taining x there exists an open set V of yX containing x such that
VdR and Fr r z7cX

(b) Any two disjoint 7-closed subsets of X have disjoint closures
in yX.

Furthermore if C is any compactification of X satisfying (a), there
exists a mapping h of yX onto C such that h \ X is the identity map.
The compactification ΊX of X is called the Freudenthal compactification
of X after H. Freudenthal who first defined it [4].

DEFINITION. We say that a connected space X is 7-unicoherent
if whenever X = H + K, where H and K are 7-closed and connected
sets, H K is connected.

THEOREM 1. If X is a locally connected, connected, rimcompact
Hausdorff space, then jX, the Freudenthal compactification of X, is
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unicoherent iff X is y-unicoherent.

Proof. Suppose that X is 7-unicoherent and yX is not unicoherent.
Then yX = H + K where H and K are closed and connected sets and
H-K is not connected. Let H-K — A + B be a separation of H K
and let U and V be open subsets of yX containing A and B respec-
tively such that oλrΣU-QλrxV - Φ and ( P r r x F + ¥τϊXU)czX. By
Propositions (2.8) and (4.1) of [l],τX is locally connected so if C
denotes the component of U + V + H that contains H and D denotes
the component of U + V + K that contains K, C and D are open
connected subsets of yX such that (FrrxC + FrrχJD) c X. By Lemma
5 of [6], C'X and D-X are connected so that L = clx (C X) and Λf =
clz(D X) are 7-closed and connected subsets of X. Furthermore X=
L + M and L-M is not connected. This contradicts our hypothesis
that X is 7-unicoherent and thus yX must be unicoherent.

Now suppose that 7X is unicoherent and X is not 7-unicoherent.
Then X — H + K where H and K are 7-closed and connected subsets
of X and H'K is not connected. Let H K — A + B be a separation
of jy.ίΓ and let H', K', A! and ΰ ' denote the closures of H, K, A and
B, respectively, in jX. Since the boundary of H K in X is a subset
of the union of the boundaries of i ί and K in X, i ί K and hence L̂
and B are 7-closed subsets of X. Then by property (b) of Morita's
characterization of yX, A' and Br are disjoint closed subsets of yX.
We now argue that H'-K' is a subset of A' + B'. Suppose to the
contrary that there exists a point x in H' iΓ that does not belong to
A' + -B'. Let Z7 be any open subsets of 7X containing x such that
U does not intersect A' + J3' and such that Fr r x c X. Let Q be the
component of U that contains x and note that FτrzQ is a subset of X
and Q is an open subset of yX. Then since X is dense in yX and # is
a limit point of iϊ 7 and K', Q H and Q iΓare nonempty sets. But by
Lemma 5 of [6], Q X is connected and since Q misses H'K, Q X
must lie entirely in H or K, Of course this implies that either Q H
or Q'K is empty and this is a contradiction. Thus H' K = A' + B'
and this contradicts the unicoherence of yX. Therefore X is 7-
unicoherent.

We need the following notation and definitions. Let Sι denote
the unit circle in the complex plane, let I1 — {z = eiθ: 0 ^ θ <: Π} and
let I2 = {z = eiθ: Π ^ θ ^ 277}. For any space W let J^(W) denote
the set of mappings of W into S1 and let J^ (W) be the set of all
mappings of W into I5y 3 = 1, 2. For each / e S^ό( W),j = 1, 2, let Bd(f)
denote the set of all points t e Iό such that Fr f~ι{t) contains a compact
set K that separates W into two disjoint open sets M and N where
/ maps M into the arc from 1 to ί on Iό and / maps N into the arc
from ί to - 1 on I3. Finally let E(W) = {/ e
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B2(f\f-\I2)) is dense in S1}.

THEOREM 2. Suppose that X is a locally connected, rίmcompact
Hausdorff space. A necessary and sufficient condition that yX he
unicoherent is that every element of E{X) be nullhomotopic.

Proof of the necessity. Suppose that yX is unicoherent and let /
be an element of E(X). For j = 1,2, there exists a point tό e Ij such
that Fτx f'^tj) contains a compact set K3 that separates f~ι{Ij) into
two disjoint open sets M3 and Nj where / maps M3 into the arc from
1 to tj on Ij and / maps N3 into the arc from t3- to — 1 on Ij. Then
if we let M denote K, + K2 + ML + M2 and let N denote K, + K2

Nx + N2, X = M + N and the boundaries (relative to X) of M and N are
subsets of K — Kγ + K2. We assert that the boundaries of Mo — clrxM
and No — clrxΛΓ relative to yX are also subsets of K. In order to
see this suppose that x is an element of the boundary of MQ and x g
K. Then since ΊX is locally connected, there exists an open connected
set R of yX containing x such that R K = Φ and YvγxR(Z X. Then
R-M Φ Φ and R (X\M) Φ Φ since X is dense in γX Furthermore
R'X is connected by Lemma 5 of [6] and so R X is a connected
subset of X that meets M and X\Λf. This implies that R meets i£
and this contradicts our selection of x. Hence the boundaries of MQ

and No in yX are subsets of K. Also by Theorem 3 of [7], Mo

and No are topologically equivalent to yM and 7i^ respectively.
Then by Lemma 1 of [3], f\M has a continuous extension fM to Mo

and f\N has a continuous extension fN to JV"0. Then since No Mocz
K, the function h of YX into S1 defined by h\Mo — / i¥ and h\NQ =
fN is continuous. By Lemma (7.4) of [9, p. 228], Λ, is exponentially
representable on yX, i.e. there exists a real valued function θ on YX
such that h(x) = ei0{x) for all x e X. It is evident that this implies
that / = h IX is exponentially representable an X and by Theorem
(6.2) of [9, p. 226], / is nullhomotopic.

Proof of the sufficiency. Suppose that every element of E(X) is
nullhomotopic and suppose that yX is not unicoherent. Then by the
proof of Theorem 1 there exists closed and connected sets H and K
of yX such that H- K is not connected, Fr H and Fr K are subsets
of X and L = H X and M = K X are connected. Let H-K = A +
B be a separation of ίf K. We note that L and M are γ-closed subsets
of and thus by Theorem 3 of [7], yL is homeomorphic to H and 7M
is homeomorphic to K. It then follows from Lemma 2 of [3] that
there exists a mapping / of H into Ix such that f(A) = 1, /(J5) = — 1
and B^flH-X) is dense in 7lβ Similarly there exists a mapping g
of jRΓ into /2 such that g{A) = 1, #(J3) = — 1 and B2(g\K-X) is dense
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in J2. Then if we define hiyX-^S1 by h\H — f and h\K — g we
have that h is continuous and k — h\X is an element of 7?(X). Then
by our hypothesis and Proposition 6.2 of [9, p. 226], k is exponentially
representable, i.e. there exists a real-valued mapping Θ on X such
that for each xeX, k{x) = eiθ{x). But then Θ{A) c {0, ±2/7, ±477, •}
and θ{B)a{±Π, ±377, . •} and so if α e Θ{A) and 6 e 0(5), the interval
[a, b] lies in Θ(A) Θ(B) since L and M are connected. This is a con-
tradiction since then k{L) k(M) would then contain a semicircle
whereas it consists of the points —1 and 1. Hence yX is unicoherent.

DEFINITION. A connected space X is said to be weakly unicoherent
if whenever X—HΛ-K where H and K are closed and connected sets
and K is compact, H K is connected.

THEOREM 3. Let X be a locally connected generalized continuum.
A necessary and sufficient condition for yX to be unicoherent is that
X be weakly-unicoherent.

Proof of the necessity. Suppose that yX is unicoherent. Since X
is locally compact, X is open in yX and X* = ΊX\X is closed. Then
by Theorem (2.3) of [2], X— yX\X* is weakly-unicoherent.

Proof of the sufficiency* Suppose that yX is not unicoherent.
Then as in the proof of Theorem 1, yX has a representation yX =
P + Q where P and Q are open connected subsets of yX, the bound-
aries of P and Q in yX are subsets of X, c\rxP clrxQ = A + B where
A and B are disjoint nonempty closed sets and P has a nonempty
intersection with both the boundary of A and the boundary of B.
By Lemma 5 of [6], Pf = P X is a connected open subset of X and
thus is arcwise connected. Furthermore since the boundaries of A
and B are subsets of X there exists an arc aβ in Pf such that aβ A —
α and aβ B = β. Let 72 be the component of JP\(A + 73) that contains
aβ\(a + /S) and let W be an open subset of yX containing A such that
B-c\W = Φ and the boundary of W is a subset of X. Then 77 =
TϊJ Fr^PF is a nonempty compact subset of R and there exists a con-
tinuum Ko of X such that Ha Koa R. Let 7£ be the union of Ko

together with all the components of 7?\7f0 with boundary entirely in
KQ, i.e. having no boundary points in X (A + B). Then K separates
R since W- R contains a subarc ab\a from some point beaβ and
X\clxW contains a subarc aβ of aβ. But X\7Γ is connected since
X\K is the union of the closure of Q in X plus all of the components
of X\{A B) except R plus all of the components of R — Ko having a
boundary point in X (A + B). This contradicts Whyburn's charac-
terization of weak-unicoherence in [8, p. 185].
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COROLLARY 3.1. Let X be a locally connected generalized con-
tinuum. Then X is weakly-unicoherent iff X is 7-unicoherent.

This corollary follows immediately from Theorems 1 and 3.

REMARK. The authors have been unable to discover a direct
proof of Corollary (3.1). In general the two types of unicoherency
are not equivalent and in the absence of local compactness, Theorem
3 is not valid.

EXAMPLE. Let Y= {z complex 11/2 ^ \z\ ^ 1},

S = {z I I z I = 1}, A a countable dense subset of S ,

Lz = Y {ray from origin thru z)

Cr = {z\ |*| = r}, r e [1/2,1];

Z — {Cr*La\r is rational, aeA) .

The set Z is countable and dense in Y. Let X= Y— Z. The set X is
evidently T2, connected and locally connected (in fact, path connected
and locally path connected), rim compact but not locally compact.
Moreover:

1. X is weakly-unichoherent To see this, note that any con-
tinuum K c X has empty interior in X. If therefore X = H + K, H
closed and connected and K compact and connected, then necessarily
the open set X — H is a subset of K, and thus empty. It follows
that H K = K, which is connectedc

2. X is not 7-unicoherent. For let p, q e S — A be two distinct
points. Then Lp and Lq are compact and disjoint subsets of X. Assume
0 ^ ARGp < ARGq. Then

H = {z e XI ARGp :S ARGz ^ ARGq) and

K = {z e XlARGq ^ ARGZ ^ ARGp + 2π}

are closed, connected subsets of X such that X = H + K, H K = Lv +
Lq is compact but not connected.

3. yX is not unicoherent. To show this it is sufficient to show
that yX is just the set Y* To this end we use the characterization
of ΎX obtained by Morita [6]. We show that

(a) For any point x e ΊX and open set R of jX containing x, there
is an open set V of rX containing x such that VaR and F r r z 7 c J .

(b) Any two disjoint 7-closβd subsets of X have disjoint closures
in γX.
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That (a) holds is evident from the definition of X. To see that
(b) holds, let A and B be disjoint 7-closed subsets of X and suppose
that peo\γxA'θ\rxB. First of all we note that p cannot belong
to X for then it would lie in A B which is empty. In particular p
does not lie in the compact set (FrxA + Frxi3). By our construction
of X there exists an open subset V of Y containing p such that
V (FrxA + FrxB) = Φ and V X is connected. Since p belongs to the
closure of A in Γ, V X A is not empty and since V X misses FτxA,
V X must lie entirely in A. But this is a contradiction since V X
must meet B. Therefore A and B have disjoint closures in Y.

DEFINITION. A mapping f:Xe Y is monotone provided for every
y e Y, f~\y) is compact and connected.

THEOREM 4. If X is a locally connected generalized continuum
and Y is any unicoherent compactification of X, then there exists a
monotone mapping g of Y onto ΊX such that g\X is the identity.

Proof. Let Z denote the quotient space of Y obtained from the
decomposition whose only nondegenerate elements are the components
of Y\X and let p denote the natural map of Y onto Z. Then since
X is open in Y, Z is a Hausdorff compactification of X. Furthermore
since point inverses of p are connected, it follows from Proposition
(2.2.1) of [9], that Z is unicoherent. Also Z\X is totally disconnected
and by the maximality of yX there exists a mapping h of ΊX onto
Z such that h \ X is the identity and h(yX\X) = Z\X. We assert that
A is a homeomorphism. In order to prove this we need only show
that h is one-to-one on yX\X. To this end let x,ye yX, x Φ y and
suppose that h(x) = h(y). There exists a connected and open set R
of ΊX containing x such that y£c\rR = K and Frr RaX. Then Z =
h(K) + h(jX\R) and h(K) h(yX\R) = h{x) + h(Fτ R) is not connected.
This contradicts the unicoherence of Z and hence h must be a homeo-
morphism. Then g — h~ιop is the desired monotone mapping.

COROLLARY 4.1. Suppose that X is a locally connected generalized
continuum. Then X has a unicoherent compactification if and only
if ΊX is unicoherent.

Proof. This result follows immediately from Theorem 4 and the
fact that monotone images of compact unicoherent continua are uni-
coherent.

THEOREM 5. Suppose that X is a locally connected generalized
continuum. Then the following are equivalent
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( i ) X is weakly-unicoherent
(ii) yX is unicoherent
(iii) X is Ί-unicoherent
(iv) X has a unicoherent compactification
(v) every mapping of X into S1 with compact boundaries of

point inverses is null-homotopic.

Proof. The equivalence of (i)—(iv) has been established in Theorems
(1) — (4). As an immediate consequence of Theorem (3.3) of [2], we
have that (v) implies (i) and (ii) implies (v) follows from Theorem 1
of this paper.

DEFINITION. A connected space X is said to have the complementa-
tion property provided whenever if is a compact set in X, X\K has
at most one component with a non-compact closure. See [2] for some
characterizations of this property.

THEOREM 6. Let X he a locally connected generalized continuum
and let Y be any unicoherent, locally connected continuum. There
exists a unicoherent compactification Z of X with Z\X homeomorphic
to Y if and only if X is weakly-unicoherent and has the complemen-
tation property.

Proof of the necessity. Suppose that Z is a unicoherent compac-
tification of X and Z\X is homeomorphic to Y. Then by Theorem
(4.2) of [2], X is weakly-unicoherent and has the complementation
property.

Proof of the sufficiency. Suppose that X is weaklyunicoherent
and has the complementation property. Then by Theorem (2.2) of
[5] there exists a compactification Z of X with Z\X homeomorphic
to Y and by Theorem (4.2) of [2], Z is unicoherent. This completes
the proof.

REMARK. It appears to be difficult to establish results concerning
the unicoherence of a compactification of an arbitrary completely regular
space. We can show that the Freudenthal compactification of a
rim-compact, locally connected Y-unicoherent space is the smallest
unicoherent compactification of X with yX\X zero-dimensional.
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APPROXIMATE IDENTITIES AND THE STRICT
TOPOLOGY

H. S. COLLINS AND R. A. FONTENOT

This paper studies relationships between approximate
identities on a B* algebra A and other properties of the
algebra. If A is commutative, conditions on the approxi-
mate identity for A are related to topological properties of
the spectrum of A. The principal result of this paper is that
for a locally compact Hausdorff space S, C0(S) has an approxi-
mate identity that is totally bounded in the strict topology
(or compact open topology) if and only if S is paracompact.

1Φ Introduction* The problem of extending theorems about

commutative J5* algebras to the non-commutative case has received
a great deal of attention in recent years. Because many proofs made
in the commutative case make use of the spectrum (= maximal ideal
space), an obvious question is: what is to replace this device in the
case of a non-commutative I?* algebra? Various possible replace-
ments have been sought; e.g.; see Akemann [1] and Pedersen [15,
16]. Much progress has been made for certain types of problems
by means of restrictions on approximate identities for the algebra in
question by Taylor [20, 21], Akemann [2], and others. The class of
problems solved or seemingly susceptible to this technique is rather
large. This fact and the paucity of results for this class of problems
obtained by studying Prim A and the space of equivalence classes of
irreducible representations suggest that the approximate identity is
a useful tool for extending many commutative theorems to a non-
abelian setting. A question that arises immediately in the case of a
commutative B* algebra is: what do restrictions on the approximate
identity imply about the spectrum of A and vice versa? Along this
line, Collins-Dorroh [6] characterize σ-compactness of the spectrum
and ask for necesary and sufficient conditions on S that C0(S) (in
this paper, S always denotes a locally compact Hausdorff space) have
an approximate identity that is totally bounded in the strict topology
(called β by Buck). This paper answers this question and several
related ones, including some in the non-commutative context.

2* Preliminaries*

DEFINITION 2.1. Let A be a Banach algebra. An approximate
identity for A is a net {eλ\XeΛ} (we generally write simply {ê }) with

1 eλx — x | | = lim; 11 xeλ — x |1 = 0 for xe A and \\eλ\\ ^ 1 for all λ.

63
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It is well known that all i?*algebras have approximate identities.

DEFINITION 2.2. The double centralizer algebra M(A) of a
1?* algebra A was studied by R. C. Busby [5] who defined the strict
topology as that topology on M(A) generated by the seminorms x —>
max{\\xy\\, \\yx\\} for xeM(A) and ye A. Two motivating examples
for the double centralizer algebra concept are the algebra C0(S) of
continuous complex functions on S which vanish at infinity (this class
is identical with the class of all commutative C* algebras by the
theorem of Gelfand), whose double centralizer algebra was identified
by Wang [22] as Cb(S), the algebra of all bounded continuous complex
functions on S; and the algebra of compact operators on a Hubert
space H, whose double centralizer algebra was shown to be the
bounded linear operators on H by Busby. For a definition of M(A)
and some of its properties, the reader is referred to Busby [5]. By
M{A)β we shall mean M(A) endowed with the strict topology β.

DEFINITION 2.3. If / e Cb(S), the support of /, spt/, is the closure
in S of N(f) = {x:f(x) Φ 0}.

DEFINITION 2.4. S is sham compact if each ^-compact subset is
relatively compact.

DEFINITION 2.5. Let A be a B* algebra and {eλ} be an approxi-
mate identity for A. We shall be interested in the following condi-
tions:
(a) {eλ} is countable, i.e., the range of {eλ} is a countable set;
(b) {eλ} is sequential, i.e., A is the set of positive integers with the
usual order;
(c) {eλ} is canonical, i.e., eλ ^ 0 and if λj. < λ2 then eλleλz — e;>i;
(d) {eλ} is well-behaved (after Taylor [21]), i.e., {eλ} is canonical and
if λ e A and {Xn} is a strictly increasing sequence in A, there is a
positive integer N so that eλeλn = eλeλm for n, m > N;
(e) {eλ} is β totally bunded; i.e., totally bounded in the strict topology;
(f) {eλ} is abelian;
(g) {eλ} is chain totally bounded, i.e., if {Xn} is an increasing sequence
in A, then {eλj is β totally bounded;
(h) {eλ} is σ(M(A), M(A)f) relatively compact, where σ denotes the
weak topology on M(A) in the pairing with its β dual;
(i) {ex} is sham compact, i.e., {eλ} is canonical and if {λ̂ } is a
sequence in A, then there is a λ in A so that λ > Xn for all integers
n.

REMARK 2.6. A sequence {en} in a i?* algebra A which satisfies
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\imn\\enx — x\\ = limw||a?eΛ — x\\ = 0 is norm bounded by the uniform
boundedness principle and the i?*norm property. Thus it is not
necessary to require norm boundedness in 2.1 for this case.

REMARK 2.7. Taylor [21] introduced the notion of a well-behaved
approximate identity and used it to prove many interesting improve-
ments of results of Phillips [9, p. 32], Akemann [2], Bade [3], Collins-
Dorroh [6], and Conway [7 and 8].

3* A characterization of paracompact spaces* Our main result
in this section, 3.10, answers two questions posed in [6, Remark 4.3].
Our interest centers exclusively on .B* algebras without identity; for
these, we need information about increasing sequences in the directed
set of an appropriate identity and about supports. Lemmas 3.1 and
3.2 provide what we need.

LEMMA 3.1. If A is a Banach algebra without identity, {eλ} an
approximate identity for A, and XoeΛ, then 3λe A 9 λ > λ0.

Proof. If the conclusion does not hold, then Vλ e Λ, λ ^ λ0, from
which it follows that eλQ is an identity for A.

LEMMA 3.2. Let {eλ} be an approximate identity for C0(S).
(a) If {eλ} is canonical, then Xλ < λ2 implies spt eλι c ej^l} c

N(eλ2) and λ e A implies that the spt eλ is compact)
(b) If K is a compact subset of S, then 3 λ e A so that \eλ\ > 3/4

on K.

Proof. This is straightforward.

We are mainly interested (in §3) in two types of approximate
identities, viz., well-behaved ones, shown to be important by Taylor
[21], and β totally bounded ones, the study of which motivated this
paper.

LEMMA 3.3. Let {eλ} be an approximate identity for CQ(S) which is
either β totally bounded or well-behaved. Then there exists a cover of
S by clopen σ-compact sets.

REMARK 3.4. All topologies between the compact open and the
strict agree on norm bounded sets. Thus "β totally bounded" may
be replaced in 3.3 by "compact open totally bounded."

Proof of 3.3. We assume that S is not compact in either case to
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avoid trivialities. Assume first that {eλ} is β totally bounded. Re-
placing {eλ} by {|β̂  |2}, performing a straight forward computation and
using 3.4, we may assume that {eλ} is compact open totally bounded
and βj i> 0 for each λ. Let x e X and choose by 3.2 (b) λx e A so that
eh{x) >3/4. Let Kλ = {xe S: eh(x) ^ 1/4}. Suppose that {Kj} j = l, . . . , n
and {λ̂  } j = 1, , n have been chosen so that

(1) eλ.: > - | on K5^ , j = 1, ...,n

( 2 ) ί Q = -ία; e S: eλ.(x) ^ — f o r s o m e ί.l^i^jϊ .
{ ' 4j )

By 3.2 (b) again, choose Xn+1 e Λ so that eλn+1 > 3/4 on Kn and let

Kn^.ι — \x e S: eλ.(x) ^ for some ί. 1 ^ ί ^ n + 1> .

By induction we obtain sequences {Xn} and {Kn} satisfying (1) and (2)
above. Let X = \JnKn. Xis clearly cr-compact and contains x. It is
open since Kn c interior of Kn+1. To show that X is closed, take a
compact set K. It suffices to show K f] X is closed [13, p. 231]. The
total boundedness condition of {eλ} gives the existence of an integer i0

so that for all positive integers j,

(3) m i n \\ez. - e2.\\κ < 1-
l^i^iQ

 3 4

| |* = supxe*|/(α?)| for feCb(S)). Let y e Km n K where m > i0.
By construction eλm+1(y) > 3/4 so by (3) there is an integer 1 ^ i ^ i0

so that e (̂i/) ^ 1/2 which shows that y e K{. Thus X f] K = Kp[ Ulo=i-K*
so X Π K is closed.

For the other part of the lemma, let xe X, assume that {eλ} is
well-behaved, and choose by 3.1 and 3.2 an increasing sequence {Xn}
so that eh(x) > 0. Let Kn = spt eλ% and note, by 3.2, that Kn c
interior of Kn+1. Let X — U Kn and note that X is open, σ-compact
and xe X. From 3.2 (a) and the definition of well-behaved approximate
identity, it follows that {eλ.} is totally bounded in the compact open
topology and that y e X implies eλ .(y) = 1 for j large enough. With
these observations, the proof that X is closed is the same as in the
first part of the lemma.

REMARK 3.5. Note that in 3.3, \J^==ιspteλnc:X.

COROLLARY 3.6. If S is connected and has an approximate
identity that is either well-behaved or β totally bounded, then S is σ-
compact.
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PROPOSITION 3.7. Let F be a closed subset of S. If C0(S) has
either a well-behaved or a β totally bounded approximate identity, then
F contains a σ-compact set that is relatively clopen in F.

Proof. Let {eλ} be an approximate identity with either of the
properties above. For xe Λ, let dx be the restriction of eλ to F. Since
F is closed, {dx} c C0(F). We claim that {dx} has the same property
as {ex} does; i.e., that {dx} is a well-behaved (resp. β totally bounded)
approximate identity for C0(F). To show this, it suffices to show
that if / e C0(F), then there is an extension g in C0(S) of /. Let S*
denote the one-point compactification of S and <̂o denote the point at
infinity. Let / ' be an extension of / to F U {^J obtained by defining
/'(oo) = 0. Since f eC0(F), f is continuous and extends to a con-
tinuous function p on all of £* by Tietze's Theorem since F \J {°°} is
closed in S*. The restriction g of p to S is clearly an extension of
/ in Co(S). This concludes the proof of 3.7.

COROLLARY 3.8. // S is locally connected and C0(S) has an ap-
proximate identity that is either well-behaved or β totally bounded,
then S is paracompact.

Proof. By [11, Theorem 7.3], it suffices to show that S is a dis-
joint union of clopen cr-compact subspaces. In a locally connected
space, the components are clopen and connected and so σ-compact by
3.7.

LEMMA 3.9. Suppose that C0(S) has a β totally bounded approxi-
mate identity and let W be the family of all clopen σ-compact sub-
sets of S constructed by the method of the first part of 3.3. If ^ c W,
then \Jwe& W is clopen.

Proof. We may assume ex ^ 0 as in 3.3. Let X = \JWe^ W and
K be an arbitrary compact subset of S. Since S is locally compact,
it suffices to show that XίΊ K is closed. With each W in <2S is asso-
ciated a sequence {eZ} from the approximate identity such that

Q spt eΛl c W

(see 3.4) and if 7 e W, eλl(i) > 3/4 for n large enough. From β total
boundedness of {eζ: We <2Sy n = 1, 2, •}, we get a set {TΓ*}̂ ,...,*
from ί7/ and associated integers {n^ i ~ 1, •••, n so that for any V
in ^/ and positive integer p

(4) m i n | ] < - β £ ! U < 1 .
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If yeXΠK, then jeKΠ W for some We^fy so choosing p large
enough so that ev

p{i) > 3/4 we see that e%*(i) > 0 for some 1 ^ i ^ n
so that 7e Wt. We have established that Xf]K= Kf] (J?=i W< so
X Π if is closed. This concludes the proof of 3.9.

In [6] Collins and Dorroh show that if S is paracompact then C0(S)
has a β totally bounded approximate identity and ask two questions:
(1) Does the existence of a β totally bounded approximate identity
imply the existence of a canonical one that is β totally bounded? and
(2) Does the existence of a β totally bounded approximate identity
in CQ(S) imply that S is paracompact? We add to these a third ques-
tion: Does the existence of a β totally bounded approximate identity
in C0(S) imply the existence of a well-behaved one? The answer to
all these questions is given in 3.10.

THEOREM 3.10. These are equivalent: (1) S is paracompact;
(2) CQ(S) has a canonical approximate identity that is β totally
bounded] (3) C0(S) has a approximate identity that is β totally bounded.

Proof. For the first implication see [6]. Since the second implica-
tion is trivial, we prove only that if {eλ} is a β totally bounded approxi-
mate identity for C0(S) then S is paracompact. Take W to be the
set in 3.9 and well order it. Let Wo be the first element in Ύ/^ and
W{ = Wo. If We W, and WΦ WQ, let W = W\{\JV<WV).

V e W

Each set W is clopen and σ-compact by 3.3 and 3.9.

If xeS and W is the least element in {W: We Ύ/^ and xe W}f

then x clearly belongs to W. The collection {W: We W~} then con-
sists of disjoint sets and so forms a partition of S by clopen σ-compact
subsets. We apply [11, Theorem 7.3] to conclude the proof.

4* Non-commutative results and examples* Taylor [21] gives
the following examples of B* algebras with well-behaved approximate
identities: algebras with countable approximate identities, algebras with
series approximate identities (for a definition, see Akemann [23]) such
as the compact operators on a Hubert space, and subdirect sums of
algebras having well-behaved approximate identities, such as dual
J5* algebras which are subdirect sums of algebras of compact operators.

In this section, we give examples of algebras with β totally
bounded approximate identities using some techniques borrowed from
Taylor and some of our own. We also give some partial results, e.g.,
4.1, relating the existence of approximate identities of one type to
existence of another type.
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PROPOSITION 4.1. Let A be a Banach algebra with a sequential
canonical approximate identity {en}. Then {en} is β totally bounded
and well behaved.

The proof requires the following observation whose proof is
straightforward:

REMARK 4.2. If {fλ} is an approximate identity for A, then the
locally convex topology on M(A) (see 2.2) generated by the seminorms
x —>max{||/^||, Hαj/JI} agrees with the strict topology on norm bounded
sets in M(A).

Proof of 4.1. Let m and nγ < n2 < be positive integers.
Choose a positive integer i0 so that nt > m for i ^ i0. Then

em(eni - en.) = 0

for ί, j > i0 by the canonical property so {en} is well-behaved. Total
boundedness in the strict topology follows from 4.2 and the fact that {en}
is well-behaved. Part (a) of the next result was used by Taylor [21]
in his study of well-behaved identities. We shall use it in 4.5 to
show that algebras with countable approximate identities have ones
with other nice properties.

LEMMA 4.3. Let Abe a Banach algebra, (a) If {eλ} is an approxi-
mate identity for A and {fv} is an approximate identity for the normed
algebra generated by {eλ}, then {fP} is an approximate identity for A;
(b) If {eλ} is a norm bounded net in A and D a dense subset in the
Hermitian part of the unit ball of A so that eλx —» x and xeλ —* x for
each x in D, then {eλ} is an approximate identity for A (here we
assume A is B*).

Proof. This is a straightforward computation.

Separable B* algebras have many types of approximate identities
as 4.4 shows.

LEMMA 4.4. Let A be a separable J5* algebra. Then A contains
an approximate identity that is canonical, sequential, and abelian (and
by 4.1, well-behaved and β totally bounded).

Proof. Let {xn} be a countable dense set in the Hermitian part
of the unit sphere of A, and let x = Σ (l/2%)αf;. Since x is a positive
element of A, the B* algebra C generated by x is isometrically *-iso-
morphic to the algebra C0(S), where S is the maximal ideal space of
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C. Since CQ(S) is generated by a single function, S is σ-compact.
We may select from C( = C0(S)) an approximate identity {ek} for C
possessing all the properties mentioned in the statement of 4.4. It
remains only to show that {ek} is an approximate identity for A.
Adjoin a unit / to A in the customary manner so that the adjoined
algebra is B*, hence we have that \\(I — ek)x(I — ek) || ~γ 0. From
[10, p. 14] we have that

| | ( Z - e k ) x n x i ( I - ek)\\ ^ 2 * | | ( J - ek)x(I - ek)\\

so that iI (I - ek)xn 11 = 11xn(I -ek)\\-+k0. Thus applying 4.3 (b) to D =
{xn} and {ek} we see that {ek} is an approximate identity for A.

DEFINITION 4.5. Let {Ar} be a family of normed algebras. The
subdirect sum, ( Σ Ar)QJ of the family {Ar} is that subset of PreΓAr

consisting of all a = (ar) e PAr so that {ye Γ: \\ar || ^ ε} is finite for
each ε > 0. The algebraic operations are pointwise and | | α | | =
sup {11 αr 11: τ e Γ }

PROPOSITION 4.6. If A = CΣ Ar)Q and each A1 has a β totally
bounded approximate identity, then so does A.

Proof. The proof is the same as Proposition 3.2 in [21] where
the same result is proved for well-behaved approximate identities.

REMARK 4.7. Proposition 4.6 is true when "totally bounded" is
replaced by any of the types of approximate identities listed in §2,
except countable and sequential. Dual JB* algebras have β totally
bounded approximate identities by 4.6, and 4.5 and 4.6 give a proof,
different from that in [6], that C0(S), for S paracompact, has a β
totally bounded approximate identity.

CONJECTURE 4.8. We conjecture that C0(S) has a well-behaved
approximate identity if and only if S is paracompact. As we indicated
earlier, our results on this question are incomplete, but we give an
example in §6 that is perhaps illuminating.

5* Sham compact spaces and approximate identities* The
definition of sham compact space and sham compact approximate
identity, given in 2.5, is motivated by the space X of ordinals less
than the first uncountable ordinal with the order topology, and the
algebra C0(X). For example, let A = X with the usual order and if
λe/ί, let fλ be the characteristic function of the interval [0, λ]. It
is clear that {/;.} is a sham compact approximate identity for CQ(X).
We note that C0(X) cannot have a β totally bounded approximate
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identity since X is not paracompact. Furthermore, it cannot have a
well-behaved approximate identity either since it is pseudocompact.

PROPOSITION 5.1. Let S be pseudocompact. If C0(S) has a well-
behaved approximate identity, then S is compact.

Proof. Let {eλ} be a well-behaved approximate identity for C0(S),
suppose that S is not compact, and choose, by 3.1, an increasing
sequence {Xn} so that eλ. Φ eλ.+1 for any integer ΐ. Note that eh <
β;2 < •••, i.e., {eλ.} is an increasing sequence. Since the sequence {e?.}
is Cauchy in the compact open topology and Cb(S) is complete in this
topology, there is a function / in Cb(S) so that eλ. —>/ uniformly on
compact subsets of S. By [12, Theorem 2], eλ.-+f in norm so / is
in Co(S). By 3.2, / = 1 on (JΓ=I spt eλ. which then is contained in the
compact set K — f~ι\X\* Choosing λ e A so that eλ = 1 on K, we obtain
a contradiction to the fact that eλi Φ eλi+1 for all i.

REMARK 5.2. Proposition 5.1 admits the following non-abelian
generalization, stated here, without proof, for completeness: Suppose
a B* algebra A has a well-behaved approximate identity and M(A)
satisfies the following condition: whenever {an} is an increasing sequence
in A and {an} converges in the strict topology to x in M(A), then
\\an — sc|| —> 0. Then A has an identity and A = M(A). (See [12,
Proposition 2] to see that this result includes 5.1.)

The next proposition relates sham compactness of S, existence of
sham compact approximate identities in C0(S) and the property (DF)
of Grothendieck.

DEFINITION 5.3. Let E be a locally convex topological vector
space with dual £/*• The space E is (DF) if there is a countable
base for bounded sets in E and if every countable intersection of
closed convex circled zero neighborhoods which absorbs bounded sets
is a zero neighborhood.

REMARK 5.4. The vector space Cb(S)β is complete and the β
bounded sets coincide with the norm bounded sets so Cb(S)β is (DF)
if each countable intersection of closed convex circled zero neigh-
borhoods which absorbs points of Cb(S) is a zero neighborhood [17,
p. 67].

We shall use the following remark in the proof of Theorem 5.6.

REMARK 5.5. W. H. Summers [19] has recently shown that Cb(S)β
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is (DF) if Cb(N; C0(S)) is essential, where Cb(N; C0(S)) is the Banach
algebra of all norm bounded sequence from C0(S) with the sup norm
topology (|| IU and "essential" means that \\eλ{fn} — {/w}||co—^0 where
{eλ} is any approximate identity for C0(S) and {fn} any element of
Cb(N; C0(S)).

THEOREM 5.6. These are equivalent: (a) Cb(S)β is (DF); (b) S is
a sham compact space (c) CQ(S) has a sham compact approximate
identity.

Proof. Assume that Cb(S)β is (DF) and X is the union of compact
sets Kn, i.e., X = U~=i Kn F ° r each integer n, let φ% be a function
in C0(S) so that 0 ̂  ^>n ̂  1 and 9>n Ξ 1 on Kn. Let

F absorbs points of Cb(S); therefore it is a zero neighborhood in the
strict topology by (a). It is obvious that the sets {/ e Cb(S): \\fφ\\^l}
(for φ ̂  0 in C0(S)) is a base at zero for the strict topology. Thus
1<P ^ 0 in C0(S) so that {f e Cb(S): \\fφ\\ ^ l } c V. This shows that
φ(x) ^ 1 for £ in X. For if not, there is an integer n and a point
x0 in Kn so that φ(x0) < 1. By a standard Urysohn's lemma argument
3/e Co(S) so that /(α0) > 1 and | | ^ / | | < 1. This contradiction estab-
lishes our claim, i.e., I c ^ f l ) , so X is compact.

Suppose that (b) holds. Let Λ be the set of all pairs (K, 0) where
KczDczS, K is compact and 0 is open with compact closure. If
λ = (K, 0) and λx = (Ku 00, we define λ ̂  λt if λ = \ or if 0,. c iΓ.
If λ - (Jί, 0) let fλ be a function in CQ(S) which satisfies: (1) 0 ̂  Λ ̂
1; (2) Λ = 1 on iΓ; and (3) spt/^cO. The net {fλ} is by (b) a sham
compact approximate identity for C0(S).

Assume (c), with {eλ} a sham compact approximate identity, and
let {fn} be a sequence contained in the unit ball of C0(S), and ε > 0.
Choose a sequence {λj from Λ so that | | e ^ / w — Λ | | < ε for each
integer n. Let λ0 e Λ be such that λ0 > Xn for all integers n. Remark
5.5 and the following computation finish the proof;

λ > λ0 implies \\eλfn - f%\\ = | |(1 - eλ)fn\\

βJ(l-^Λ||

eaJΛ||<e for all n.

6. Metacompact spaces—an example* We have been unable to
prove our conjecture that £ is paracompact if CQ(S) has a well-behaved
approximate identity except in special cases (see §3), but we are able
to give an example that shows that metacompactness is not sufficient
for existence of a well-behaved approximate identity.
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EXAMPLE 6.1. Let I be the unit interval with the discrete topol-
ogy and I*, the one-point compactiίication of J, with oo denoting the
point at infinity. Similarly, let N denote the positive integers
with discrete topology, N* the one-point compactification of N, and
w the point at infinity. Let S = I* x iV*\{(oo, w)}. Being an open
set in a compact Hausdorff space, S is locally compact Hausdorff.

To show that X is metacompact, take an open cover <%s of X.
For each point (<*>, w), there is a finite set Fn of I so that a member
of ^/ contains the open set Un = {(x, n):xίFn}. Similarly, for each
point (x, w) there is a finite set Gx of N with a member of ^ con-
taining the open set Wx — {(x, n): n g Gx). If (cc, y) £ X and # ^ oo
and y Φ w, {x, y) is discrete. Let Wx>y — {(x, y)}. It is easily checked
that the sets {Wx}, {Un), and {Wx>y} from a point-finite open refinement
of f/. Recalling that a space is metacompact if each open cover has
a point-finite open refinement, we see that X is metacompact.

Before we show that C0(X) has no well-behaved approximate
identity, we point out that X is not pseudocompact; thus we cannot
simply apply 5.1. In our demonstration that C0(X) does not have a
well-behaved approximate identity, we first exhibit a σ(M(X)), Cb(X))
convergent sequence {μn} which is not tight, where a subset H of
M{X) is tight and if it is bounded and for each ε > 0 there is a
compact set Kε in X so that \μ\(X\Kε) < ε for all μeH (\μ\ denotes
the total variation of μ). We may then apply corollary 3.4 in [21]
to conclude that CQ(X) does not have a well-behaved approximate
identity.

For each positive integer n, let μn be the member of M(X)
defined by the equation μn(f) =f((°°,n)) —/((°°, n + 1)) for / in
Cb(X). Note that the total variation of μn satisfies the equation
\μΛf) = / ( ( - , n)) + /((oo, n + 1)) for / in Cb(X) and so \\μn\\ £ 2
for each integer n. We now show that μn —* 0 in the weak-* topology
of M(X). Let f e Cb(X) and neN. Since / is continuous at (oo, n),
for each ε > 0, there is a finite subset Iε>n of / so that if
x £ Ie>Λ, |/(α;, n) — / ( c o , %) | < ε. Thus there is a countable subset In of
J so that if x$In,f(x, n) =/(oo, %). If 1/ is the union of the sets
{In}, we see that it is countable and if x £ If then f(x, n) = f(°o, ri) for
all integers n. Choose a point xf 0 If. Then the sequence {(xf, n)} con-
verges to the point (xf9 w) so that f((xf, n)) —>f((xf, w)). Thus

so that

lim/((-, n)) - /((oo, w + 1)) = 0 , i.e., μn(f)-+0.
n

Since / is arbitrary, we have shown that μn-+0 weak-*.
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We next see that {μn} cannot be tight: let ε = 1/2 and note that
a compact set in X can contain only finitely many of the points (oo, n).
If K is a compact subset of X and (°o,p)gK, we can choose fe
Cb(X) so that spt/ is compact, /((oo, p)) = 1, / = 0 on K, and 0 ^
/ =g 1, i.e., so that \μP\(X\K) ^ \μp(f)\ ^ |/((oo, p))[ = 1. Applying
[21, Cor. 3.4.], we see that C0(X) does not have a well-behaved ap-
proximate identity (note that X is not paracompact by [20, 3.1 and
3.2]).

REMARK 6.2. The space Cb(X)β where X is as in 6.1 is interesting
for several other reasons. First Cb(X)β is not a strong Mackey space
(see [7] for a definition). Conway in [7] has shown that Cb(X) is
strong Mackey if X is paracompact. The problem of finding topologi-
cal conditions on X necessary and sufficient for Cb(X)β to be a strong
Mackey (or Mackey) space is an intriguing problem. If we let μn be
the element of M(X) whose value at / in Cb(X) is /((oo, n))9 arguments
similar to the above show that {μn} is weak* Cauchy but has no weak-*
limit in M(X), i.e., M(X) is not weak-* sequentially complete (see [6,
5.1]). Cb(X)β is also not sequentially barrelled (see [23]).

7* Miscellaneous remarks*

REMARK 7.1. It is easy to show that if {eλ} is a sham compact
approximate identity for a (possibly non-abelian) Banach algebra A,
then {eλ} cannot be well-behaved unless A has an identity. The ques-
tion one really wants to answer is whether A can have another ap-
proximate identity that is well-behaved unless A has an identity
element. If A is commutative, the question is answered in the nega-
tive by 5.1 and 5.6 of this paper. We have the following generaliza-
tion of Theorem 4.1 in [19]:

THEOREM 7.2. These are equivalent: (1) M(A)β is (DF) (2) M{A)β

is (WDF) (3) l°°(A) is both a right and a left essential module (l°°(A)
is the set of all bounded sequences in A; l°°(A) is a right essential
module means that if {fλ} is any approximate identity for A and x =
{xn} e l~(A) then Km, (sup. \\xjλ - xn\\) = 0).

PROPOSITION 7.3. Let A have a well-behaved approximate identity
and suppose that {eλ} is a sham compact approximate identity for A.
Then A has an identity.

Proof, x = (xn)el°°(A); we can choose, by induction, a sequence
{λj from Λ so that
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l i m \ \ e h x n - xn\\ = l i m \\xneλ]c - xn\\ = 0

for all positive integers n. By the sham compact property, choose eλ

so that λ > Xk for all integers k. Thus eλeλμ = eλ]c so that eλxn = xn for
all n. Thus lim ; (sup \\xneλ — xn\\) = 0 and lim ; (supw | | e ^ Λ — »Λ) = 0,
i.e., l°°(A) is both left and right essential. Suppose {fr} is a well-
behaved approximate identity for A and 71 < 72 < β is a sequence
in Γ so that 0 Φ fr. Φ / r . for all integers ί. Since l°°(A) is essential,

there is an element τ0 is Z1 so that

for all positive integers i. Since {fr} is well-behaved, there is a posi-
tive integer N so that n, m ^ N implies that

which further implies that ||/-% — / ? m ] | < 1/2 for n,m^ N. Let C be
the commutative 5* algebra generated by {fr%: n >̂ iV}. We claim that
spt/ r i V £ N(fΪN+2). If this is not true, then s p t / r v = spt/ r Λ Γ + 1 = spt/ r j 7 + 2

and so / Γ γ _ i = / r = the characteristic function of spt/ r i V by 3β2,
contradicting the choice of {fΐn}n~ι Thus 3α? e N(flN+2)\sj)tfrN which
implies that \\flN+z(x) ~ / ? Λ ( ^ ) | | = 1. This contradiction concludes the
proof that a (nonabelian) B* algebra A cannot have both a well-
behaved and a sham compact approximate identity.

It is is easy to give an example of a β totally bounded approxi-
mate identity in C0(S) that is not canonical (and a fortiori, not well-
behaved). Our next result points out the rather interesting fact that
in an abelian JB* algebra a canonical chain totally bounded approximate
identity is well-behaved.

PROPOSITION 7.4. Let {eλ} be a canonical chain totally bounded
approximate identity for C0(S). Then {e?} is ivell-behaved.

Proof. Let {Xn} be an increasing sequence in A and F = U " n

Then F is clopen as in the proof of 3.3 and, for any compact subset
K of F, Ka N{eλN) for some integer N, so that eλn = 1 on K for n > N.
If λ G Λ, let K = spt eλ Π F: then eλ(e)n — eλm) = 0 for n and m large
enough by the preceding remarks. Therefore {eλ} is well-behaved.

Taylor [21] prove several interesting theorems about M(A) as-
suming that the B* algebra A has a well-behaved approximate identity.
From 4.3 and 7.4 we see that (looking at the algebra generated by
the approximate identity) an abelian, canonical, and chain totally
bounded approximate identity for A is a well-behaved approximate
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identity so Taylor's theorems hold in this case. We conjecture even
more, viz., that if A has a canonical chain totally bounded approxi-
mate identity, then the theorems in [21] hold. Our reason for be-
lieving this is the next proposition, which shows that a canonical
chain totally bounded approximate identity is "almost" well-behaved.

PROPOSITION 7.5. If {eλ} is a canonical chain totally bounded
approximate identity in a Banach algebra A, then {eλ} satisfies the
following condition: if ε > 0, {\n} is an increasing sequence in A, and
X e A there exists a positive integer N so that n, m > N implies

\\eλ{eλn - eλj\\ < ε .

Proof. By chain total boundedness of {e?}, there is an integer
P so that for all positive integers n

min \\eλ(e? — e7 ) 11 < — .

Choose N ^ P so t h a t if N < n < p, Iq > p so t h a t || eλ{eλ% — eλ) \\ < ε.

If n, m > N and n < m, choose q > m so t h a t \\eλ(eλn — β;.g)|| < ε.

T h e n | | e ^ - e ; j | | = \ \ e λ ( e λ n - β ^ ) e ^ J | ^ \\eλ(eλn - eλq)\\ < ε .

EXAMPLE 7.6. We now give an example of an approximate identi-
ty that is well-behaved and not β totally bounded. Let R denote the
real line and A be the set of pairs (i, j) where i is any positive integer
and j = 0 or j — 1. Order A as follows:

(1) (i, i) - (£', i') if i = ϊ and i = f;
(2) 0', 0) > (i, 1) for all integers £ and i;
(3) (i,O)>0',O) iΐi>j.

If λ = (£, 0) let /, be in C0(R) so that 0 ^ /, ^ 1 and fλ = 1 on [-i, i]
and /, = 0 off [-(ΐ + 1), (i + 1)]. If λ = (i, 1), let /, again be in C0(J?)
so that O^fx^ l,fχ(Xi) = 1 where ^ = l/2(l/(i + 1) + 1/i) and ^ = 0
off [l/(i + 1), 1/i]. The net {fλ} is easily seen to be well-behaved but
the infinite sequence {f{i, 1)} is clealy not β totally bounded.

EXAMPLE 7.7. In 3.3, we showed that if CQ(S) has an approximate
identity that is well-behaved (or β totally bounded) then S contains
a clopen set X so that C0(S) = B, ® B2 where Bx = {fe C0(S); f = 0
on X] and B2 = {/eC0(S): / = 0 on S\X} are 2-sided ideals of C0(S).
Obvious non-commutative generalizations of the above fail as we now
show. Let A be the algebra of compact operators on a Hubert space
Hy {e3 : 7 e Γ) an orthonormal basis for H, and A the set of finite subsets
of Γ ordered by inclusion. If λ e A, let Pλ be the finite-dimensional
projection defined by the equation
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Pχ(h) = Σ < A, er > er f o r h e H .
γeλ

It is easy to show that {Pλ} is a well-behaved and totally bounded
approximate identity for A, but A has no non-trivial decomposition as
a direct sum of two-sided ideals [14].

REMARK 7.8. It is perhaps worth pointing out that if CQ(S) and
CO(JΓ) have approximate identities with certain properties, so does
CQ(SXT) and the converse is also true. Suppose for example that
C0(S) has a well-behaved approximate identity {eλ} and C0(T) has
a well-behaved approximate identity {/«}. If / and g e C0(S} and
C0(T) respectively let / (g) g be the function on S x Γ defined by
/ (x) g(s, t) = f(s)g(t). It is easy to see that / (g) g e C0(SXT). Because

the algebra generated by ί/(x)# ^ f £ ° / £ H is dense in CQ(SXT) by

the Stone-Weierstrass Theorem, the net [eλ (x) fa] with directed set
all pairs (λ, a) where (λ, a) > (λ', a!) if λ > λ' and a > α' is an ap-
proximate identity for CQ(SXT) which is easily seen to be well-behaved.
Conversely, if {eλ} is a well-behaved approximate identity for C0(SXT)
and tQ e T, the net of function (fλ) defined by fλ(s) = eλ(s, ί0) is a well
behaved approximate identity for C0(S).

EXAMPLE 7.9. Our investigations of σ(M(A), M(A)f) relatively
compact approximate identities is in the first stages only. We wish to
present the following example, however, as it seems interesting. Let
S = the ordinals less than first uncountable with the order topology.
C0(S) has no σ(Cb(S), M(S)) relatively compact approximate identity.
For, suppose that C0(S) has an approximate identity {eλ} which is
σ(Cb(S), M(S) relatively compact. Note that (\eλ\

2) is an approximate
identity which is also σ(Cb(S), M(S)) relatively compact, so we may
suppose eλ ^ 0. Let XιeΛ and xλ — min {x e S: y > x ==> eλl(y) = 0}.
Choose λ2 e A so that β^2>2/3 on [0, xx + l] and let x2 — min {x e S: y>x=*>
βλ2{y) — 0. Note x2 ^ xι + 1 so x2 > xλ.

Suppose Xlf " ,Xn and xl9 •••,«?„ have been chosen so t h a t :

( 1 ) eh > k/(k + 1) on [0, xk^ + 1] for 2 ^ k ^ n

( 2 ) xk = min {& e S: 2/ > x => βijfc(2/) = 0}

( 3) xn > xn_, > > x2 > xt.

By induction we select a sequence (XΛ) in A and a sequence (a?Λ)
from X satisfying (1) and (2) and (3). Let x — lub{α;w}. By assump-
tion, 3 / G φ ) so that eλn clusters σ(Cb(S), M(S)) to /. If # > x,
eλ%(y) = 0 for all π so that /(?/) — 0. If y < x> then there is an
integer N so that y < xn fov n > N so that eλjy) clusters to 1; there-
fore f(y) = 1. We now show that / cannot be continuous at x. Since
{xn} is strictly increasing, xn < x for all n so that eλ (x) = 0 for all
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n and so f{x) = 0; on the other hand, xn —>x, so, if / were continuous,
f(x) would be the limit of the constant sequence f(xn), i.e. 1. This
contradiction concludes the proof that C0(S) has no σ(Cb(S), M(S))
relatively compact approximate identity.

Our last result (7.10 below) answers only one of a number of
questions of the following form: given an algebra A with an approxi-
mate identity having property P and another approximate identity
{eλ}, can we select from A a subset Ao (cofinal, perhaps) so that {eλ: λ e Ao}
has property P. Easy examples show that the subset Λo in 7.10
need not be cofinal in A.

PROPOSITION 7.10. If a Banach algebra A has a countable approxi-
mate identity {fr} and {eλ} is another approximate identity, then there
is a countable subset Λo of A so that {eλ: λ e Ao} is an approximate
identity for A.

Proof. Choose a countable subset AQ of A so that limXeΛQeλfr =
limXeAfγe2 = f, for each jeΓ.
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CONVERGENCE IN SPACES OF SUBSETS

R. J. GAZIK

Under certain conditions on a class ^ of subsets of
either a uniform convergence space, uniform space, or bounded
metric space, a natural convergence structure for i f is defined
which is, respectively, %-uniformizable, uniformizable, metri-
zable. Conditions which are sufficient for the convergence
structure to be separated, topological, regular, are given. In
the uniform space case some convergence properties of &
are investigated and a fixed point theorem is proved for
certain ^-multifunctions.

!• Introduction* In order to establish notation and provide
some motivation we will, in this section, review a few basic results
which deal with uniform convergence structures. The reader is
assumed to be familiar with the very basic theorems from the theory
of convergence spaces [5].

In order to obtain concepts like Cauchy filter, uniform convergence,
total boundedness, which were previously defined only in uniform
spaces, Fischer and Cook began the study of uniform convergence
spaces in [4]. A uniform convergence structure Σ on a set E is an
intersection ideal in the collection of filters on E x E which satisfies
the following axioms:

(£7i) The filter of supersets of the diagonal in E x E is a member
of Σ.

(£72) If ί ^ G ί , so its inverse,
(Σ73) If ^ J^" eΣ and the composition filter ^o^r exists, then

it belongs to Σ.
A uniform convergence space (E, Σ) is a set E along with a con-

vergence structure Σ on E. A convergence structure σ(Σ) is induced
on E in a natural way: define J^~ e σ(Σ) (x) if and only if j^~ x x e
Σ. If P is a property which can be defined by convergence (for
instance compactness, regularity, Hausdorίfness, etc.) then, by defini-
tion, (E, Σ) has property P if and only if σ(Σ) has it. Also, most
definitions of uniform properties are available in uniform convergence
spaces and are generalizations of the uniform topology case. For
example, a filter J^ on E is a Gauchy filter if ^ x ^ eΣ; (E, Σ)
is complete if each Cauchy filter converges with respect to σ(Σ); {E,
Σ) is totally bounded if each filter on E is coarser than a Cauchy
filter; a map / between uniform convergence spaces (E, Σ), (F, ψ) is
uniformly continuous on E if (/ x f)Σ c ψ.

With these definitions one obtains results which, for the most

81
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part, parallel the uniform space case. For example, it is true that
each uniform convergence space has a completion [8], and that a
uniform convergence space is compact if and only if it is complete and
totally bounded [4] The following result is due, independently, to
Keller [6] and Cochran [3].

THEOREM 1.1. Each Hausdorff convergence space (E, d) is u-
uniformizable. That is, there exists a uniform convergence structure
Σ on E such that d = σ(Σ).

If (E, Σ) is a uniform convergence space, a subset ψ of Σ is a
base for Σ if each member of Σ is finer than a member of ψ. The
following result (see [4]) shows the relationship between uniform
convergence spaces and uniform spaces.

THEOREM 1.2. 1/ a uniform convergence structure Σ for E has a
base consisting of exactly one filter ^ then ^ is a uniform structure
for E; each uniform structure ^f for E is a base of exactly one
element for a uniform convergence structure [%S] for E; Ήf and \%f\
have exactly the same set of Cauchy filters and exactly the same set
of convergent filters.

Now consider the following well known construction: If {E,
is a uniform space and <& is the class of nonempty, closed subsets
of E, then a uniform structure for ^ is generated by sets of the
form {(A, B): A,Be<έ?,Acz U{B), Ba U(A)}, Ue <%f. It follows that a
filter ^~ on <& converges to A e ^ with respect to the completely
regular topology on ^ induced by ^ , if and only if for each Ue ^ ,
there exists &~ e JΓ such that F c V(A) and A c V(F) for each
F e ^ . The topology induced on ^ is called the uniform topology
on 9f ]7].

The remarks above motivate the consideration of convergence
of sets of a class ^ (of not necessarily closed sets) in any space
where "closeness of sets" is meaningful. We will begin the dis-
cussion with uniform convergence spaces. According to Theorem 1.1,
these include Hausdorff topological spaces and many others which
are not topological spaces.

2* Convergence classes* For the remainder of this section a
uniform convergence space (E, Σ) will be a set E along with a base
Σ for a uniform convergence structure on E.

DEFINITION 2.1. Let (E, Σ) be a uniform convergence space. A
nonempty class <g* of nonempty subsets of E is called a convergence
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class for (E, Σ) if and only if AcF(A) for each 4 G ^ , Ve

DEFINITION 2.2. Let (E, Σ) be a uniform convergence space and
let ^ be a nonempty collection of nonempty subsets of E. The
function τ(c^) from & into the power set of the filters on ^ is
defined by &* e τ{^){A) if and only if for each 7 6 / , / e I , there
exists j r e j r- such that FaV(A) and AaV(F) for each

THEOREM 2.1. TΛβ function τ{^) of Definition 2.2 is α convergence
structure on ΐf £/ and only if ^ is a convergence class for (E, Σ).

Proof. It is clear that if ^~ e r(<gT)(A) and gf is finer than
then & e r(<if )(A). If &~ gf e r(<gf)(A) then, since {j^" U S :̂ ^ e
j r , & e gf} is a base for gf Λ ^ , j r Λ gf e τ(^)(A). Hence, r ( ^ )
is a convergence structure for ^ if and only if the ultrafilter gen-
erated by A is in τ{^)(A) for each A 6 ̂ . But this is equivalent
to the statement that A a V{A) for each A e 9f, Ve ^ , ^f e Σ.

Some additional properties which may sometimes be required of
a convergence class ^ for a uniform convergence space (E, Σ) are:

(A,) If A , 5 e ^ and AaV(B) for each 7 G / , / e l , then

(A,) I f i , ΰ e ^ a n d i c F ( £ ) , BaV(A) for each
Σ, then A = 5.

(A3) For each / e ί and F G / , there exists Ue ^ such that
c F(A) for all 4 e ^ .

For each / e ί , F e ^ i e ^ , there exists Ue^f such
that ί/2(A)cF(A).

If A, 5 e ^ , then A

THEOREM 2.2. Let ^ be a convergence class for the uniform
convergence space (E, Σ). Then

(1) If either (A^ and (A4) or (A2) and (A*) hold, then τ(^) is
separated and u-uniformizable.

(2) If (A5) holds and τ(^) is separated, then (Ax) and (A2) hold.
(3) (AO implies (A2) α^d, i/ (A5) holds, (A2) implies (Ax).

Proo/. (1) Suppose ^ e τ(^)(A) Πr(^)(B) and let F e / / e I7.
By (A4) there exist C7, We^ such that Z72(JB)C F(S), TF2(A)cF(A).
Then S= UΠWeJ^ so FcS(4) , A c S ^ , BaS(F), FaS(B) for
all F e ^ ^ and some ^ e &~. From these relations, Ac C/2(β) c V(B)
and £cTF2(A)cF(A) so, if either (A,) or (A2) hold, A = B; that is,
τ(^) is separated. It follows from Theorem 1.1 that r ( ^ ) is
formizable.
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(2) Suppose A c F(£) for all F e ^ / e ί . Then A{J BaV(B)
and Ba V(A U B) so, since (Aδ) holds, the ultraίilter generated by B
converges to A{J B. Since τ ( ^ ) is separated B = A{J B so Ad B.
A similar argument shows that (A2) holds.

(3) If (A,) holds, (A2) holds. If AcF(J5) for all Ve J?, J" e
Σ, then, since Al) Be<ϊf,A{J BczV(B) and BaV(A UB); it follows
that A U δ = 5 and A c β.

THEOREM 2.3. Lei ^ be a convergence class for a uniform con-
vergence space (E, Σ). If {Az) holds then r ( ^ ) is a topological space;
that is, there is a topology σ(^) on ^ such that a filter <^~ con-
verges to A e ^ with respect to σ{W) if and only if ^~ e

Proof. It suffices to show that if ^ <g τ(c^)(A), then there exists
a subset of ^ , such that i G ^ . T ί / ' and if BeJέf^&e

then JT'Ggf.
Now suppose &" $τ{$f)(A). Then for some Ve ^F, ̂  e Σ, no
6 &* satisfies
(1) F G ^ implies Fc V(A) and Ac V(F).
Define a subset ^ of ^ as follows: ĉ 5" consists of all JBeg7

such that
(2) 5c7(J5), and A C F ( J S ) , and
(3) there exists Ue ^ such that iϊ He^ and HaU(B) and

BaU(H), then Ec7(A) and AcF(ί f ) .
Now A G <£f for A c F(A) and we may take the U required by

(3) to be V. J T g ^ by (1) and (2).
Suppose now that gf eτ(<£f)(J5), J5G ^ We show JT G ^ by

proving that <^ contains a member of ^ .
Since B e ̂  condition (2) holds for some Ue^. By (A9) there

exists We^ such that TF2(D) c U(D) for all i ) G ^ . Since gf G
τ(^)(β), there exists gf G gf such that GcTF(β) and BaW{G) for
all G G <£?.

Let G G ̂ . Since ΰ e ^ a n d G c T7(5), 5 c TΓ(G), then G c
and AcF(G) so G satisfies (2).

Suppose He <& and H e TΓ(G), G c TΓ(£Γ). Then H e W\B) c
and 5 c W(G) c TF2(£Γ)c I7(H) so, since Be JT, H e F(A) and A c
This shows that each Ge^ satisfies (3).

In summary, gf c ^ g^ e ̂ , so

THEOREM 2.4. TFΛ& ί/̂ β same assumptions as in Theorem 2.3,
the topological space (^, fl^^)) is regular.

Proof. Recall first that a net in a topological space converges
to a point if and only if its filter of final sections converges to the
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same point. In the present context it follows from the previous
theorem that a net (An: n e D) in <& σ (^-converges t o i e ^ (written
(An: neD)-+A) if and only if for each V e ^ J" e Σ, An c V(A) and
A c V(An) for w sufficiently large.

Now let (AijiieliJeJi) be a simply convergent double net in
^ with (Ai3 : j e JJ-+Pi e &* for each ί e / . Let A be the diagonal
net on T = I x /7(J<: ί e l ) defined by h(i, g) = Ai>gii) and suppose the
diagonal net converges to J G ^ 7 . We prove ( ^ , o{<%?)) is regular by
showing that (Pi. iel)—* X.

Let 7 6 ^f, ^ e 21. By (A,) there exists ί7e ^ such that U\B)a
V{B) for all Be^. Since the diagonal net converges to X,

(1) Aif,(i) c t T O , Xci7(A,,,(ί)) for (i, fir) ̂  (iOJ flr0). Since each
{Ao : iGj,) — P , ,

(2) Atf c U(Pi), Pi c ϋ ^ ) for each i ^ i0 and j ^ i(ΐ, F). Define
w e Π(Ji: iel) by requiring w(i) to be greater than or equal to both
9o{i)> 3(h V) it ί^ ί0 and w{i) = gQ(ΐ) otherwise. Then, for ί^i, (ί, w) ^
(ίo, g0) so by (1), At,wWcz U(X) and I c C7(^,w(ί)). By (2) A, w ( ί ) c C/(P,)
and P,c t^(ii4fW(4)). Hence, for i ^ i0, P,c ί / 2 ( I ) c 7 ( I ) and X c U\Pi)cz
V{Pi). It follows that (P,: i e I) -> X and ( ^ , σ{^)) is regular.

It should be pointed out that a number of other natural conver-
gences on a convergence class ^ might be studied. The following
are a few such examples.

(1) &* e ψ(^)(A) if and only if there exists / G ! 7 such that:
for each Ve J" there is an ^ e &* such that FczV(A) and A c V(F)
for each F e ^ .

(2) ^ ^ € λ(^)(A) if and only if for each Ve ^ , J" e Σ, a e A,
there exists ^ e ^~ such that F c V(A) and F Π F(α) ̂  ^ for each

( 3) ^ " € α(ΐT)(A) if and only if there exists J" e Σ such that:
for each F G ^ / , aeA, there exists ^ " e^"" such that FaV(A) and
ir n F(α) ̂  ^ for each F e

EXAMPLE 1. Let Σ consist of just one uniform structure
for E and let ^ be any nonempty class of nonempty subsets of E.
By Theorem 1.2 Σ is a base for a uniform convergence structure on
E. Clearly Ad V(A) for each Ve ^ , A e ^ , so ^ is a convergence
class for (£7,17). In particular, if ^ is the class of nonempty
closed subsets of E, then, by the discussion at the end of §1, τ
convergence is precisely the convergence of closed sets in the uniform
topology on <g=\ (See [7].)

EXAMPLE 2. Let E be a Hausdorff topological space and, for each
finite subset S of E, define ^(S) to be the filter Λ {^V{x) x ^V(x)\
x e S) A &, where &ί is the filter of supersets of the diagonal in
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E x E and Λ~(x) is the neighborhood filter at x. The collection
Σ — {^(S): S is a finite subset of E} is a base for a uniform con-
vergence structure on E. It is not hard to see that the convergence
induced by Σ is precisely convergence in the topological space E.
Each member of each ^{S) contains the diagonal so any ^ is a
convergence class for (E, Σ).

If E is a closed interval of real numbers, ^ the class of nonempty
closed subsets of E and ^ the usual uniform structure on E, then,
by Example 1 and results from [7], (^, τ^)) is compact with respect
to the base {^}. Now the base Σ of Example 2 induces the same
convergence on E as does {^}, but (^, τ(^)) is not compact with
respect to Σ.

Question. If & is the class of nonempty, closed subsets of a
compact uniform convergence space (E, Σ), is there a base Φ for a
uniform convergence structure on E such that Σ and Φ induce the
same convergence on E, and (^ , r ( ^ ) ) is compact with respect to Φl

EXAMPLE 3. Let E be a Hausdorff topological space and ^ any
collection of nonempty subsets of E. Define ^ to be the filter
generated by sets of the form (J (Gi x G> ie I) where / is finite, each
Gi is open and U (G<: ieI) = E. The collection J = {^, ^ 2 , ^ 3 , }
is a base for a convergence structure on E and ^ is a convergence
class for (£7, Σ). The topological convergence on E is generally not
the same as that induced by Σ. In this case &* e τ(r^)(A) if and
only if for each F 6 ^f and each natural number n, there exists

such that F c F%(A) and A c F^(F) for each F e J ^ .

EXAMPLE 4. Let E be a regular, Hausdorff topological space, ^
the class of nonempty, closed subsets of E and Σ the base of the
previous example. Then λ(^) convergence is precisely the conver-
gence of closed sets defined by Choquet on p. 90 of [2].

Question. If E is a topological space, ^ its convergence class
of closed sets, is there a base Σ for a uniform convergence structure
on E such that one of the natural convergences r(C), λ(^) , etc.
induces the convergence defined by Choquet on p. 87 of [2]?

Of course, the meaning of τ ( ^ ) , ψi^), \{c^) or a(^) convergence
is known as soon as a base for a uniform convergence structure is given.
In this regard, see [3] for an explicit construction of a uniform con-
vergence structure for an arbitrary Hausdorff convergence space, and
see [4] for construction of natural uniform convergence structures on
function spaces.
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3* Convergence classes for uniform spaces* Let (E, ^f) be a
uniform space and let i f be any nonempty class of nonempty subsets
of E. Since AaV(A) for Ve ^ and (A3) of §2 holds, i f is a con-
vergence class for (E, cJ?) and r(if) induces a regular topology σ(^)
on if. A net (An: neD) in ^ <7(if)-con verges to A e ^ if and only
if for each Ve ^ , AnaV(A) and A c F(iln) for w sufficiently large.
In fact, we have the following:

THEOREM 3.1. If (E, (J?) is a uniform space and ^ is a non-
empty collection of nonempty subsets of E, then the topological space

is uniformizable.

Proof. For each Ve ^ , define JΠT) = {{A, B): A,Be<tf,Aa
V(B), BaV(A)}. Then each ^~(V) contains the diagonal in £f x i f
and the inverse of ^(V) is itself. Also ^~(V) =) ̂ ~(U)o^~(U) if
UoUdV. Thus μ(^)y the filter generated by the j^~(F)'s, is a
uniform structure for ^ . But, from the definitions and the remarks
preceding the theorem, a net 0 (^)-converges to i e ^ if and only
if it converges to A with respect to the topology generated by μ{^).

Some additional axioms which may sometimes be required of a
convergence class c^ for a uniform space (E, ^) are:

(Bλ) If A, B e if, then A{J Be^f.
(B2) If Ac clos £, then A c 5 .
(#3) If A c clos 5 and B c clos A, then A = B.
(B4) If S is linearly ordered and (An: ne S) is a decreasing net

in & (n >̂ m implies Aw c Aw) such that Π An ^ φ, then any net (a?n:
ne R) with ϋί cofinal in S and a?n e Aw for ne R, which converges,
converges to a point in clos (Π An).

THEOREM 3.2. If & is a convergence class for a uniform space
(E, ^), then

(1) If (B2) or {Bz) is satisfied, (if, μ(if)) is Hausdorjf.
(2) If (if, μ(ίf)) is Hausdorff and (B,) holds, then (B2) and

(B3) hold.
(3) (B2) implies (J53) and, if (Bx) holds, (B3) implies (B2).

Proof. This follows from Theorem 2.2.

EXAMPLE 5. A simple example of a convergence class ^ for a
uniform space (E, ^f) for which (^, μ{r^)) is Hausdorff and ^ does
not consist of closed sets is obtained by taking i f to be the class of
all nonempty, regular open subsets of E. Recall that an open set
G is regular open if G = Int (clos G). It is clear, then, that c^ satisfies
(B3) so (if, μ{^)) is Hausdorff.
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D E F I N I T I O N 3.1. A net (An: neD) in ^ is increasing (decreasing)

if D is totally ordered and n^m implies An z> Am(Am z> An).

THEOREM 3.3 Let (E, ̂ f) be a compact uniform space and cώp

a convergence class for (E, ̂ ) Then
(1) An increasing net (An: neD) in ctf converges if and only

if there exists i e ^ 7 such that U Anaclos A and A ados (I) An).
(2) If (An: neD) is a decreasing net in c^, Π An Φ φ and (B4)

is satisfied, then (An: neD) converges if and only if there exists A e
^ such that A c clos (Γ) An) and Π An c clos A,

Proof. A proof of (1) is given. The proof of (2) is similar. If (An:
neD)-^A then, if Ve ^f, An c V(A) and A c V(An) for n sufficiently
large. But since (An: n e D) is increasing, U Ana V(A) and Ad F( U An).
Since V was arbitrary, U 4 c clos A and A c clos (U An).

Now suppose Aecέ? exists which satisfies U A , c clos A and A c
clos (U An). Then, for Ve J", n eD,Ancz V(A). Thus, to show (An:
ne D) —> A it suffices to show that A c V(An) for some neD.

Suppose this is not so. Then there are points yn e A — V(An). The
net (yn: ne D) has a convergent subnet by the compactness of (E, J?)
Clearly, the subnet converges to a point x e clos A c clos (U An). If
U2 c F, then ?7(a?) n i κ ^ ^ for n sufficiently large. But (yn: ne D)
is frequently in U(x) so there is an index neD such that yn e U{x),
tneU(x),tneAn. Then yne U2(tn) aV(tn) aV(An) which is a contra-
diction.

DEFINITION 3.2. If ^ is a convergence class for (E, ̂ ) then
μ(fέ?)) is said to be monotone complete if and only if each increas-

ing net in (^, μ{^)) converges and each decreasing net (An: n e D)
for which C\ AnΦ φ converges.

THEOREM 3.4. Let (E, ̂ ) be a uniform space. Then
(1) // / : (E, cJ?) —> (E, ^f) is uniformly continuous and & is

any convergence class for (E, J?) such that Aecέ? implies f(A) e &
then g: (rέf, μ^))-+(rέf, μ{c^)) defined by g(A) = f(A) is uniformly
continuous.

(2 ) / / ( ^ , μ{c^)) is separated and monotone complete, then either,
(a) g(A) = A for some Ae^, or
(b) there exists A e ^ such that g(A) c A and Π {gn(A): n = 1, 2,

. . . ) = <* or
(c) g(A), A are not comparable for each Ae^.

Proof. (1) If / is uniformly continuous then (/ x
Then, if ^~{V) is a generator of μ(^)9 there exists UeJ such that
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x /)(U). It is an easy computation to show that (g x g)J7r~{U)c
so (g x g)μ{c^) ^ M ^ ) a n d 0 *s uniformly continuous.

( 2) If A c #(A) for some A e 9f, then A c #{A) c g\A) . . . is a
monotone net in ^ and hence converges to B G ̂ , By (1) g(A) c g2

(A) c converges to #(5). Since (^, μ(^)) is separated, I? = ^(J5).
If A Z) #(A) for some 4 e ^ , A =) #(A) z) #2(A) is a decreasing

net in (<if, μ{1f)). If it is true that (>"(A): w = 1, 2, . . .) Φ φy then
ίT(A) — B, gn{A) -> #(£) and B = g(B). Hence, if neither (a) nor (b)
holds, it must be that A ζz! g(A) and #(A) ζz! A for all Aec^. That
is, (c) holds.

Recall that if / : (E, ^) —> S is a bijection, then there is a
finest uniform structure for S which makes / uniformly continuous,
namely (/ x /)

DEFINITION 3.3. If ^ , ^ are convergence classes for (El9

(E2, ^ ) respectively, the natural uniformity μ[^l9 ^2] on \c^u ^
{Ax B: A e ^ , B e ^2} is the finest uniform structure on [%?l9

which makes the bijection / : (9^ x %?2, μi^) x
defined by /(A, B) = A x B uniformly continuous.

THEOREM 3.5. (1) Let Wly ^ 2 be convergence classes for (E,
Then (An x Bn\ neD) converges to A x B in ( [ ^ , <if2], /^[^, ̂ 2]) if
and only if (An: ne D), (Bn: ne D) converge to A, B in ( ^ , μ(^Ί)),
(^2, μi^)) respectively.

(2) If (An: neD), (Bn: neD) are nets in (&>, μ(^)) which con-
verge to A, B respectively and An c Bn for n sufficiently large, then
A c clos B.

Proof. (1) If (An: n e D) -»A and (Bn:neD)-+ B, then (AΛ x £%:
w e ΰ ) - > A χ β b y the continuity of the map / : (A, B) -> A x JB. If
(A, x 5U: ^ G β ) ^ i x ΰ a n d Ve Jf, then, when ^"(F) = {(S, M): Sa
V(M), Mc F(S)}, ^ ( F ) - {((#, Γ), (F, X)): (ϋί, F) e jΓ(V), (Y, X) e
^~(V)} is in μ{^) x / / ( ^ Thus, by definition, (/ x f)^{V)(A xB) =
{R x Y: (R, A) e ^(V), (Y, B) e ^"(F)} is a neighborhood of A x 5.
It follows that (An,A)e^~(V) and (Bn,B)e^~{V) for % sufficiently
large so (An: neD) -^ A and (Bn: n e D) —> B.

(2) We have for Ve ^f, an index neD such that An czBn, Aa
V{An),Bnc:V{B) so A c F 2 ( ΰ ) and the result follows from this fact.

The result above, as well as the theorem below will be used in
the next section.

THEOREM 3.6. Let ^ be a convergence class for the the uniform
space (E, ^). Then

(1) // (An: neD) —> A and x e A, then there exists a directed set



90 R. J. GAZIK

H and functions p: H-+D, m: H—+E, such that p(H) is cofinal in
D, the net m converges to x and m(h) e Apih) for all he H.

(2) If (An: ne D) —>A and a net m: H-+ E converges to x with
m(h) e Ap{h), p(H) cofinal in D, p: H—> D, then x e clos A.

Proof. (1) Order D x J" by (n, V) ^ (m, U) if n ^ mand 7 c
U. By convergence, if (n, V) e D x J? there exists p(n, V)eD and
m(n, V) e Av{%,v) such that p{n, V) ^ (x, m(n, V)) e V. The result fol-
lows from this.

(2) If Ve ^ , m(h) e V(x) Γ) Ap{h) for h sufficiently large. But,
by convergence, there is an index h such that APih) c V(A) also- It
follows that for some ae A, some heH, (m(/z), x) e V, {m{h), a) e V.
Thus a e V2(x) and the result follows.

4* Fixed point theorem for ^-multifunctions* Let ^ be a
convergence class for the uniform space (E, ^). If F:(E, ̂ f) —+0^,
μ{^)) is a function, then JP%, % = 2, 3, is defined inductively as
follows. (Notice that Fn{x) need not be in <ίf if n > 1.) If # e £7,
F2(α;) = U F(y): y e F{x)) and Fn+1(x) = U F(y): y e Fn{x)) for n > 2. If
i*7^) G ^ for each π and each xe E, then ί7 is called a ^-multi-
function.

DEFINITION 4.1. A ^-multifunction F: {E, J") -> (^, ^(^)) is
condensing if ί7 is continuous and V e ^ F , x Φ y,x,y e E implies there
exists n = ?φ, y, F) such that Fn{x) x ί7*^) c F.

EXAMPLE 6. With respect to the hypotheses of the next theorem,
we remark that ( ^ μ{^)) can be compact without ^ consisting only
of closed sets. Let E be the closed unit interval and let ^ consist
of all subintervals (open, closed, or half open, half closed) of E along
with all singleton subsets of E. Then ( ^ μ{^)) is compact.

THEOREM 4.1. If (E, ^F) is compact and Hausdorjf, (<£*, μi^)) is
compact and F: {E, J?) —> ( ^ , μ{^)) is condensing, then there exists
xoeE such that x0eclos F(x0).

Proof. Suppose x £ F(x). Then for some y e F(x), y Φ x. lίVe
^f, there exists n(V) such that

( 1 ) Fn<v)(x) x Fn{V)(y)czV.
Since ( ^ , μ{c^)) is compact so is [^, ^ , ^ ] by Definition 3.3. Hence,
with ^ directed by reverse inclusion, the net p defined by p — {Fn{V){x) x
Fn{V){y) x Fn{V)+1(x): Ve J") has a convergent subnet t: D-+[^, 9f, <if\.
lί t-+Ax B x T, then by (1) and Theorem 3.5, A x Ba V for each
Ve JF. Since (E, ^f) is Hausdorff, A x B is contained in the
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d i a g o n a l oί ExE so A — B = {x0} f o r s o m e x0 e E.
Now yeF(x) so Fn{V)(y) c Fn{V)+1(x). It follows from Theorem 3.5

that #o £ clos T.
Consider z e T. By Theorem 3.6 and the fact that t is a subnet

of p, there is a net m:H—+E and a function fiH—*^, such that
/(if) is cofinal in J", m — z, m(λ) e ̂ - ^ " ( α ? ) ) , A e H. So,

( 2 ) m(h) e F(u(h)), u(h) e Fn{f)h)){x).
By compactness of (E, ^f), (u(h):heH) has a convergent subnet w.
By (2) w —>x0 and since .F is continuous, F(w)—+ F(x0). By (2), the
fact that m —»z, and Theorem 3.5, 2eclosF(£0).

In summary we have Γ c clos F(xQ) and #0 6 clos T so xQe clos F(xQ)

COROLLARY 4.1. Let ^ be thet set of all non-empty closed subsets
of a compact, Hausdorff uniform space (E, ^f) and let a continuous
function F: (E, ^J?) —• (^, μ{^)) satisfy the following condition: Ve
^f, x Φ y implies Fn(x) x Fn(y) c V for some n = n(x, y, V). Then
there is a unique xoeE such that xoeF(xo).

Proof. By results of [7], Fn maps E into ^ for each n = 1, 2,
3, and (^, μ{^)) is compact. Hence, by the previous theorem
x0 e clos F(x0) = F(x0) for some xoeE. If also xeF(x), then given
F e ^ , it is true that (̂ , a;0) e ί7"^) x ί™^) c 7 for some n. It
follows that (x, x0) e Π {V: Ve ^}, x Φ xOy which contradicts the fact
that (E, ^/) is Hausdorff.

COROLLARY 4.2. {Bailey [1]). Let (E, d) be a compact metric space
and f: (E, d) —> (E, d) a continuous function such that if x Φ y, there
exists n — n{x, y) such that d(fn(x), fn{y)) < d{x, y). Then f has a
unique fixed point.

Proof. Under the hypothesis of the theorem it is easy to see
that if δ > 0 is given and x Φ y, there exists n = n(x9 y, 3) such that
d(fn(x), fn(y)) < d. Then, with ^ the natural uniform structure
induced by d, the hypotheses of Corollary 4.1 are satisfied for / and
{E, ^f) so the result follows.

Now let (E, d) be a bounded metric space and & any class of
nonempty subsets of E. The well-known Hausdorff function h on ^
is defined by h(a, b) = max {m(A, B), m(B, A)} where m(A, B) = sup {d(x,
B):xeA} and d(x, B) = inf {d(x, y):ye B}.

THEOREM 4.2. Let (E, d) be a bounded metric space and let cέ? be
any nonempty class of nonempty subsets of E. Let & satisfy (B3) of
§ 3 with respect to the natural uniform structure on E generated by the
Vδ's, Vδ = {(x, y): d(x, y) < δ}. Then (<£", μ(^)) is uniformly metrizable
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and one metric for (^, μ{c^)) is the Hausdorff function on cέ?.

Proof. If h(A, B) = 0, then m(A, B) = m(B, A) = 0. Given δ > 0,
it follows that AaVδ(B) and BaVδ(A). Since (Bz) holds, A = B.
Clearly h(A, B) = λ(B, A) and, if A = B, Λ(A, J5) - 0.

To prove the triangle inequality it suffices to show that m(A, B) <g
m(A, X) + m(X, B) for each A,B,Xe <έf. Let δ > 0 be given.

(1) m(A, 2?) < d(α0, α) + <Z(α, a?0) + ^(#, &) + S for some aQeA and
all α G A, x e X, b e B.

Also m{A, X) ^ d(a, X) for all a e A so given a0 e A,
( 2 ) there exists xLe X such that m(A, X) > d(α0, xγ) — δ; similarly
( 3 ) m{X, B) > d{xu b,) - 3 for some b, e B. Combining (3), (2),

and (1) we have m(A, X) + m(X, B) > m(A, B) ~ Sδ and it follows
that m(A, B) ^ m(A, X) + m(X, B).

We have shown that h is a metric on ^ . Now let Uδ e ^{h),
^{h) the structure on ^ generated by h. A computation shows that
if (A, B) e Uδ then A c V2δ{B) and δ c 7 , ( i ) , V2δ - {(α?, ί/): d(x, y) < 2δ},
hence Uδ(z^{V2δ) so ^ ( A ) ^ MC). Similarly ^{Vδ)aU2δ so then
^ ( A ) ^ μ(C).

The author wishes to thank the referee for several helpful sug-
gestions.
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AUTOMORPHISMS ON CYLINDRICAL SEMIGROUPS

JOAN MURPHY GERAMITA

This paper characterizes the automorphisms of a cylindrical
semigroup S in terms of the automorphisms of the defining
subgroups and subsemigroups. The following theorem is re-
presentative of the type of information given in this paper.

Let F:R-> A be a dense homomorphism of the additive
real numbers to the compact abelian group A. Let λ be a
positive real number. Multiplication by λ shall also denote
the automorphism of A whose restriction to F(R) is given by
FλF~ι. The set of all such λ for a given F is called AF.

Theorem. Let / and λ be as above. Let G be a compact
group. Let

S = {(p, Av) 9) P £ H a n d geG}UaxAxG.
Then a: S-* S is an automorphism if and only if a(p, f(p), g) =
(λP, Ά*P), <ftpMg)>, «(°°, α, 9) = (°°> to, φ)ξ(g)), where r: A-^G
is a homomorphism into the centre of G and, ξ:G —> G is an
automorphism. Theorem. Let S be as in theorem above.
Let *S^f(G) be the automorphism group of G, and Z(G), the
center of G. The automorphism group of S is isomorphic
as an abstract group to J^(G) X ( A F X Horn (A, Z(G))) with
the following multiplication

(£, (Λ r))(f, (I, τ)) = (f o f, ( l, (τ o λ)(ξ o f))) .

Cylindrical semigroups play an important role Mislove's description
of Irr(X) and are the building blocks used in the construction of a
hormos. Hofmann and Mostert [3] have shown that every compact
irreducible semigroup is a hormos. The definition and description of
a cylindrical semigroup, given in §1, is from their book.

I* Definitions and notation* All spaces are Hausdorff. All
homomorphisms are continuous unless otherwise stated. A homomor-
phism will be called abstract if it is not assumed continuous. A group
considered with the discrete topology will be called abstract. A
topological semigroup is a topological space, S, together with a con-
tinuous associative multiplication m: S x S—+S; m(s, t) = st. All
semigroups are topological with identity 1. A topological group is a
semigroup with the map φ: S—*S, φ(s) = s~\ continuous also. An ideal,
I, in a semigroup, S, is a subset of S such that: if x e S then
(xl U Ix) c I. If S is compact and abelian then S has an ideal M(S)
which is minimal with respect to set inclusion, is unique, and is a
group. An idempotent x e S has the property x2 = x. The maximal

93
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subgroup of S containing an idempotent e is called the group of units
of e and denoted H(e). The group of units of 1 is also denoted H(S)
and called the group of units of S. If a: S —> S is an automorphism
then a(H(S)) = H(S) and a(M(S)) = M(S).

NOTATION. The following notation is standard throughout the
paper.

[α, b]—In a totally ordered set, the closed interval from a to b.
]α, b[—The open interval from a to b.

fl—The semigroup of nonnegative real numbers under addition
with the usual topology.

H*—The one point compactiίication of H, written [0, <>o].
Hr*-H*j[r, co].

Λ—The abstract group of positive real numbers under multi-
plication.

R—The group of real numbers under addition with the usual
topology.

Z(G)—The center of a group G.
[p]—The image of p under the quotient map JEP —>£Γ*.

*—As in £*, the closure of BaX, except as noted above
for H.

X\A—For A c X, the complement of A in X.

1* DEFINITION. Let A and G be compact groups. Let A be an
abelian and / : J5Γ—* A a homomorphism such that f{H)* = A. Consider
H* x A x G with coordinate-wise multiplication, and let S be that
subsemigroup defined by:

S = {(p, f(p), g): p e H, g e G} U <χ> x A x G .

Any homomorphic image of S is called a cylindrical semigroup.
The following theorem which describes cylindrical semigroups is

from [3, p. 85, Prop. 2.2].

THEOREM A (Hofmann and Mostert). Let S be a cylindrical semi-
group as defined above. Let e be the identity of G and

S' = {(p, f(p), e): p e H) u - x A x e .

Let φ: —+ T be a surmorphism onto a compact semigroup T. Then
there are:

( i ) compact semigroups Tu I7/, X and a compact group B,
(ii) surmorphisms hl9 h2, h3, h4, φly φ2

(iii) monomorphίsms iu i2

such that the following diagram commutes:
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i]fr • / z r

Ί
# * x A x G _ϋ-rϋ^rΐ_> Hr* x B x G - ^ - X

Q ^ Φ ^ 2 . rp
o > i i > i

IU III

S' > τ; —

(π, πf are projections; φ2°Φi=Φ).

Moreover, Jι3\H*XBXe is a monomorphism and h4oi2 is a surmorphism.

From this theorem it is possible to describe T in terms of equiv-
alence classes of elements in H* x B x G.

/(0) is the identity of A. r, if it exists, is the least real number
such that φ(r, f{r), e) = φ(^f a, g) for some a e A, g e G.

B = φ(oo x A x e). T[ - φ(β') x e .

Let / : H—> B be given by f(p) — φ{^, f(p), e) then

UT[) = {([p], f(p), e): p e H) U [r] x B x e .

If there is no such r, then ί^TDczH* x B x G.
Let

G[P] = { ^ G : φ(p, f(p), g) = φ{p, f(p), e)}

and

G [ r ] = { p G : ^([r], /(0), ̂ ) = ^([r], /(0), e)}

where r ^ oo, {G[P]: p e ίΓ*} has the following two properties:

( 1 ) GiriSffw for p ^ g ;

( 2 ) G [p] = ΠGcαi.
«>J>

Each G [p] is a normal subgroup of G. Denote G/G[r] by G and assume

, f(p), g):peH,ge G}) = {([p], f(p), gGw): peH,geG}

where

x 4 x G) = ([r] x B x G)/K where if is a normal subgroup of
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[r] x B x G. K has the property: if ([r], b, g) e K and ([r], b,g)eK
then 6 = 6 if and only if g — g.

We shall identify T with its image i2(T) and refer to ix(TΪ) as
T\ Since B is a compact abelian group and /: H—> i? is onto a dense
subset of j?, we may as well consider them as / and A to avoid extra
notation. We say

T = {([p], f ( p ) , g G M ) : p e H , g e G } ϋ ([r] x B x G)/K .

II* Automorphisms on semigroups of the form of S. We first
consider automorphisms of the cylindrical semigroup S given in Defini-
tion 1. M(S), the minimal ideal of S, is co x A x G. H(S), the group
of units, is {(0, /(0), g): g e G}. From Theorem A we have that an
automorphism a: S —* S can be thought of as an automorphism on
S' x H(S).

Consider the situation where G — {e}. We have S = S', M(JS>') =
oo x A x e and S'\M(S') is isomorphic to H by (j>, f(p)9 e) <-• ^. For
an automorphism α: S' —>S', a(M(S')) = M(S')', and, α restricted to
S'\M(S') corresponds to an automorphism of if. Since the only auto-
morphisms of H are multiplication by a positive real number λ, we
have a(p, f(p), e) = (λp, /(λp), e).

How shall a behave on M(Sf)l Let R be the additive group of
real numbers, then f:H-+A can be extended to F: R —* A (for x$H9

F(x) = f(-x)-1) and F{R) will be dense in A. Let a(p, f(p),e) =
(λj>, /(λp), e). Then:

), β)(oo

= a(p,f(p),e)a(oo,f(0),e)

,e)(oo,/(0),e)

, e) .

Define λ: F(R)-+F(R) by λ(F(a?)) = F(λα?). α | w ) : M(S') — M(S') must
be an extension of λ. This extension will be called λ

Any homomorphism between dense subgroups of compact groups
can be extended to a unique homomorphism between the groups. If
original map is an automorphism then the extension is also. The
existence and uniqueness of the extension, as a function, follow from
the fact that the subgroups are uniform spaces and the groups are
completions of them [1]. That the extension is a homomorphism is an
easy consequence of the definition of the extension.

2. LEMMA. Let S' = {{p, f(p), e): p e H) U °° x A x e. If f is

neither one-to-one nor constant then the only automorphism of $' is
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the identity. Otherwise, a: Sr—+Sf is an automorphism iff a(p, f(p), e) —
(λp, f(Xp)f e), α{co? a, e) = (oo,λ<χ, e) where FXF~ι is open and conti-
nuous or F is constant.

Proof. If a: S' —>S' is an automorphism the discussion above shows
that a(p, f(p), e) = {Xp, f(Xp), e) and α ( > , α, e) = (°o, λα, β). If / is
constant then A = {e}; S' is isomorphic to H*; and multiplication by
any λ is an automorphism.

Suppose / is not constant. Consider the map λ: F(R) —* F(R) given
by X(F(x)) = F(Xx). If F is not one-to-one then the kernel of F in
R is cyclic and X:R-+R must preserve this kernel. This implies λ
is an integer. Since λ"1 must also be an integer, we have λ = 1.

If F is one-to-one then λ is an automorphism of the abstract
group F(R). To be an automorphism of F(R) with the induced topology
from A, X( = FxF~ι) must be open and continuous. The remark im-
mediately preceding this lemma guarantees that λ can be extended
to A when it is open and continuous.

Let ΛF — {Xe Λ: FXF~ι is open and continuous}.

When G Φ {e} we have a: S' x H(S) -> S' x H(S) where H(S) is
isomorphic to G and M(S) = oo x A x G. Since a(H(S)) = H(S),
α(0, /(0), flr) = (0, /(0), f(^)) for some automorphism ζ:G-+G. Hence,
the only possibility for a(oo9 /(0), #) = (oo, α, /̂ ) is when α = /(0).
a restricted to M(S) must therefore have the form a(cofa, g) =
(oo? λα, τ(α)f(^)) with Xe Λ, ξ as above and τ: A —* #((?) (center of G), a
homomorphism. τ must be continuous since τ = πGo<χ°i where πG is
the projection onto G, and i is the map A—^^xAxG given by
i(μ) = (oo, α, e). Similarly τ must be a homomorphism. Since elements
in oo x A x β commute with elements of oo x /(0) x G, τ maps A
into Z(G).

3* THEOREM. Lei AS 6e as in Definition 1. a: S-+S is an auto-
morphism iff a(x, a, g) = (λa?, Xa, τ(a)ξ(g)) where Xe AF\τ\ A —>Z(G) is
a homomorphism and ζ: G —> G is a^ automorphism.

Proof. The above discussion establishes the only if part. Let
λ, τ, £ be given as described in the theorem, ά: H* x A x G—+H* x
A x G can be defined by ά(x, α, g) = (λx, λα, r(α)ί(g)). It is immediate
that α is an abstract automorphism. Since H* x A x G is compact,
we need only that a is continuous. Let U x F x TF be a basis open
set. ar\U x V x W) = X^U x λ-1^ x Γ'iτ^Vy^Γ'iW). Since λ
and ξ are continuous, λ"1?/, λ - 1 F and £-1(W) are open. Since G is a
topological group, for any set X, Xξ^W) is open. Hence ά~~ι(Ux Vx W)
is open. Let a = ά\s.
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III* Automorphisms on semigroups of the form of T+ Recall
T = {([p], f(p), gGίP]): peH,geG}U ([r] x Ax G)/κ. It is easier to
keep track of the situation by considering cases determined by r, G,
and K.

Case (a). Let r < co and G = {e}. Then K = {([r], /(0), β)}.

4, LEMMA. Let T be given by Case (a). The only automorphism
on T is the identity.

Proof. Let a be an automorphism of T.

Suppose p < r. a([p], f(p), e) = ([q], f(q), e) for some q < r since
a(M(T)) = M(Γ). First, let us take the case where p = r/w for some
integer n. lί p < q then there exists pr < p such that tf([p'], f(p'), e)~
([P], f(P), e) and a{[np%f(np'\ e) = ([np], f(np), e) = ([r], /(r), e) G M(Γ).
But npr < r since np ~ r and p' < 9̂. This means a([npr], f(np'), e) g
M(T). We have a contradiction; so p ^ g. If we assume p > g, a
similar contradiction arises from nq < r. So, if p < r and p = r/n
then α([p], /(p), β) = ([p], f(p), e).

For p < r, if p ^ r/w then there exists a sequence, possibly finite,
of integers {wj such that p = X r/?v α is continuous so, again,

= l ί m «([P], fiP), e)

For p > r, p — nr + p' where p' < r. We have:

= (M, /(r), e

So α is the identity map.

Case (b). Let r = °o, Gp = GL for all p and ϋΓ = {(co, /(0), e)}.

In this case, ϊ7 is of the form of S where G =

Case (c). _Let r < <*,, G[p] = G[r] for all p and iΓ = {([r], /(0), e)}.
Let G/G[r] = G.

5. THEOREM. Let T be as in Case (c). a: T ~+T is an automor-
phism iff a(x9 α, g) = (a?, α, τ(α)f (gf)) where τ: A —> Z(G) is α homomor-
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phism and ξ: G —»G is an automorphism.

Proof. From Lemma 4 we have X = 1 and the precise arguments
in the proof of Theorem 3 concerning τ and ξ hold here.

Case (d). Let r ^ oo, G [p] Φ Gίql for [p] =*= [q] and # = {([r], /(0), e)}.

In this case, the description becomes more complicated but is in
fact, no more difficult to prove. The previous cases allowed τ: A—> Z{G)
to be defined in M(T) and then used in T\M(T). Here, since G =
G/Giv] ^ G/Gi*] for [p] Φ [r], it is not possible to start by taking r
defined in M(T) to be any homomorphism in Horn (A, Z(G)). Rather,
we start with a homomorphism h: H—> T\M(T) which must also deter-
mine a homomorphism f(H) —> Z(G). The latter homomorphism can
then be extended to define τ. Without loss of generality, we may
assume Gm = {e}.

6. THEOREM. Let T be as described for Case (d). Let ξ: G-^G
be an automorphism. If r < oo, let ξ(G[p]) = G [p] for all pe H. If
r — oo, let there exist a λ e ΛF such that ξ(G[p]) = GLχp] for all p e H.

Let h: H—> T be a homomorphism such that h(p) = ([p], f{p), gG[p])
and

{h(p)([r),f(0), G [ r ])}S[r] x A x

represents the graph of a homomorphism f(H)
α: T7—> Γ i s αw automorphism iff'a{[p], f(p), #GΓί)]) = A(λp)(0,/(0), <

α^d α([r], α, flrG[r]) = ([r], λα, τ(a)ξ(g)GLrΊ) where τ: A-+ Z(G/G[rΊ) is a
homomorphism.

Proof. Let us assume r — oo. The proof for r < oo follows this
one replacing λ by 1 and p by \p\. Let a be given.

Define ξ: G—>G in the usual way by considering a\IIiT). It is still
the case that (p, f(p), Gp)-+(Xp, f(Xp), gGp). This follows directly
from the top level of the diagram in Theorem A. One can show that
ξ(GP) = Gλp by considering (p, f(p), Gv) written as (p, f(p), gGp) for
g 6 Gp. Xe ΛF since once again λ must be extended to an automorphism
of A in M(T) (see Theorem 3).

Define

h: # - T by k(p) = a(X~% /(λ-p), Gλ-ip) .

is the composition of three homomorphisms

H—> H-L+ T-^T where f(p) = (p,f(p), GP) .
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Define Xh(p) — h(Xp). Xh is also a homomorphism but not of the type
specified by the theorem.

Define τ: A—+ Z(G/G^), as was done in Theorem 3, by considering*

Note:

h(p)(°o, /(0), GJ) = α(oo, /(λ-^), GJ

= (~, f(P), 9GJ = (oc, f(p), τ(f(p))) .

So {^(p)(°°,/(0), Goo)} represents the graph of a homomorphism from
/ ( # ) - > ^ G / G J . We shall sometimes write r(α) as τ{a)Goo. We ob-
serve that {h(p)(oof /(0), Go.)} = {λ&(p)(oo, /(0), GJ}, so Λ, and Xh can
be made to determine the same r.

For the converse let f, and Λ, be given, f determines λ e ΛF. λfc
determines the graph of a homomorphism since h does. Define τ(f(p)) —
KUH^P)(°°, /(0), Goo)) where TΓ*, is the projection, r can be extended
in the usual way to A.

Define a: T-> T by

α(2>,/(2>), ^Gp) = Xh(p)(0,

α(°°, α, flfGJ = (oo, λα,

Showing α is an abstract homomorphism is straightforward. One can
prove a is continuous by writing T as the image of S and considering
open sets. This proof is omitted because it is uninteresting and re-
quires complicated notation.

Case (e). Let r = oo, Gp = Gq Φ G^ and K = {(oo, /(0), e)}.

This situation is a simple version of Case (d). Since Gp = Gλp for
all λ, we no longer have λ determined by ξ: G —> G. Any choice of
λ e ΛF will give an automorphism.

Case (f). Let KΦ {([r],/(0), e)} and_if^ [r] x A x G. Let f -
ί([p], /(P), flrGrs): p e H, g e GRJ [r]xAxG and let Γ = {([pi f(p), gG[p]}
U ([r] x A x G)IK. Let k: T-+T be the map which is the identity

on f\M{f) and the quotient map on M(f). Recall: if flr], a, g) e K
and ([r], a,g)eK then a — a iff g — g. When r < oo, if fc(ίr) is a
convergent net in T such that k(tr) ί M(T) and lim fc(ίr) e Λf(Γ), then
ty is a convergent net in f. Let τr^(lΓ) = {a e A: ([r], a, g) e K for
some # G G}. Let β be the abstract isomorphism β: πA(K) —> G given
by flr = /3(α) if ([r],a,g)eK.

7* LEMMA. Let T and T be as above. Let a: f —+T be charac-
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terized by (λ, τ, ξ) or by (λ, h, ζ) as given in 3, 5, 6. Let πA(K) and
β be as above. There exists an automorphism a: T —» T such that
ak = kά iff X\πAiK) is an automorphism and τ(a) = β{^a)ξ{β{a))~ι for
aeπA(K).

Proof. Suppose a induces an automorphism a such that ak = kά.
Consider ά\M{^ as an automorphism on the group M(f). This induces
a\M{T) on M(T) and for a\M{T) to be well defined and one-to-one we
must have ά(K) = K. For ([r], α, β(a)) e K we have <$([r], α, β(a)) =
([r],λα,τ(α)£(£(α)))eiΓ. Hence, λαeTΓ^JSΓ) and £(λα) = τ(a)ξ(β(a)).
Since α" 1 is also an automorphism λ - 1α e τuA(K) and λ is onto. /S(λα) =
τ(a)ξ(β(a)) implies τ(α) - βfaήξiβia))-1.

The proof of the converse is straightforward. It is convenient to
consider the continuity of a on T\M(T) and M(T) separately and then
consider a net converging to M{T).

8+ THEOREM. Let f, T and k be as in Lemma 7. a: T-+ T is
an automorphism iff there exists an automorphism a: f —> f such that
ak — kά.

Proof. Let a: T —> T be an automorphism. We consider two
cases: r < oo and r = ©o. Let r < co. We know from Theorems 5
and 6 that ά is determined by (£, &) or (£, r) . Constructing & is the
more general situation. An argument similar to that of Theorem 4
establishes that

ak{[p], f(p), GM) = k([p], f(p), gGίP]) .

Let G[o] = {e} and G = G/G[r].
Define ξ: G-+ G by ξ(g) = τrGαA:([0], 1, #). Clearly f is an automor-

phism.
Define h:H-+f by:

h(p) = A ^αfcίb], /(p), G[p]) when p < r

h(r) — lim

h(p) = (h{r)γh{q) when p — nr + ^, Q < r .

It is immediate that h is a homomorphism. Since #&([#>],/(:£>), G[p]) =
k(lP], f(P)y 9Gw)> we have also ak([r], a, G[r]) - ft([r], α, flrG[r]).

Define τ:A-+Z(G) by τ(a) = gG[r} such that α&([r], α, G[r]) =
Λ(M, α, gG[rΛ). τ is well-defined since if ([r], α, ?/) e ([r], α, ^)iiΓ then
(M, /(0), W"1) e iΓ and y = g. It is also immediate that τ is an ab-
stract homomorphism. τ(f(p)) = 7Γa(h(p)([r], /(0), e)) so τ is continuous
on f{H) and hence on A. Even if <$ is more efficiently given by (ξ, r), Λ
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can be defined and the above will show τ continuous.
Define α: f -> f by (£, fc) or (£, r).

ak([p], α, flfG[p]) - fc([pj, α, τ(α)f(flr)G[p]) = Aα([j>], α, gGw) .

So α/b = kά.
Now, let r = oo and G = G/G^. Define f as before. Either ξ

determines λ (as in 6); or, define λ by checking ak(p, f(p), Gp). If
/ is not one-to-one then, λ = 1 or A = {1}. If / is one-to-one then λ
is one-to-one on f(H) c A and can be extended to λ continuous on A.
Since or1 is also an automorphism the above process can be done for
λ"1 which means λ is open on A and hence λ e ΛF.

Define h: H-+T by fc(p) = k~ιak{X~ιp, f{X~ιv), Gλ-ip). h is a homo-
morphism since Λ is an isomorphism.

Define τ(f(p)) = TΓGWPH00* /(O), GOO)), r is continuous since A and
π-c are, and can be extended to A.

We define a: f — f by (λ, £, fe) or (λ, f, r). Again, αfc - kά.
So, for each case, <$, an automorphism of T inducing ά, can be

constructed.

IV Automorphism groups. This section describes the group
structure of the groups of automorphisms given in II and III. All groups
discussed here are discrete. Bowman [2] has described the topology
of these groups. Since in each case the group is described as a semi-
direct product of groups of homomorphisms; we give the definition
of semidirect product below.

Let A and B be two groups. Let g: A—* Jϊf{B), the group of
automorphisms of B, be a function such that:

(i) 9{a^{g{adb) =
or

(ϋ) g(a2)(g(a1)b) =

A x B is a group with the following multiplication: (α, b)(a, b) —
(aa, b(g(a)b)) when g is of type i; (α, δ)(α, 5) — (aa, (g(a)b)b) when # is
of type ii. The semidirect product will be denoted A xgB.

Recall, the operation in s/iβ) is composition of functions; in
Horn (A, Z(G)), multiplication of functions; in ΛF, multiplication of real
numbers.

We begin with jy(S) where S is as in Definition 1. We have
from Theorem 3 the correspondence a*-+(\ τ, f) for <xes$f(S). It is
immediate that this correspondence is one-to-one.

9* THEOREM. Let S be as in Definition 1. The automorphism
group of S is isomorphic to

j^(G)xg2(ΛFx 9l Horn (A, Z(G)))
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where

Γ o ^ (of type ii)

&(£)(λ, T) = (λ, f o τ) (of type i) .

Proof. Showing that the correspondence given by Theorem 3 is
a homomorphism is only a matter of computing a © a where a, a are
in S^f(S). The multiplication given by gx and #2 is as follows:

(I, (λ, τ))(|, λ, f)) = (I o I, (λλ, (τ o χ)(ξ o ?))) .

Proceeding to the various forms of T discussed in §111, we have,
in Case (a), jsf(T) = {lτ}. In Case (b), T is really of the form of S
so Theorem 9 applies. For Case (c) we have the following.

10* T H E O R E M . Let The as in Theorem 5. J^f(T) is isomorphic

to Ssf(G) x g Horn (A, Z{G)) where g(ξ)(τ) = ξoz (of type i).

Proof. In this case T is almost like S. X is forced to be 1. g
here corresponds to g2 in Theorem 9. (ξ, r)(f, τ) — (£°f, τ(£of)).

For ϊ 7 described by Case (d), we construct a group isomorphic to
the desired subgroup of Horn (//, T). Let H= {heUom(H, T): h is
as in Theorem 6}. if is a group under the following operation*. Let
hi(p) = ([p], f(p), giGίP]). Define h,*h2 by h^h2(p) = ([p], f(p), g^G^).
This group can be mapped isomorphically into Y[P&H (G/GM) and h is
given by h(p) = ([p], f(p), h(p)). Let έ%f be the image of H in
UP en (G/Gίv]). 3ίf is an abelian group under coordinate multiplication.

II* THEOREM. Let T and £ίf he as above. Let ΞF be the sub-
group of s^(G) satisfying Theorem 6, (ξ(GM — Gίλp^}. Consider ξeΞF

inducing a map called ξ: GIG[Pl'~>G/Gιλp-1 Szf(T) is isomorphic to ΞFx g3ίf
where g(ξ)h = ξohoX*1 (of type i).

Proof. There are several things to check in this theorem. Again
we will consider r = oo as in the proof of Theorem 6. ξhX~lm. H—> G/Gp

since f is the induced map G/Gλ-ιp —> G/Gp.
From Theorem 6, we note if a is given

h(p) - a(X~% /(λ-p), Gp)

and

If A is given a{p, f(p), Gp) = Xh(p) = h{Xp) and τ(f(p)) = πUHXp)^, /(0), GL)).
From this we see the correspondence between α and (ξ, h) is one-to-one
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and that the construction of τ does not depend on which representation
is used.

The multiplication in ΞF x g3ίf is

(ίi, £i)(£», k) = (£i°£a, W&^VλΓ 1 )) .

We note that h^ξ^K1) determines τ where τ — (τ1o\i)(ξ1oτ2) which
is exactly the product we expect to see in a1oa2 From here it is
immediate that the correspondence is an isomorphism.

In Case (e) we replace ΞF in Theorem 11 by ΞQ x AF where
ξeΞQ if ζ(GJ) = Goo. The automorphism group of T is isomorphic to
(Ξo x ΛF) x g§ίf where g((ζ, λ))^ = ξhX~ι and g is of type i.

In Case (f) the isomorphism group of T is a subgroup of f

V* Examples* The following semigroups can be found in Chapter
D of [3].

12* Example* Let Z be the integers under addition. Let A =
G = ά/Z. Let f:H-*A be given by f(p) = p + Z. Then

S = {(p, p + ̂ , g + Z): p e H, q e R} U oo x /2/Z x R/Z .

j^f(S) is given by 9. Since / is not one-to-one ΛF = {1}. j^f(RjZ) =
{-1,1} and Horn (R/Z, R/Z) = Z.

J^f(S) = {— 1,1} x g,Z and the multiplication is given by (x, k)(y, n) —
(xy, k + xn).

13* Example* Let S be as in 12. Let T be the homomorphic
image of S obtained by letting r = 1 and not changing A or G.
is given by 10 and

14* Example* Let S be as in 12. Let T be the homomorphic
image of S obtained by letting Gp - Z for p < oo and GL = Λ/Z. Γ
is described in §11, Case (e). j*f(T) is given by Theorem 11 and the
comment following it. This is a particularly simple example where
ΛP = {1} and Ξo = Ξ = Jϊf(G). £έf = Horn {H, R/Z) = R. J T must
represent homomorphisms h: H~* T. It does in this way: hr(p) =
(p, p + Z,rp + Z).

S$f{T) = {-1,1} x gR where multiplication is given by (x, r)(y, s) =
{xy, r + xs).

15* Example* Let S be as in 12. Let T be the homomorphic
image obtained from S by letting K ={(<*>, p + Z, p + Z): p e R}.
The automorphisms of T are given by 7 and 8. They are a subgroup
of
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We examine s^{S) — { — 1,1} xθ2Z to see which automorphisms
satisfy 7. Let (x, k) e jzf(S). πA{K) = R/Z and β(p + Z) = p + Z.
ά is the homomorphism called τ in 7 and τ(α) = ^(λα^βία))"1. We
have k(p + Z) = kp + Z = p + Z - xp + Z. Jί x = l,kp + Z = Z;
if x = - 1 , Λp + Z = 2p + Z. J^(Γ) = {(1, 0), ( - 1 , 2)} considered as
a subgroup of j ^ ( S ) .
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DISTRIBUTING TENSOR PRODUCT OVER
DIRECT PRODUCT

K. R. GOODEARL

This paper is an investigation of conditions on a module
A under which the natural map

A®{ΠC*)—

is an injection. The investigation leads to a theorem that
a commutative von Neumann regular ring is self-injective if
and only if the natural map

(ΠFa) <g> (ΠGβ) —> Π(Fa <g> Gβ)

is an injection for all collections {Fa} and {Gβ} of free modules.
An example is constructed of a commutative ring R for which
the natural map

R[ls]]®R[[t\]->R[[s,t]}

is not an injection.

R denotes a ring with unit, and all j£-modules are unital. All
tensor products are taken over R.

We state for reference the following theorem of H. Lenzing [2,
Satz 1 and Satz 2]:

THEOREM L (a) A right R-module A is finitely generated if
and only if for any collection {Ca} of left R-modules, the natural
map A(x) ΠCa-+ Π(A® Ca) is surjective.

(b) A right R-module A is finitely presented if and only if for
any collection {Ca} of left R-modules, the natural map A® ΠCa—+
Π(A (x) Ca) is an isomorphism.

THEOREM 1. For any right R-module A, the following conditions
are equivalent:

(a) If {Ca} is any collection of flat left R-modules, then the
natural map A® ΠCa-+ Π(A® Ca) is an injection.

(b) There is a set X of cardinality at least card (R) such that
the natural map A (x) Rx —* Ax is an injection.

(c) If B is any finitely generated submodule of A, then the
inclusion B~+ A factors through a finitely presented module.

Note that condition (c) always holds when R is right noetherian,
for then all finitely generated submodules of A are finitely presented.

Proof, (b) => (c): If R is finite, then it is right noetherian and

107



108 K. R. GOODEARL

(c) holds. Thus we may assume that R is infinite.
Let /: F —> A be an epimorphism with FR free, and set K — kerf.

There is a finitely generated submodule G of F such that fG = B.
We have a commutative diagram with exact rows as follows

(Diagram I):

K x) RΛ A(g)Rx

- ^ Aλ

-^ o

DIAGRAM I

Since G is finitely generated, Gx ^ φ'{F®Rx). A short diagram
chase (using the injectivity of φ") shows that (G Π K)x ^ φ{K®Rx).

card (G) ^ card (R) because R is infinite, hence card (G Π K) ^
card (X). Thus there is a surjection a^ ga of X onto G Π K. The
element # = {ga} in (G Π iΓ)x must be the image under φ of some
element ht (x) rL + + hn (x) rw in K® Rx. It follows easily that
G f) K is contained in the submodule H of K generated by hl9 , hn.
Note that G Γ) H = G Γ) K.

G + H is contained in some finitely generated free submodule FQ

of F. The map / induces a monomorphism of G/(G Π H) into A, and
this monomorphism factors through the finitely presented module
FJH. Since fG = B, the inclusion B —• A also factors through Fo/H.

(c)=>(a): Consider any x belonging to the kernel of the natural
map φ: A (x) ΠCa -+ Π(A (x) Ca). There is a finitely generated submodule

DIAGRAM II
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B of A such that x is in the image of the map B (x) ΠCa —> A (x) ΠCa.
By (c), the inclusion B—>A factors through some finitely presented
module E.

We have a commutative diagram as follows (Diagram II):
φf is an isomorphism by Theorem L, and f is a monomorphism

because all the Ca's are flat. Another diagram chase now shows that
x = 0.

COROLLARY. Suppose that R is {von Neumann) regular. For
any right R-module A, the following conditions are equivalent:

(a) If {Ca} is any collection of left R-modules, then the natural
map A (x) ΠCa —* Π(A (x) Ca) is an injection.

(b) There is a set X of cardinality at least card (R) such that
the natural map A (x) Rx —* Ax is ίnjective.

(c) All finitely generated submodules of A are protective.

Proof, (b) ==> (c): If B is a finitely generated submodule of A,
then Theorem 1 says that the inclusion B —> A factors through a
finitely presented module E. E is flat (because R is regular) and
hence is protective. Thus B can be embedded in a projective module.
Since R is semihereditary, B must be projective.

(c) => (a): All the CJs are flat (since R is regular), and all finitely
generated submodules of A are finitely presented, so this follows
directly from Theorem 1.

THEOREM 2. Assume that R is a commutative regular ring. Then
the following conditions are equivalent:

(a) If {Fa} and {Gβ} are any collections of free R-modules, then
the natural map (ΠFa) (x) (ΠGβ) —> Π(Fa (x) Gβ) is an injection.

(b) There is a set X of cardinality at least card (R) such that
the natural map Rx (x) Rx —> RXxX is an injection.

(c) R is injective as a module over itself.

Proof, (b) => (c): By [1, Theorem 2.1], it suffices to show that
any finitely generated nonsingular J2-module B is projective.

[1, Lemma 2.2] says that we can embed B in a finite direct sum
Qι Θ Θ Q«ι where each Qι is a copy of the maximal quotient ring
Q of R. Then B can be embedded in a direct sum Bx 0 0 Bn,
where Bi is a finitely generated i?-submodule of Qi9 Since R is
semihereditary, B will be projective provided each Bi is projective.
Thus without loss of generality we may assume that B is an R-
submodule of Q.

Let &!, •••, bn generate B. Since R is an essential submodule of
Q, there is an essential ideal I of R such that bj ^ R for all i.
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Since R is commutative, the multiplications by the elements of /
induce homomorphisms of B into R. Together, these homomorphisms
induce a homomorphism /: 2? —• R1. Q is a nonsingular iϋ-module be-
cause it has the nonsingular 22-module R as an essential submodule.
Thus no nonzero element of B is annihilated by 7; i.e., f:B—+Rτ

is an injection. Since card (I) ^ card (R) ^ card (X), there must
also be an embedding of B into Rx.

Since the natural map Rx ® Rx —> (Rx)x is injective by (b), the
corollary to Theorem 1 says that all finitely generated submodules
of Rx are protective. Thus B must be protective,

(c)=>(a): By [1, Theorem 2.1], all finitely generated nonsingular
iϋ-modules are protective. Since RR is nonsingular, ΠFa is non-
singular; thus all finitely generated submodules of ΠFa are protective.
By the corollary to Theorem 1, the natural map (ΠFa) (x) (ΠGβ) —>
Πβ[(ΠFa) 0 Gβ] is an injection. Likewise, each of the maps (ΠFa) (g)Gβ~-+
Πa(Fa (g) Gβ) is injective. Thus the map (ΠFa) (x) (ΠGβ) — Π(Fa (g) Gβ)
must be injective.

In particular, Theorem 2 asserts that if R is a countable com-
mutative regular ring which is not self-injective, then the natural
map Rx ®RX —>RXxX is not an injection for any infinite set X. For
example, let Fu F2, be a countable sequence of copies of some
countable field F; let R be the subalgebra of ΠFn generated by 1
and 0.F*. R is obviously a countable commutative regular ring.
Since ΠFn is a proper essential extension of RR, RB is not injective.

If N is the set of natural numbers, then the natural map
RN (g) RN —> RNxN is not an injection. Thus the tensor product of
two one-variable power series rings, J2[[s]] (g) i?[[ί]], is not embedded
in R[[s, t]] by the natural map.

REFERENCES

1. V. C. Cateforis, On regular self-injective rings, Pacific J. Math., 30 (1969), 39-45.

2. H. Lenzing, Endlich prdsentierbare Moduln, Arch, der Math., 20 (1969), 262-266.

Received July 28, 1971.

UNIVERSITY OF WASHINGTON

Author's current address: UNIVERSITY OF UTAH



PACIFIC JOURNAL OF MATHEMATICS
Vol. 43, No. 1, 1972

THE NON-CONJUGACY OF CERTAIN ALGEBRAS
OF OPERATORS

JϋLIEN HENNEFELD

Let E be a Banach space and B{E) be the space of all
bounded linear operators on E. It was shown by Schatten,
that if E is a conjugate space then B(E) is isometrically
isomorphic to a conjugate space. The fact that for an ar-
bitrary Banach space, the unit ball of B(E) has extreme
points suggests that B(E) might always be a conjugate space.
In this paper it is proved that if E has an unconditional basis
and is not isomorphic to a conjugate space, then B(E) is not
isomorphic to a conjugate space. An even stronger result is
proved.

Furthermore, it is shown that if E has an unconditional
basis or a complemented subspace with an unconditional basis,
then the space of all compact linear operators on E is not
isomorphic to a conjugate space.

The result of Schatten is proved in [3; p. 4]. It is a theorem
of Kakutani, that the identity of a Banach algebra is an extreme
point of the unit ball. It follows that the invertible elements of
norm one, whose inverses also have norm one, are extreme points of
the unit ball. Hence, one cannot readily invoke the Krein Millman
Theorem to prove non-conjugacy of B(E). For X and E Banach spaces
let B(X, E) denote the space of all bounded linear operators from X
into E.

THEOREM 2.1. (Bessaga-Peiczynski). A conjugate space contains
no complemented subspace isomorphic to cQ.

Proof. See [1; p. 250].

THEOREM 2.2. Let X, E be Banach spaces.
(1) If E has an unconditional basis {ej and E is not isomorphic to

a conjugate space, then B(X, E) is not isomorphic to a conjugate space.
(2) If E has a complemented subspace which is not isomorphic

to a conjugate space and which has an unconditional basis, then
B(X, E) is not isomorphic to a conjugate space.

Proof. (1) Since E is not isomorphic to a conjugate space, the
basis {βi} is not boundedly complete [2; Cor. 12, p. 37]. Since {e{} is
also unconditional, E cannot be weakly sequentially complete and
hence has a subspace isomorphic to c0 by [2; Thm. 5, p. 39 and Thm.

in
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6, p. 71]. Then since E is separable this subspace isomorphic to c0

must be complemented [2; p. 92].
Let Q be a projection from E onto MQ, the subspace of E iso-

morphic to cQ. Fix xoeX. Let R be a projection from X to [#0].
Define ^ : £(X, £7) — B{X, E) by ^T= QTR for each Γe B{X% E).
Then &*(&*T) = QQTRR = QTR and hence ^ is a bounded projec-
tion. The map which sends ^T onto ^Tx, for each TeB{X,E)
is a one-to-one, bounded map from the image of & onto Mo. Hence
B(X, E) has a complemented subspace isomorphic to c0, and by Theorem
2.1 JB(X, E) cannot be isomorphic to a conjugate space.

(2) E still has a complemented subspace isomorphic to cQ.

THEOREM 2.3. Let E have an unconditional basis {βj. Then
C^(E), the space of compact linear operators from E to E, is not
isomorphic to a conjugate space.

Proof. The map which sends a compact operator A onto the
operator whose matrix with respect to {ej consists of the diagonal
of the matrix of A, is a bounded projection from C^{E) onto a sub-
space isomorphic to c0 [4; p. 493]. Then apply Theorem 2.1.

COROLLARY 2.3. Let E have a complemented subspace M with
an unconditional basis. Then r^{E) is not isomorphic to a conjugate
space.

Proof. Let Q: E—>M be a bounded projection. Define
rέ?{E) by ^ A - QAQ for each Ae^(E). Then & is a projection
onto a subspace isomorphic to r^(M). Since ^(M) has a comple-
mented subspace isomorphic to c0 so does

REMARK. It is an open question whether a separable Banach
space has a complemented subspace with an unconditional basis. It
is a reasonable conjecture that for any separable Banach space E, C^(E)
is not isomorphic to a conjugate space.

The author wishes to thank the referee of a previous paper for
calling his attention to the Bessaga-Pelczynski Theorem.
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THE NONSTANDARD HULLS OF A UNIFORM SPACE

C. WARD HENSON

Let (X, HO be a uniform space in some set theoretical struc-
ture ^S and let *X be the set corresponding to X in an
enlargement * ^ ^ of ^ . In this paper a set of ^-finite
elements of *X is defined and this set is used to define a non-
standard hull of (X, ^ O The main result is that, with some
specific exceptions depending on the existence of measurable
cardinal numbers, this nonstandard hull is the same as the
smallest of the nonstandard hulls defined by Luxemburg.
This result is used in giving a characterization of subsets of
X on which every uniformly continuous, real valued function
is bounded. Also, two examples are given to illustrate the
possible structure of the nonstandard hulls.

The nonstandard hulls defined by Luxemburg [4] are obtained
from sets F of ''finite" elements of *X which may be written in the
form

F = {P\P e *X and *f(p) is finite for all / in ^"}

where j^~ is a set of uniformly continuous, real valued functions on
(X, *&). The concept of finiteness introduced in this paper is entirely
different. An element p of *Xis ^-finite if, for each A in ^/ there
is a sequence qθ9 , qn in *X which satisfies the conditions (i) q0 = p,
(ϋ) qn — *χ for some x in X, and (iii) for each j = 0, , n — 1 the
pairs (qh qj+ι) and (q3 +1, q^) are both in *A.

Our main result is that the set of ^-finite elements of *X is
equal to the set

{p\pe*X and *f(p) is finite for every uniformly continuous,

real valued function / on (X,

if and only if it is impossible to partition X into a measurable cardinal
number of subsets {Xα|αe/} which are "uniformly open" in the sense
that there is an A in ^ such that

xeXa implies {y \ (y, x)eA}(Z Xa

for every a in I. In particular, these two sets of finite elements of
*X are equal whenever the number of topologically connected com-
ponents of (X, ^/) is smaller than every measurable cardinal number.

This result is used in giving a characterization of those subsets
Y of X such that every uniformly continuous, real valued function
on (X, ^ ) is bounded on Y, generalizing a Theorem of Atsuji [2].

115
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Also, two examples are presented which illustrate the possible struc-
ture of the nonstandard hulls defined using the set of ^-finite ele-
ments of *X. These examples are based on ideas due to L. C. Moore,
to whom the author is grateful for many helpful conversations on the
subject of this paper.

1* Throughout this paper ^ denotes a set theoretical structure
and * ^ denotes an enlargement of ^ C (The image of an element
x of ^f under the embedding into *^C is denoted by *#.) Whether
^ and *^/έ are taken to be structures for type theory (as in [4]
and [6]) or to be structures for the ε-language of ordinary set theory
(as in [5] and [7]) is a matter of taste. Most references in this paper
will be to [4], although the concepts and results in [4] can easily be
set in the frameworks of nonstandard analysis described in [5] and
[7].

As is usual, it is assumed here that the set N of positive integers
and the set R of real number are elements of ^/t, and that the
embedding x i • *x is the identity on R (and thus also on N.) The
extensions to *i? of the operations + and on R, as well as of the
ordering < on R, will be denoted by the same symbols. In general
the embedding x i • *x is not the identity on sets in ̂ £. Given an
element A of ^ f it is convenient to introduce the notation *[A] for
the set of standard elements of *A; that is,

*[A] = {*α|αeA}.

In dealing with uniform spaces there are certain useful operations
on subsets of a cartesian product C x C. If A and B are subsets of
C x C, recall that AoB and A"1 are defined by

AoB = {(a?, z) I for some y, (x, y) e A and (y, z) e B}

A-ι = {(x,y)\(y,x)eA}.

The set An is defined recursively for n 2> 1 by:

A1 = A, An+1 = AnoA .

Also, given an element x of C, the set A(x) is defined by

Λ(x) = {y\(y,x)eA} .

Note that if A, B and C are elements of ^£ then *A and *J3 are
subsets of *C x *C (= *(C x C).) Moreover, the following equalities
hold:

\AoB) = (*AM*B)

•(A-1) = (*AΓ
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*(An) = (*A)%

*(A(x)) = (*A)(*x)

(where xeC and n^l.)
Throughout this paper (X, ^/) denotes a uniform space which is

an element of ^tf?. The set of all uniformly continuous, real valued
functions on (X, ^ ) is denoted by C(X, ^ ) . It is assumed that the
reader is familiar with certain parts of the nonstandard theory of
uniform spaces, as presented in [4] or [5]. In particular, recall that
the monad of the filter <%f (that is, the intersection of the family
*[^/] of subsets of *X x *X) is an equivalence relation on *X. The
equivalence class of p is denoted by μ(p), for each p in *X.

The collection * [^] generates a filter on *X x *X which will be

denoted by ^/. A simple, direct argument can be used to show that

^/ is a uniform structure on *X and that the mapping x ι > *x is
a uniform space embedding of (X, <%S) into (*X, <%s). Alternately, let
έ% be any set of bounded semimetrics on X which defines ^/. (p(x, y)
is a semimetric on X if p is nonnegative, symmetric, satisfies the
triangle inequality and p(x, x) — 0 for any x in X.) For each p in
& a function p may be defined on * I x *X by

p(p, q) = st (*p(p, q)) .

(Here "st" is the standard part operation on finite elements of *iϋ.)
Then p is a semimetric on *X. For each p e έ% and δ > 0 in R, let

Then the collection {A(/O, δ)\pe &, δ > 0} generates ^ so that the

collection {*A(ρ9 δ)\pe&, δ > 0} generates ^ β But

g) ^ S}

and

Therefore ^ is the uniformity on *X defined by the set
of semimetrics on *X.

Let Xo = {^(2>)|pe *X} and let ^ 0 be the quotient uniformity on
Xo induced by ΉS. Denote the quotient mapping from (*X, ^/) onto
(Xo, ^o) by 7Γ. The previous remarks show that (Xo, ^ 0 ) is the non-
standard hull for (X, ^ ) constructed in [4] using any set & of
bounded semimetrics which defines <?/. (See also p. 56 of [5], where
(Xo, ^Ό) is constructed and called TV.)

The definition of ^ makes it clear that μ(p) = μ(q) if and only

if p and q have exactly the same neighborhoods in the
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on *X Thus π is not only uniformly continuous, but also ττ(*A)
(which equals {(μ(p), μ(q))\(p, q) e *A} by definition) is in ^ whenever
A is in ^/. Therefore π is an open mapping. Moreover, any net in
*X which is mapped by π onto a Cauchy net (convergent net) in (Xo, ^ 0 )
is a Cauchy net (convergent net) in (*X, ^ ) . If the ^-topology on
X is Hausdorff, then the map taking x to μ(x) is a uniform space
embedding of (X, as) into (Xo, %

y

Q). (Otherwise it simply identifies
those pairs of points which have exactly the same neighborhoods in
the ^-topology.)

Constructing "nonstandard hulls" of (X, Ήf) in general involves
two distinct steps: (i) the identification of a set F of "finite" elements
of *X, and (ii) the construction of a uniformity on F (and then on
the set {μ{p)\psF} by a quotient operation.) There are many dif-
ferent useful concepts of "finiteness" for elements of *X, each one
motivated by considerations depending on the kind of mathematical
structure which X is assumed to carry. However there seems to be
only one natural way to carry out step (ii)—by putting on F the
uniformity obtained by restriction from ^Λ In that case, the non-
standard hull constructed using F is just the subspace π(F) of

For example, let Sf be any set of semimetrics which defines <?/.
In defining a nonstandard hull using St, Luxemburg [4] takes F to
be the set

{p I *P(P, *α) is finite if x e X and p e £f) .

The uniformity put on F is the one defined by a set {pf\p^S^} of
semimetrics on F, where

P'(P, q) = st (*p(p, q))

for each p in S? and p, q in F. If & is the set {min (p, ϊ)\pe S^}9

then έ% also defines ^ . Moreover, the uniformity defined on F by
the set {p\pz&} is easily seen to be the same as the one defined on
F by {p'\p £ S^}. That is, this uniformity is just the restriction of
& to F.

In this paper an entirely different concept of "finiteness" for ele-
ments of *X is introduced. It is based on the intuitive idea that a
point is "finitely far away" from a set if there is a finite chain of
small steps from the point to (some element of) the set, no matter
how small the steps are required to be. Thus an element of *X is
taken to be finite if it is "finitely far away" from *[X], relative to
the uniform space (*X, ^ ) . (See Definition 1.2)

DEFINITION 1.1. Let (F, T) be any uniform space.
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( i ) If A e T* and x,yeX, then an A-chain from x to y is a
finite sequence x0, , xn in Y which satisfies: x0 = x, xn — y and, for
each i = 0, , n — 1, (xi9 xi+1) e A Π A""1. (The number of steps for
such an A-chain is n.)

(ii) If x,ye Y, then x=Ay if and only if there is an A-chain
from x to y.

(iii) If x, y e Y, then x =Γy if and only if x =Ay for every A
in ^ :

If A is in 5^ then A Π A~ι is symmetric and contains the diagonal
of Γ x Γ, so that = A is an equivalence relation on Y. Therefore == 7,,
is also an equivalence relation on Y. The latter relation can be cal-
culated from any collection & which generates f as a filter on
Γ x F, in the sense that

x = ̂  y < > x = A y for every A e &

Also, observe that if A is in y\ then the equivalence classes under
= ^ are both open and closed in the ^-topology on Y.

Definition 1.1 will be applied to both of the uniform spaces

{X, <%f) and (*X, &). Since * [ ^ ] generates ^ as a filter on *X x *X,

it follows that for each p, q e*X

p =~ q < „ p =*Aq for every A e ^ .

Note that for each Ae'zif,*( = A) is also an equivalence relation
on *X, and in general it will not be the same relation as =*A. Indeed,
p and q are in the same *( = A) equivalence class if there is a *-finite
sequence (hence an internal element of *^?f) q0, * ,gω in *X which
satisfies: qQ = p, qω = q and (qi9 qi+1) e *(A Π A"1) for every i = 0, ,
ω — 1. Such a *-finite sequence may exist without any such finite
sequence existing: in that case p =*Aq would be false.

DEFINITION 1.2. An element p of *X is '%f-finite if, for each
A e ^ , there exists an a; in I which satisfies p =*A *&.

The set of ^-finite elements of *X will be denoted by &n^(*X).

It is clear that if p is ^-finite, then every element of μ(p) is
also ^-finite. In the language of [4], this says that fin^ (*X) is
/^-saturated. Also the condition p e fin,y (*X) is equivalent to a con-
dition on the ultrafilter {Y\YdX and pe*Y} determined by p.
Namely, p is ^-finite if and only if for each A e ^ there exist x e X
and n^l such that p e (*A)%(*#) = *(A%(x)). Therefore, if p is ^ «
finite then each element of the monad of the ultrafilter { 7 | 7 c l
and p 6 * Y) is also ^-finite. In the language of [4] this says that
fin^ {*X) is ^-saturated.
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If p is any semimetric on X which defines a weaker uniformity
than ^ , and ae Xy then the function f(x) = p(x, a) is ^-uniformly
continuous (since \p(x, a) — p(y, a)\ <ί p(x, y).) Thus the sets F of
finite elements of *X considered in [4] are all of the form

F = {p\*f(p) is finite for every / e / }

where j^~ is a set of ^-uniformly continuous, real valued functions
on X. The next result shows that each of these sets has fin^ (*X)
as a subset.

THEOREM 1.3. If feC(X,^) and pefm^X) then *f(p) is
finite.

Proof. Since / is uniformly continuous, there exists i in ^
which satisfies

(xfV)eA >\f(x)-f(y)\^l.

Since p is ^-finite, there is a *A-chain qQ, , qn from p to *#, for
some x in X. Therefore

I *ΛP) - */(*) I ̂  ^ I */(?*) - */(? ί+ i )

It follows that *f(p) must be finite.

THEOREM 1.4. fin^ (*X) is closed in the "^-topology on *X, and
pns* (*X) c fin^(*X).

Proof. For each A in ^ the set

^ *8 for some ίceX}

is a disjoint union of = M equivalence classes, each of which is open
and closed in the ^-topology on *X. It follows that this set is, it-
self, open and closed in that topology. Finally, firx^ (*X) is an inter-
section of such sets, so that it must be a closed set.

That pns^ (*X) is a subset of fin^ (*X) follows immediately, using
the obvious fact that *[X] is a subset of fin^ (*X) and using Theorem
3.15.2 of [4]. (This Theorem implies that pns?/ (*X) is the closure
of *[X] in the ^-topology on *X. The extra assumptions on *^/fί
made in [4] are not needed for this result. See also Theorem 7.5.3
of [5].)

Let it be an uncountable cardinal number which is strictly larger
than the cardinality of some filter basis for ^/. It is well known that
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there must be a set & of bounded semimetrics which defines ^ and
which has cardinality less than fc. Theorem 3.15.1 of [4] implies that
if *^/f is /r-saturated, then (Xθ9 %SQ) is a complete uniform space.
(Theorem 3.15.1 has the added assumption that *^/f is an ultrapower
of κy/ίf, but this is not necessary. It may be removed by noting that
the completeness of (Xo, %SQ) can be proved by considering only Cauchy
nets over index sets of cardinality less than /c, and then using Theo-
rem 1.8.3.)

Therefore when * ̂ f/ is /c-saturated the uniform space (*X, ^/)
is also complete. By Theorem 1.4 this implies that the restriction of
^/ to fin^ (*X) defines a complete uniform space. It should also be
noted that each set of the form {p j *f(p) is finite if / e ^~} is closed
in the ^-topology when j ^ ~ is a subset of C(X, *%f). Therefore each
of the nonstandard hulls of [4] is a complete uniform space when *^f
is /c-saturated, even when jβr may have cardinality Ξ> tc.

2* This section is concerned with the relationship between
fin_^ (*X) and the set

Fo = {p\*f(p) is finite for all fe C(X, %f)} .

As argued in §1, π(F0) is the smallest of the nonstandard hulls of
(X, %f) constructed in [4]. By Theorem 1.3, fin,/ (*X) is a subset of
Fo. In fact, the two sets are equal, except in certain circumstances
depending on the existence of measurable cardinal numbers. (Corollary
2.5) The principal tool in proving this is the following result.

LEMMA 2.1. If A is in ^ and x=Λy for all %,yeX, then
there is a semimetric p on X which satisfies

( i ) the uniformity defined by p contains A and is weaker than
%S, and

(ii) for each p,qe*X,

p = *Λq < > *p(p, q) is finite .

Proof. The proof uses a modification of a construction given in
[3]. Let A be in W and suppose x~Ay holds for all x,yeX. It
may be assumed that A is symmetric (replacing A by i n A~ι if
necessary.) Let Z be the set of all the integers. Select a sequence
{An\neZ} of symmetric sets in ^ as follows: (i) Ao = A, (ii) for
n > 0 define An inductively by

(iii) for n < 0 select An inductively so that
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(Anf c An+1 .

Then {An\ne Z) is a chain of sets in i7/, and it satisfies

(2.1) {Anf c An+ι for all neZ.

Moreover, since n 7> 0 implies An — {Az)n, it follows that

(2.2) Ό{An\neZ}= U{A*n\n^l}.

The assumption t h a t x=Ay holds for every x,yeX means t h a t
t h e r i g h t side of (2.2) is equal to X x X. Therefore a function g on
X x X may be defined by

(2 if fei/JeA^^
Q\X ΊJ) ̂ ^ i

(0 if feί/)6i for all ^ G Z .

In particular, for ^ ^ 0

flr(», 1/) ̂  2n < > (x, V) e A*n(= An) .

P a s s i n g t h i s t o *^^, i t f o l l o w s t h a t f o r a n y p , q e * X a n d n e N

*g(p,q)^2n< >(p,q)e(*AΓ .

Therefore, if p,qe*X, then

*g(p, q) is finite < > p =*Aq .

The desired semimetric p is then defined from g by

{ n-l

Σ Ufa, »<+i) I Bo, , xn is a sequence

in X, x0 = x and xn = y\ .

(That |0 is nonnegative, symmetric and satisfies p(x, x) = 0 for all a?
in X follows from the fact that the function g has the same properties.
That p satisfies the triangle inequality is equally obvious.) The
fundamental fact about p is the inequality

(2.3) p(x, y) ̂  g(x, y) ̂  2p(x, y)

which holds for all x,yeX. The first inequality follows immediately
from the definition. The second is proved by showing that if x0, , xn

is a sequence in X,

(2.4) g(*o, xj ^ 2-S Ufa, χi+i).

The proof of (2.4) is by induction on n, using (2.1). The details are
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like those in the proof of Theorem 6.7 in [3], and they will be omitted.
Passing the inequality (2.3) to * ^ ^ it follows that *p(p, q) is

finite exactly when *g(x, y) is finite. Therefore, for any p, q e *X

p =*A q «-• *p(p, q) is finite .

It thus remains only to show that p satisfies (i). The definition of
g implies that A = {(%, y)\g(x, y) ^ 1}, and by equation (2.3) it follows
that A contains the set {(x, y)\ρ{x, y) ^ 1/2}. This shows that A is
in the uniformity defined by p. Finally, for each n e Z

An = {(x, y)\g(x, y) ^ 2n} c {(x, y)\p(x, y) ^ 2n} .

This shows that the uniformity defined by p is weaker than W, and
completes the proof.

Throughout the rest of this section let <:ΛΓ denote the set of all
cardinal numbers tc which support ω-complete, free ultrafilters. It is
well known that if ,5f is nonempty, then the smallest member tc0 of
J^Γ is actually measurable. (In fact, every α>-complete ultrafilter on
fcQ is < /c0-complete.) Moreover, in that case the class .Ĵ Γ consists
exactly of the cardinal numbers ^/c0. (There does not seem to be any
accepted term designating the members of ĵ rT Some authors call
them "measurable" but this does not agree with current terminology
in set theory.)

Given a set / in ^/f and an element p of */, let Fϊl(p) denote
the ultrafilter {J\J cz I and p e *J) on I determined by p. (Fil7(p)
will be used for Fil(p) if necessary to avoid confusion.) Recall that
Fil(p) is a free ultrafilter if and only if p is not standard.

LEMMA 2.2. For each p e */, Fil(p) is ω-complete if and only if
*f(p) ^ finite for every real valued function f on I.

Proof. Given any real valued function f on I and n ^ 1, define

An(f) = {x\xel and \f(x)\ ^ n) .

Then {AJf)\n >̂ 1} is a decreasing chain of subsets of I and the
intersection of the chain is empty.

If p e *I and there exists a real valued function f on I such that
*f(p) is infinite, then pe*An(f) for every n ^ 1. That is,

is contained in Fil(p). This shows that Fil(p) is not ω-complete.
Conversely, suppose Fil(p) is not ω-complete. Then there exists
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a decreasing chain {An \ n ^ 1} in Fil(p) whose intersection is empty.
It may be assumed that Aι — I . Thus a real valued function / may
be defined on I by

f(x) = max [n \ x e A J «

Evidently An(f) = An for each n ^ l . The assumption that p e *(An)
for all n^l implies that \*f(p)\ ^ n for all n ^ l That is, *f(p)
is infinite.

Let 3> be the discrete uniformity on X (that is, £ ^ is the prin-
cipal filter on X x X generated by the diagonal set.) Clearly C(X, &)
is the set of all real valued functions on X and finiς(

>:<X) ~ *[X].
Thus Lemma 2.2 says that

fin:2(*X) = {p\*f(p) is finite if feC(X,&)}

if and only if the cardinality of X is not in ST.
The next results describe completely the conditions under which

an element of FQ is not ^/-finite.

THEOREM 2.3. If pe*X is not ^-finite but *f(p) is finite for
every f e C(X, *&), then there exists an element A of ^ lυhich satisfies

Ye Filx(p) —> the number of =A equivalence classes which

intersect Y is in J5$Γ.

Proof. Assume that p e *X is not ^/-finite, and that *f(p) is
finite whenever / e C(X, ^/). There exists a symmetric element A of
^/ such that p =*Λ*χ is false for every xeXo Let {Xa\ael} be a
one-to-one enumeration of the = A equivalence classes, and let a func-
tion c from X to I be defined by

c(x) — a <—* x e Xa .

It will be shown first that *c(p) is not a standard element of * I.
If otherwise, there exists ael which satisfies *α = *c(p), and hence
p e *(Xβ). Let Aa equal A Π (Xα x Xa) and let '?/a be the uniformity
obtained by restricting <%f to Xa. Since Xα is an =Λ equivalence
class, x =AaV holds for every x,yeXa. By Lemma 2.1 there exists
a semimetric p on Xa which satisfies ( i) the uniformity defined by
p on Xa contains Aa and is weaker than ''zL'a, and (ii) for any r, s e

r =*(A(ι)S <——> *p(j', s) is finite .

Since Xa is an =A equivalence class, r =*As is equivalent to r =UA } s,
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for elements r, s of *(Xa) Thus (ii) implies
(ii') for any r , se*(J α ) ,

r =*As * * *ρ(r, s) is finite .

Let xQ be a fixed element of Xa and define a function h on X by

ίθ if x$Ya

\ ρ(x0, x) if xe Xa .

Given δ > 0, there exists an element i?α of ^ which satisfies

(x, y) e Ba > p(x, y)< δ

by (i) above. This implies that Ba contains a set of the form
B Π (Xa x Xa)> where B is in ^ , and it may be assumed that Be: A.
If (x, y) e B, then either x and y are both outside Xα, and h(x) =

= 0, or (a?, 2/) G Ba. In the latter case

I h(x) - h(y) I = I p(xQ9 x) - p(x, y) \ ^ ^(a?, y)< δ .

Therefore, h is an element of C(X, %f). This implies that *h(p) is
finite. However, since p e *(Xa), *h(p) = *^(*^0, 3>). Thus, by (ii')
above, p ΞM*O?O which is a contradiction. This shows that *c(p) is
not a standard element of *ί

Now let Y be any subset of X which satisfies pe*Y, and let
j = c(Y). It must be shown that there exists an ω-complete, free
ultrafilter on J. If not, then the ultrafilter Fil(*e(p)) is not ω-complete.
(It is free since *c(p) is not standard.) In that case, by Lemma 2.2
there exists a real valued function f on J such that *f(*c(p)) is
infinite. Define a function g on X by

JO if φ ) ί J
I/(Φ)) if Φ)eJ.

If (a j J G i , then ^Ξ^T/ and hence c(x) = c(τ/). This implies that #
is in C(X, %r). But *flr(p) = *f(*c(p)), so that *flr(p) is infinite. This
contradiction shows that Fΐlj(*c(p)) is an ω-complete, free ultrafilter
on J, and completes the proof.

THEOREM 2.4. If Y a X and the number of =A equivalence classes
which intersect Y is in J%Γ, for some A in %f, then there exists an
element p of *Y which is not ^-finite but which satisfies: *f(p) is
finite for every f e C(X,

Proof. Given Ae^ and Γ c l a s stated, there is a subset W
of Y which has one element in common with each =A equivalence
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class which intersects Y. Moreover, there exists an ω-complete,
free ultrafilter on W. Since *^f is an enlargement of ^ ^ this
means that there is an element p of * W which is not standard and
such that Fi\w(p) is ω-complete. By Lemma 2.2, *f(p) is finite for
every real valued function / on W, hence for every / in C(X, %S).
It thus suffices to show that p =*Λ*χ is false for every x in X.
Otherwise, there exist a e l and n ^ 1 which satisfy (p, *x)e *Bn,
where β is i n A~K Since p e * W it follows that for some w e W,
(w, x) e Bn. Therefore (p, *w) e (*B)2n. But since p is not standard,
this implies that there exists wr e W such that wf is distinct from
w and {wr, w) e B2n. That is, wf = A w and hence W has two elements
from the same =A equivalence class. This contradiction proves that
p has the desired properties.

COROLLARY 2.5. The equality

fhM*X) = {p\*f(p) is finite for all feC(X, &)}

holds if and only if the number of =A equivalence classes is not in
for every A e *%S.

In cases where the cardinality assumption of Corollary 2.5 holds
(in particular, if there is no ^-complete, free ultrafilter on X) then the
smallest nonstandard hull constructed in [4] is also the subspace
π(fin^(*X)) of (XQ, <%f0). This fact is helpful in determining the ele-
ments of this nonstandard hull, since it is usually easier to show that
μ(p) is an element by showing that p is ^-finite, and to show that
μ(p) is not an element by exhibiting a function / in C(X, %S) such
that */(ί>) is infinite. (See the examples in §4.)

3* Atsuji [2] has given a condition on (X, ^) which is equivalent
to the statement that every function in C(X, %S) is bounded, and
which is closely related to the concepts discussed above. In this
section a nonstandard proof is given of a natural generalization of
Atsuji's Theorem. (The ideas used in proving this Theorem are also
used in §4.)

DEFINITION 3.1. A subset Y of X is finitely chainable in (X
if, for each i e ^ , there exist yl9 , yk in Y and n ^ 1 which satisfy

The uniform space {X, <%f) is finitely chainable [2] if X is finitely
chainable in (X,

THEOREM 3.2. For any subset Y of X, Y is finitely chainable in
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(X, <&) if and only if *Y<z Άn^(*X).

Proof. Suppose Y is finitely chainable in (X, <%f). Given
there exist yl9 , yk in Y and n ^ 1 which satisfy

If follows that * Γ c (*A)Λ(*i/1) U U (*A)n(*yk). If A is symmetric,
this implies that each element of *Y is in the same =*A equivalence
class with one of the elements *yl9 , *yk. Therefore * Y is contained
in fin^(*X).

Conversely, suppose Y is not finitely chainable in (X, %S). Thus
there exists a symmetric set A in ^ such that for any w ;> 1 and
Vi, , Vk e y> the union A*^) U U An(yk) does not contain Y". For
each y e Y and % ̂  1 define

S(n, i/) = {x I α? e Y and £ £ A%)} .

The assumptions on Y imply that the collection {S(n, y)} has the finite
intersection property. Since *^ is an enlargement, there exists
p e * Y which satisfies p e *S(n, y) for every ye Y and n*zl.

It will be shown that p is not ^-finite, thus showing that * Y
is not contained in fin^X). Otherwise there exist xeX and n*zl
which satisfy (p, *x) e (*A)n. This implies that there exists y in YD
An{x), and therefore peA2n(y). That is, p$*S(2n,y), which is a
contradiction.

The following result generalizes the theorem due to Atsuji [2]
which states that (X, <&) is finitely chainable if and only if every
function in C(X, ̂ /) is bounded.

THEOREM 3.3. For any subset Y of X, Y is finitely chainable in
(X, ^ ) if and only if every function in C(X, <2S) is bounded on Y.

Proof If Y is finitely chainable in (X, ̂ ) , then by Theorem 3.2
*Γcfin^(*X). For any function / in C(X, ̂ ) , this implies that
* Γ c { p I */(p) is finite} by Theorem 1.3. Therefore the set

{\*f(p)\\pe*Y},

which is internal, has a finite upper bound M in R. But this implies
that / is bounded by M on Y. That is, each member of C(X, ^ ) is
bounded on Y.

Conversely, suppose each function in C(X, ^ ) is bounded on Y.
To show that Y is finitely chainable in (X, ̂ /) it suffices to prove
* Γ c f i n / I ) , by Theorem 3.2. If not, then by Theorem 2.3 there
must exist an element A of ^ such that the number of = A equivalence
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classes which intersect Y is in ST. In particular there are countably
many (distinct) =A equivalence classes Xu , Xn, • ••, each of which
intersects Y. The function / defined on X by

In if xeXn
fix) — \

(0 if x$Xn, all n ^ l

is therefore unbounded on Y. However, / is constant on = A equiva-
lence classes, and thus / is in C(X, ̂ ) . This is a contradiction, and
completes the proof.

REMARK. Theorem 3.2 allows us to say exactly when there is
a single function / in C(X, *%f) which satisfies

fin^(*X) = {p\*f(p) is finite}.

Namely, this equality holds if and only if the sets {x | \f(x) | ^ n} (for
n ^ 1) are all finitely chainable in (X, ̂ /). (The equality holds if
and only if {p\\*f(p)\ ^ n) c fπv(*X) for all n ^ 1 (by Theorem 1.3)
if and only if {α?||/(αθ| ^ n) i s finitely chainable in (X,^) for all
n^l (by Theorem 3.2).)

In particular, if <%f is the uniformity defined by some metric p
on X, then the equality

fin^(*X) = {v\*p{v, *x) is finite}

holds for some (or, equivalently, every) x in X, if and only if

{y\ρ{y,x) ̂  n)

is finitely chainable in (X, ̂ ) for every n ^ 1.

4* Given a metric ^ on X, Robinson [6] says that p and q are
in the same galaxy of *X if *p(p, q) is finite. Generalizing this idea
Luxemburg [4] defines p and g to be in the same galaxy relative to
a set Sf of semimetrics on X if *p(p, q) is finite for every p in ^
The following definition of the "^-galaxies of *X arises naturally from
the considerations which led to Definition 1.2.

DEFINITION 4.1. If p, q e *X, then p and q are in the same ^/-
galaxy if p = ^ ^ .

THEOREM 4.2. 7/ p απd g are iπ the same ^/-galaxy and p is
any semίmetric on X which defines a uniformity weaker than OSS,
then *p{p, q) is finite.

Proof. Since p defines a uniformity weaker than ^f there exists
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4 e ^ which satisfies

(x, y)eA > ρ(x, y) ^ 1 .

Since p and q are in the same ^-galaxy, there is a *A-chain qQ, , qn

from p to q. Using the triangle inequality for *p yields

, 9) ^ Σ

Therefore *iθ(P> q) is finite.

DEFINITION 4.3. A subset Y of X is chain connected in (X,
if x =^y for every x, y e Y. The uniform space (X, ^/) is chain
connected if X is chain connected in (X,

THEOREM 4.4. Lei S^ he the set of all semimetrics which define
weaker uniformities than ^/ and suppose that Y is chain connected
in (X, ^ ) . Then for every p,qe*Y:p and q are in the same <%?-
galaxy if and only if *p(p, q) is finite for every p in £f.

Proof. Let Y and £f be as stated and assume p, q e * Y. The
implication in one direction is contained in Theorem 4.2. Conversely,
suppose that *p(p, q) is finite for all p in £f. To prove that p and
q are in the same ^-galaxy it is necessary to show that p = *Aq for
every symmetric set A in ^ . Given such an A, the fact that Y is
chain connected in (X, ^) means that there is an == A equivalence class
W which contains Y. Let Aw = Af)(W x W) and let ^/w be the re-
striction of ^ to W. As in the proof of Theorem 2.3, an application
of Lemma 2.1 yields a semimetric p on W which satisfies (i) the uni-
formity defined by p on W is weaker than Ww, and (ii) for any r, se
*T7, r =*As if and only if *p(r, s) is finite.

Select w0 in W and let / be the function defined on X by

o M X $ W

if xe W .

Then / is constant on = A equivalence classes so that / is uniformly
continuous as a map from (X, ^ ) to (W, ^V). It follows that the
semimetric pf defined on X by

defines a weaker uniformity on X than ^ . By assumption, this
means that *p'(p,q) = *p(p,q) is finite. Therefore p =*Aq by (ii)
above, completing the proof.

COROLLARY 4.5. // (X, ^ ) is chain connected and S^ is the set
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of all semimetrics which define weaker uniformities on X than %f,
then the ^-galaxies form the same partition of *X as do the galaxies
determined by Sf.

REMARK. AS was noted above, if A is in ^ , then each = A equiva-
lence class is open and closed in the ^-topology on X. Therefore if
X is connected in the ^-topology, then (X, *%s) must be chain con-
nected. Applying the same reasoning to the uniform space (*X, &)
shows that any subset of *X which is connected in the ^-topology
must be entirely contained in one ^-galaxy.

THEOREM 4.6. If (X, ^) is chain connected, then the following
conditions are equivalent:

(i) There is a semimetric p which defines a uniformity weaker
than <%s and which satisfies: p and q are in the same ^-galaxy in
*X if and only if *p(p, q) is finite:

(ii) There is an element Ao of *2S which satisfies:
for each i € ^ there is an n ^ 1 such that AQ a An.

Proof, (i) —>(ii): Let p be as in (i) and define

Ao = {(χ,v)\p(χ,y) ^1}

as that AQ is in ^ . If Ao does not satisfy (ii), then there is an ele-
ment A of ^ such that for no n ^ 1 does A% contain Ao. That is,
for each n ^ 1 there exists a pair xn, yn of elements X which satisfy
P(®»y V») ̂  1 a n ( i (χn, Vn) £ An. Let ω be an infinite member of *iV
Then V(*#ω, *yω) ^ 1, so that by (i) there is a *A-chain q0, * ,qn

from *xω to *yω. That is, (*xω, *yω) is an element of (*A)n = *(A%).
But since o) is not standard, this means that (xk, yk) e An holds for
infinitely many values of k in N. This contradicts the choice of the
pairs (xk9 yk) and proves that A* satisfies (ii).

(ii) —>(i): Assume that Ao satisfies (ii). Then for each A in ^ ,
*AQ c *An (for some n depending on A.) Therefore p =*AQQ implies
p =*Aq, for every p, q e *X and every A G ^ . Thus the = M o equiva-
lence classes and the ^-galaxies are exactly the same. The existence
of the semimetric required in ( i) now follows, using Lemma 2.1 and
the fact that (X, ^ ) is chain connected.

REMARK. Suppose (X, ^ ) is chain connected and ^ is defined by
a metric p0. If {X, C2S) satisfies the conditions in Theorem 4.6, then
there exists a metric pι which defines ^/ and also satisfies: p and q
are in the same ^-galaxy if and only if ^p^p, q) is finite. That is,
^ can be "remetrized" so that the ^-galaxies and the galaxies
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defined by the metric coincide,
in 4.6.i and define

To construct p19 simply choose p as

pL(x, y) = max {p(x, y), min (po(x, y), 1)} .

The following two examples were developed in collaboration with
L. C. Moore, and are based on ideas due to him. In each case the
uniformity ^ is defined by a metric on X. The first example shows
that a ^-finite point need not be in the same ^-galaxy with any
standard point, even when (X, ^f) is complete. The second example
shows that even when the original space (X, Of) is arcwise connected,
the smallest nonstandard hull of (X, ^ ) constructed in [4] need not
even be chain connected (or, what is the same, the uniform space
obtained by restricting ^ to fmf,(*X) need not be chain connected.)

EXAMPLE 1. In this example X is the set of all pairs x = (xl9 x2)
of positive integers, and ^ is the uniformity defined by the metric
p, where

, v) =

j/2

Vl

j/2

Vl

-Mi

Vz

Vl

Vl

if Xί -

if x
λ
 Φ y

1

(The metric p is obtained in the following way: for each x in X let

x be the sequence x = (α0, al9 a2, •)> where

a — ®1 a — X l

and all other αΛ are 0. The distance p(x, y) is then just the lλ norm
of x — y as an element of the linear space of all sequences which
have finite support.)

For an element (p, q) of *X to be ^-finite, it is necessary (by
Lemma 4.2) that *ί>((l, 1), (p, q)) be finite. This implies that pfq and
q/p are finite elements of *.# (or, what is the same, that p/q is finite
but not infinitesimal.) Suppose, conversely, that q/p and p/q are
finite. It will be shown that the element (p, q) of *X is ^-finite.
If either p or q is finite, then the other must be. That is, (p, q) is
in X. Assume therefore that p and q are both in *N ~ N. Given a
standard real number δ > 0, a number r in *ΛΓ may be chosen which
satisfies the inequalities

(4.1) f 4 + A-]
L<f pJ

< 8^ (r +
q2 piq

2
 p

For any k e N, the * ̂ -distance between the elements (p,q + kr) and
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(p, q + kr + r) of *X is equal to

P V q + kr q + kr + r

Pq Λ- kr q + kr + r

which is bounded above by

rp ,

Now choose the smallest s in *JV which satisfies

g + sr 4

The inequalities (4.1), together with the fact that p/q is finite but
not infinitesimal, implies that r/p is finite but not infinitesimal. This
shows that s is actually in N, and the sequence (p,q),(p,p + r), 9

(P, Q + sr) is a 5-chain in *X with a finite number of steps.
Since p/q and r/p are each finite but not infinitesimal, there are

standard integers ra, n such that m/n is within <?/4 of

g + sr

and w/m is within <?/4 of the reciprocal

q + sr
p

It follows that the *<o-distance between {p, q + sr) and (m, %) is less
than δ. This shows that there is a δ-chain from (p, q) to a standard
element of *X, for each standard δ > 0. Therefore (p, g) is ^/-finite,
as claimed.

Given a ^-pre-nearstandard element (p, q) of *X, p/g must be
finite but not infinitesimal, by Theorem 1.4 and the previous argument.
If (p, q) is not standard, then p is infinite. Therefore every standard
element of * X is a * ̂ -distance of at least p/q away from (p, q). But
p/q is not infinitesimal, so this is a contradiction. Therefore pns?/(*X)
is simply the set of all standard elements of *X This shows that
(X, ^ ) is complete and that the ^-topology on X is discrete.

Also, there are elements of fin^(*X) which are not standard (for
example, {ω, ω) is one whenever ω is infinite.) Since the ^-topology is
discrete, each standard element of *X comprises a ^-galaxy by itself.
Thus there are ^-finite points which are not in the same ^-galaxy
with any standard point. In fact it can be shown, by an argument
similar to the one used to characterize fin^(*X), that the set A of non-
standard, ^-finite elements of *X comprises a single ^-galaxy.
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Note that if (O and o)' are distinct elements of *iSΓ, then the *p-
distance between (ω, ω) and (ω'9 ωf) is 2. Thus the image under π
of finf^(*X) in XQ has at least as many elements as *N. Since the
enlargement *^#r can be chosen to make the cardinality of *iV arbi-
trarily large, this shows that the various nonstandard hulls of (X,
constructed in [4] depend on *^/Z as well as on (X,

EXAMPLE 2. In this example X consists of a countable set of
points {an \ n Ξ> 0}, together with certain arcs joining α0 to the other
distinguished points. For each n Ξ> 1 the arcs joining α0 to an form
n subspaces X(n, 1), •••, X(n,ri), each two of which have only the
elements α0 and an in common. Moreover, if l^j^m, l ^ k ^ n
and nΦ m, then X(m, j) and X(n, k) have only the element α0 in com-
mon.

The metric p which defines ^ is given first on the subspaces

-k -

Figure 1.
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X(n, k) and then extended to all of X. For a given 1 <: k <; n, p is
defined on X(n, k) in such a way as to make the subspace X(n, k)
isometric to the subspace of the Euclidean plane pictured in Figure 1.
(This subspace consists of the seven line segments obtained by joining
adjacent pairs of points in the sequence: (0, 0), (0, n), (1/4&, n), (1/4&, —k),
(1 — 1/4&, —k), (1 — 1/4&, n), (1, ri), (1, 0).) In each case the isometry is
assumed to take α0 to (0, 0) and to take an to (1, 0). Therefore there
is a function / from X into R2 whose restriction to a given subspace
X(n, k) yields the assumed isometry.

The metric p is defined on the rest of X x X as follows. Let
x, y e X and suppose p(x, y) is not yet defined. That is, x e X(m, j)
and y e X(n, k), where the pairs (ra, j) and (n, k) are distinct. If
n Φ m, then p(x, y) is defined to be p(x, α0) + p(a0, y). If n — m, then
/θ(a;, y) is defined to be

min {p(x, a0) + ρ(α0, y), p(x, an) + /θ(αn, y)} .

It will be shown first that for every x, y e X and n Ξ> 0

(4.2) /o(a?, y) £ ρ{x, an) + p(an, y) .

If % = 0 or if x and y are both elements of the union X(n, 1) U U
X(n,ri), then (4.2) is obvious. Thus assume x e X(m, j) where mφn.
In that case

(4.3) ρ(x, an) = /O(a?, α0) + /θ(α0, αn) .

If 7/ G X(^, A) for some k, then

0,2/) ^ p(aQ, an) + ^>(aw, i/) .

This inequality, together with (4.3) and (4.2) when n — 0, proves (4.2)
in the present case. By the symmetry of p, it remains only to con-
sider the case when y e X(m, j) for some m Φ n. In that case

P(a>n, V) = P(a>o, dn) + P(a>o, v)

This, together with (4.3), shows that p(x, an) + p(an, y) is bounded
below by p(x, α0) + p(aQ, y). An application of (4.2) when n = 0 com-
pletes the proof.

To prove the triangle inequality in general, let x, y, z e X and
assume zeX{n, k). If neither x nor y is in X(n, k), then

p(x, z) + p(z, y) - ρ(x, b) + p(b, z) + p(z, c) + p(c, y) ,

where b and c are each either α0 or αw. Since 6, c, ^ are all in X(n, k),
ρ(b, c) <£ jθ(δ, «) + p(z, c). This, together with two uses of (4.2), proves
the triangle inequality
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(4.4) ρ(x, y) ^ p{x, z) + p(z, y)

in this case. By the symmetry of p it remains only to consider the
case when x e X(n, k) but y £ X(n, k). Then

ρ(x, z) + ρ(z, y) = ρ{x, z) + ρ(z, b) + p(b, y)

for b — a0 or an. The triangle inequality applied to x, z, b (which are
all elements of X(n, k)) together with one use of (4.2) yields (4.4) in
this case, and completes the proof. Thus p is a metric on X.

In passing to consideration of *X, note that there are subsets
*X(ω, ω') of *X which correspond to the subsets X(n, k) of X. In
particular, for each p in *X there is at least one pair (ω, ωr) which
satisfies 1 <£ ωf ^ ω and p e *X(ω, ω'). Moreover, if p and q are both
elements of *X(ω, ω'), then *ρ(p, q) = *d(*f(p), */(g)), where *d is the
extension of the Euclidean metric to *ίϋ2.

The analysis of fin^(*X) depends on the following fact.

LEMMA. If p is ^/-finite and p e *X{ω, ω'), where ωf e *JV, ω e
*iV— N and ωr ^ ω, then the standard part of the first coordinate of
*f(p) is either 0 or 1.

Proof. Let p, ω and ω' be as stated. Since p is F^-finite, */θ(*α0, p)
must be finite, by Theorem 4.2. Therefore *f(p) is a finite distance
from (0, 0) in *R2, so that the second coordinate of *f(p) must be
finite. If ωf is infinite, this implies that the first coordinate of
*f(p) must be one of the numbers: 0, l/4ωr, 1 — 1/ω', or 1. These
numbers have standard part 0 or 1.

Thus it may be assumed that ω' is finite. Let A be the set of
all q in *X(ω, ω') such that *f(q) has an infinite second coordinate or
has a first coordinate different from 0 or 1. Then if q e A but re
*X~ A, it follows that *ρ(q, r) > l/8ω\ In addition, A has no
standard element (since the only standard element of *X(ω, ω') is *α0.)
Thus there is no l/8ωr-chain from any element of A to any standard
element. This shows that no element of A is ^-finite. Thus, in
this case, *f(p) actually has first coordinate equal to 0 or 1.

Now consider the point *αω, where ω is any infinite element of
*AΓ. For each standard k in N there is a 1/Λ -chain from *αω to *α0

in *X(α>, k) (since the three segments in *f(*X(ω, k)) which lie below
the horizontal axis in *R2 have finite length when k is finite.) There-
fore *αω is ^-finite. However, there cannot be any sequence g0, , qn

of ^"-finite points which satisfy: q0 = *αω, gΛ = *α0 and */θ( ί̂, gi+1) <
1/2 for all ΐ = 0, , n — 1. Otherwise, by the Lemma, there must
exist i, 0 ^ i ^ n — 1, such that the first coordinates of */fe
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*/(?t+i) have standard parts 1 and 0 respectively. But this would
imply *p(qiy qi+1) > 1/2, which is a contradiction.

Thus it has been shown that the uniform space resulting from
restricting ^ to fin^(*X) is not chain connected. The example is
completed by noting that since X is essentially a union of polygonal
paths from α0, the space (X, ^ ) is arcwise connected.

REMARK. The last example shows that restriction of ^ to a ^ -
galaxy need not yield even a chain connected uniform space. In some
cases, however, the ^-galaxies are exactly the connected components
of *X under the ^-topology. For example, let ^ be a uniformity
defined by a metric p "on X which satisfies the following convexity
assumption: for each x, y e X and δ > 0 there exists z e X which satis-
fies

ρ(x, z) - ±-p{x, y)
Δ

P(y, z) - ^-p(x, y)
Δ

<δ

<§.

(This is equivalent to saying that the completion of (X, p) is metri-
cally convex, and it is true, for example, when X is a normed linear
space.)

Passing to *^€; and letting δ be infinitesimal, it follows that for
each p,qe*X there exists r e *X which satisfies

st(*p(p, r)) = st(V(?, r)) = ±st(*p(p, q)) .
Δ

Used repeatedly, this shows that whenever *p(p, q) is finite, p
and q must be in the same ^-galaxy. Moreover, the restriction of
*%/ to any ^-galaxy yields a chain connected space. On such a galaxy
Y the restriction of ^ is defined by the semimetric p defined by
P(P, q) — st(*(p, q))9 as discussed in §1. If *^£ is y^-saturated, then
(F, p) is a complete semimetric space, by the Remark following Theo-
rem 1.4 (and the fact that ^-galaxies are closed in the ^-topology.)
In fact, it has been shown above that (Y, p) is convex. As is well
known, these facts imply that Y is arcwise connected in the ^-topology.
It follows, using the Remark following Corollary 4.5, that the <&-
galaxies are identical to the connected components of *X in the ^»
topology.
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COMPLEMENTATION IN THE LATTICE
OF REGULAR TOPOLOGIES

M. JEANETTE HUEBENER

The present paper is concerned with the lattice of regular
topologies on a set, and establishes the following results: a
complete, complemented sublattice of the lattice of regular
topologies on a set is exhibited and shown to be anti-isomorphic
to the lattice of equivalence relations on the set; the lattice
of regular topologies on a set is shown to be nonmodular if
the cardinality of the set is at least four; the problem of
complementation for regular topologies is reduced to consider-
ing To regular topologies without isolated points; conditions
are found which are equivalent to a regular topology having
a principal regular complement; then follow some conditions
under which the problem can be reduced to considering con-
nected spaces; the final section consists of constructions of
complements for certain classes of regular topologies, which
classes may or may not be exhaustive.

Principal regular topologies and relations* Let (J5f V> A) be
the lattice of all topologies on a set E. (£f,\f> A) is complete, anti-
atomic, complemented, and, if \E\> the cardinality of E, is at least
three, it is not modular, [10, pp. 384-5, 389-397]. Next, let (^?, V, AO
be the lattice of all regular topologies on E. (&, V, Ar) is complete
but not a sublattice of (S* V> A) The greatest lower bound in <%}
of a collection of topologies in & is only the least upper bound of
all the regular topologies which are weaker than the collection's
greatest lower bound in S? [8, pp. 754-755].

The anti-atoms of £f are the ultraspaces on E; these are topol-
ogies of the form ©($, ̂ /) — Pc(x) U *2S where ^ is an ultraίilter on
E different from <%f{x) = {AaE:xeA} and where Pc(x) = {AczE: x $ A}.
Frohlich [5, p. 81, Satz 3] showed that every topology τ on E is the
infimum of the ultraspaces on E which are finer than τ.

The special sublattice of (^f V> A)> which is anti-isomorphic to
the lattice of preorders on E, is called the lattice of principal topo-
logies. From this sublattice Steiner [10, p. 383, Theorem 2.6; pp.
389-397] and van Rooij [16, p. 807] take their complements. Now
an ultraspace is said to be principal if its topology is of the form
&(x, %f(y)) where x Φ y. A topology τ is principal if τ = 1, or if τ
is the infimum of the principal ultratopologies finer than τ. These
topologies are also characterized [10, pp. 381-2, Theorem 2.3] by the
fact that they have a base of open sets which is minimal at each

139
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point, i.e. for any x e E every open set containing x must contain the
open set

(Throughout the paper Bx in a principal topology σ will denote the
<7-open set minimal at the point x.) Using this characterization it is
easily seen [10, p. 382, Theorem 2.5] that the principal topologies
form a sublattice of (<£f V> Λ) The mapping establishing the anti-
isomorphism between this lattice and the lattice of preorders is given
by

η{τ) = Gτ = {(x, y): @(α, <2/(y)) ^ τ)

and

V~ι(G) = τG = A {©(», ^(v)Y (x, v)eG}.

In the lattice of regular topologies there is a sublattice of the lattice
of principal topologies which has a familiar structure:

THEOREM 1.1. A principal topology τ on E is regular iff its
representation satisfies the condition &(x9 *%f(y)) ^ τ implies

^ τ for any x,yeE.

Proof. Suppose τ is principal and regular and that @(a?,
τ. Then y e Bx and By c Bx. Now ~By is a closed set not containing
?/; accordingly there exists Ueτ such that Uz) ~By and Uf] By = 0
which implies that U = ~Byeτ. lί xe ~Byeτ, then ByaBx(z ~By

which is a contradiction. Hence $€#3, and &(y, ^(x)) ^ τ.
Conversely, in terms of the base of minimal open sets, the con-

dition, @(OJ, ^{y)) ^ τ implies &(y, %S(x)) Ξ> r for any x, ye E, become
y e Bx iff x e By. Hence jBβ = By or Bx Π By = 0 for every x, yeE.
In which case, if J7 = U {By: ye U}eτ and x e ~ U then Bxf] U = 0
and it follows that ~ Ϊ7 = (J {5,.: ^ G ̂  17} G r. Every open set being
closed implies τ is regular.

COROLLARY 1.2. A principal topology τ is regular iff Gτ is an
equivalence relation.

That the lattice of equivalence relations is complemented is proven
mot a mot as in Steiner [10, p. 389, Theorem 5.1]

COROLLARY 1.3. The lattice of principal regular topologies on E
is a complete sublattice of (&, V, Ar) and («5? V, Λ)



COMPLEMENTATION IN THE LATTICE OF REGULAR TOPOLOGIES 141

Finally, for | E\ ^ 3 the lattice (^, V> Ar) is a modular sublattice
of (^f V, A) If I J57| ^ 4, then the lattice (&, V, Λr) is not modular:
Let α, δ, c, d be distinct points of E. Define each of the following
principal regular topologies by its base of minimal open sets

τ(ab) {a, b), {c}, {d} a n d {x} for x Φ a,b,c,d

ί"cw(ed) K b), {c, d) a n d {x} for x Φ α, 6, c, d

"̂(αίxci) R Φ , {c, 6} a n d {x} for x Φ α, 6, c, d
r(αjCrf) {α, δ, c, d} a n d {α;} for α ^ α, 6, c, d .

Then we have the following diagram of least upper bounds and
greatest lower bounds in (^, V> AO

c(ad)(cb)

T(ab)(cd)

T(abcd)

FIGURE 1

Greatest lower Bounds in & and continuous functions* In a
paper in 1968 [14, p. 1087, Theorem 1], J. Pelham Thomas charac-
terized the strongest regular topology on a set weaker than a given
topology on that set: If r is a topology on E, then there is a unique
regular topology τ* weaker than τ, such that, if Y is any regular
space, then the continuous maps (E, τ) —• Y are the continuous maps
(E, τ*) —* Y. Furthermore r* is the least upper bound of the regular
topologies weaker than τ. In this vein we have the following lemmas.

LEMMA 2.1. A function f: (Ef 0) —• (F, p) is continuous where
(Y, p) is a regular space iff f(E) do\p (f(x)) for every x e E.

LEMMA 2.2. //, for every regular To space (Y, p), every continuous
function f: (E, v) —> (Y9 p) is constant, then, for every regular space
(Y, p), every continuous function f: (E, v) —• (Y, p) satisfies the condi-
tion f(E) c dp (f(x)) for every x e E.

Using the Thomas result we conclude that
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COROLLARY 2.3. In order for a fsj τ = 0 it is necessary and
sufficient that every continuous function on (E, σ A z) to a regular
To space be constant.

It is now possible to reduce the problem to To regular topologies.
Let z be a regular topology on E and E* the set of point closures
{clΓ (x): xe E). Then E* is a set of equivalence classes of E and
φ: E-+ E* given by φ(x) — clΓ (x) is the canonical map. If τ* is the
quotient topology relative to φ and r, that is, the finest topology on
E* such that φ is continuous relative to (E, τ), then r* is a regular
JΓ0 topology, lattice-isomorphic to τ [15, p. 92, Theorem 14.2]; further,
φ: (E, z) -»(E*, z*) is open and closed [9, p. 155, Theorem 9.3.6], and
(#*, z*) is called the To quotient of (E, z).

THEOREM 2.4. If the TQ quotient (E*, τ*) of a regular space
(E, τ) has a (principal) complement in the lattice of regular topologies
on E*9 then (E, z) has a (principal) complement in the lattice of
regular topologies on E.

Proof. Let / be a choice function on the subsets of E, σ* the
regular complement for τ* and S — {y e E: y Φ /(clΓ (y))}. Define σ to
be the topology on E with the following base

{(<P~lB*) - S:B*e σ*} U {{y}: y e S} .

The topology σ is, in fact, regular. Suppose F is closed in (E, σ)
and x ί F. Then ~F = (φ~ιB* - S) U A for some AaS and some
J3*e<7*. IfxeS, then {x}eσ and F c ί7 - {x} eσ. If a ^S, then
φxeB*eσ* and there exist disjoint sets U*, F*eσ* separating 9>(aj)
and ~B*. In which case, φ~ιU* — S and 9>-1F* U S are cr-open sets
separating x and F. Note that σ is principal if σ* is.

Next, if 4eo"Λr, then φAeτ* and A = φ" 1^* for some S^eσ*.
Hence ?>: (J57, <r Λ T) ~> (JS7*, σ* Λ r*) is open. If ^ : ( £ , ί ; Λ r ) ^ 7 is
any continuous function to a regular To space Y, then ψ*(clαΛϊ.(α?)) = ψ(x)
for any ^6.57. Hence ψφ~ι: (E*, σ* A z*) —* Y" is a welldefined continuous
function. Since σ* Λ r τ * — 0 then /̂r̂ "1 must be constant, which
implies that ψ is constant and hence σ Arz = 0.

Finally σ V r = 1. For x g S we have Z7* e r* and F* e σ* such
that {φx} = i7* Π F* which implies that

{£} = (φ-1?/*) n (^-LF* - S ) e r v < 7 .

Principal complementation and connectivity* In order for a
regular topology τ and a principal regular topology σ to have a least
upper bound of 1, it is necessary and sufRcient that the minimal open
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sets of σ be discrete in τ. That they have a greatest lower bound
of 0 is characterized in terms of continuous functions. Now a func-
tion is continuous on (E, a A τ) iff it is continuous on both (E, σ)
and (E, τ). Relative to continuity on principal regular spaces, we
have the following:

LEMMA 3.1. Let σ be a principal regular topology on E. A
function f: (E, σ) —> (Y, p), where p is a Tλ topology, is continuous iff
f is constant on each minimal σ-open set.

THEOREM 3.2. If (E, τ) is a regular To space with a disjoint
open cover {Ea}a of E and if, for each a, the topology τa — τ\Ea has
a principal complement σa in the lattice of regular topologies on
Ea then T has a principal complement in the lattice of regular topo-
logies on E.

Proof. For each a let Ba be some one minimal open set in σa.
The set \Ja Ba and, for all a, all minimal open sets Bx in σa9 different
from Ba, define a minimal open base for a principal regular topology
a on E such that σ \ Ea — σa.

Let / be any function on E to a regular TQ space which is con-
tinuous relative to the topology σ A τ. Then for any a, fa — f\Ea

is continuous relative to the topology (σ A T) \ Ea. But (σ A T) | Ea ^
Ga A τa so fa is constant on Ea. Since / was continuous relative to
σ then / must be constant on \Ja Ba. Hence / is constant on all
of E.

Lastly σ V T — 1: if x is any point of E — \Ja Ba then σa V τa =
1 implies that there are sets Ueσ and Veτ such that {x} — (UΠ
Ea) n (Vf)Ea) = UΠ(Vf]Ea)eσ v r .

The complementation problem for locally connected regular spaces
is then reduced to the complementation problem for connected spaces.
Further, the proof of the previous theorem suggests several lines
of development.

THEOREM 3.3. Let (E, τ) be a regular To space whose set & of
components satisfy the following conditions:

( i ) W is countable.
(ii) For each Ceg 7 the restriction τ \ C has a principal regular

complement.
(iii) Either & has finitely many singletons or infinitely many

nonsingletons.
Then T has a principal regular complement.

Proof. Without loss of generality, by (i) the collection of com-
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ponents forms a sequence {En}n such that, by (iii) each singleton is
followed by a nonsingleton. For each n, let τn = τ \ En and σn its
principal regular complement.

Now for any nonsingleton En there must be at least two distinct
minimal open sets in σn; otherwise τn — 1. But 1 is not connected
unless \En\ = 1.

For each n, choose An and Bn minimal open sets in σn such that
Bn Φ An if I En [ > 1. Then the sets

( i ) Bn U An+ί for all n such that | J£w | Φ 1 and | j£w+11 Φ 1
(ii) J5W U En+1 U A%+2 for all n such that | # Λ + 1 | = 1
(iii) .B71"1 \jEn\J An+1 for all w such that \En\ = 1
(iv) jBa. for all minimal σn open sets with Bx Φ An, Bn, n = 1,

define a base of minimal open sets for a principal regular topology σ
on E such that 0^ = σ \ En for each n.

Let / be any function on E to a regular Γo space which is con-
tinuous relative to the topology σ Λ r. Then fn = f\En is continuous
relative to the topology σ Λ Λ τw for each %. Hence fn is constant on
£J% and since / is constant on each set in σ then / is constant on
all of E.

For each x not in some Bn or An there are sets Ueτ and Bx e σn

such that {x} = (U Π En) Π Bx = U Π Bxeσ V τ. For any a? e Bn there
is a neighborhood Ueτ of x such that UΠ Bn = {x} and, since com-
ponents are closed and x £ En±1, En+2, such that U n En±1 = 0 and
t / n ^ + 2 = 0 . Hence

{x} = UΓ)(Bn{jAn+1)eτVσ if | En\, \En+ι\Φl)

= Uf] (Bn U £?*+! U Aw+2) if \En+1\ = l;

= Uf] (Bn~ι VEΛ\J An+1) iί \Bn\ = \En\ = l.

Similarly for any xe An. Thus σ V τ = 1.

THEOREM 3.4. Lei (2£, r) 6e α regular space and D a dense subset.
If τ\D has a complement σ* in the lattice of regular topologies on
D, then τ has a complement in the lattice of regular topologies on E.

Proof. Define σ to be the topology on E with the base σ* U {{y}:
y £ D}. Then σ is regular, σ \ D — <τ*; σ is principal iff σ* is principal.
Now clearly (σ A τ) \ D ^ σ \ D A τ \ D so (σ f^τ) \ D ^ σ \ D f ^ r τ \ D = 0.
In which case, for any nonemply Ueσ Arτ we have UZDD since
Uf] D = 0 is impossible. Hence σ Arτ — 0. Obviously σ V τ — 1.

It is now clear that the complementation problem can be reduced
to considering spaces without isolated points, because in the following
result (Wyτ\ W) has no isolated points.
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COROLLARY 3.5. Let (E> τ) be a regular To space, I the set of
isolated points, W = intΓ (E — I) the interior of E — I. If (W, τ/ W)
has a principal regular complement then there is a principal regular
complement for τ.

Classes with complements* In this section our task is to con-
struct principal regular complements for various classes of regular To

topologies. The first result provides the basic construction used in
the following theorem to handle the class of supra-DiSΓ spaces. The
definition of this class is a generalization of the DN spaces of B. A.
Anderson [1, p. 989] and was suggested by Harold Bell as a means
of extending methods developed for the DN spaces. The question
remains open whether this class exhausts the regular To spaces.
Subsequent results show an approach to a different class of spaces
and to arbitrary products of such spaces.

THEOREM 4.1. Let (E,τ) be a regular To space, ξ>\E\, and
{Sn: 0^n<τ]^ξ}a wellordered family of disjoint discrete nonempty
subsets of E whose union is dense in E. Suppose that for such n > 0,
any open set containing clΓ (\Jr<n Sr) meets Sn. Then τ has a principal
regular complement a. Moreover there is some point x e E such that
clσΛr (x) = E.

Proof. Define σ to be the principal regular topology with the
base of minimal open sets {Sn:n*zO}U{{x}:x$\JnzoSn}. Then for
any x e E we have {x}eσ V τ.

On the other hand, for each Sn let xn be any point in clr (Sn)
Suppose there is an ordinal n such that

ClαΛ'r (Xn) Φ Cl,Λr r (Xo) .

Let m be the least such ordinal. Then there are disjoint sets Z7*,
F* 6 σ A r f such that clσΛrr (x0) c ί7* and clσΛrΓ (xm) c V*. Also, for
every 7 < m, clσΛrΓ (x0) = clσΛrΓ (xr). But then cl̂ Λr- (x0) is a τ-closed
set containing all the sets clσΛrr (xr) z> Sr for Ί <m. By the regularity,
every Ueσ /\rτ such that xoe Umust contain clσΛrr (x0) IDclr (\Jr<mSr).
So J7* meets Sm c cl,Λrr (xm) c F* which is a contradiction. Hence
CLΛ' Γ (&O) = E and σ A r ^ = 0.

DEFINITION. A space (E, τ) is said to be supra-DiSΓ if, for any
open set U such that clr (U) — U Φ 0 there is a discrete set S c U
such that clΓ (S) - TJφ 0 .

Note that any first countable space is supra-DiV.

THEOREM 4.2. If (E, τ) is a regular To supra-DN space without
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isolated points then τ has a principal regular complement.

Proof. Let xt be any point of E and E7i = E — {α?J e r. Then
there is a discrete set S1 c E/Ί such that {xλ} = clΓ (SJ — C/ί For the
induction, consider any ordinal n between 1 and ξ, where ξ > \E\;
suppose that for each β < n the set Sβ(zE — clΓ (\Jr<β Sr) is defined,
nonclosed, discrete, and either clr (\Jr<β Sr) GΓ or any open set con-
taining clΓ (\Jr<β Sr) meets Sβ. Now for any subset AczE, either the
boundary of E — clr (A) is nonempty or clΓ (A) is open. Hence if
clr (Ur<* Sr) is not open then the boundary of Un = E — clr (\Jr<n ST) e τ
contains some point xn and Un contains a discrete set Sn such that
xn e clΓ (Sn) — Un. So any open set containing clΓ (\Jγ<n Sr) contains
the boundary of Un and hence, as a neighborhood of xn, meets SH.
If, on the other hand, clr (\Jr<n Sr) e τ, let xn be any point of Vn =
1? — clΓ (Ur<^ Sr) and Z7n = Vn — {xn}eτ. Then there is a discrete
set S» c Un such that {»,} = clr (Sn) - tT..

Consequently clΓ (\Ji*n Sn) = E and So = {xn: clr (Ur<* ^r) G τ ) is
discrete. Lastly, if clΓ (\Ji^r<n Sr) e τ then any τ-open set containing
clΓ (\Jo^γ<n Sr) ID So, and hence containing xn, meets JS Λ. Otherwise
clΓ (\Jι^r<n Sr) ί τ and any Ue τ such that UZD clr (Uo^r<^ >Sr) must meet
Sn. The conclusion then follows by the previous theorem.

DEFINITION. A space (E, τ) is said to be Bolzano-Weierstrass
compact if every infinite subset of E has a limit point in E.

DEFINITION. A space (E, τ) is said to be locally-B.W.-compact if
each point in the space has a fundamental system of neighborhoods
each of which is Bolzano-Weierstrass compact.

THEOREM 4.3. If (E, τ) is a separable, regular To locally-B. W.-
compact space without isolated points, then r has a principal regular
complement.

Proof. Let Q = {ql9 q2, } be a countable dense subset of E.
Let Vi be a B.W. compact neighborhood of x1 = qx. Since τ \ Q is T2

without isolated points, there is a countably infinite discrete S x c
intΓ(Fi) Π Q with xίeS1. For every xeSί9 the T2 regularity of E
and the discreteness of the countable set Sx imply that there is an
open set Vx such that x e Vx c clΓ Vx c Vu clr Vx Π clΓ ̂  = {x}, and if
x,yeSx and α? ̂  ί/, then clΓ F β Π clΓ Vy = 0 . Hence, for each x e S19

an infinite discrete set Sx may be chosen so that xe SxaVxf) Q.
The points of Sλ may be denoted by xln for n = 1, 2, •••, with

a?u = α?χ. The corresponding discrete sets may be denoted by S l n. For
each n, let yιn e clr (Sln) - Sln c clr VXίn.
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For each k > 1 let Qk = Q - clΓ (UP<* UΓ=I SPn) eτ\Q. If QkΦ 0 ,
let xk be the least element in the order on Qk.

Vk a B.W.-compact neighborhood of xk in ~clΓ (\Jp<k \J~=ιSpn)
Sk a countably infinite discrete set in Vk Π Qk with xk e Sk

xkn n = 1, 2, the points of £•* in the induced order
Skn the corresponding countably infinite discrete sets chosen from

the intersection of Q and a neighborhood, of xkn, whose closure is in
Vk with xkl = xk e Skl and satisfying clΓ Skn Π clΓ Skp = 0 for n Φ p, and

ykn e clΓ (S*n) - &..
Clearly clr (UΓ=i U - i S») z> clr (Q) - # .

Define a principal regular complement σ for τ with a base of
minimal open sets consisting of

Uk - Sιk U {Vuic-i)} U S t ι for k > 1,

up* = £ U U {2/p(ft-i,} for p , h > l ,

{y} for all » ί ( U * ^ * ) U ( U , , * ^ * )

The minimal open sets are discrete in (E, τ) because Skι was chosen
in a closed neighborhood outside clΓ (\JP<k U^=i Spnί) which contains
clr (Slk), and because yn(k^ e clr (S%(fe_υ) and clτ (S^^) Π clΓ (SnJfe) = 0 .

Lastly, i f Z / e r Λ σ , UΦ 0, then Ϊ7Π ( U P , * ^ ) ^ 0 . Let a be
the least ordinal for which there is a β such that U f] Sάβ Φ 0 and
/3 the least such β. Suppose a Φ 1. Then β Φl and 2/«(̂ -D e C7«̂  c
Z7eσ. But 2/£(£_D is a r-limit point of SάCβ-D so Z7eτ meets SΪJ_D

which contradicts the minimality of /9. Hence ά = 1. Similarly β = 1
and JSΠ = U1cz U for every Ueτ /\ σ and tf Λ r r = 0.

Note that local compactness and countable compactness imply
local-B.W.-compaetness.

THEOREM 4.4, For eαc& ieθ let (Ei9 τ<) δβ α regular To space for
which there exists a principal regular topology σ̂  on Ei such that

( a ) σ< V r4 = 1.
( b ) T&ere is α subset Wi c JEi ŝ c/̂  ίΛαί C7e σ< Λ T4 α^d Uφ 0

imply that UZD TΓ4.
(c ) If UeVi satisfies Uz)Wi then there are σrisolated points

in U.
(d) 77tβ seί o/ σrnonisolated points is dense in (Ei9 T{).

If E — ΐlieθ Ei and τ — Y[i€θ
Ti then (E, τ) has a principal regular

complement.

Proof. Well order θ; let (α?^ e E. If Xι is isolated in σ{ for every
ieθ, then let £(»»)* = {(»*)*}• Otherwise, there is a least element
ίeθ such that x-c is not σ -isolated; let B{xύ% = B; x (Xi)i¥:T where BL
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is the minimal σ -open set containing χ-c. The collection {#(#;);: (x^ e
E) forms a base of minimal open sets for a principal regular topology
σ on E.

Using hypothesis (a) for the first nonisolated coordinate, it is
easily seen that σ V T = 1.

Next let A\ A2 e σ A τ be nonempty. Now A\ A2eτ implies that
there are indices il9 i2, , ik e Θ such that A1 and A2 contain rectan-
gular neighborhoods. Hence there are points (&<)< e A1 and (y^i e A2

such that Xi = Vi for ί Φ ily , ik and, by (d), xif yt are σrnonisolated
for i — iu ' , ίk only. Let j = min {il9 , ik) and A} = {z e Eji {z} x
{x^iφj e A1} G τy, the inverse image of A1 under the (α^X^ -section; since
Xi is σr isolated for i < j then for any o^-nonisolated point xeA),
Bx x (Xi)i& c A1. In which case, Bx c AJ and hence A) e σό. Similarly
A) = {z e Ej: {z} x (y^j e A2} e σ, Λ ^ . Thus by (b), WjCiA)- n A) e σyΛry

and by (c), there is an isolated point x) = ^ in AJ Π -AJ which means
that

(Xi)i¥t3 x a?J G A1 and (^)i^ x y) e A2 .

Continuing this process and replacing xil9 , xik and yil9 , yik locates
a point common to A1 and A2. The absence of disjoint sets in r Λ σ
implies that τ Ar σ = 0.

In particular, the principal regular complement constructed in
Theorem 4.3 satisfies conditions (a), (b) and (d) required of the factor
spaces in Theorem 4.4; condition (c) can be accomodated without losing
others.
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THE DIOPHANTINE PROBLEM Y2 - Xz = A IN A
POLYNOMIAL RING

D E N N I S L. JOHNSON

Let C[z] be the ring of polynomials in z with complex
coefficients; we consider the equation Y2 — X3 = A, with
AeC[z] given, and seek solutions of this with X, YeC[z] i.e.
we treat the equation as a "polynomial diophantine" problem.
We show that when A is of degree 5 or 6 and has no multiple
roots, then there are exactly 240 solutions (X, Y) to the problem
with deg X g 2 and deg Y ^ 3.

It is possible that, A being of degree 6, solutions (X, Y) exist
with deg X > 2 or deg Y > 3. We "normalize" the problem so as to
remove these from our consideration, and give the following definitions:
if A is any polynomial of degree d, we shall permit its formal degree
to be any integer divisible by 6 and greater or equal to d. Given A
of formal degree 6k, we require the solutions X, Y of the equation
to be of formal degrees 2k, 3k resp., i.e. deg X fg 2k, deg Y g 3k.
This problem will be called the problem of order k. The restriction
on the degrees of X, Y causes no loss in generality, for if k is chosen
large enough, it will exceed 1/2 deg X and 1/3 deg Y. Furthermore,
the classification by k has a natural geometric interpretation. We
confine our attention to the problem of order 1. The order restriction
enables us to projectivize the equation to an equation of degree 6k,
with deg A = 6k, deg X = 2k, deg Y = 3k.

Suppose then that A has formal degree 6, and (X, Y) is a solu-
tion of proper formal degree, d e g X ^ 2 , degY^3. The projec-
tive curve K: ws — 3Xw 4- 2 Y = 0 has the ^-discriminant Y2 — X3 = A,
so the function z: K—> S2 (proj. line) has its branches among the roots
of A, for finite z. At z — oo we introduce z = 1/z, w = w/z = 2Ίι?
and get

(4) (4) = 0 :

If X = aoz
2 + . . . , Y = δ0z

3 + , then

JP = $ 3 - 3(α0 + <*!? + α 2? 2)^ + 2(60 + btz + •) = 0

and

| ^ 3 ^ 2 - 3(α o + . . . )

Now at z = 0 (i.e. 2 = 00) 3 has a branch point if and only if BFjdw = 0;

151
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i.e. we must have

wz — 3α0w + 260 — 0

and

Zw2 - 3α0 = 0

which is true if and only if Δ — — a\ + δ2 = 0 i.e. if and only if
deg A < 6. Hence if deg A < 6, we put a "formal root" of A at °o
with multiplicity 6-degA.

We now assume the roots of A to be distinct. This entails
deg A = 5 or 6, with no multiple (finite) roots. The roots will be called
z19 , z6. Note that if either Xor Y were zero at zι9 the other would
also be, since A is zero there (for the case zL = ©o just imagine the pro-
jective form of Y2 — X3 = A; the statement then reads that deg A < 6
and if deg Y< 3 then d e g X < 2 and conversely). Hence A would
have at least a double zero at zι9 (or at oo; deg A ^ 4) contrary to hy-
pothesis. Hence X, Y ^ 0 at zL9 and degX = 2 or deg F = 3. Away
from a branch point we may write locally:

-Y-VA
V V

Q / ^ - ^ /—Γ"

Wι —

VA + ω̂ / - Y - VA

for proper choice of the roots; as we go around zL, Λ/A changes to
— VA, and we get a root permutation wo<-*wQ, wt<->w2. Thus the
branching number bL at zL is 1, and the total branching is 6, so the
genus is g = 6/2 — r + 1 = 1, i.e. ϋΓ is a torus.

We should also prove that K is irreducible; but if K were re-
ducible, factoring as (w — ά)(w2 + aw + β) (where α, /S are polynomials
in z by Gauss's lemma) i.e., we have 3X = a2 — β and 2Y= — α/3,
and A - Γ2 - X3 = 4/53 + 15α2/22 + 12α4/5 - 4α6 - - (α2 - iβ){2a2 + /S)2.
It is easy to see that deg a ^ 1, deg β ^ 2, and hence deg(α2 — 4/3) ^ 2.
Since deg A Ξ> 5 we see that deg (2α2 + β) ^ 1, whence A has double
roots, contrary to hypothesis.

Thus, any solution X, Y gives us an elliptic curve K represented
as a 3-sheeted branched covering of S2 with branch points at zL, where
z: K—>S2 is an elliptic function of degree 3. Furthermore, w is also
a function on K, and its poles are among those of z, and of order ^
the order of the z-poles: for expanding wL at z — °o we get

i/(δ0

2 -
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i.e.

wc — (coLv —b0 + V~Δ' + ω2ί%J — bQ — i/Ύjz + lower powers of z

i.e. the order of w is ^ order of z at all places z = oo. (Clearly w
has no other poles). Note also that the sum ΣwL of the three values
of w over any z is zero.

Now suppose conversely that we are given a branched covering
of S2 with 6 simple branch points at the roots of A; we then have
an elliptic curve if and a meromorphic function z: K~+ S2 with 3 poles
(one of which is double if a branch point is at °o) at places k19 k2, kz.
Now the set of meromorphic functions w on K whose poles are among
the kc form a vector space V of dimension 3. Given any such w, the
sum w0 + wx + w2 of its 3 values over any z gives us a function which
is:

(1) finite for finite z
(2) of order ^ the order of z at z = °°
(3) symmetric in the sheets, so rational in z.

Hence Σwc must be linear in z: Σwt = awz + bw, where aw and 6̂ , are
constants depending on w. Note that aw and bw are clearly complex-
linear in w, i.e. α, 6: V—>C are linear maps. Furthermore, since both
w — 1 and w = 2 are in V we have α and b are linearly independent:
for

α(l) = 0 a(z) = 3

6(1) = 3 b(z) = 0

and so aw — 0, ί̂  = 0 defines a one dimensional subspace of V i.e.
a w Φ 0, defined up to a constant multiple, of degree fg 3, with its poles
among those of z, and with Σwc = 0. Hence w satisfies some equation

w3 - ZPw + 2Q = 0, with P & Q rational in z

but

— 3P = WiWa + w2^3 + wzw1 is finite for 2 finite

hence P is a polynomial; also its degree is ^ 2 since the order of wt

is S that of z at ©o. Likewise Q is a polynomial of degree ^ 3 in
z. Finally w is not rational in z since if it were, it would actually
be linear, w = az + 6, and then

Jw, = 3w = 3αz + 36 = 0, i.e. w = 0 .

Hence ^ 3 — ZPw + 2Q = 0 is irreducible, and thus defines the curve
K. Because of this, we must have the branch points as roots of the
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discriminant Q2 - P 3 (=£0); i.e. A\Q2 - P3; deg ζ>2 - P 3 ^ 6, and is
<6 if and only if as we have seen previously, ©o is a branch point
of K; in the latter case we also have deg A = 5, and so in every
case we have deg (Q2 — P3) = deg A, i.e. A = k(Q2 — P3) for some
constant k Φ 0. If now we replace w by w/a(ae C), we replace
P by P/α2 and Q by Q/a* and Q2 - P 3 by (Q2 - P3)/α6; Hence we
may choose a scale factor a, determined up to a 6th root of unity,
and a rescaled w such that Q2 — P 3 = A, i.e. (P, Q) is a solution.
Thus we have shown that any 3 sheeted covering of S2 with simple
branches at A = 0 gives us exactly 6 solutions to the problem (These
6 solutions are distinct since two could be equal if and only if P or
Q = 0, which is impossible). Furthermore, if we have two different such
branched coverings Ku K2, then the corresponding solutions (Pl9 Q:),
(P2, Q2) must be distinct, since the data (P{, Qc) actually define K.

Thus the only remaining problem is to enumerate the different
coverings possible.

We choose a base point q e S2, distinct from the roots ze9 and
loops pc (c — 1, , 6) encircling the roots zc acting as free generators
of the fundamental group πλ(S2 — \Jj z3), subject only to the relation
Pi ••• PQ — identity. Choosing a numbering 1, 2, 3 of the sheets over
q, each pc determines a permutation πc (in S3) of the sheets, and these
completely determine the surface. Since the branches are all simple,
these permutations must be transpositions: (12), (23) or (31). Also not
all the πc can be equal, for then two sheets over q would remain
unconnected from the third. If we choose πl9 π5 arbitrarily then
7Γ6 is determined by πjcz π6 = e. Note however that πl9 π5 may
not be chosen all equal, since π6 would also be same by virtue of the
relation. Hence we may choose τzu 7Γ5 in 35 — 3 ways, obtaining
all possible coverings of the required nature. Two such choices πe, π[
give the same covering if and only if they differ by a renumbering
of the sheets over q, i.e. if and only if π[ = gπcg~ι for some g e Ss.
Since at least two different transpositions occur among the πn con-
jugation by the elements of S3 produces exactly 6 different equivalent
choices of πe; hence the total number of different surfaces is (35 — 3)/6 =
(34 — l)/2 = 40. Remembering that to each such surface there are 6
solutions, we have:

THEOREM. If A is a polynomial of degree 5 or 6 without multiple
roots, then there are exactly 240 distinct solutions of the equation
Y2 — Xs = A in polynomials X, Y for which deg X <£ 2, deg Y <̂  3.

It should be pointed out that, in principle at least, the deter-
mination of the solutions (X, Y) for a given A could be solved by
classical elimination theory. For example, if X — aQz2 + aγz + a2 and
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Γ = boz
B + b,z2 + b2z + δ3 is a solution to Y2 - X3 = A = a:02

6 + + «β,
then treating the α, and &y as unknowns, formal manipulation and the
equating of coefficients gives us 7 polynomial equations in 7 unknowns
which presumably (assuming independence) gives a finite set of so-
lutions for the unknowns a,, bά. This also shows us that the ac and
bj are algebraic over the field of the ak. In practice, however, this
elimination would probably not be computationally feasible.
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STRONG LIE IDEALS

ALBERT J. KARAM

R is 2-torsion free semiprime with 2R = R. A Lie ideal,
U, of ϋί-strong if ana e U for all α e R,ue U. One shows
that U contains a nonzero two-sided ideal of R. If R has an
involution, *, (with skew-symmetric elements K) a Lie ideal,
U, of K is ϋΓ-strong if kuk e U for all k e K, ue U. It is
shown that if R is simple with characteristic not 2 and
either the center, Z, is zero or the dimension of R over the
center is greater than 4, then U ~ K. If R is a topological
annihilator ring with continuous involution and if U is closed
iΓ-strong Lie ideal, U = C Π K where C is a closed two-sided
ideal of R. A Lie ideal, U, of K is HK-strong if %3eί/ for
all ue U. A result similar to the above result for iΓ-strong
Lie ideals can be shown. Let R be a simple ring with in-
volution such that Z — (0) or the dimension of R over Z is
greater than 4. Let φ be a nonzero additive map from R
into a ring A such that the subring of A generated by
{φ(x): x e R) is a noncommutative, 2-torsion free prime ring.
Suppose φ(xy — y*x*) = φ{x)ψ{y) — φ(y*)Φ(%*) for all x, y e R.
As an application of the above theory, φ is shown to be an
associative isomorphism.

1* Introduction* R will denote a semiprime ring such that
2R = R and if 2r = 0, then r = 0. We call the latter property 2-
torsion free. Z will denote the center of R. If J? has an involution,
*, defined on it, S and K will be the set of symmetric and skew-
symmetric elements respectively. The Lie and Jordan products are
[x, y] — xy — yx and χoy = xy + yx for any x, y e R. If J , 7 g R,
[X, Y] will denate the additive subgroup generated by the set
{[x,y]:xeX and ye Y}. An additive subgroup, U, of R is a Lie
ideal of iϋ if [U, R] £ Ϊ7. If iϋ has an involution, we can similarly
define a Lie ideal of K.

This paper is concerned with the study of different classes of Lie
ideals of both R and K. A Lie ideal, U, of R is said to be iϋ-strong
if aua e U for all a e R, u e U. If U is a Lie ideal of K, U is K-(HK-)
strong if kuk e U (u* e U) for all ke K,ue U.

In the classical theory of the Lie structure of an associative ring,
the main theorem [6; Th. 1.3] states: if R is simple and U is a Lie
ideal of R, either U £ Z or [iϋ, ϋ?] g Ϊ7. We attempt to develop some
criteria for differentiating between Lie ideals of R containing [R, R]
and R itself. Similar criteria are developed for Lie ideals of K. We

157
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will have occasion to use the following results of Herstein [6; pp
1,5,10, and 28]:

( i ) R has no one-sided ideals which are nil of bounded index;
(ii) If aeR is such that [a, [a, x]\ = 0 for all x e R, then aeZ;
(iii) Let R be simple with involution and characteristic not 2.

If Z = (0) or the dimension of R over Z is greater than 4, then R =
S = K where S and K are the subrings of R generated by S and K
respectively.

If I S R, &{X) = {aeR:Xa = (0)} and J^(X) - {a e R: aX =
(0)}. The next two lemmas are analogs of a results of Baxter [3;
p. 2].

LEMMA 1.1. If U is a Lie ideal of R such that u2 = 0 for all
u e U, then U = (0).

Proof. Let u e U, a e R. As [u, a] e U, [u, a]2 = 0, Therefore,
uauau = u[u, a]2 = 0 and uR is nil of bounded index. By the previously
mentioned results, uR — (0). But R is semiprime, so £?{R) — (0).
Thus u = 0.

LEMMA 1.2. Lei i? tow cm involution, *. If U is a Lie ideal
of K such that u2 — 0 /or αW ue U, then U = (0).

Proof. Let u, ve U, then 0 = (u + T;)2 — u2 — v2 = ut? + vu. As
[̂ , v] G U, 2uv e U. Since 2R = R, [uv, K] g C/. Thus, for each keK,
uo[uv, k] = 0, and so, even more v{uo[uv, k]} = 0. Since u and v anti-
commute, expansion of this expression yields uvkuv = 0. Now suvs e if
for any s e S . So uv(suvs)uv = 0. Therefore, given ae R, a = s + k
where se S and keK, then (uv)a(uv)a(uv) = 0. We conclude that i^i?
is nil of bounded index. This guarantees uv = 0 /or all u,ve U.
Now, — uku = ^[^, &] = 0. Repeating the previous arguments for s e
S and keK, we conclude that % = 0.

2* iϋ-strong Lie ideals* In this section U will denote an it-
strong Lie ideal. If a, be R and u, ve U, one can easily show that
the following are in U: aub + bua, abu + uba, and uau. We associate
with U the set Bυ = {be R: aobe U for all αeiϋ}. This set is a Lie
ideal of R and ^ 2 e Bv for all ue U. The latter can be seen by
observing that if we set b = u above, we obtain au2 + u2a e U. Thus,
via Lemma 1.1, U Φ (0) implies BLT Φ (0).

LEMMA 2.1.

(i) Bn is an R-strong Lie ideal
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(ii) u2xu2 e Bσ f]U for all u e U, x e R.

Proof.
(i) We know t h a t BΌ is a Lie ideal of R. For arb i t rary x,ye

R and beBσ, [x°b,y] and [x, b]°y are in U. Thus, by adding and
subtract ing these terms, we have t h a t xby — ybx and bxy — yxb are in
U. Now,

%(yby) + (yby)x = {{xy)by — yb(xy)}

+ {yb(yx) - {yx)by} + {y(bx + xb)y) .

Since each term on the right is in U, x{yby) + (yby)x e U and Bσ

is ϋί-strong.
(ii) As u2 G BUf u2xu2 e Bυ. Moreover, u2xu2 = u(uxu)u e U. There-

fore, u2xu2 e Bσ ΠU.

THEOREM 2.2. C = Bσ Π U is a nonzero two-sided ideal.

Proof. Note that C is an iϋ-strong Lie ideal. Also C Φ (0) since
if this were so, for each u e U, u2R would be a nil right ideal of
bounded index. Let beC and x, y e R; xb + bxe U. Also

(xb + bx)y + y(xb + bx) — {x(by — yb) — (by — yb)x)

+ {{yx)b + b{yx)}

+ [b{xy) + (yx)b) .

As each term on the right is in U, (χob)oye U. Thus, xobeC. Now
2xb = xob + [x, b] e C. Since 2R = R,Rb^ C. Similarly, bR S C.
Thus C is a nonzero two-sided ideal of R.

We note that C is the same as the set Lσ = {ue U:uae U for
all ae R) which was used by Zuev [10] in his study of the Lie struc-
ture of R.

COROLLARY 2.3. If R is simple and UΦ (0), U = R.

This corollary allows us to study the jβ-strong structure of the
ring as it relates to minimal idempotents of R. If e is a minimal
idempotent, eUe is an eJSe-strong Lie ideal. Since eRe is a division
ring either eUe = (0) or eUe = eRe. We use this fact to prove the
next theorem.

THEOREM 2.4. Let H be the homogeneous component of the socle
which contains e. Then either HSU or i ϊ £ ^f(U) ΓΊ
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Proof. Recall that H is a simple ring. The theorem then follows
by considering H Π U.

COROLLARY 2.5. If R is completely reducible, U is the direct sum
of the homogeneous components of the socle which it contains.

This result is similar to that of Kaplansky [7].

Assume that R has the additional properties that 3R = R and R
is 3-torsion free. Let W be any Lie ideal of R such that u*e W for
all ue W. Let u,veW. We have a — 2(v2u+vuvJ

ruv2) — (u+v)3 +
(u — v)z — 2uz e W, β = [v, [v, u]] e W and 7 = [v\ u] e W. From these
we have: 3(v2u + uv2) = a + βe W, 6vuv = a — 2/3 e W, 6v2u — a + 3τ € W,
and 6uv2 = a — 37 e W. We now have enough to show a result similar
to Theorem 2.2.

THEOREM 2.6. Let W hz a Lie ideal of R such that uzeW for
all ue W. Then either W contains a nonzero two-sided ideal or u2 e Z
for all ue W.

Proof. Let a,beR and ue W. Since 2α[α, u] — [α, [α, u]] + [α2, u] e
W and 2iϋ = R, a[a, u] e W. Linearization of this expression yields
a[b, u] + b[a, u] e W. Upon multiplication by 6 and replacement of b
by v\ we obtain 6{α[^2, u] + v2[a, u]} e W. As 6v2[a, u] e W, 6α[V, u] e W
and this implies a[v2, u] e W. It immediately follows that R[v2, u]RQ
W of R[v2, u]R Φ (0), we are finished.

Assume R[v2, u]R = (0) for all u, ve W, then [v2, u]R is a nilpotent
ideal, hence [̂  2, w] = 0 for all u,veW. As [̂  2, α] = [v, va + αv] e Wy

[v2, [v2, a]] — 0. Thus, by remarks in §1, v2eZ.

The obvious corollary holds in the case where R is simple.

3* ^-strong Lie ideals* Let R have an involution, *, and let
U be a if-strong Lie ideal. For u,veU and k,le K, the following
are in U: kul + luk, klu + ulk, and u&u. We associate with U the
set B(U) = {beRiba - α*6* e £7 for all α e JB} This is the analog for
Lie ideals of the set which Baxter [3] uses in his study of the Jordan
structure of S. When there is no confusion, we write B{U) — B.

LEMMA 3.1

( i ) B is a right ideal
(ii) KBSB
(iii) u2eB for all ue U
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Proof. The proofs of ( i ) and (ii) are straightforward. We prove
(iii). As ue U, u2a — α*(V)* = u2a — a*u2. Then

u2a — a*u2 = {[u, ua + a*u]} + {u(a — a*)u} .

The first { } is in U since ua + a*u e K. The second { } is in U
since (α — α*) e K and £7 is iΓ-strong.

Now from Lemma 1.2, we know that if U Φ {Q),BΦ (0).
For we U, ke K, ae R and b,ceB, direct computation leads to the

following facts: αc*δ e B, c*δ e 5, bkb* e B Π E7, and tG&w e J5 Π U.

THEOREM 3.2. Lei R be a simple ring with characteristic not 2.
If Z = (0) or £/&e dimension of R over Z is greater than 4, then U =
K.

The proof of this essentially the same as the proof of Theorem 7
[3; p. 7]. As a corollary, we include a slight extension of a theorem
of Baxter [1; p. 74].

COROLLARY 3.3. Let R be as in the theorem. SoK, the additive
subgroup of R generated by the set {sok: seS and ke K} is a K-strong
Lie ideal and hence SoK — K.

The following results on ^f(β) and ^f(U) will be particularly
useful in the next section.

THEOREM 3.4. J*f{B) is a self-adjoint two-sided ideal.

Proof. The proof is similar to the proof of Theorem 2 [4; p. 563].

Knowing that Sf{B) is a two-sided ideal, we can easily show that
ΠB=(0) and £f(B) Π Z7 = (0).

THEOREM 3.5.

Proof. It suffices to show ^(UΓ) B) £ £?{U). Let beUnB,
keK, and xe £?(UΓi B). As bk-kbeUf] B,xkb = -x(bk-kb) = O.
Thus, £f(UΓίB)KS£f(UΓiB).

Let u e U, then w3 e U Π B so xuz = 0. Since u2k + ku2 e U Π B,
xu2ku = ίc(w2A: + A;i62)̂  = 0. Let ae R; ua* -f aue K, therefore 0 =
xu2(ua* + au)u = xu2au2. If we replace α by αa;, we have (#M2α)2 = 0.
That is, xu2R is a nil ideal of bounded index and so xu2 = 0 for any
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u e U. Upon linearization we obtain

(3.5.1) xuv — — xvu for u, v e U .

Since xuvu = — xvu2 = 0 and vkv e U, we have

(3.5.2) xu{vkv)u = 0 .

Let w e U and s 6 <S; xuv(ws + sw)vu = 0. Replacement of a; by
aw, expansion of the expression, and repeated use of (3.5.1) yields,
0 = —xwvuswvu. By repeated use of (3.5.1) and finally (3.5.2), we
have xwvukwvu — 0. Given a e R, since a = s + k for some s e S and
& e iΓ, we can write xwvuawvu = 0. Replace α by α# to obtain

xwvu(ax)wvu = 0 .

Then xwvuR is a nilpotent ideal so xwvu — 0. As uk — kue U.

(3.5.3) 0 = xwv(uk — to) = —xwvku

Let s G S; xwv(ws + sw)^ = 0. Moreover, since xwvwsv — 0, we have
xwvswv — 0. From (3.5.3), xwvkwv = 0. As before, this implies

(3.5.4) xwv = 0 .

Immediately, 0 = xw(vk — kv) — —xwkv. In particular α w&w = 0.
Since sws e K, xw(sws)w = 0. Also, 0 = xw(swk — kws)w = xwswkw.
Again, letting α — a + k for α e i?, we have xwawaw = 0. Via the
same techniques, xw = 0 or xe £?(U). Hence, <2f(Uf) B) g

4* Topological annihilator rings* In this section R will denote
a semiprime topological annihilator ring with continuous involution
such that 2R = R and if {2xa} is a net convergent to 0 e R, then {&„}
is also a net convergent to 0. U will be a closed ϋΓ-strong Lie ideal.

The definition of an annihilator ring says that ^f(R) =
(0) and if A(L) is a closed right (left) ideal not equal to R, then
J5f (A) ^ (0) ^ ( L ) ^ (0). So if B = B(U), H = Sfiβ) 0 B is dense
in J?. It is easy to show that if U is closed, B is closed. If J g
R, Cl(X) will denote to topolopical closure of X.

The following results have proofs which are similar to those given
by Baxter in [3; p. 4].

THEOREM 4.1.

1i) B is a two-sided ideal
(ii)
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(iii) B= B*
(iv) USB.

For any x,yeR, we adopt the following notation: (x, y)L =
xy — 2/*#* and (x, y)j — xy + y*x*. Using the results of the last
theorem, we prove

THEOREM 4.2. U — C Π K where C is a closed two-sided ideal.

Proof. Let V be the additive subgroup of S generated by the
set {(u, a)/, ue U and ae R}. If we show (U + V) to be a right ideal,
since it is self-ad joint, it must be a two-sided ideal.

Since U § B, (u, a)L — ua + a*u e U for all a e R. Let ceR, then

auc + c*ua* = ((α, u)L, c)L + (w, ( — α*c))L G F

and

c*^α* = ((α, u)L, c)j + (^, (-α^c))^ e V.

Since 2i2 = R, for any 2d e R, u(2d) = (w, d)χ, + (w, d)j e U + F. Thus,
S U + V. Also,

(u, a)j(2d) = (u, αd)L + {α*^(—d) + (—d)*ua} + (w, αd)^

+ {d*ua - α*^d} e C7 + V

and FJSS ί7+ F. Thus (U + F) i?S Z7+ F, or the desired conclu-
sion that (17+ F) is a two-sided ideal.

Let C = Cl(U + F). Z7£ C n JBΓ. Let α? e C Π K. There exists
a net {ua + vβ} such that ua + va--+x where uae U and va e F. As
x e K, {ua + va)* = -ua + ^α -+ a?* = —a?. Thus ^α — ̂ α -> α?. By sub-
tracing these expressions we obtain 2ua—>2x. Therefore ua-+x. Since
uae U and U is closed, x e U. Hence, C Π K = Z7.

5* iίiΓ-strong Lie ideals* In this section Z7 is an iMC-strong
Lie ideal. Jδ will have those properties as described in §1. We
further assume that 3R = R and R is 3-torsion free. iJif-strong Lie
ideals were defined by Herstein [5]. Baxter [2; p. 393] showed that
if R is simple with either Z = (0) or the dimension of R over Z
greater than 16 with Uξ£Z, then U = K. This can be refined by
using entirely different techniques.

As before, we associate with U the set B(U). B is a right ideal
and KB £ B. However, we are no longer guaranteed that u2e B for
all ueU. Hence the possibility that B = (0) does arise.

LEMMA 5.1. Let u,v,we U and ke K.
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( i ) βvuv e U
(ii) 6(uvw + wvu) 6 U
(iii) uv(wk — kw) + (wk — kw)vue U
(iv) u2v — vu2 e B.

Proof, ( i ) and (ii) follow in a manner similar to the remarks
preceding Theorem 2.6. (iii) holds because 2R = R and 3R = R.
Finally (iv) can be verified in the same manner as [6; p. 33].

If B = (0), u2v- vu2 = 0 for all u,veU. Let seS. Since [u2, s] =
[u, us + su] e U, [u\ [u2, s]] = 0. Also, if ke K, [u2, [u, k]] = 0, there-
fore [u\ [u2, k]] = [u2, uo[u, k]] = 0. We know that this implies

[u\ [u2, a]] = 0

for all a e R. Thus, from the first section, u2 e Z.

We now refine Baxter's theorem.

THEOREM 5.2. Let R be simple and of characteristic not 2 or 3.
If Z = (0) or the dimension of R over Z is greater than 4, then either
U= K or U2eZ for all ueU.

Proof. If BΦ(G), by the remarks preceding Lemmas 1.1 and 5.1
we have the alternative result.

We relate the notations of K- and ίfif-strong Lie ideals by calling
attention to the fact that if U is iίi£-strong, B Π U is If-strong.
Clearly B f] U is a Lie ideal. If ke Kand ueB f] U, then [k, [k, u]] =
k2u + uk2 — 2kuk. Now, k2u + uk2 e B Π U by the definition of B.
Therefore, kuk e B Π U since 2R = R.

Herstein [6; p. 28] has shown that K2 is a Lie ideal of R. It is
not difficult to show that if U is an ϋΈΓ-strong Lie ideal such that
B Π U = (0), then any x e B Π S commutes with every element in K2.
We need this fact to prove

THEOREM 5.3. Let R he a topologίcal anninilator ring with pro-
perties as described in the previous section. Assume also that SR — R
and if {3xa} is a net convergent to 0 e R, {xa} is a net converging to
0. If U is a closed UK-strong Lie ideal, then either u2 e Z for all
ue U, U contains the intersection of K with a closed two-sided ideal,
or u2v — vu2 e £f(K) for all u, ve U.

Proof. If B = (0), u2 € Z. Assume B Φ (0) and B Π U Φ (0).
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Since B Π U is if-strong, Theorem 4.2 guarantees the existence of C,
a closed two-sided ideal, such that CΠK=BnU^U.

Let B Π U = (0). As K2 is a Lie ideal of R, t = u2v - vu2 eK2Π
(Bf)S). Also, by the remarks preceding the theorem, [t, [t, a]] = 0
for all a e R. Therefore, teZ. Let k e K; tk + kt = tk-k*t* e BΓ\U =
(0). Therefore, tk = 0 or t = u2v - vu2 e ^

7* Application* We now parallel some of the results obtained
by Small [9] and Riedlinger [8] concerning an additive mapping whose
multiplicative property is defined relative to an involution. Let R be
a simple ring with involution, *, and characteristic not 2 such that
Z = (0) or the dimension of R over Z is greater than 4. Notice that
under these conditions R cannot be commutative. Let φ be a nozero
additive mapping from R into an associative ring A. Assume Rr —
Φ(R), the subring of A generated by {φ(r): r e R], is a noncommutative
prime ring such that 2Rr = R' and Rf is 2-torsion free. Let φ enjoy
the further property that φ(xy — y*x*) = Φ{x)Φ(y) — φ(y*)φ(x*) for all
x, y G R. We would like to show that φ is an associative isomorphism.
We will have occasion to use the following theorem by Baxter [1; p.
73] which was slightly modified by Herstein [6; p. 29]: If R is such
that 2R = R and K = R, then S = KoK, the additive subgroup of R
generated by the set {kol: k, I e K).

The next lemma is the key to much of what follows.

LEMMA 6.1. Ker φ n K = (0) .

Proof. We show Ker φ Π K to be a iΓ-strong Lie ideal. Let I e
Ker φ Π K and k e K. Since φ([k, I]) = [φ(k)9 Φ(l)] = 0, Ker φ Π K is a
Lie ideal of iΓ. Thus [k, [k, I]] e Ker φ Π iΓ or ^([ft, [A;, ί]]) = (0). We
may expand this and obtain

φ([k, [k, I]]) = φ(k2l - 2klk + Ik2) = φ(k2l + Ik2) - 2φ(klk) = 0 .

Now, φ(k2l + Ik2) = φ(k2)φ(l).+ Φ(l)Φ(k2) = 0. Therefore φ{klk) = 0 or
Ker φ Π if is a Z-strong Lie ideal.

By Theorem 3.2 either Ker^ Π K = (0) or Ker φ Γ) K = K. Assume
the latter. For s,teS and k,leK, [φ(k), φ(l)] = 0 and [φ(k), φ(s)] = 0.
As [s, ί] G JBΓ, 0 = φ([s, t]) = [φ(s), Φ(t)]. Because any xe R can be written
as x = s + fc, we have [0(sc), ^(i/)] = 0 for all x,y e R. Therefore, R'
is commutative, a contradiction. Thus Ker^ Π K — (0).

Let x, y e R, then
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Φ((xy - y*x*)χ* - x(xy - y*xψ) = {Φ(χ)Φ(y) - Φ{y*)Φ{χ*))Φ{x*)

-Φ{x){Φ{y*)Φ{χ*) - Φ(χ)Φ(y)}.

If y = s, we can write,

Φ((xy - y*x*)x* - x(y*x* - xy)) = φ(x2s - so;*2) = Φ(x2)Φ(s) - Φ{s)φ{x*2)

and

{Φ(χ)Φ(y) - Φ(y*)Φ(χ*)}Φ(χ*) - Φ(χ){Φ(y*)Φ(χ*) - Φ{χ)Φ{y)}

= (Φ(x))2Φ(s) - Φ(s)(Φ(x*))2 .

This can be rewritten as

for all xeR and seS.

LEMMA 6 2. .For any s e S and

keKt{Φ(s2)-(Φ(s)y} and

are in Z', the center of R\

Proof. Set u equal to either {φ(s2) - (Φ(s))2} or {φ(k2) - (Φ(k))2}.
From (6.1.1), Φ(s)u = ̂ (s) Consider 2^(ί^2 ίn) where ίx e S. We
write

2φ(t1t2 . . . « . ) = ^(ίA ί» + tn

+ Φ(tltz ίn — *n # # * <£*l)

= ^(iA ί» + i» ίâ i)

ί ) ~ Φ(K t2)φ(tl)}

By induction, u commutes with φ(t2 tn) and φ(tn ί2) Since
iA in + in <2*, eS, u commutes with ($(ίA ί» + ίΛ i»ίi)
Thus, [u9 ΦitJz tn)\ = 0. That is, t6 commutes with ^(S) But
under our hypothesis, S = R. Hence, u commutes with φ{R) and,
indeed, with 'φ(R) = R'. Thus u 6 Z'.

COROLLARY 6.3.

(6.3.1) {φ(x2) - (Φ(x))2}e Z ' / o r αZZ x e R .

Proof. If a? = s + ft, since (̂sft + ks) - {̂ (s)̂ (ft) + Φ{k)φ{s)} = 0,
2) - (^))2} - {̂ (β2) - (̂ (s))2} + {φ(k2) -

Let x,yeR. If we linearize (6.3.1), we obtain
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Φ(χy + yx) - {Φ(χ)Φ(v) + Φ(y)Φ(χ)} e Z'.

In particular, for 8,teS, Φ(st + ts) - {Φ(s)φ(t) + Φ(t)Φ(s)} e Z'. Also,
φ(st — ts) — {Φ(s)φ(t) — φ(t)φ(s)} — 0. Addition of these terms leads us
to φ(st) — Φ(s)φ(t) e Z'. Similarly, we can show that φ(kl) — Φ(k)φ(l) e
Z' for k,leK.

For notational convenience, let Φ(xy) — φ(x)φ(y) — xy for any x, y e
R. Thus the above says that s\kιe Z'. The definition of φ tells us
that sk — —k*. Also, we have kι = lk. Since these terms are in Z',
φ(s)kι — lkφ(s) = 0. Upon expansion and rearrangement of terms, we
obtain

(6.4.1) {φ(skl - Iks)} - {φ(s)φ(k)φ(l) - Φ(l)Φ(k)φ(s)} = 0 .

We can write φ(sk — ks) = φ(sk)φ(l) — φ(l)φ(ks). Replacement of this
in (6.4.1) and rearrangement of terms yields

skφ(l) - φ(l)ks = 0

or

(6.4.2) skφ(l) = φ(l)ks = ~Φ(l)sk .

Let m e K, by the above, there exists z' 6 Zf such that φ(ml + lm) =
φ(m)φ(l) + Φ(l)φ(m) + z\ As a result of (6.4.2) and this relation we
have that skφ(ml + Im) = φ(ml + lm)sk or sk commutes with φ(KoK).
The preliminary remarks guarantee for us that KoK=S. So, using an
argument exactly like that in Lemma 6.2, we can show

(6.4.3) skeZ' .

LEMMA 6.4. xy e Z' for all x,yeR.

The proof follows directly from (6.4.3) and the remarks immedi-
ately after Corollary 6.3.

COROLLARY 6.5. If Z' — (0), φ is an associative isomorphism.

Proof. As Z' = (0), φ(xy) - Φ(x)Φ(y) = 0. Thus φ is an associa-
tive homomorphism and φ(R) = Φ(R). Moreover, since R is simple, φ
is an associative isomorphism.

Let z\Φ 0) 6 Z'. Since j^(z') = {r' e R': r'zf - 0} is a two-sided
ideal in a prime ring, sf(z') — (0).

LEMMA 6.6. k8 = sk = 0 /or αϊϊ seS,ke K.

Proof. From (6.4.2) s^(0 = - Φ(l)sk for Z e K. By Lemma 6.4, s* e
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Zf, therefore skφ{l) — 0. Suppose sk Φ 0. By the remarks preceding
the lemma, we have φ(l) — 0, that is, KQ Ker φ. Therefore, Ker φ n
K = K, a contradiction. We conclude that 0 = sk = — ks.

COROLLARY 6.7. φ(xy - yx) = Φ(x)Φ(y) - Φ(y)Φ(x) for x,yeR.

We have shown that when Z' = (0), then φ is an associative iso-
morphism. Therefore, the following theorem is proved except when
Z' Φ (0).

THEOREM 6.8. φ is an associative isomorphism.

Proof. From Lemma 6.6y (s2)k — φ(s)sk = 0. Expansion and rear-
rangement of terms leads to (sψ — φ(s)sk = (s)sk — ssφ(k) = 0. From
Lemma 6.4, (s)sk e Zr so ssφ(k) e Zf. Let I e K. There exist z[ and z'2
in Z' such that ssφ(k) — z[ and ssφ(l) = z[. As ss e Z', we can write
0 = [Z[, zf

2] = (ssf[φ(k), φ{l)\ f o r a l l s e S a n d J c , l e K .

If (ss)2 ^ 0 for some s e S, then by the remarks preceding Lemma
6.6, [φ(k)9 φ(l)] = 0 for all Jc,leK. As φ([k, I]) = [^(Λ)L^(i)] = 0, we
conclude that [K, K] <Ξ Ker ^ Π -SΓ = (0). This implies K = R is com-
mutative, a contradiction. So (ss)2 = 0 for all se S. Since the center
of a prime ring is an integral domain, ss = 0. Upon linearization of
this expression, we obtain φ(st + ts) — {Φ(s)φ(t) + Φ{t)φ{s)} — 0 for all
ί , s e S .

For k,leK,kι eZ\ Thus there exists ^ 6 Z* such that kι - z[ =
0. Since ^ 2 G S , (A:2)Z - 0 and so (k2)1 - φ(k){kι ~ z',} = 0. Expansion
and rearrangement of terms leads to kkl — kkφ(l) + z[φ{k) = 0. In view
of Lemma 6.4, there is an element z\ e Zf such that kkl = z[. There-
fore we can always find z'd, z[, e Z' such that kkφ(l) = z'zφ(k) + z\ where
k is an arbitrary fixed element in K and I is allowed to vary in K.
Note that kkeZ'. For me K, there are z[ and z[ in Zf such that
kkφ{m) = z[φ{k) + z\. Thus 0 = (kk)2[φ(l), φ(m)] = [kkφ(l), kkφ(m)]. Via
the same argument as above, we can show kk = 0. Linearization of
this expression leads to φ(kl + Ik) — {Φ(k)φ(ΐ) + Φ(ΐ)Φ(k)} = 0. Now,
using this fact and the fact that both φ(sk) — φ(s)φ(k) ~ 0 and

+ ts) - {φ(s)φ(t) + Φ(t)φ(s)} = 0, we have that

Φ(xy + yx) = Φ(χ)Φ(y) + Φ(y)Φ(χ)

for all x,y e R. From Corollary 6.7, we know

Φ(xy - yx) = Φ(x)Φ(y) - Φ(y)Φ(x) .

Addition of these two expressions yields φ(xy) = (̂α )̂ (̂ /) or that $5 is
an associative homomorphism- Therefore, φ(R) = φ(R) and Ker φ = (0)
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since R is simple. Hence ψ is an associative isomorphism.
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ON LOW DIMENSIONAL MINIMAL SETS

SOON-KYU KIM

Let (X, G, f) be a topological transformation group. Sup-
pose that the phase space X is compact, separable metric, and
locally contractible and the group G is the additive group of
all real numbers R with the usual topology. If X is a minimal
set of diπii (X) ^ 2 then X is a manifold, imposing a further
condition on the action when dimz (X) = 2. Hence X is a
singleton, a circle or a torus according to its dimension.

A topological transformation group is a triple (X, G, f) consisting
of a topological space X, a topological group G, and a continuous
map / from G x X into X such that f(e, x) = x, f(h, f(g, x)) = f(gh, x)
for any x in X and any g, h in G and the identity element e of G.

The phase space X of a topological transformation group (X, G, /)
is called a minimal set if for each a e l the closure of the orbit of
x is X itself. A locally contractible space X is a space such that for
each x e X and for any open set U containing x there is an open set
V containing x, which is contractible in U to the point x

Chu [3] has shown that if the phase space X is a compact Haus-
dorff minimal set and dimL(X) <; n, then Hn(A, L) = 0 for every
proper closed subset A of X under any connected topological group G.
Here dimL(X) is the cohomology dimension of X in the sense of Cohen
([2], [4]) and L is a principal ideal domain. The Alexander-Spanier
cohomology theory is used here. Using this result, Chu has answered
questions that were raised by Gottschalk [6]. He proved that the
universal curve of Menger and the universal curve of Sierpinski are
not minimal sets under any connected topological group.

Chu has also shown that some cohomological natures of a minimal
set are similar to those of a generalized manifold. We try to see
whether certain minimal sets are actually generalized manifolds. In
this regard, we have some results in low dimensions as mentioned in
the abstract.

We use the section theorem of Bebutov and Hajek and the umbrella
theorem of Bing-Borsuk that we state here.

The section theorem ([11: p. 332] and [8: p. 210])
Given a topological transformation group (X, R, f) with X separable

metric and a non-fixed point xQ in X there exist sections SBX0 gener-
ating arbitrary small neighborhoods of x0 in X. If X is locally compact
or locally connected, then S may be taken compact or connected
respectively. Furthermore, if X is compact and locally connected,
then S may be taken locally connected.

171



172 SOON-KYU KIM

The umbrella theorem ([1: Cor. 5.3]).
In an ^-dimensional locally contractible separable metric space X

the set of all centers of π-dimensional umbrellas (see [1] for definition)
contained in X is of the first category of Baire.

We note that if the phase group is discrete then X is not neces-
sarily a homogeneous space hence not a manifold ([5], [6: p. 139]).

!• Zero and one dimensional minimal sets*

THEOREM 1. Let (X, R, f) be a topological transformation group
with X a locally connected compact separable metric space and R the
additive real group. Suppose X is a minimal set of dimL(X) = 0 or
1. Then X is a singleton or a circle.

Proof. Since X is necessarily connected, X is a point if dimz(X) = 0.
Let the dimension of X be 1. Since each point x e X is not a fixed
point, by the section theorem of Bebutov and Hajek there is a section
generating arbitrary small neighborhoods of x in X. That is, there
exist δ > 0, ε < 0 and a set S'x in f(S(x, δ), [ —ε, ε]) such that for each
y ef(S(x, δ), [ — ε, ε]) there exists a unique tye R such that \ty\ ^ ε and
f(y, ty) e Sx, where S(x, δ) is a δ-neighborhood of x and S(x, δ) is the
closure of S(x, δ). Furthermore, x is in S'x. There is a homeomorphism
h: Sx x [-ε, ε] ->/(&', [-ε, ε]) c X defined by h(sy t) = f(s, ί), s e Sx', t e
[-ε,ε].

Let Sx = {f(y, ty) e S'x\y e S(x, δ)}. Then Sx x ( — ε, ε) is homeomorphic
to an open neighborhood of x in X. So we may regard Sx x (—ε, ε) as
a neighborhood of x in X. Since the dimension of Sx x ( — ε, ε) is 1, the
dimension of Sx is 0 by [4: p. 222]. Since Sx may be taken connected,
Sx is the point x itself. Hence (—ε, ε) is a neighborhood of x in X.
This proves that each point x in X has an interval neighborhood.
Since X is compact, X is a circle.

2* Two dimensional minimal sets* Let (X, R, f) be again a
topological transformation group (continuous flow). If a minimal set
of dirnL(X) = 2 is a manifold then it is either a torus or a Klein bottle
since its Euler characteristic has to vanish [12: p. 197], Since a Klein
bottle cannot be a minimal set by a result of Kneser [10: p. 153]
(we are told this by Arthur J. Schwartz), X must be a torus.

The following seems plausible.

Conjecture. Let (X, R, f) be a topological transformation group
with X a locally contractible compact separable metric space. Suppose
X is a minimal set and dimL(X) = 2. Then X is a manifold, hence
a torus.
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If we further assume that X is almost periodic, then X is a
homogeneous space [6: p. 343]. By an almost periodic topological
transformation group we mean that for given ε > 0 there exists a
relative dense subset of numbers {τn} such that for all xe X, d{f(x, t),
f(x, t + τn)) > ε for all t e R and each τn, where d is a complete metric
on X. A set Y of real numbers is called relative dense if there exists
a T > 0 such that YΠ (t - T, t + T) Φ 0 for all t e R. It is known
that such a space X i s a torus by a result of [6: p. 39] and Lie group
theory. And Bing and Borsuk showed that such a space is a manifold
[1: p. 110]. But we give here a proof because the method of Theorem
1 can also be applied to prove this result and we hope that the
technique used in the proof is useful to prove that each point x in X
has a Euclidean neighborhood without assuming almost periodicity of
the action, thus proving the conjecture.

THEOREM 2. Let (X, R, f) be a topological transformation group
with X a locally contractible compact separable metric space and R the
additive real group. Suppose X is an almost periodic minimal set
of diτnL(X) = 2. Then X is a manifold (hence a torus).

Proof. Note again that X is necessarily connected. Since each
x in X is not a fixed point, by the section theorem of Bebutov and
Hajek there is a section generating arbitrary small neighborhoods of
x in X. That is, as in Theorem 1, x has an open neighborhood of
the form Sx x ( — ε, ε) in X. Here a section Sx may be taken connected,
locally connected and locally compact. Since the dimension of Sx x ( —ε, ε)
is 2, the dimension of Sx is at least 1 (in fact, it is 1 [4]). Since Sx

is locally compact, connected and locally connected, there is a non-
degenerate arc ay in Sx which contains y for each y e Sx. Then
ax[0, 1] x [ —ε, ε] is a closed 2-cell in X, and x x 0 = x e ax[0, 1] x [ —ε, ε].

Suppose az(0, 1) x ( —ε, ε) contains a limit point xQ oί X— (αJO, 1] x
[ —ε, ε]). Take an open set Fo of x0 in ax(0, 1) x ( — ε, ε) such that Vo

is compact and Vo c ax(0, 1) x ( — ε, ε). Let V be an open neighborhood
in X such that Vo = ax(0, 1) x ( —ε, ε) Π V. Since X is locally con-
tractible, there is an open neighborhood U of x0 in X such that U is
contractible in F t o the point x0 and U Γ) (X — (^[0, 1] x [ — ε, ε]) Φ 0 ;
i.e., there is a continuous map H: U x [0, 1] —> V such that H(y, 0) =
y, H{y, 1) = χQ for each y e U. Then for a point ze U Γ\(X- (ax[0, 1] x
[-ε, ε])), Hz: [0, 1] — V is a path from z to xQ and Hz[0, 1] ΓΊ (αJO, 1] x
[-s,s]) c Vf] (ax[0, 1] x [-e, ε]) - F o c F0(=α x(0, 1) x (-e,ε) . There-
fore, there is a path from x to xQ which misses ajfi, 1] x [ — ε, ε] —

^(0,1) X (-6,6).

Considering the path is ordered from z to χ0, there is a point
x'o e Vo such that x[ is the first point of the path Hz which meets VQ.
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Therefore, there is 2-dimensional umbrella with x'o as its center (see
[1] for definition). Then each point of X is a center of a 2-dimensional
umbrella by the homogeneity of X that follows by the assumptions.
This contradicts the umbrella theorem of Bing and Borsuk.

Thus an open 2-disk ax(0,1) x (—e, ε) is an open set in X. If
xeax(0,1) then ax(0,1) x (—e, ε) is an open neighborhood of x in X.
Otherwise to get an open neighborhood of x that is an open 2-disk
we appeal to the minimality of X (or homogeneity of X in this case).
For if x has no open neighborhood that is an open 2-disk then there
is no element of R that sends x into the open set αβ(0,1) x (—ε, ε).
This contradicts the minimality of X.

Therefore, X is a compact 2-manifold. Hence X is a torus by
the remark that we made in the beginning of the section.
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A PHRAGMEN-LINDELOF THEOREM WITH
APPLICATIONS TO Λ («, v) FUNCTIONS

THOMAS L. KRIETE, III AND MARVIN ROSENBLUM

A well-known theorem of Paley and Wiener asserts that
if / is an entire function, its restriction to the real line
belongs to the Hubert space cF~*L2(-τ, τ) (where &~ is the
Fourier-Plancherel operator) if and only if / is square
integrable on the real axis and satisfies \f(z)\ ^ KeτlImzl for
some positive K. The "if" part of this result may be viewed
as a Phragmen-Lindelόf type theorem. The pair (eiTX, eiTX)
of inner functions can be associated with the above mention-
ed Hubert space in a natural way. By replacing this pair
by a more general pair (u, v) of inner functions it is pos-
sible to define a space ^^{u9 v) of analytic functions simi-
lar to the Paley-Wiener space. For a certain class of inner
functions (those of "type ®") it is shown that membership in
^€{u, v) is implied by an inequality analogous to the ex-
ponential inequality above.

A second application of our results is to star-invariant
subspaces of the Hardy space H2, It is well known that if
u is an inner function on the circle and / is in if2, then in
order for / to be in (uH2)1 it is necessary for / to have a
meromorphic pseudocontinuation to | z \ > 1 satisfying

, 1*1 > 1 .
1 — I 38?

If u is inner of type (£, it is proved that this necessary con-
dition is also sufficient.

Let Γ = {eίθ: 0 < θ < 2π} be the unit circle and

R = {x : — o o < # < c o }

the real line considered as point sets in the complex plane C Let D
and ZL be the interior and exterior of the unit circle and let Ω and
42_ be the open upper and open lower half-planes in C. A function
Φ is outer on D or Ω if Φ is holomorphic on D or Ω and of the
form

Φ(z) = exp \ + h(eiξ) σ{dξ), ze D ,
Jr eιξ — Z

or

Φ{z) = exp — ( 1 + t z k&)dt, z G Ω ,
πi ΪR t — z

175
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where kl9 k2 are real with kLe L\Γ), k2eL\R), and σ is nor-
malized Lebesgue measure on Γ. A function F on D or Ω is in
•ϊl+ if F is holomorphic on D or Ω and if there exists an outer
function Φ that is not identically zero and such that ΦF is a
bounded holomorphic function on D or Ω. If F is in 3l+ on D or β,
then f(eiθ) = Iim F{τeiθ) exists for almost all βΐί? e Γ, or

/(a?) = limF(£ + iy)
y l Q

exists for almost all x in R. Such / form the class ^ " + of func-
tions on .Γ and R respectively. We shall systematically use capital
letters F, G, for functions in ίJΪ+ and lower case letters /, g,
for the corresponding functions in ίΛ

/~+.
Every outer function is in ϊl+. A function U in 3l+ is inner if

\u\ = 1 a.e . Every function F in 9ΐ+ has a factorization of the
form F = UG, where U is inner and G is outer.

Suppose U and V are inner functions, say, on Ω. ^€{u, v, R) is
the set of functions f on R such that uf and vf* are in ^/~+ on R.
(/* is the complex conjugate of / ) . ^(u, v, Γ) is similarly defined.
As shown in [5] one can associate with each / in ^f(u, v, R) a
unique function F separately meromorphic in Ω and ί2_ such that

$l+, and

(1) f(x) = Iim F(x + iy) = Iim F(α; - î /)

for almost all x in JS, where F(z) = F*(z*)> zeΩ. If F is mero-
morphic in β, then an extension of F to a meromorphic function on
flUfl- satisfying (1) is said to be a meromorphic pseudocontinuation
(relative to R) of F. Similarly, to each / in ^^(u, v, Γ) one as-
sociates a unique F meromorphic in D{jD^ such that
VFe$l+, and

( 2) f{eiθ) = Iim F(rew) = Iim F(re^)
ί lr ί l

for almost all eiθ e Γ where F(z) = F*^*" 1 ), £€lλ Meromorphic
pseudocontinuation is defined relative to Γ in a manner analogous to
the R definition.

Considerations about ^//{u, v, R) may be motivated by examin-
ing the special case when U(z) = V(z) = βizr, τ ;> 0. Then

^T(%, v, R) Π

is the class of functions that are the restrictions to R of entire

functions of exponential type <£ r such that I | F(x) \2 dx < oo. Such

entire F can be characterized by this integral condition together
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with the inequality

\F(z)\2<K\yΓ\smh(2τy)\

for all z e Ω (J £?_, where K > 0. The object of this paper is to ex-
tend this type of function-theoretic characterization to more general
^£{u, v) classes. The above mentioned application to star-invariant
subspaces arises from the fact that Λf(l, v) Π L\R) = H\Ω)QvH\Ω),
where H2(Ω) is the Hardy space of the upper half-plane. In § 3 and
4 applications are given to factorization problems for nonnegative
operator-valued functions and to generalized Paley-Wiener represen-
tations.

1* A Phragmen-Lindelof Theorem* In this section we shall
derive a Phragmen-Lindelof type theorem for certain functions
holomorphic on D, and then transcribe the result to obtain a like
theorem for functions on Ω. A rather different Phragmen-Lindelof
type theorem is discussed by Helson in [2, p. 33].

Recall that a Blaschke product B on D has a representation

(3) B(z) = I L , A ( s ) , B,(z) = -&- ̂ Ξ^-, zeD,
I Zj I JL Zj Z

where Σ^iO- ~ I *s I) < °° We take zf/\ zs \ = 1 if zs = 0. The
support supp B of B is the intersection of Γ with the closure of
{̂ iJiϋi. A singular inner function S has a representation

(4) S(s).

where /< is a positive singular measure on JΓ. The support supp S
is the closed support of the measure μ.

Any inner function U on D can be factored in the form U —
cBS, where c e C, \ c \ = 1, B is a Blaschke product and S is a singu-
lar inner function. The support supp ?7 of Z7 is supp B U supp S.

A closed set N on JΓ is a Carleson set if iV has zero Lebesgue
measure and if the complement of N in Γ is a union of open arcs
Ij of lengths ey such that Σu^i εil°& εi > — °°

THEOREM 1.1. (Carleson [1]). A closed subset N of Γ is a Car-
leson set on Γ if and only if there exists an outer function G on D
that satisfies a Lipschitz condition and such that

g(eiθ) = lim G{reiθ)
rίl

vanishes on N.
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DEFINITION 1.2. An inner function U on D is of type G? if
( i ) supp U is a Carleson set, and
( ϋ ) Σi s i [dist (sy, supp U)] < °o,

where fo } ^ are the zeros of U in D repeated according to multipli-
city.

LEMMA 1.3. Let B be the Blaschke product given by (3) and
suppose B is of type Gc. If G is a Lipschitz outer function on D
such that g(eiθ) = \imr uG(reiθ) vanishes on supp B, then

( 5) Σ (1 ~ I z, I2) ί I (1 - s / O - W ) Γ *(&) < -

Proof, Since G is Lipschitz there exists K > 0 such that

for all eiθ in Γ and λ in supp 5 . Thus for λ in supp B,

(1 - I sy |
2) J i (1 - zJeiβrι9{eiB) ? σ{dθ)

- zfeiθrι (eiθ - λ) |2

Applying Parseval's equality to the Fourier series for the function
(1 — z*eiθ)~ι (eiθ — λ) shows that this last expression is equal to

Since Σ ^ i ( l ~~ I zo I2) < °° a n ( i w e a r e free t ° le"k ^ vary over
supp B this inequality implies (5).

The following theorem is our Phragmen-Lindelof result for func-
tions on D.

THEOREM 1.4. Let U be an inner function of type G? on D.
Suppose F is holomorphic in D and there exists M > 0 such that

( 6 ) I F(z) |2 ^ Jfcf(1 - \z IT1 (1 - I U(z) |2), zeD .

Then Fe%l+.

Proof. U has the factorization U = cSiS, where | c \ — 1, B is a
Blaschke product of type © and S is a singular inner function of type
Gf. We have

( 7 ) ( l - | s | « ) - i ( i - i U(z)\>)

= (1 - I « I2)"1 (1 - I £ ( * ) I2) + I B(z) |2 (1 - \z \Tι (1 - I S(z) |2)
^ (1 - \z I2)"1 (1 - I B(z) |2) + (1 - \z I2)"1 (1 - i S(z) |2), « e i ) .
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If B is given by (3), then
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1 - I Biz) |2 = 1 - I B,(z) |2 +Σ IT
i = i

(1 - I Bn(z) |2)

I2)

I2) e D .

- S ( 1 "
Thus

(8 ) (1 - \z I2)"1 (1 -

If S is given by (4), then

(S(2)| 2 = e x p { - 2 ^ ( 1

Applying the elementary inequality (1 — e~ah)/h) ^ a if a, h ^ 0, with

h = 1 - I z |2 and a = 2 ί | eί? - s |~2 ̂ (df) yields
JΓ

( 9 ) (1 - μ I2)"1 (1 - I S(z) |2) ^ 2 ( I eiξ -r- « |"2 ^(df), 2 G ΰ .

Suppose now t h a t (6) holds and let G be a Lipschitz outer func-
tion such t h a t g(eiθ) = l i m r T l G(reiθ) vanishes on supp Z7. We have
from (6) - (9) t h a t

G(z)F(z) ~ I zj |2) I 1 - zfz |~21 G(z)

Jr

But for some K > 0

I G{z) \2^K2\ eiξ -r z |2 if eiζ e s u p p 27,

and μ is supported on supp S S supp [7. Thus for all ̂ e ΰ

I G(z)F(z) |2 ^ Λf Σ (1 - I «i Γ) 11 - ^?^

It now follows from Lemma 1.3 t h a t

sup ( I G{τeiθ)F{reiθ) |2 σ(dθ)

+ 2MK2 μ(Γ) .

< 00

so GFeH2. It is easy to multiply G by an outer function Gι and
obtain GXGF bounded, and so F is in $ft+

We shall next recast Theorem 1.4 for functions holomorphic on
Ω. Any inner function U on Ω has a factorization U — cBSVa,
where c e C, | c | = 1, B is a Blaschke product on Ω, S is a singular
function on Ω, and Fα(z) = βία% where 0 ^ α e R. Then supp 5 is
defined to be the set of limit points on R U {°°} of the zeros of B,
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and supp S is defined to be the support of the singular measure in
the representation for S analogous to (4), (Hoffman [3] p. 132-133).
We define supp Va to be empty if a = 0, and {°o} if a > 0. The
support supp U of ZT is supp B \J supp S (J supp Va.

A closed subset N of the extended real line R (J {°°} is a Carleson
set if N Π R has Lebesgue measure zero, °o e N, and the complement
of N in R U {°°} is a union of open intervals

Is = (a3, h), - °° ^ ^ < δy ̂  oo, j = 1, 2, . . .

such that Σi> A log <5y > — oo, where

g &j — aJ ί = 1 2
(1 + δ})1'8 (1 + α5)x/I

We understand in the above that oo/oo — 1.

Now let a: D—>Ω (J {°°} be the mapping defined by

a(z) = i(l + z)(l-z)-ί

if z Φ 1 and α(l) = c>o, and let β be the inverse of a. Then if

|Si + i | 2 z, + i\2

Moreover β maps (— oo, oo] onto Γ and N is a Carleson set on
R U {<*>} if and only if £(JV) (J {1} is a Carleson set on Γ. If £7 is
inner on Ω then [7° a is inner on J5 and supp (U° a) — β (Supp ?7).
Furthermore if {z^j^ is the sequence of zeros of 77, then {βfe)}^ is
the sequence of zeros of U ° a.

DEFINITION 1.5. Let U be an inner function on Ω. U is of type
d if supp U U {°°} is a Carleson set on R (j {°°} and

Σ ( m
j ^ l \ P. esu

where {̂ y}î i is the sequence of zeros of U in Ω repeated according
to multiplicity.

The following lemma follows from the above discussion.

LEMMA 1.6. Let U be inner on Ω. Then U is of type (£ if and
only if U ° a is of type & on D.

We can now recast Theorem 1.4 for the half-plane.
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THEOREM 1.7. Let F be holomorphic in Ω and suppose that U is
inner of type @ in Ω. Suppose that there exists K > 0 such that

(10) I F(z) |2 ^ KQrn z)"1 (1 + | z |2) (1 - | U(z) |2) for zeΩ.

Then Fe$l+ on Ω.

Proof. Set G — F ° a, so G is meromorphic on D and

I G(z) |2 ^ K [Im α(z)]-1 (1 + | a(z) |2) (1 - | U{a(z)) | 2 ), s e D .

We can replace 1 + | a(z) |2 by \i + a(z) |2 and the inequality still
holds but for a different constant K. Now

Imα(s) = ( l - | z | 2 ) | l - z | - 2

and

I i + α(«) |2 - 4 11 - 2 r ,
so

I G(«) \2^K'(l-\z I2)"1 (1 - I U(a(z) Γ), « G D .

But by Lemma 1.6 U © α is of type Gf, and thus Theorem 1.4 implies
that G G 9Ϊ+ on D. We then deduce that F = (? o /3 is in Sft+ on i3.

2* The classes ^ ^ (w, v, Γ) and ^ f (%, v, R). Suppose U is
inner in D. Then ί7 has a meromorphic pseudocontinuation to a
function £7 on X) (J 2)- that is given by

If supp U Φ Γ, then U on D has a single valued meromorphic con-
tinuation to ZL that coincides with U as given by (11). If F is
meromorphic on Z)_ then JP(S) = .f7*^*-1) defines F to be meromorphic
on Ό. Of course F need not be a pseudocontinuation of ί\

Analogous definitions are made for Ω. Suppose U is inner on Ω.
Then U has a meromorphic pseudocontinuation on fiufl- given by

zeΩ

If ί7 is meromorphic on β, then F(«) = F*(z*) defines F to be mero-
morphic on β_.

We say that F is 5ft0
+ o n ΰ i f F G ^ o n ΰ and JF(O) = 0. ^Vt is

defined to be the set of all / such that f(eiθ) = limr nF(reiθ) a.e.,
where FeWf on D.

Suppose U, V are inner functions on D. ^ C (u, v, Γ) is the set
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of all functions f on Γ such that ufe Λ^+ and vf*
v, Γ) can be characterized as follows: / e ^ΓQ(u, v, Γ) if and only if
there exists a function F separately meromorphic in D and £)_ and
such that

(13) f{eiθ) = lim F(reίθ) = lim F{rei0) a.e.,
r11 r il

with

(14) UFeW on D and VFeWt on D .

In case U and F are of type (£ we can deduce (14) from an in-
equality involving F, U and F.

THEOREM 2.1. Suppose U and V are of type Gc, αraϊ -P is mero-
morphic in D and has a meromorphic pseudocontίnuation to a func-
tion F on D U JD_. Further suppose there exists K > 0

(15) I F(z) |2 ^ K(l - I z I2)"1 (I Z7(«) |" 2 - | V(z) | 2), | z \ Φ 1.

Γfeβw f{ei0) = limr nF(reiθ) e ^£'Q {u, v, Γ).

Proo/. If F satisfies (15) on D then

I U(z)F(z) \2^K(l-\z IT1 (1 - I U(z)V(z) (2) ,

so UFem+ by Theorem 1.4.

If F satisfies (15) on ZL, then for all z e D,

] F(z)F(z) |2 g ίΓ| « |2 (1 - I z I2)"1 (1 - | U(z)V(z) |2)

so VFe$l+ by 1.4. But we also deduce that F(0)F(0) = 0, so
F . F e ^ . It therefore follows from the characterization of ^£Ό(u, vy

Γ) given in (13) and (14) that fe^fQ(u, v, Γ).

In case f e L2(Γ), i.e., in case \ | f\2dσ< oo, we have a stronger

result.

THEOREM 2.2. Assume that U, V are inner of type & on D and
f eL2(Γ). Then f e^/fo(u, v, Γ) if and only if there exists a func-
tion F satisfying the hypotheses of Theorem 2.1 such

f(ei0) = lim F{reiθ) a.e..

Proof. It follows from Theorem 2.1 that if F satisfies (15) then
fe ^ 0 (u, v, Γ). Conversely, suppose / e ̂  {u, v, Γ) Π L\Γ). Then

ufe Λ/~+ n L\Γ) = H2 and vf* e y^i n L2(Γ) S H2 with ( vf*dσ = 0.
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Thus uf and ΐ χ*/* are in (uvH2)1 Π H\ where χ(eiθ) = eiθ.
Now any ge (uvH2)1 Π i ϊ 2 is the boundary value function of

G(z) = \ e D .

But then it follows from the Schwarz inequality that

(16) I G(z) f ^ K ( l - \ z \ T ι ( 1 - I U(z) V(z) | 2 ) , z e D ,

where K = \ | # |2 c£σ.

By applying (16) to g — uf and g = vχ*f* we obtain

(17) I tf(s) F(z) \^K(l-\z \Tι (1 ~ I U(z)V(z) |2), ^ e D ,

and

(18) I V(z)F(z) \2^K\z\2(l-\z I2)"1 (1 - | U{z) V(z) |2), ^ ΰ ,

where K=[ \f\2dσ.

It is easily seen that (17) and (18) together is equivalent to

(15).

COROLLARY 2.3. Assume that V is inner of type (£ on D and
f eH2 on Γ. Then f e(vH2)L if and only if there exists a meromor-
phic function F on D U iλ_ such that

(19) f(eiθ) = lim F(reiθ) = lim F{reiθ) a.e.,
rίl rll

for which there exists K > 0

I F(s) |2 ^ JSΓ(1 - I z I2)"1 (1 - I V(z) I2), zeDijD-.

Proof. Note that (i i ϊ 2 ) 1 ΓΊ Jϊ 2 = ^f o (l , v, Γ), and use 2.2.

COROLLARY 2.4. Assume that U, V are inner of type & on D
and feL2(Γ). Then f e ^t(u, v, Γ) if and only if there exists a
function F meromorphic in D with pseudocontinuation F such that
(19) holds and there exists K > 0 such that

I F(z) \2^K(l-\z I2)"1 (I U(z) I"2 - I zV{z) |2), zeD .

Proof. Note that ^{u, v, Γ) = ^(u, χv, Γ).

The same kind of problem can be considered on Ω with minor
modifications in the proofs.

THEOREM 2.5. Suppose F is meromorphic on Ω and has a mero-
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morphic pseudocontinuation to a function F on Ω (j Ω- Assume that
U and V are inner functions of type E on Ω. Further suppose that
there exists K > 0 such that

I F(z) |2 ^ K{lmz)~" (1 + | z |2) (| ϋ(z) Γ - | V(z) |2), zeΩf)Ω_.

Then f(x) = lim^o F(x + iy) e

THEOREM 2.6. Assume that U, V are inner of type & on Ω and
f e LZ(R). Then fe ^f(u, v, R) if and only if there exists a function
satisfying the hypotheses of Theorem 2.5 such that

f(x) = \imF(x + iy) a.e..
yio

3* Factorization of nonnegative functions* In this section we
shall reformulate an operator factorization theorem of the type set
down in [5] in terms of inequalities of the type discussed in § 1 and
2. Throughout ^ is a complex separable Hubert space and B{^) the
space of bounded operators on ^ . We shall restrict ourselves to
considerations involving Ω rather than D in order to simplify the
exposition. Following [5] we say that a holomorphic function F on
Ω taking values in B{^) is in SRί(y) if there exists a nonzero com-
plex-valued outer function Φ such that ΦF is a bounded holomorphic
function on Ω that takes values in J5(£f). Any F in 9iί(y) has
strong boundary values a.e., that is, the limit \imyί0F(x + iy) = f(x)
exists a.e. in the strong operator topology.

We say that a holomorphic function G in 9ΐJίaf.; has a meromor-
phic pseudocontinuation G if G is meromorphic in Ω^ and the strong
limits limyT0 G(x — iy) and lim^o G(x + iy) exist and are a.e. equal.
For such G we define G by G(z) = G*(z*), zeΩ\jΩ_.

THEOREM 3.1. Let U be a complex-valued inner function on Ω
and F a meromorphic function on Ω taking values in B{^) such
that UFeyisi^)' Then F(x + iy) has strong boundary values f(x) a.e.
as y I 0. Assume that (f(x)c, c) ^ 0 a.e. for each c in ^ .

Then F has a factorization F(z) = G(z)G(z), zeΩ, where G is
in 5RJ(βr) and has a meromorphic pseudocontinuation G such that
UG e9ΐί(ςr). // there is real interval I such that /( .) is a.e. bounded
on I and U is analytically continuable across I, then G is analytical-
ly continuable across I.

Proof. This theorem is a summary of results proved in [5].

THEOREM 3.2. Theorem 3.1 may be modified as follows:
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( i ) The hypothesis "Z7Fe9lJ ( y )

w may be replaced by the stronger
hypothesis "there exists K > 0 such that

(20) || F(z) ||2 ^ K(lm z)~ι (l+\z |2) (| U(z) | - - | U(z) |2)

for all z in Ω".

S oo

(f{x)c, c} dx < oo for
- o o

all c in <g*, then G can be chosen to in addition satisfy

(21) I <G(φ, c> |2 ^ iΓc(Im z)"1 (1 + \z |2) (1 - | U(z) |2), c e i f

for some Kc > 0 (Kc depends on c) and all z e Ω (J Ω_.
Proof. The proof of 1.4 shows that (20) implies that
Assume the hypotheses of (ii). Now / = g*g, where g(x) are

the strong boundary values of G(x + iy) as y \ 0 and y \ 0. We have
\<g( )c,cy\>^\\g(-)c\\2\\c\\2 = <f( )c,c}\\c\\> f o r a l l c i n i f , so
<flr( )e, c)eL2(R) for all c in if. (21) now follows from Theorem 2.6
and the fact that (g{ )c, c) e ^ ^ ( 1 , w, i2).

As an example suppose F{ ) is an entire function taking values
in B{^) such that {F(x)c, c} ^ 0 whenever C G ^ 7 and xeR, and
there exists τ ^ 0 and ^ > 0 with

|| F(z) ||2 ^ Ky~ι (l+\z |2) sinh 2r̂ /, z = x + iyeΩ .

Then JP is factorable, F(z) = G(z)G(z), where G( ) is an entire
function taking values in B(^). This follows from Theorems 3.1
and 3.2 (i) with U(z) = eiTZ. G( ) is entire by the last statement in
Theorem 3.1. It also is deducible from Theorem 3.6 of [5].

S oo

(F{x)c, c} dx < oo, then
by (21) G satisfies

I <fi(z)c, c ) |2 2£ K c y ^ ( l + \ z | 2 ) ( 1 - e~*") ,

for all z = x + iy with y Φ 0 and C G ^ . iζ. is a constant depending
on c.

4* A Fourier type transform and the Paley-Wiener represen-
tation* As before let U and V be inner functions in Ω and denote
the space ^(u, v, R) D L2(R) by ^f2(u, v, R). This space is easily
seen to be a Hubert subspace of U{R). As noted in the introduction
^f2(eix% eixτ, R) is the restriction to the real axis of a classical Paley-
Wiener space of entire functions. That
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(where j^ is the Fourier-Plancherel operator on U(R)), is the content
of a well known theorem of Paley and Wiener,

In [4] one of the present authors generalized this theorem to
give an integral representation for any of the spaces ^2{u, v, R).
In this section we combine this result with Theorem 2.6. First we
shall set down some basic facts from [4]. For simplicity we assume
that U and V have no zeros and are normalized so that U(i) and
V(i) are positive. U then has a factorization U(z) = S(z)eiaz where
S is a singular inner function in Ω and a ^ 0. Using the usual
representation for singular inner functions we can combine the two
factors in the following convenient form:

(22) U{z) = exp ( i \ 1 + t z μ(dt)
\ JR* t — z

where μ is a finite positive measure on the extended real numbers
i2* = R U {°°} whose restriction to R is singular and with μ({°°}) —
a. In the integrand, and elsewhere below, we always take
(z oo)/oo — z for any complex z. V has a similar representation with
corresponding measure Y.

Let τ be the total variation of μ and suppose that a is an un-
valued measurable function defined on [0, τ] such that m(a~ι(E)) =
μ{E) for every subinterval E of R*. For example, we could take
a(t) = inf {xeR*: μ ((—°°, x]) ^ t}. Extend the definition of a to
[0, oo) by setting a(t) = oo if t > τ. For each t ^ 0 let

It is clear from (22) and a change of variables that Uτ — U. More-
over, Ut is an inner function for each t and U8 divides Ut if
0 ^ 8 < t.

In a like manner one can associate σ, b: [0, σ] —> R * and Vt

(analogous to τ, a and £7*) with the inner function V. Note that
Vσ = V. Ut and Vt have pseudo-continuations to ί2_ given by (12).
For any z in β (J £_ let

() - z

and

Now let iP(β) and H\ΩJ) denote the usual Hardy spaces of
functions analytic in Ω and £?__ respectively, which can also be con-
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sidered as orthogonal complements of each other in L2(R). It was
shown in [4] that the mappings W1 and W2 given by

and

(Wig) (z) = (27Γ)-1'2 Γ Hz

+(t)g(t)dt, lmz>0
Jo

(W2g) (z) = (2π)-1/2 Γ' Hr(t)g(t)dt, Imz < 0 ,
Jo

are isometries from L2(0, oo) onto H2{Ω) and H2(ΩJ) respectively.
Let JSΊ L2(-oo, 0)->L2(0, oo) be the operator (Eg)(t) = g(-t).

The W2E@ W1 can be considered as a unitary operator from

L2(-oo,O)0L2(O, oo) = L2(R)

onto H\Ω_)@H2{Ω) = L\R). This operator takes L\-s,t) onto
^ f 2(%s, vu R) for all s, ί ^ 0. If μ and 7 are supported on the single-
ton {00} or, equivalently, if a(t) = b(t) = 00 a.e., then W2E (& Wx is
the adjoint of the Fourier-Plancherel operator. Combining this with
Theorem 2.6 yields the following result.

THEOREM 4.1. Let U and V be inner functions of type (£. Let
F be analytic in Ω (j β_ and suppose that the two sided boundary
function f(x) = lim)a/M) F(x + ίy) exists a.e. and lies in L2(R). Let
s, t Ξ> 0. Then the following are equivalent.

( i )

I -F(2?) | ^ K(lm z)~ι (1 + I z |2) ([ [7s(a;) | — [ Vt(z) |2), 2;ei3ufl-.

(ii) There exist a.e. unique functions gx in L2(0, ί) απd ^2 in
L2(0, s) st6cfc ίAαί

F(z) = (2π)^ΛtHa

+(z)g1(x)dx
Jo

"T" x**^) 1 - " 2 y*t///(/2\ *v^"k> XIII Λ- -7- V/ .
Jo

Moreover, \\ f \\\ — \\ gγ\\l + || g2 \\2

2

in proof. We refer the reader to the papers.

6. H. S. Shapiro, Generalized analytic continuation, Symposia on
Theor. Phys. and Math. Vol. 8, Plenum Press, New York (1968),
151-163.

and,
7. R. G. Douglas, H. S. Shapiro and A. L. Shields, Cyclic vectors
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and invariant subspaces for the backward shift operator, Ann. Inst.
Fourier, Grenoble, 22 (1970), 37-76,

for more detailed information on meromorphic continuation and (uH2)1.
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NOTES ON RELATED STRUCTURES OF A UNIVERSAL

ALGEBRA

WILLIAM A. LAMPE

The related structures of a universal algebra % that are
studied here are the subalgebra lattice of % the congruence
lattice of %, the automorphism group of % and the endo-
morphism semigroup of 51. Characterizations of these struc-
tures known, and E. T. Schmidt proved the independence of the
automorphism group and the subalgebra lattice. It has been
conjectured that the first three of the structures listed above
are independent, i.e., that the congruence lattice, subalgebra
lattice, and automorphism group are independent. One result
in this paper is a proof of a special case of this conjecture.
Various observations concerning the relationship between the
endomorphism semigroup and the congruence lattice are also
in this paper. In the last section a problem of G. Gratzer
is solved, namely that of characterizing the endomorphism
semigroups of simple unary algebras. (An algebra is simple
when the only congruences are the trivial ones.)

The characterizations of the various related structures are as
follows: the congruence lattice is an arbitrary algebraic lattice
the subalgebra lattice is an arbitrary algebraic lattice; the auto-
morphism group is an arbitrary group; the endomorphism semigroup
is an arbitrary semigroup with identity. The "independence of
the automorphism group and the subalgebra lattice" is more
precisely phrased as: for each pair <©, 8>, where © is a group
and 8 is an algebraic lattice with more than one element, there is
an algebra 2t with © isomorphic to the automorphism group of 21
and with S isomorphic to the subalgebra lattice of the same algebra
St. All statements about the independence of related structures will
be phrased in this way.

Mentioned above was a proof of a special case of the independence
of the triple consisting of the automorphism group, the subalgebra
lattice, and the congruence lattice. As a corollary one gets a proof
of a special case of the independence of the pair consisting of the auto-
morphism group and the congruence lattice. E. T Schmidt published
what was supposed to be a proof of the independence of this pair of
structures. But, his proof [10] was incorrect. (See e.g. Exercise 31
of chapter 2 of [2]) The author has just completed a proof of the
independence of this pair [8].

The terminology essentially conforms to that in [2]. ω(oτ ωA)
will denote the equality relation on the set A, and φ r cA) will denote

189
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the total relation. Θ(a0, αj will represent the smallest congrucence
collapsing α0 and aλ. 2 = <L, Λ, V> will denote a lattice. (£(21) =
<^(2t); S> will denote the congruence lattice of 2t @(Sί) = <^(2t); e>
will denote the subalgebra lattice of St. ©(21) = <G(2t); °> will denote
the automorphism group of St. @(2t) = <152ί); o> will denote the endo-
morphism semigroup of 21.

An important algebra for dealing with endomorphism semigroup
and automorphism group problems is the algebra of left multiplications
S(@) of the semigroup @. The operations are all left multiplication
maps and the endomorphisms are all right multiplication maps. As
in Cayley's Theorem, the semigroup of right multiplications of @ is
isomorphic to @.

Many of the details of the proofs which are left out can be found
in the author's dissertation [6J. The various characterizations men-
tioned above can be found in [1], [2], [3]. E. T. Schmidt's result on
the independence of the automorphism group and subalgebra lattice
is found in [11].

1* The property restricting the representation of <©, 80, Sx> as
<©(St),

Let 21 = (A; F} be an algebra. The lattice 8 is assumed to be
an algebraic lattice. Let αeL, and let (x^iel) be a family of
elements of L.

Essentially the property mentioned in the heading is: there exist
α0, ax € A such that for any x Φ a0 and for any congruence β, if aQ =
x(θ)y then a = a^θ). We will give a generalization of this property
and a property of the congruence lattice equivalent to the more
general property. Also, the class of algebraic lattices having the
equivalent property will be discussed.

Let α0, ate A with a0 Φ αx.

(**) There exists a partition {Ao, AJ of A such that a^eA^ and
for any (x, y} e AoxAl9 θ(aθ9 a,) ^ θ(a?, y).

( * ) If α ^ V (χi\i e I)> then a <£ α?< for some i.

Notice that the originally stated condition is a special case of
(**) where AQ — {α0}. Obviously, if an element a of 8 has property
(*), then a is complete-join irreducible. Also, a has property (*) if
and only if α's dual ideal is completely prime.

PROPOSITION 1. // property (**) is satisfied for <α0, αx>,
β(α0, αx) satisfies property (*) m £Λβ congruence lattice of 2t.
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REMARK. This statement was first observed by G. Gratzer.

Proof. Suppose that (Φi\iel) is a family of congruences and

that θ(a0, di) £ V (Φ<|ί e i ) . There exists a sequence a0 — zQ, •••, znf

= aly with Zj e A such that zs = zj+ι{Φi3) for some iά e I. Since α0 e
Aoy αx e Au and {Ao, AJ is a partition of A, there is a k such that s* e
Ao and sA+1 G Alβ So <9(α0, α j £ θ(s t, zk+1) £ Φ4jfc.

PROPOSITION 2. // there is a congruence θ different from co having
property (*), then θ — θ(a0, α j for some a0, ax in A with a0 Φ at and
property (**) is satisfied for <α0, α^.

Proof. Always θ = \/(θ(x, y)\x = y(θ)). Since θ has property (*),
θ = θ(aj, y) for some x,yeA. Fix α0, αx such that θ = θ(α0, αj . Set

5 0 - : {x\Θ(x,a0) g

ft - {y\θ(y,ad g θ(α0, αx)

ft=
Set Ao = Bo and Λ = ft U ft. It follows that 4 0 Π 4 i = 0 . Clearly,
aQ e Ao and α: € A :. Also A = A1 U A2.

Let xoeAo and ^ e i j and consider θ(α?0, α^). First suppose that
α?! G ft. Thus, θ(ίc0, α0) ^ θ(α0, αj and Θfe, α:) g Θ(α0, α^. Now, since
θ(aQ, αx) £ θ(ί»o, α0) V θ(αj0, a?i) V <9(̂ i, αx) and since β(α0, αt) has (*), we
have that β(α0, αx) £ θ(aj0, »i) Now suppose that ajj e ft. So @(α0, αx) £
Θ(a0, xλ) £ <9(α0, x0) V ©(OJO, «I), and thus, Θ(a0, a,) £ ®(a?0, »i)

Combining these two propositions with the congruence lattice
characterization theorem, we get the following statement.

PROPOSITION 3. If 2 is an algebraic lattice, the following are
equivalent:

( i ) there exists a Φ 0, ae L, such that a has property (*);
(ii) there exists an algebra SI = {A; F} with (£(2t), the con-

gruence lattice of 91, isomorphic to S, and there are α0, aί e A, α0 Φ
alf such that (**) is satisfied for <α0, α : );

(iii) /or α^?/ algebra §1 — <A; ί 7 ) with (£(§I) isomorphic to S,
ί/̂ βrβ are a0, a ^ A , a0 =£ a^ ŝ c/̂  ί/̂ aί (**) is satisfied for <a0, ax>

Let SΓ be the class of algebraic lattices having an a Φ 0 with
property (*). Several simple observations can be made. The five
element modular non-distributive lattice is not in 3Γ since none of
the dual ideals generated by a nonzero element is prime. Every
distributive algebraic lattice with a complete-join irreducible element
is in 3ίΓ. If Si and S2 are algebraic lattices, then 21 + S2 e
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denotes ordinal sum). (The zero of S2 is a nonzero element in 8X +
82 having (*)). Every algebraic lattice 8 is both a complete sublattice
of and a homomorphic image of a member of J%Γ since K^Se3ίΓ m

(G£Λ denotes the ^-element chain.) Also, observe that for a family
(Si Ii 61) of algebraic lattices, 77(8;\ie I) e SΓ if and only if there
exists at least one j el with Sy 6 3ίΓ.

2. The construction for representing (©,80,8,) as <@(2ί),@(2I),@(2t)>.
First we need some notation. Let 21 = <A; F} be an algebra and
X £ A. Set F(% X) = {φ\φ is an endomorphism of 21, {x} — xφ~ι

for all xeX}, and set g(2I, X) = <F(2ί, X); o>. In other words, an
endomorphism φ is in JF(2I, X) if (A — X)φ g i - I and xφ = x for
x e X. Clearly, g(2t, X) is a nonempty semigroup with identity.

S*(yf) is the subalgebra system of 21. Recall that Θ(2I) is the
subalgebra lattice, that (£(21) is the congruence lattice, and that G?(2I)
is the endomorphism semigroup.

THEOREM 1. Suppose that 21 and 33 are algebras, that 21 is simple,
that there is a £7g A, \U\ — 2, IT'S D for every DeS^{%), and that
there is an <α0, αL) e B2 with aQ Φ a1 for which property (**) is satis-
fied. There exists an algebra 21' such that:

( i ) @(2Γ) is isomorphic to @(2I);
(ii) K(2ί') is isomorphic to (£(33);
(iii) @(2ί') is isomorphic to g(St, [7).

Proo/. Let 21 = <A; F> and 33 = <J5; (?> and U = {̂ 0, %J and let
<α0, a^eB2 have (**) and let α0 ^ αlβ Assume that A and 5 are
disjoint. For each x e B (J U define a nullary operation fx whose value
is x. Let {Ao, AJ be a partition of I? for satisfying (**). Define four
unary operations as follows:

uQ, x e A U A Q .

α1? otherwise

α0, a; G A .

αx, x e B

'x,xeA— U

uo,xeB{j {u^

aQ, x — u0

For xe A!, set x — x if xe B and set x = α0 if a?e A. Let a?t e A'.
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Extend the operations of F and G to A' as follows: For feG set
/(α0, , α%_J = /(d0, , α%_i). For feF, if all α* e A, then keep
the value of / in 21, and set f(a0, •• ,αΛ_1) = u0, otherwise. Set
F* = F(lGv{fm\xeB\jU}\J{gi\i=l,2,S,4}. Set W = <A'; F'>.

For each D e ^(21), set D = DUB. For each ^ G F(2t, J7), define
φ by letting xφ — xφ if ^ e i and cc<p = x if a e ΰ . For $ e ^(21)
define 6>* by letting 0* = α^, the equality relation on A, if Θ(a0, at) g= Θ
a n d θ* = cA\J {(x, b)\xeA,b = aQψ)} U{<&, ^>|a? € A , b = ao(Θ)} in c a s e
Θ(a0, α j g ^ . Now set Θ = Θ U $*• To complete the proof one shows
that D -+D,φ-^φ, and Θ —>Θ are isomorphisms. The lengthy, but
routine, calculations are left to the reader.

In the proof above the operation qΛ guarantees that an endomorphism
σ of 21' has the property that Aσ £ A. The operations gu g2, gs

guarantee that α0 = ax iff u0 Ξ ^ iff α0 == ax = u0 = ^ . That 21 is
simple guarantees that if x, ye A and x Φ y and x ^= y then a; Ξ % 0 =
%!• Finally #3 guarantees that if x e A and yeB and a; Ξ /̂ then

α0 =

3. Representing <®, 80, 2,} as <©(§!), @(§ί), (£(§!)>.

LEMMA 1. If %— {A; F} is an algebra, then there is an algebra
= {A; F) such that:

( i ) §Γ is simple)
(ii) D is a subalgebra of St iff D is a subalgebra of SI';
(iii) i7(2t) = {φ\ψ€ .27(21), <p is 1 — 1 or φ is constant}.

REMARKS. Roughly (iii) says JE^SΓ) is as big as is possible given
(i) and (ii).

Suppose @ is a semigroup in which every element is right cancella-
tive or a right zero. Every endomorphism of S(@) is 1 — 1 or constant.
By applying this lemma to S(@) we get an easier proof that (β; K2>
is representable. (See [3].)

Proof. Add an additional operation g defined as follows:

[u, if x Φ y
g(x, y, u, v) = ,

[v, if x = y .

Sμpgpse xΦy and Θ is any congruence of 21' with x = yψ). Let
u,veΆ. Thus, M = flr(a?, y, u, v) = 5f(?/, ?/, w, v) = v(β). So Θ — c9 and
(i) is established.

The rest is routine.
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The operation used in the above lemma was used in [5] in a
different context, but in each case the purpose of the operation is to
"fill out" subalgebras in a direct power. This 4-ary function is equi-
valent to the ternary discriminator function [12] [9] in that each can
be expressed as a polynomial in the other.

A modification of the above 4-ary function is used in Lemma 6.
It does not appear that the modified 4-ary function is equivlent to a
ternary function.

LEMMA 2. If 31 is any algebra, then there is an algebra 2t' —
<A'; F') and U S Af with \ U\ = 2 such that:

( i ) @(St) is isomorphic to
(ii) USD for all De
(iii) g(2t, U) is isomorphic to @(St).

Proof. Add two elements u0, ux. Let u0 and uγ each be the value
of a nullary operation. Extend every operation / of 3t by setting
f(x0, , a?Λ_1) = u0 if Xj e U. The rest is obvious.

The next lemma is a theorem due to E. T. Schmidt [11]. Recall
that @(2t) is the automorphism group of St.

LEMMA 3. // © is any group and 2 is any algebraic lattice with
L\ > 1, then there is an algebra % with © isomorphic to @(3t) and

2 isomorphic to @(St).

THEOREM 2. If © is any group, if So and 8X are algebraic lattices
such that \LQ\ > 1, and if there is an a Φ 0, ae Llf with property (*),
then there is an algebra St such that:

( i ) © is isomorphic to ©(§1);
(ii) 80 is isomorphic to @(St);
(iii) Sx is isomorphic to

REMARKS. A best possible representation theorem would, of course,
have the restriction that \Lλ\>l. Also, if |L o\ = 1, then it is necessary
that \G\ = 1. Of course any triple of the form <1, Ŝ , S> is represen-
table. (©! is the one element chain.)

Proof. Let S3 be the algebra given by Lemma 3 when applied
to © and So. Let S3' be the algebra given by Lemma 2 applied to S3.
Let 93" be the algebra given by Lemma 1. Let (£ be the algebra
constructed in the proof of the congruence lattice characterization
theorem [2], [4] or [7]. Let 2t be the algebra given by Theorem 1
when applied to S3" and ©. The rest is routine.
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COROLLARY 1. If ® is any group and 2 is any algebraic lattice
with a Φ 0, a e L, having property (*), then there is an algebra SI with
© isomorphic to ©(SI) and 2 isomorphic to (£(SI).

COROLLARY 2. If 80 is any algebraic lattice and 2ί is an algebraic
lattice with an a Φ 0(α e LJ such that a has property (*), then there is
an algebra SI with @(SI) isomorphic to 20 and &(5I) isomorphic to 8L.

4* Necessary conditions for <@, 8) to be representable as
<©(SI), (£(SI)>* Recall that if @ is a semigroup, S(@) is the algebra
of left multiplications of @. SI = <A; ί 7 ) is some universal algebra.
The basic thing established in this section is a relationship between
E(8(6c(2I))) and ©(SI). If ψ is an endomorphism, then set x = y{εψ)
iff xφ = ^ ε9 is a congruence.

Let @ = (S; ) be a semigroup with identity, and let x, se S.
The right multiplication map for s is defined by xps = α?s.

Thus, if <peE($ί), then we have the congruence eψ on SI and the
mapping ρφ on £7(SI). So we have the equivalence relation εPφ on i?(3I).
Observe that since ^^ is an endomorphism of 8(@(2l)), ε̂ ,̂  is a congruence
of 8(6(50).

The proof of the next lemma involves only routine calculations.

LEMMA 4. If eΨ = Π ( e ? i | i e Z ) , ίΛe^ ε ^ = f| ( ^ ^ K ^ I ) .

COROLLARY. eφ —̂  ε̂ ^ ΐs α mapping, and this mapping preserves
arbitrary existing meets. In particular, it is order preserving.

This mapping need not be 1 — 1.

LEMMA 5. If εPφ = c (φ is a right zero), then eψ C sψ for every
endomorphism ψ.

Proof. Trivial.

εPφ can be c and εφ need not be t. εPψ = c means φ is a right
zero in ©(SI), but φ need not be a constant map. But φ is a constant
map iff εψ = .̂ On the other hand, if εφ = :, then ε̂ , = c (i.e., if <p
is a constant map, then φ is a right zero). Also, there is a φ with
εφ = ω and ε^ = ω (the identity map).

To summarize we state the following theorem.

THEOREM 3. Suppose Θ = <S; ) is a semigroup with identity
and 2 = <L; V, Λ> is an algebraic lattice. Set Sf~ = {εPs\seS}. If
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<@, S) is representable, then there is a subset H of L and there are
two mappings a from S onto H and β from H onto ^Γ such that
the following hold:

( i ) (sά)β = ePs for all se S;
(ii) β preserves arbitrary existing meets)
(iii) if ePs = c, then sa is the maximum element of H and

i^"Ί - l;
(iv) OeH (and 0/3 = ω);
(v) if leH, then ce

COROLLARY. If (β, (£n> is representable and (£n is the n-element
chain, then JsΓ (J {ή is a chain of length ^ n.

5> Mote on the class of representable pairs* Throughout this
section, @ = <£; •) will be a semigroup with identity and 2 will be
an algebraic lattice. The ordinal sum of the lattices will be denoted
by + . Sn is the n element chain. % = {A; F} is an algebra.

In the preceding section, a necessary condition for <@, S) to be
representable as <@(2t), £(3I)> was given. Roughly the condition states
that @ gives a lower bound on the cardinality of L, namely, \Jf\9

and an upper bound on the meet struture of part of S. This suggests
that one could take a representable pair and expand the lattice and
expect the result to be a representable pair. A few such expansions
are given here.

Sort of a multiplication formula for members of the class of all
representable pairs is given.

One could question whether or not there exist a semigroup with
identity and an algebraic lattice which are in some vague sense com-
pletely "incompatible." Theorem 4 gives a negative answer.

First we will state the theorems, and then we will give sketches
of their proofs.

THEOREM 4. If @ is any semigroup with identity and S is any
algebraic lattice, then there is an algebra SI with @ isomorphic to @(Sί)
and S isomorphic to a sublattice of K(2ί).

This follows from Theorem 7.

THEOREM 5. If <@; S> is representable, then <@; S + G )̂ is
representable.

COROLLARY 1. If (β; (£fc> is representable, then (β; (£w> is repre-.,
sentable for any n^k.

COROLLARY 2. If every member of @ is right cancellative or is
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a right zero and n >̂ 2, then (β, K%> is representable.

See [3], or see the remarks after Lemma 1.

THEOREM 6. // <Θ0, So> is representable and Sx is any algebraic
lattice, then both <@0, So + 2L + ©i> ami <@0, Si + So + E^) are repre-
sentable.

THEOREM 7. // <@0, So> is representable and 2X is any algebraic
lattice, then <@0, (So x 81) + &i> is representable.

This is a special case of Theorem 8.

THEOREM 8. // <@0, So> ami <@1? S2> are representable, then
<@o x @i, (So x SO + @i> is representable.

Note that each of the " + SV's gives us a nonzero element in
the resulting lattice that has property (*). (See §1.)

In Theorem 6 one can easily do without the " + Ki" in the first
pair (i.e., one can show <@0, So + S:> is representable) in case 2t

already had a non-zero element satisfying property (*). A similar
comment can be made for the other pair in Theorem 6 in case So

already had a non-zero element satisfying (*). To do the same for
Theorem 7 or 8 would seem to require that both So and Sx have such
an element.

Proof of Theorem 5. Let 21 represent <@; S>. Let U = {u, v] be
a two element set disjoint from A. Set Ar = A (J U. Extend each
f eF to A! by setting f(xQ, •••, xn^) = u if there is an x,e U. Let
u, v each be the value of a nullary operation. Define a unary opera-
tion p and a binary operation g as follows:

p(x) =

, v) =

x, if x e A

v, if x = u

%, if x = v

'#, if a?, 1/ G A or if 2/ = u

y, iί x = u

v, if x oτ y = v .

Let 21' = <A'; F U {p, g, u, v}}. For each 9 e £7(21) define φ on A'
by xφ ~ xφ if a e i and xψ = x if x e U. For each Θ e ^(21) set

is an isomorphism from @(2t) onto @(2t') 0—>Θ is an
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embedding of <£(&) into <£(&'). £f(SΓ) = {Θ\Θ e ΐT(SI)} U {cΛ,}. The
details are almost identical to the details in [3].

Proof of Theorem 8. Let 2I0 = <A>; Fo} and SI, - <Λ; F,) be
algebras with @(St;) isomorphic to &{ and &(%) isomorphic to S4.
Assume Ao Π Aι = 0 . Let 4 2 = Λ U i i U {u, v) where u Φ V and u,
v $ Ao U Alβ Let a?0, , xn^ e A2, and let / e Fi. Extend / to
A2 by setting f(x0, , a?^) = tt if there exists x3- $ A{. Let α̂  e
A{ and define two unary operations g0 and gγ by ^(α0) = 0ro(%) = u
and ^o(̂ i) = 9o(v) = v and ^(α*) = α< and &(%) = v and ^(V) = w.
Define a binary g2 on A2 by setting ^2(x, v) = gz(v, x) = x and g2(x, y)
— u otherwise. Take each of u and v as the value of a nullary
operation. Let

2C2 = <A2; F o U F, LJ {̂ o, Λ, flr2, u, v}} = <A

For each ψ = (φ0, φ,} e £7(SX0) x E(%) define a mapping ψ on A2

by x^ = xψi if a; € il« and xψ — x if x = u or x = v. For each Φ =
<0O, »!> e ^(2t 0) x ^(SIO set Φ = »0 U ©i U ω σ . To complete the proof,
one would show that W(%) = {Φ\Φe^(%0) x ^(%)} U Ri2}, that Φ->
Φ is an embedding of S(Sto) x K(§Ii) into ©(St), and that ψ -^ f is an
isomorphism of @(SI0) x @(2ti) onto @(St2). A few of the details follow.

Let σ be an endomorphism of SI. Note that xσ — x for x = u or
# = v since u and v are the vaules of nullary operations. Let α̂  e Ait

Now go{aoσ) = go(ao)σ = uσ — t6. Thus, αoσ e Ao or αoσ = u. Suppose
aQσ — u. Then u = aQσ = g^a^σ — g^a^a) — g^n) — v. Since u Φ v,

it follows that aoσ e Ao. Similarly, a^eA^ Thus, σ = {o\Ao,σA^).
Suppose diβAi and a0 = a^Ψ) and suppose Ψ e^(^i2). Then u =

v(Ψ) since u = flro(αo), v = ^0(^i) and βfo(αo) Ξ gQ(a^)(Ψ). For ^ G i o u 4 i it
happens that a? Ξ u(α/r) iff x = v because gx(x) — x, g^u) = v and ^(t?) =
u. So if xeAQ U Ai and #€{u, v} and α? = y(Ψ), then 6̂ = v(W). If
^ Ξ v(?F), then Ψ — cA2 because for any x e A2, x = u(W). (This is
because u = g2(u, x) and x = gz(v, x) ) Ψ\A. e cέ?(%i). Thus, if Ψ Φ CAZ,
then Ψ = Φ for some Φ e ^(SI0) x ^"(SIO, namely, for Φ = (¥\Aύ, ¥\Al).

Proof (of Theorem 6). Let SI; = (A^ F^, for i = 0, 1, be algebras
with Ao Π -4χ = 0 . We shall prove the theorem by showing that
<®(Sto), e(3I0) + &(%) + (£,> and (©(SI,), ©(SI0) + £(SIX) + K^ are repre-
sentable. First we consider the case with @(SI0).

Let u Φ v and u,v&AQ{J A19 and let A2 = Ao (j At (j {u, v). For
f e Fi extend / to A2 as in Theorem 8. Define the unary operations
g0, gt as in the proof of Theorem 8. Define the binary operation g2

by setting g2(a0, v) — g2(v, α0) = aQ for α0 e AQ and g2(x, y) = u otherwise.
Let aQ 6 Ao and au bx e Ax. Define the binary operation g3 by g3(al9 δj =
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v, if αx Φ &!, and g3(x, y) = u otherwise. Define the binary operation
9A by g4(alf y) = y and g4(x, y) = u otherwise. Take each member of
Aι U {u, v} as the value of nullary operations. Set

St - <A2; Fo ύ F, ύ {#0, , &} U fa, v} LJ Λ > = <A2; F2> .

For each φ e £7(2t0) let cp be defined by xφ = xφ if a? e Ao and
xφ = x if x $ Ao. For each © e ^(U o ) + ^(Sti) define Θ by θ =
0 U ωAl u α>{u,,} if β e ^(Sί0) and 0 = 0 (j ôu{«, } if β^(Sti).

To complete the proof for this pair, one would show that φ—>φ
is an isomorphism of G?(3t<>) onto @{Sί2), that Θ-+Θ is an embedding
of e(Sto) + (£(310 into e(2t2), and that ^(2t 2) = {θ|0 e ^ ( S Q + i f M u
{^J. A few of the details follow.

As in the proof of Theorem 8, for σ e E(%2), AQσ £ Ao Clearly
xσ — x for # 6 A2 — Ao since every element is a nullary constant.

Let Θ e ^(2t 2 ) . For x e 4 2 , ^ % iff # = i; as in the proof of
Theorem 8. Let a^ δj e Aζ. If u = v(^), then ao = u because ^2(^> Λ0) = w
and ^2(v, α0) = α0. If αL ̂  &x and αx = δi(β), then u = v because g3(a19 δj = w
and gs(bl9 δx) = v. Let xeA2 — A1 and let 2 e A2. If αx Ξ α (Θ), then
z ΞΞ %($) because g4(al9 z) = z and g4(x, z) = u.

We now turn to considering the case for <G?(2ti), K(SX0) + K(SCi) +
©!>. We may ^ 0 ^ assume without loss of generality that @(2ί0) is
the one element group and that there are no nullary operations in
Sl0. That this assumption can be made is verified in [6] and [7].

Let w, r, s £ A2. Let Az = A2 U {w, r, s}. For / e Fo or F19 change
the value of f(xθ9 , xn-d to w where in the above case it was u9

i.e., in the case when there is an x{ not an element of the appropriate
At. Extend the gt in the following way: go(r) = go(s) = v; gQ(w) = w;

gi(w) = w; g^r) = r; gjβ) = s; still keep g4(al9 y) = y, but let g4(x9 y) =
w otherwise; keep gz(al9 δj = v for aγ Φ bι and gz{x9 y) = u otherwise
except let gB(w, w) = w; g2(w, q) = g2(v9 w) = g2(w, w) = w and g2(x9 y) =
u for any other new pair. Define three new operations as follows.
Let x9ye Ao, ze A0Ό{u9 v, w) and let at e Ax. Set gδ(w9 w) — w, gδ(w9 x) —
u, 9δ(y, «) = % gδ(zl9 z) = αx and gδ(z, a,) = 2. Set ge(r) = s, g6(s) = r
and βr6(̂ ) = x otherwise. For x9yeA3 set g7(r, x) — gΊ{x, r) = r and
g7(ίc, s) = £7(s, a?) = a?, if a? Φ r, and ^7(a;, y) = x otherwise. Take w, r, s
as values of nullary operations but don't take Aι U {11, v} as nullaries.
Set

aΐ3 = <A8; Fo U Fi U {flr0, , Q?} U {W, r, s}) .

For φ G E(%) define φ on A3 as follows; xφ = xφ if xeAl9xφ =
x iϊ x = w9r, or s, and for x e Ao U {%, v, ^} set a?^ = x if <?» is 1 — 1
and xφ = w if not. Let 6) e ^(SIo) + ^(SCJ. For Θ e <tf(%) set θ =
® U ̂ i U { u , , , w , r > s } , and for Θ e <Sf (210 set θ - 0 U ̂ oU{« f̂«} U ω { r, s }. The
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outline of the rest of the proof is clear. Some details follow, par-
ticularly concerning endomorphisms.

Let Θ G ̂ (2I 3). All the statements made about Θ in the previous
case still hold with one change. Here if α: e Ax and x e A3 — Ax and
x ΞΞ au then for all zeA3, z = w (instead of u). Some more should
now be said. If x e Ao and w = x(θ), then u = v because g6(w, x) ~
u and gδ(x, x) = v. If u = v(θ), then one gets w = u using g2. Similar
to the case with u and v, for any xeA^,x = r iff x = r = s(useg6).
Using g7 we have that if r Ξ S(Θ) and z e Az, then z = r(θ).

Note that there can be no constant endomorphisms because there
are three nullary operations with different values. Let σ e E($ί*).
Let x e Ao (J Aι (J {w}, and let y e Ao U A1 U {u, v, w}. Using gl9 xσ Φ u
or v, and using g6, yσ g {r, s). Thus, (Ao U Λ U {̂ })σ Q A0[jA1 U{ιv}.
Let α̂  G Ai. Now wσ = w. If axσ — w, then we would have σ is a
constant endomorphism because the congruence relation induced by
σ would be cAo. So aLσ e Ao (J A^ Now, as before, A ^ S Ax. Similarly,
one gets (Ao U {w})σ g Ao U {^}. Using the congruence struc-
ture and the fact that wσ = w, either Aoσ g AQ or (Ao U {̂ , v, w})σ —
{w}. Clearly, if Aoσ S L̂o, then aoσ = αo» When Ao^ £ -̂o> using the
congruence structure and #2, one gets uσ ~ u and vσ = v. Finally,
the congruence structure requires that if σ is not 1 — 1 on A19 then
σ must be constant on Ao U {v>, v, w). And if σ is constant on Ao U
{u, v, w}, then σ would have the value ID there.

6* Concerning <@, (£3>* From § 4 we know that a necessary
condition for the representability of <@, (£3> is that | {ε̂ s | s e S} U {ή \ ̂ 3 .

A stronger condition is proved to be sufficient. The represen-
tability of <@, &2> has been characterized [3] (or see the remarks
after Lemma 1), and <@, K2> is representable iff Ifε^JsGS} U {̂ }| S 2.

The method for proving the next lemma is very similar to that
in Lemma 1. Recall the definition of ε9.

LEMMA 6. Let 2ί = (A) F) = be an algebra, and let θ Φ ω, θ e
^r(Si). There is an algebra SΓ = (A) F") so that:

( i ) ^'(21) - ^(2Γ);
(ii) W ) = {ω, 0, *};
(iii) <p G S(St') iff φe E{%), ε9 = ω, θ, or c and following conditions

are satisfied:
(a) if sφ = θy then εψt = Θ or r,
(b) if εo — ω and ψ is any map ivith Sψ = θ, then εφoψ = θ.

REMARK. Obviously, one could not improve upon condition (a),
but perhaps a proof could be given with (b) changed to read" ,
then So0f — (β, θ or t." Notice that all automorphisms are kept.
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Proof. Add one 4-ary operation g defined as follows:

'u, if x Ξ£ y(Θ), u Ξ£ V(Θ) or

if x = y{Θ), u ΞΞ v(Θ) and
g(x, y,u,v) = \

x Φ y,u Φ v

\v, otherwise

Set SI' = (A; F U {#}>. Clearly, (i) holds.
Proving that Θ e ^(W) involves only routine calculation. So let

Φ e ^(§Γ) with ω Φ Φ. So there exist x, y with x Φ y and x = y(Φ).
Suppose x Ξ£ y(Θ). We will show that Φ = c. Let u Φ v. First
assume u φ. v(Θ). Then u = #(&, y, u, v) = #(?/, ?/, w, v) = ΊJ(Φ). Now
assume u = i>(0) Since α? ̂  2/(0) > there is a 2 e {a?, i/} with 2 Ξ£ w(@)
and z ^ v(θ) From above u = z{Φ) and v = z(Φ). Thus, % = v{Φ). So
Φ — i. Now suppose for every w, v, with u = v(Φ) that w Ξ V(®)
Thus, Φ S 0 (We are still assuming Φ Φ ω, that x Φ y9 and that
# ΞΞ i/(Φ) ) We will show that in this case Φ = Θ. Let % Ξ= v(β)
with UΦ v. Then t6 = r̂(a;, 7/, ̂ , v) = g(y, y, u, v) — v(Φ). So Θ £ Φ and
β = Φ. Thus <2f («') - {ω, 6>, ή and (ii) holds.

Obviously, if φeE(%'), then φeE{%) and ε^efφ, β, }̂ Suppose
ε̂  = Θ. Since φ^eE(VV)9 then ε^ = 6> or ί.

It is a routine calculation to show that if eφ — t and φeE(%),
then ?>e #(§Γ).

Let ψ G £7(2t) with εφ = Θ and with ε 2̂ = © or c. Consider g(x, y,
u, v). There are two possibly troublesome cases. One is if g(x, y, u, v)
= u and g(xφ, yφ, uφ, vφ) — vφ. The other is if g(x, y, u,v) = v
and g(xφ9 yφ, uφ, vφ) = uφ. The latter is the easiest to dispense
with. If g(xφ, yφ, uφ, vφ) = uφ and uφ Φ vφ, then xφ Φ yφ. Thus,
x Ξ£ 2/(®) and % =£ v(β). So g(x, y, u,v) — u and flr(a?, y, u, v)φ = ^ φ .
So now assume </(£<£>, ̂ , uφ, vφ) = vφ and g(x, y, u, v) = u. Thus,
either x^y(Θ) and u^v(Θ) or x = y(Θ) and u~v(Θ). Suppose x^y
and UΞ£V. Then #<£> 9̂  τ/<p and uφ Φ vφ. Now xφ == /̂<p(@) iff t6^ Ξ= vφ(θ).
Indeed, suppose that xφ = yφ(β). Then (a?9>)?> = (yφ)φ and εφ2 Φ Θ.
So by assumption ε^ = r. Thus, (uφ)φ — (vφ)φ, and uφ = vφ(Θ).
Similarly if uφ = vφ, then xφ Ξ= ^ . Thus, either ccφ ^ yφ(Θ), uφ φ
vφ(Θ) or #<p == yφ(Θ), uφ == vφ(Θ), xφ Φ yφ, uφ Φ vφ. In any case,
#(&<£>, j/9>, ̂ <ρ, v9?) = uφ Φ vφ. S O X Ξ y(Θ) and w Ξ= v(β). In this case
uφ = ^ . Therefore, (/(α;, ̂ /, -2̂ , v)φ = ^ ^ — vφ — g(xφ, yφ, uφ, vφ).
Thus, <?€#(§!').

Suppose ?> is 1 — 1 and φe E(W). Let ψ be any map wτith εψ =
©. Consider ε9 o^. Suppose ε^o^ = ω. Then, sψ Φ c. So there exist
x, y such that x -φ y(Θ). Since Θ Φ ω, there exist w, v with u Φ v
and w Ξ= v(#). Since u Φ v, it follows that (uφ)ψ Φ {vφ)ψ. Thus,
%<£> =έ vφ(Θ). Similarly, since x Φ y,xφ φ yφ{Θ). This implies that
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g(x, y, u, v)φ = vφ Φ uφ = g(xφ, yφ, uφ, vφ). But since φ is an
endomorphism, we have that εφoψ Φ a). Suppose εψoψ = c. By a similar
argument we would get that εψoψ Φ c unless Θ = c. So εψoψ = Θ.

Let <pe JE7(3ί) with εψ = ω. Let ψ be any map with εψ = Θ.
Suppose εφoψ = Θ. Routine computation shows that <peE(W).

The crucial point in these computations is that the assumption εφoψ =
Θ implies φ presves both Θ and not-®. Therefore (iii) holds.

Recall that if @ = (S; > is a semigroup with identity, then J%Γ —
{εp$ I e S}. S(@) is the algebra of left multiplications. £?(S(@)) =

THEOREM 9. Let @ = <S; •) be a semigroup with identity.
(A) If <@; E3> is representable, then \^Tϋ{ή\£ 3.
(B) If I JsΓ U {ή I ̂  3 and if for right cancellative r and for m

that is neither right cancellative nor a right zero r*m is also neither
right cancellative nor a right zero, then <@; (£3> is representable.

REMARK. If \ST \j {ή\ = 2, the rest of (B) holds trivially. So
the sufficient condition includes all those representable pairs derived
from Corollary 2 to Theorem 5.

Proof. For part (A) see the corollary to Theorem 3.

Suppose the hypotheses of (B) hold. If | ST U [ή \ = 2, then <@; (£2>
is representable. By Theorem 5, <@; (£3> is representable. Suppose
then that 3ίΓ U {ή = {<o, Θ, ή and that ω Φ Θ Φ c. Suppose εPm = Θ.
Since

it follows that

ε(pJ = Θ or c .

Let εPr = ω and εPm = Θ. Since r m is neither right cancellative nor
a right zero, it follows that

ePr°

Now apply Lemma 6 to Θ and S(@).

7 (β, K2> for unary algebras* In [3] G. Gratzer characterized
the endomorphism semigroups of simple algebras. He also showed
that not all such semigroups were isomorphic to endomorphism semi-
groups of simple unary algebras. Since previous representations
involving congruence lattices and endomorphism semigroups had needed
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only unary algebras, he raised the question, "What semigroups are
isomorphic to the endomorphism semigroups of simple unary algebras?"
The answer to that question is that there are hardly any such
semigroups.

Every endomorphism φ induces a congruence relation which we
have denoted by eφ. The difference with unary algebras is that every
endomorphism also induces another congruence. Throughout §1 = ζA;
F} will denote a unary algebra. For φ e E(%) and x,yeA set x =
y(Θφ) iff there exist natural numbers i, j such that xφi — yφj(xφ° =
x). Θφ is the "extra" congruence. To prove that the substitution
property holds for Θφ, one needs that each operation of 21 is unary
or nullary.

LEMMA 7. If φ is 1 — 1 and Θψ = ω or c, then φ is onto or A —
{aφn I n — 0,1 } for some ae A.

Proof, x = xφn(Θφ) for any natural number n (by using the
numbers n, 0). In particular x = xφ(θφ). Thus, if θφ — ω, then x =
xφ, and therefore, φ is the identity map. Therefore, we can assume
Θψ — c, and this implies x = y(Θφ) for any x,yeA. Thus, for some i,
j 9 xφ1 = yφ\ If % <ς j 9 then since φ is 1 — 1, we have that x = yφι~j.
If j <̂  i, then y = xφι~K Thus, x e {yφn\ n = 0,1, •} or y e {xφn| n =
0,1, . •}. Suppose φ is not onto. Then there is an a such that a Φ
xφ for all x e A(x Φ a). Thus, a $ {xφ | n = 0,1, } for any x e A(x Φ
a). Now since x e {aφn \ n = 0,1, } or a e {xφn \ n = 0,1, } for all
xeA, we have x e {aφn \ n = 0,1, } for all x e A.

LEMMA 8. If Θφ = ω or c and Θ is 1 — 1 but not onto, then 2t
is not simple.

Proof. By Lemma 7, A = {aφn\n = 0, l •} for some α e A . For
w > 1, aφ% — (aφn~ι)φ. Since φ is not onto aΦ xφ for any ί»Gi.
Suppose aφi — aφj and ί ^ i We may assume i < j . Since ^ is 1 —
1, a — aφj~\ Since j — i ^ 1, a = (aφj~ι~ι)φ. Thus, aφι Φ aφj if i Φ
j . Now set JE?= {aφn\n = 0,2,4, ...} and D = {aφn\n = 1,3,5, . . . } .
By the above, D Π E = 0 . Clearly, JD U J57 = A. Let Φ be the
equivalence relation whose only two classes are D and E. Φ is a
congruence. Since ω =£ Φ ̂  c, 21 is not simple.

For a simple algebra SI any right zero of @(St) is necessarily a
constant mapping (unless 6?(21) is the one element group). See §4.

COROLLARY. If 2t is a simple unary algebra, then .27(21) consists
of automorphisms and constant mappings.
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G. Gratzer [3] characterized the automorphism group of a simple
unary algebra as a cyclic group of order p where p — 1 or p is a
prime number. He also showed that if p Φ 1, then A = {aa\ae (?($()}
for any aeA.

LEMMA 9 If 3ί is simple, \ G{%) \ Φl, and there exists a right
zero in @(3ί), then \A\ = 2 and @(3t) = {AA; o>.

Proof. Let {α} = Aφ. Let / be an operation. Then a = (f(a))<p =
f(a<p) = f(a). If xeA, then x = αα for some α; e G(3I). Thus, f(x) =
/(αα) =f(a)a = aa = x. Therefore, £7(31) = A4 and all equivalence rela-
tions are congruence relations. |G(SC)| ^ 2 implies \A\ ̂  2. If |A| >
2, then there are more than two equivalence relations on A. Thus

LEMMA 10. 1/ 31 is simple cwwZ | G(3I) | = 1, then \ E{%) | ^ 2.

Proof. Suppose there exist two constant endomorphisms <p0, φx.
Let {α0} = A^o and {αj = A^i As in the proof of Lemma 3, f(a0) =
a0 and f{aλ) = αx for any operation / . If |A | were two, then every
operation would be the identity function and | G{%) \ = 2. Thus, \A\>
2. Set x Ξ y(Φ) iff x = y or x, y e {α0, α j . Since every operation re-
stricted to {α0, α j is the identity function, Φ is a congruence. Since
\A\ > 2, Φ Φ ί. Since Φ Φ ω, 31 is not simple.

THEOREM 10. Let @ = <S; *) be a semigroup with identity. @
is isomorphic to the endomorphism semigroup of a simple unary
algebra (i.e., <@, (£2) is representable by a unary algebra) if and only
if @ is owe o/ the semigroups listed below:

( i ) the group of order p, p = 1 or p is a prime;
(ii) the two element semi-lattice;
(iii) a four element semigroup isomorphic to (AA; o) where \A\=2.

Moreover, if <@, (£2> is representable by a unary algebra and \S\Φ
1, ί&βw <@, (£2> is representable using a unary algebra with one
operation.

Proof. It follows from the corollary to Lemma 8 and Lemmas 9
and 10 that the endomorphism semigroup of a simple unary algebra
is one of those listed in (i) — (iii).

To complete the proof, we will represent <@, K2> for each @ listed
in (i) - (iii).

In case @ is the one element group, let A be a two element set.
Set 3ί = (A; AA). Clearly, 3ί has the required properties.

In case © is (AA; o> where | A\ = 2, Let 31 = {A; F} where / is
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the identity map. Obviously, 21 has the required properties.
In case @ is the two element semi-lattice, let A — {a, b) with a Φ

b. Set f(a) = f(b) = b, and set Si = (A; />. Since | A\ = 2, % is
simple. The endomorphisms are exactly the identity map σ and ψ
where ψ = f. Since σoψ = ψoσ = ψ = ψoψ, the endomorphism semi-
group is the two element semi-lattice.

In case @ is the group of order p where p is a prime, set A =
{0, , p - 1}. Let f(x) = x + l (mod p), and set §1 - (A; />. Since p
is a prime it is easy to check that §1 is simple. For x e A define the
mapping φx by yφx = y + x. Clearly, x —• φx is an isomorphism from
the cyclic group of order p onto ©(21).
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THE REDUCING IDEAL IS A RADICAL

T W. PALMER

For any *-algebra % the reducing ideal %R of % is the
intersection of the kernels of all the ^representations of 9t.
Although the reducing ideal has been called the *-radical, and
obviously satisfies (%/%R)R = {0}, it has not previously been
shown to satisfy another of the fundamental properties of
an abstract radical except in the case of hermitian Banach
*-algebras where it equals the Jacobson radical. In this paper
we prove two extension theorems for ^-representations. The
more important one states that any essential ^represen-
tation of a *-ideal of a Z7*-algebra (a fortiori, of a Banach
*-algebra) has a unique extension to a ^-representation of
the whole algebra. These theorems show in particular that
(21Λ)Λ = 2ΐi2 if 9ί is either a commutative *-algebra or a ί7*-
algebra. The somewhat stronger statements which are actu-
ally proved, together with previously known properties of the
reducing ideal, show that the reducing ideal defines a radical
subcategory of each of the following three semi-abelian
categories:

(1 ) Commutative ^-algebras and *homomorphisms.

(2) Banach *-algebras and continuous *-homomorphisms.

( 3 ) Banach *-algebras and contractive *-homomorphisms.

The concept of the reducing ideal was introduced by Gelfand and
Naimark in their classic paper [2, p. 463]. It has subsequently
been studied by Kelley and Vaught [5, p. 51] and the present author
[7, p. 63] and [8, p. 930] The concept is discussed in [10, pp. 210,
226] and [6, p. 259]. In [11, 1479] Yood gave a definition of the
^-radical which agrees with our definition for Banach *-algebras but
differs for certain other types of *-algebras.

Our main extension theorem (3.1, below) was previously known for
J3*-algebras [1, Proposition 2.10.4]. It has a number of applications
besides the one discussed here. For example it immediately implies
the conclusion of [4, Theorem 23] with hypotheses weaker than those
of [4, Theorem 22].

In § 1 we give necessary background information. The case of
commutative *-algebras is considered in § 2 and of £7*-algebras in § 3.
The category theory results are described in §4 where we use the
terminology of M. Gray [3] for the general theory of radicals.

In general we follow the terminology of Riekart's book [10].
Further details and related results will be found in the author's
forthcoming monograph [9].
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1* Definitions and preliminary results* We review some basic
definitions and results for the convenience of the reader and in order
to fix notation. Throughout this paper all algebras and linear spaces
will have the complex field C as scalar field unless the real field is
explicitly specified. No other scalar field is considered. The complex
conjugate of XeC will be denoted by λ*.

An involution on an algebra Sί is a conjugate linear, anti-multi-
plicative, involutive map of SI onto itself. A *-algebra is an algebra
together with a fixed involution which will always be denoted by (*).
A subset of a *-algebra is called a *-subset iff it closed under the
involution. A map between *-algebras is called a *-map iff it preserves
their involutions (i.e. φ(a*) = φ(a)*). A ^representation T of a *-
algebra is a *-homomorphism (i.e. an algebra homomorphism which is
also a *-map) into the *-algebra [&τ] of all bounded linear operators
on some Hubert space φ Γ . The meaning of each more specific term
with a *-prefix (e.g. *-subalgebra, ^isomorphism) follows from these
definitions. In particular a Banach *-algebra is simply a *-algebra with
a norm relative to which it is a Banach algebra. No relationship
between the involution and norm is postulated.

We review briefly the standard Gelfand-Naimark construction of
^representations from positive linear functionals since later proofs
depend intimately on this material (cf. [2], [6], [9] or [10]). A linear
functional ω on a *-algebra St is called positive iff

(1.1) ω{a*a) ^ 0 VαeSt.

For any positive linear functional ω denote the left ideal

(1.2) {a e St: ω(α*α) = 0} = {a e St: ω(δ*α) = 0, V6 e St}

by Stω. Let

(1.3) %ω = 2t/Stω .

For each a e St let aω be the image a + %ω of a in %ω. Then for all

α ω , bω e %ω

(1.4) (αω, bω) = ω(δ*α)

is well defined and gives %ω the structure of a pre-Hilbert space (i.e.
a possibly incomplete inner-product space). The left regular repre-
sentation of SI on itself induces a *-homomorphism fω of Sί into the
*-algebra of all (not necessarily bounded) linear operators on %ω which
have ad joints on Sίω. The positive linear functional a) is called admis-
sible iff the range of Tω consists of bounded operators so that fω

induces a ^representation Tω of St on the Hubert space completion
Sϊω~ of %ω.
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An admissible positive linear functional ω is called representable
iff there is some ^representation T and some topologically cyclic vector
xe$τ for T such that

(1.5) ω(a) = (Tax,x) VαeSt.

The set of representable positive linear functionals on a *-algera 2£
will be denoted by jβ(2t). For each nonzero ω in jβ(St)

(1.6) I ω I = sup \ω{a)2lω{a*a): a e St ~ 3Q

is finite. For the zero linear functional, which always belongs to
l?(St), we set | 0 | ===== 0, For each ω e J?(St) there is a unique vector xω

in Stω~ such that

(1.7) T:xω = aω Vα e St.

[9, Theorem 1.4,8] This vector is a topologically cyclic vector for
Tω which also satisfies

(1.8) || xω ||2 = I ω | and ω(α) = ( 7 > ω , α?«) Vα e St.

For a *-algebra SI let

(1.9) ^(Sί) = {ωe 12(21): | ω \ ̂  1} .

A linear functional ω on St is called a sίαέe iff ω e iϋ(St) and | ω \ = 1.
A linear functional α> e J?(St) is called pure iff ω = ωt + ω2 with
6)!, ω2 e jβ(St) implies that (£>! and ω2 are (nonnegative real) multiples
of ω. Let P(Sί) denote the set of pure states of St. Then P(St) U {0}
is the set of extreme points of the convex set iϊ^Sί).

If St is a Banach *-algebra it is well known that JS^St) is compact
in the St-topology. Thus i^St) is the closed convex hull of P(Sί) U {0}
by the Krein-Milman theorem. If St is an arbitrary *-algebra (e.g.
{complex polynomials} with conjugation of coefficients as the involution)
then i?χ(20 need not be compact.

LEMMA 1.1. If St is any *-algebra, jβ^St) is the closed convex hull
of P(St) U {0}.

Proof. For any ω e i2x(St) let

@ω - {ω'ei^St): || Γβ

ω'|| ^ | | Γ β

β | | for all αeSt} .

A slight adaptation of a well known proof [10, p. 222] shows that @ω is
compact and convex [9, Proposition 1.5.6]. Similarly one can adapt
another well known proof [10, p 225] to show that the set of extreme
points of Θω is {0} U (@ω Π P(Sί)) [9, Proposition 1.6.6]. Thus @ω =
cδ ({0} U (@β Π P(St))). Therefore
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cδ ({0} U P(2t))

S cδ ({0} U P(2ί)) S RM

LEMMA 1.2. Lei St be a *-algebra and let ω e jB(2t). 7%e following
are equivalent.

( a ) ω is pure.
(b) Γω is topologically irreducible.
(c) 2%e seί (Tω)' of operators in [2tω~] wΛΐcΛ commute with T%

for each a e 21 is the set of complex multiples of the identity.

Proof. [10, p. 211 and 223], [9, Theorems 1.6.1 and 1.6.5].

DEFINITION 1.3. For any *-algebra 21 the reducing ideal of 21 is
denoted by 2tΛ and defined by

2tΛ = Π {Ker (T): T is a "-representation of 21}.

If $ is a *-ideal of a *-algebra 2t then $ is a two-sided ideal and
is a *-algebra in an obvious sense.

PROPOSITION 1.4. Le£ % be a *-algebra. Then the reducing ideal
2ίi2 of ^ί is a *-ideal which equals:

Π {Ker (T): T is a topologically irreducible *-representation of 21}

= fl {Ker (Tω): ω e JB(2t)} - fϊ {Ker (Γω): ω e P(2t)}

- Π {«.: ω e i2(2t)} - Π {«.: ω e P(2t)}

= {α e St: ω(α) = 0, vω e 22(80} = fa e St: ω(α) = , vω e P(2t)} .

Furthermore (St/StΛ)Λ = {0}. If % is a Banach *-algebra then %R is
closed so that 21/21̂  is a Banach *-algebra.

Proof. Use Lemma 1.1 to adapt the proof of [10, Theorem 4.4.10].
For details and further results see [9, Theorem 1.7.2 and 1.7.5].

Lemma 1.1 and this proposition do not seem to have been noted
previously in this degree of generality. However they were essentially
known.

We now turn to the theory of £7*-algebras. For additional in-
formation see [7], [8], or [9].

If St is a *-algebra without an identity let 2I1 denote the *-algebra
with identity which has C 0 St as underlying linear space and in
which the multiplication and involution are defined by ( λ 0 α ) ( μ 0 b) =
Xμ 0 (λδ + μa + αδ) and (λ 0 α)* = λ* 0 α* for all λ, μ e C and all
α, b e St. We regard 2t as embedded in 2I1 by the map a —* 0 0 a. If
2t already has an identity let 2I1 = 2t. In either case we write λ + a
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for λ l + a where 1 is the identity of SI1. Then, for instance, the
spectrum of an element in 21 is the same with relation to 21 or SI1.
Furthermore the Jacobson radical of 21 and 2I1 agree and the reducing
ideal of 21 and 20 agree.

DEFINITION 1.5. A *-algebra 21 is called a i7*-algebra iff SI is

contained in the linear span of the set 21^ of unitary elements in SI1.

If 21 is a £7*-algebra and αeSI then

Σ Xji a = Σ XjUj where neN, λ, 6 C, and uo e %u> .

3=1 j=ί )

LEMMA 1.6. Let 21 be a U*-algebra. Then v% is an algebra
pseudo-norm, {i.e. vn(Xa) = \X\vn(a), v%{a + b)^vn(a) + v«(6), v^(ab)^
v*(a)v*(b) for all a, be a).

Proof. Obvious.

For any *-algebra 21 let

(1.10) %qU = {ve St: v*v = vv* = v + v*}

be the set of quasi-unitary elements in St. For any subset @ of 21
let @̂  be the linear span of @ Π 2IgC7.

LEMMA 1.7. Let % be a *-algebra. Then %u is a *-subalgebra of
21 which is a U*-algebra. Furthermore 3F contains every *-subalgebra
of 21 which is a U*-algebra. In particular % is a U*-algebra iff
% = 2Γ In this case

{ n n n ~\

Σ \ ' a — Σ \'Vj, 0 = Σ \ ^here neN,XjeC and v3- e Stgl7 \.
3=1 3=1 3=1 J

Finally if $ is a one- or two-sided ideal in 21 then %su is a *-ideal in
St.

Proof. Straightforward or see [8] or [9].

LEMMA 1.8. Let 21 be a U*-algebra and let 33 be a *-algebra.
Let φ: 21 —• 95 be a *-homomorphism. Then φ(%) is a U*-algebra and
vφw(φ(a)) ^ vn(a) for all αe2t. Furthermore if 95 is the algebra of
all (not necessarily bounded) linear operators with adjoints on a pre-
Hilbert space, then <p(2I) is contained in the set of bounded operators
and \\φ{a) \\ <; v%(a) for all αeSt.

Proof. This follows directly from Lemma 1.7 or see [7], [8] or
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[9].

By slight abuse of language we call a *-homomorphism into the
type of *-algebra described in the last sentence of Lemma 1.8 a
^-representation on a pre-Hilbert space. When the range of such a
map consists of bounded operators we call it a normed ^representa-
tion on a pre-Hilbert space. (Of course any ^representation of any
*-algebra (by definition, on a Hubert space) is automatically normed
[10, p. 205] or [9, Corollary 1.2.4].)

COROLLARY 1.9. Every ""-representation of a U*-algebra on a
pre-Hilbert space is normed. Every positive linear functional on a
U*-algebra is admissible. A positive linear functional on a U*-algebra
SI is representable iff it is the restriction of some positive linear
functional on SI1.

Proof. For the last sentence see [10, p. 218] or [9, Theorem 1.4.8].

DEFINITION 1.10. Let SI be a *-algebra For any αeSI let

7%(a) = sup{|j Ta\\: T is a ^representation of SI on a Hubert space} .

It is not hard to show [9, Theorem 2.1.2] that τ«(α) = sup{|| Ta\\:
T is a topologically irreducible ^representation of SI on a Hubert
space} = sup {ω(α*α)1/2: ω e i^SI) = sup {ω(α*α)1/2: ω e P(St)}. In a per-
fectly general *-algebra τ«(α) =• °o is possible. However if Ί* is finite
valued then it is the largest algebra pseudonorm on SI which satisfies
the £*-condition: Ύ*(a*a) = ΎM2 for all a e SI. We call 7a the Gelfand-
Naimark pseudo-norm on St. Note that %R = {αeSI: τ«(α) = 0}.

COROLLARY 1.11. // 2t is a U*-algebra then

7«(α) ^ ya(α)

for all αeSI.

Proof. Obvious from Lemma 1.8.

THEOREM 1.12. Let SI be a Banach *-algebra. Then SI is a £7*-
algebra and τ a = va.

Proof. [7, Theorem 4] or [9, Theorem 3.1.12].

2* Commutative *-algebras* We are now in a position to treat
this case easily. Several of our results are essentially known but are



THE REDUCING IDEAL IS A RADICAL 213

usually stated in less generality.

THEOREM 2.1. Let SI be a commutative *-algebra. Then P(%) is
the set of ""-homomorphisms of SI onto C.

Proof. Suppose ft) is a pure state. Then (Tω)r — CI by Lemma
1.2 where I is the identity operator in [SIω~]. Since SI is com-
mutative 2γ S (T£Y. Since ft) Φ 0, Tω Φ 0 so T% = CI. Let T; =
<p(α)I for all αG St. Then φ is a *-homomorphism of 21 onto C and
ω(a) = (Tϊxω, xω) = (φ(a)xω, xω) = ^(α) | ω | = 9>(α) for all α e SI. Thus
co = φ is a *-homomorphism of SI onto C.

Conversely suppose ω is a *-homomorphism of SI onto C. Then
ω(α*α) = ω(α*)ω(α) = | ω(α) |2 for all a e 21 so that ft) is a state. The
map αω—>ft)(α) for all ae21 is a linear isometry of 2Iω onto C. Thus
§Iω = §lω~ is linearly isometric to C so that Tω Φ 0 is irreducible.
Therefore ft) is a pure state by Lemma 1.2.

COROLLARY 2.2. Let % be a commutative *-algebra. For each
a G SI ίeί ά: P(St) -+ C 6e defined by a(ω) = ω(a) for all ω e P(%). Let
P(SI) carry the weakest topology which makes each a continuous. Let
Coo(P(SI)) be the set of continuous but not necessarily bounded complex
valued functions on P(SI). Then P(3I) is Tychonoff space and

(2.1) f):SI >

is a *-homomorphism with kernel %B.

Proof. Immediate from Theorem 2.1 and Proposition 1.4.

THEOREM 2.3. Let % be a commutative ""-algebra. Let 35 be a
""-ideal of SI and let Qf be a ""-ideal of 33. For each ft) e P($) there is
an ώe P(SI) such that ω is the restriction of ώ.

Proof. Theorem 2.1 shows that ft) is a ^-homomorphism of $
onto C. Let e e S satisfy ω(e) = 1. We may assume e = e* since ft)
is a *-map. For any αeSI, eae^d so Λ e S Define ώ(α) = ω(e2a) for
all α G SI. Then ώ is clearly linear and if a, 6 e SI then ώ(ab) =
co(e

2α) = ω(e)2ω(ae2b) = ω(e2ae2b) = ft)(e2α)ft)(e2δ) = ώ(α)ώ(6), and ω(α*) =
ft)(e2α*δ) = ft)(e2α)* = ώ(α)*. Thus ω is a *-homomorphism of SI onto C
and thus by Theorem 2.1 ώeP(2t). If α e ^ then ώ(a) = ft)(e2α) =
o)(e)2ω(a) — ft)(α). Thus ώ satisfies the theorem.

COROLLARY 2.4. Z,e£ SI δe α commutative *-algebra. Let $ be a
""-ideal of%R {e.g. a ""-ideal of % included in SQ. Then ^R = $. J^
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particular (2tΛ)s = 2tΛ.

Proof. If ^B Φ ^ then there is some nonzero pure state on $
by Proposition 1.4. Thus Theorem 2.3 shows that there is a pure
state on 21 which does not vanish on $. This contradicts Proposition
1.4.

3* !7*-algebras* Although our primary interest is in Banach
*-algebras it seems difficult to give the following proof in that setting
without using the (more general) structure of ί7*-algebras.

THEOREM 3.1. Let % be a U*-algebras. Let ^ be a *-ideal of
21. Let T be a ""-representation of $. Then there is a *-representa-
tion T of % on \$QT\ which extends T. If T is essential then T is
unique, and the set of topologically cyclic vectors for T equals the set of
topologically cyclic vectors for T. Thus when T is essential it is
topologically cyclic or topologically irreducible iff T has the corres-
ponding property.

Proof. If T is not essential it is the direct sum of a zero sub-
*-representation T° on φ0 and an essential sub-*-representation Tι on
£>!. We can extend T° as a zero *-representation f°: 2ί —>[£>0] Thus
if we can extend T1 to Γ1: 21 — [&] then T° © T1 extends T. There-
fore we need only consider the case of essential ^-representations.

Suppose T is essential and let X be the subset of φ, T%$QT =
{Tbx: be$, xe (QT). Then X is dense in $τ. Let T:2I—>[ξ>r] by any
^-representation which extends T. Let a e 21 and x e X. Then x —
Tby for b e 3f and 7/ e ©Γ. Thus

fβa? - f α Γ 6 ^ = TaTby = Taby - Tuby .

Since T7 is normed (Corollary 1.9) and X is dense this shows that there
is at most one extension T: St —+ [φΓ] of T.

Suppose z is a topologically cyclic vector for T. Let X = T%z.
Then X is dense again. For a e 21 and x e X define Ti# = Γαί)^
where x — Tbz with & e $5. We must first show that this is well
defined. Suppose x = Tdz with d e $ also. Let a — Σϊ=i λΛvw where
λw 6 C, ̂  6 2Igt,, and Σϊ=i λ» = 0. Then Γβ&2 - Γβd2 - Σί=i ^m(TVnι-bz -
TVnd_dz). However for each n

11 T v T 9 II2 — II T ? II 2

cί)*(v;Vπ_ϊ,u_ί;^)(έ_Cί) + T(b_d)*{b_d))z, z)

Thus Γαj2 = T α ^ and f ι

ax is well defined for each x e 3c. For α e ^
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and x = Tbze X, fι

ax = Tabz = TaTbz = Γβa;. It is easy to check that f1

is a "-representation of §1 on the pre-Hilbert space 36. Corollary 1.9
shows that T1 is normed and hence can be extended (in the sense of
extensions of "-representations) to a unique .."-representation T:%—>
[ξ>Γ] which extends T: $ —• [$τ]. Clearly z is a topologically cyclic
vector for T since Tnz Ξ2 Γθz. This concludes the proof of the theorem
when T is topologically cyclic.

Suppose T is essential but not necessarily topologically cyclic.
Then T = ®aeAT

a is the internal direct sum of a family {Ta:aeA}
of topologically cyclic sub-*-representations on Γ-invariant subspaces
{&a: a e A}. For each a e A we have shown how to construct a *-
representation Ta: 21 -> [φ«] which extends T": $ - > [£>J. The direct
sum φ α e ^ Γβ: §ϊ—> [φΓ] is defined since τ« ^ ^ by Corollary 1.11. It
extends Γ: $5 —> [&τ]. We have already shown that only one such
extension is possible. Thus any essential ^-representation of $ has
a unique extension to %.

Suppose z is a topologically cyclic vector for T and T is essential
then TaTbz = Tβ6s for all αeSί and 6 G ^ so that T^z~ is a closed
T-invariant subspace of $τ containing z by [10, p. 206] or [9, 1.2.10].
The topological cyclicity of z for T shows that T%z~ = φ Γ so that z
is a topologically cyclic vector for T.

When T is essential we have shown that the set of topologically
cyclic vectors for f equals the set of topologically cyclic vectors
for T. Since a ^-representation is topologically cyclic iff its set of
topologically cyclic vectors is nonempty and is topologically irreducible
iff every nonzero vector is topologically cyclic this establishes the
last sentence of the theorem.

COROLLARY 3.2. If % is a U*-algebra and $ is a *-ideal of %
included in %R then ^$R = $ . In particular (%R)R = 2tΛ.

Proof. If ^ Φ $ there is a nonzero ^representation T of $ .
Then Theorem 3.1 shows that there is a ^-representation T of % which
does not vanish on $ £ 9CΛ. This contradicts the definition of 2tΛ.

COROLLARY 3.3. If % is a U*-algebra and $ is any ""-ideal of
{%R)U then » Λ - 3f. In particular {{%R)U)R -

Proof. The last sentence of Lemma 1.7 and Corollary 3.2 together
show that {{%R)U)R = (31*)". Thus these sets clearly equal {{{%R)U)R)U.
Thus this corollary follows from Corollary 3.2 applied to ( 2 1 ^ in place
of St.

COROLLARY 3.4. If % is a Banach ""-algebra and $ is a ""-ideal
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of Sttf then $B = $ . In particular (%R)B — %R.

Proof. Theorem 1.12 and Proposition 1.4 together show that 21
§nd UR are £/*-algebras so that 21^ — (jSΰLs)

u Thus this corollary follows
from Corollary 3.3.

4* Remarks on categorical consequences* In this section we
wish to indicate the consequences of our results in the language of
categories. In reference [3] we find a strong notion of radical sub-
category which we will use. In fact what is called a radical in [3]
is sometimes called a hereditary radical (cf. p. 125 of N. J. Divinsky,
Rings and Radicals, University of Toronto Press, 1965) From one
viewpoint our results may be considered as a quite different example
of this theory.

We will show first that each of the three categories listed in the
introduction is both semi-abelian and co-semi-abelian. The trivial
*-algebra {0} is a zero-object in each of these categories and also in
each of the other categories which we will consider. We examine
the categorically defined kernels, cokernels, images, and co-images in
these categories.

In all three of the categories listed in the introduction the kernel
of / e Horn (21, S3) is simply (the subobject represented by the injection
into 2ί of) the set theoretic kernel Ker (/) of / .

Consider the following categories.
(4) Ϊ7* -algebras and *-homomorphisms.
(5) Banach *-algebras and *-homomorphisms.

Since the image of any Z7*-algebra is a U*-algebra it is easy to see
that the kernel of / e Horn (21, S3) in category (4) is (the subobject
represented by the injection into 2ί of) (ker (f))u where again Ker (/)
is the set theoretic kernel of/. In category (5) morphisms do not
always have kernels, since there is not in general any maximal sub-
object of Ker (/) on which a Banach *-algebra norm can be defined.
Notice that when such a maximal subobject does exist it must be
included in (Ker {f))u.

In the category
(6) *-algebras and *-homomorphisms

the set theoretic kernel "is" the categorical kernel.
In categories (1), (4) and (6) the cokernel of fe Horn (21, 33) is

represented by

S3 > 33/(*-ideal generated by /(2ί)) .

In categories (2) and (3) the cokernel of / e Horn (21, S3) is represented

by

S3 • (S3/(closed *-ideal generated by /(2t))) .
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Morphisms in category (5) do not always have cokernels, since there
is not always a smallest *-ideal containing /(SI) such that the quotient
may be embedded in a Banach *-algebra.

In categories (1), (2), (3), (4), (6) the image of fe Horn (Si, S3) is
represented by the map

Sί/Ker (/) > S3

induced by /. Morphisms in category (5) do not always have images.
The co-image of / e Horn (SI, S3) in categories (1), (2), (3), (4), and

(6) is represented by the natural morphism

SI > SI/Ker (/) .

Morphisms in category (5) do not always have co-images.

DEFINITION 4.1. A category with a zero object is called semi-
abelian if:

( a ) Every morphism may be factored into a representative of
its co-image followed by a representative of its image, and

(b) Every morphism has a cokernel.
A category with a zero object is called co-semi-abelian iff it satisfies
(a) and

(c) Every morphism has a kernel.

PROPOSITION 4.2. Categories (1), (2), (3), (4), and (6) are each
both semi-abelian and co-semi-abelian.

Proof, This follows from the remarks above.

DEFINITION 4.3. Let ^ be a semi-abelian category. A radical
subcategory of ^ is a full subcategory <% such that

( a ) If St e ^ , / G Horn (SI, S3) and i e Horn ($, S3) represents the
image of / then ϊ~$ e &.

(b) If SI 6 ^ , / G Horn (SI, S3) and k e Horn ($, SI) represents the
kernel of / then ί£ e &.

(c) For each SI G ̂  there is a unique subobject %& or SI which
satisfies

(Ci) 2t^ is a kernel.
(c2) 51^ is represented by a monomorphism with an object of

& as domain.
(c3) SÎ p includes any subob ject of SI which is a kernel and is

also represented by a monomorphism with an object of & as domain.
( d ) If u e Horn (SI, S3) is a representative of the cokernel of a

representative v e Horn (φ, SI) of St̂ > then the subob ject S3^ is the
zero-subobject of S3.
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THEOREM 4.4. In each of the categories (1), (2), and (3) the full
subcategory defined by the class of objects % such that 21 = 21^ is a
radical subcategory.

Proof. Proposition 1.4 and Corollary 2.4 and 3.4, together with
the identification of the kernels, cokernels, images and co-images in
these categories, establish this result.

This theorem justifies the term *-radical as a name for the
reducing ideal in these three categories.

In the semi-abelian category (4) of [7*-algebras we do not know
whether the reducing ideal is always a t7*-algebra, i.e.

(4.1) %R = (%Ry .

In fact we do not know whether every closed *-ideal is always a
U*-algebra. If %B is always a ?7*-algebra then Theorem 4.4 is true
for category (4) also. Otherwise one might consider the full sub-
category & defined by the class of objects % such that Si = ($ίB)

u.
This subcategory satisfies (a), (b), and (c) of Definition 4.3 with
3U = (SCΛ)17- However it will not satisfy (d) unless

(4.2) mi{W)Ry = {0}.

It is possible that condition (4.2) is true for all £7*-algebras. If it
is not true for all Z7*-algebras perhaps there is a full subcategory
of category (4) in which either condition (4.1) or (4.2) holds. This
subcategory might have a radical subcategory associated with the
reducing ideal. Notice that categories (2) and (3) are nonfull sub-
categories of category (4) in which (4.1) holds.

It seems unlikely that the semi-abelian category (6) has a radical
subcategory defined by the reducing ideal. However a counterexample
is probably quite weird. (Note added in proof: I have found a
counterexample which is not particularly weird.)
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QUASI PROJECTIVES IN ABELIAN
AND

MODULE CATEGORIES

K. M RANGASWAMY AND N. VANAJA

If R is a ring without zero divisors then it is shown
that any torsion-free quasi-projective left i?-module A is
projective provided A is finitely generated or A is "big". It
is proved that the universal existence of quasi-projective
covers in an abelian category with enough projectives always
implies that of the projective covers. Quasi-projective
modules over Dedekind domains are described and as a
biproduct we obtain an infinite family of quasi-projective
modules Q such that no direct sum of infinite number of
carbon copies of Q is quasi projective. Perfect rings are
characterised by means of quasi-projectives. Finally the
notion of weak quasi-projectives is introduced and weak
quasi-projective modules over a Dedekind domain are investi-
gated.

l Introduction* An object A in a category sf is called quasi-

projective [14] if given an epimorphism A —> B and a morphism
g: A~+ B, there is h: A --* A making the following diagram

S f
A — .. > τt

commutative. This paper starts with the investigation of the quasi-
projectives in an abelian category. Utilising a few basic lemmas, it
is shown that the universal existence of the quasi-projective covers
in an abelian category Saf implies that of the projective covers,
provided Sx? possesses enough projectives and this answers affirma-
tively a question of Faith [4] in a general form. Next we consider
quasi-projectives in the category of modules. It turns out that "big"
torsion-free quasi-projectives over rings without zero divisors are
always projective. Artin semi-simple rings are characterised as those
rings over which quasi-projectives and projectives coincide. In § 5,
quasi-projectives over a Dedekind domain R are investigated: A quasi-
projective i?-module is either torsion or torsion-free. A torsion JB-
module is quasi-projective if and only if it is quasi-injective but not

221
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injective. If R is a complete discrete valuation ring, then the torsion-
free quasi-projective i?-modules are just the free iϋ-modules and the
torsion-free modules of finite rank. Suppose R is a Dedekind domain
which is not a complete discrete valuation ring and σ is the number
of distinct prime ideals of R. If σ <L 2*°, then all the torsion-free
i?-quasi-projectives are protective. If σ > 2*°, then a torsion-free
quasi-projective i2-module A is projective if either (i) rank A ^ fc$0 or
(ii) rank A > σ. In the case when y$0 < rank A < σ, A is torsion-
less, fc^-projective and contains a free summand F having the same
rank as A. As a biproduct we at once get an infinite family of
quasi-projective modules A such that no direct sum of infinite num-
ber of copies of A is quasi-projective. In § 6, Perfect rings are
characterised as those rings R such that i?-quasi-projectivity survives
under direct limits. A weakened form of quasi-projectivity — called
weak quasi-projectivity — is considered in the last section and weak
quasi-projectives over a Dedekind domain are completely characterised.

2* Preliminaries* All the rings that we consider are associative
and are assumed to possess an identity and all the modules unitary
left modules. A sub-module S of an i?-module M is called fully in-
variant if S is stable under every i?-endomorphism of M. S is called
a small submodule, if £> + T = M implies T — M for any submodule
T of M. A projective module P is called a projective cover of M if
there is an epimorphism P-+M whose kernel is small. A module
M over an integral domain is called reduced if 0 is the only divisible
submodule of M. By the rank of a torsion-free module M over a
Dedekind domain R we shall mean the cardinality of a maximal iϋ-
independent subset of M. An i?-module M is called quasi-injective

if for any exact sequence 0 —> S —* M, the induced sequence

Hom^M, M) — Hom^S, M) > 0

is exact, where i*(f) = i ° / for all / in ΈίomB(M, M). For the basic
results in category theory, modules and abelian groups, the reader
is referred to [5], [6], [10] and [11].

3* Quasi-projectivity in abelian categories* In this section,
we examine the properties of quasi-projective objects in an abelian
category. The main result shows that the universal existence of
quasi-projective covers in an abelian category s%f implies that of
projective covers, provided j y possesses enough projectives.

NOTE. In conformity with our notation in the subsequent sec-
tions, a composite f ° g of two morphisms is obtained by applying f
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first and then g.

LEMMA 3.1 [14] In an abelian category, any retract of a quasi-
projective is quasi-projective.

The following lemma gives a condition under which an object
becomes projective.

LEMMA 3.2. An object A in an abelian category is projective if
and only if there exists an epimorphism P * A with P projective
and A 0 P is quasi-projective.

Proof. We prove only the "if" part. Let / : P —> A be the given

epimorphism, A-^AφP^A = lA and P - l i 0 P ^ P - l P , By
the quasi-projectivity of A 0 P, there exists g: A® P—+AQ) P such

that iφPii-AφpΛiφP-pii. Then

I A = ij = i(g ofof) = (iogo j r ) f .

Thus A is a retract of P and hence projective.

Dualizing 3.2, we obtain

LEMMA 3.2;. An object A is an abelian category is injective if
and only if there is a monomorphism A—*I with I injective and
A 0 I is quasi-injective.

Next we examine the universal existence of quasi-projective covers.

DEFINITION 3.3. ( i ) An epimorphism / in a category is called
a minimal epimorphism if, whenever g o f is an epimorphism, g it-
self is an epimorphism.

(ii) A —> X is called a projective (quasi-projective) cover in a
category, if A is projective (quasi-projective) and / is a minimal
epimorphism.

(iii) A category jzf is called perfect (quasi-perfect) if every ob-
ject in s*f possesses a projective (quasi-projective) cover.

(iv) A category is said to possess enough projectives, if, to
every object A, there is an epimorphism P—> A with P projective.

REMARK. ( i ) For an axiomatic treatment of minimal epimor-
phisms see [1], Observe that in the category of iϋ-modules, an
epimorphism / : A-+ B is minimal if and only if Ker / is small in
A.
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(ii) The notion of a perfect category has been considered in [2],

[3].

(iii) Our definition of a quasi-projective cover is slightly different
from the one defined in [14] for modules. However, it is easy to see
that for the category of modules over a ring R, the universal exist-
ence of quasi-projective covers according to the new definition is
equivalent to the universal existence of quasi-projective covers ac-
cording to the definition given in [14].

It is clear that a perfect abelian category is quasi-perfect.
Conversely, is a quasi-perfect abelian category perfect? This is the
category-theoretical formulation of a question raised by C. Faith [4]υ.
The following theorem answers this:

THEOREM 3.4. An abelian category S$f is perfect if and only if

it is quasi-perfect and possesses enough projectives.

Ί/L

Proof. IF part: Let A e j / and P-^A an epimorphism with
P projective. Let g: Qr —> A 0 P be a quasi-projective cover of
A 0 P. Consider the following commutative diagram

Q _*!__> Q>

ί
A ι > AφP -'-—> P > 0

where the square is a pull-back and

A-^A®P-^A = IΛ,P-^UA®P-^-*P = IP.

By Lemma 2.61 of [5],

0 > Q - > Q' —^-J > P > 0

is an exact sequence which splits since P is projective. Let / : P—> Qf

be such that f°g°j' = 1P. Since g is epic and the square is a pull-
back, g' is also epic. We claim gf is minimal. Let h':C—*Q be
such that Nog' is epic. Let h = {hΌi") 0 / . Consider the following
commutative diagram

1} While this paper was being written we found out that this question has been
recently answered independently by A. Koehler [12], K. R. Fuller, D. A. Hill and J. Golan
for the category of isJ-modules.
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0 > C > CffiP > P > 0

h' h

Q > Q' >P-

lp

0 > A > A 0 P > P > 0

where the top row is split exact with the obvious maps. By the 5-
lemma, h © g is epic and since g is minimal, h is epic. Since

is exact, again by Lemma 2.61 of [5], the left top square is a pull-
back. Since h is epic, h! is also epic. Thus gr is minimal epic.
Since P is projective and u: P—+A, there exists v: P—+Q such that
v o gf = u. By the minimality of </', v is an epimorphism. Then the
quasi-projectivity of Q 0 P and the Lemma 3.2 imply that Q is pro-
jective. Thus gr: Q—>A is a projective cover of A and we conclude
that the category is perfect.

REMARK 1. Theorem 3.4 is best possible in the sense that it
fails to be true if sf is not an abelian category. To see this, let
S^b be the category of all the abelian groups and j y the full sub-
category of j>/b consisting of all the cyclic groups. Then jzf is not
abelian. sf has enough projectives and is clearly quasi-perfect (every
object in s/ is quasi-projective). But S^ is not perfect since the
prime cyclic group Z(p) possesses no projective cover in

REMARK 2. A quasi-perfect abelian category need not possess
enough projectives. The category j^~v of all finite abelian ^-groups
is one such. The quasi-projectives in J^"v are the direct sums of
isomorphic cyclic p-groups [7]. ^v is abelian and is readily seen to
be quasi-perfect. But it possesses no non-trivial projectives.

4* Quasi-projectives in the category of modules* In this sec-
tion we indicate some of the simple properties of quasi-projective
modules over a ring. We also investigate when a quasi-projective
module over a ring R without zero-divisors becomes projective. It
turns out in a surprisingly simple way that the "big" torsion-free
quasi-projectives over such R are projective. Some of the preliminary
lemmas in this section hold in any abelian category but, for the sake
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of convenience, we will consider only the module case. Lemmas 4.3
and 4.4 occur in [7], but are proved here for the same of completeness.

LEMMA 4.1. [14]. If A is a quasi-projectίve R-module and S is
fully invariant in A, then A/S is quasi-projective.

COROLLARY. Let I be a two sided ideal of a ring R. Then R/I
is quasi-projective as an R-module.

The converse of Lemma 4.1 is not always true. It holds, however,
under some restriction on S, as indicated below.

LEMMA 4.2. Let S be a small submodule of a quasi-projective
module A. Then A/S is quasi-projective if and only if S is fully in-
variant in A.

To prove this, replace the word, "protective" in the proof of
proposition 2.2 of [14] by "quasi-projective".

The following lemma gives a condition when a submodule of a
quasi-projective module becomes a summand.

LEMMA 4.3. Let S be a submodule of a quasi-projective module
A. Then S is a summand if and only if A/S is isomorphic to a
summand of A.

Proof. Let A = B@C and f:B—+ A/S be an isomorphism.
Define g: A —* A/S by g\B = f and g \ C — 02). By the quasi-projectivity
of A, g lifts to an endomorphism h of A such that h o p = g, where
p: A—+ A/S is the natural map. Set pf = f~x°h. Since pΌp = 1AIS,
the sequence 0 —> S —* A —* A/S —* 0 splits and thus S is a summand
of A.

Dualising 4.3, we obtain a corresponding statement for quasi-
injectives.

LEMMA 4.3'. Let S be a submodule of a quasi-injective module A.
Then S will be a summand if and only if S is isomorphic to a
summand of A.

REMARK. Lemma 3.2 and 3.2' can also be easily deduced from
4.3 and 4.3' respectively.

LEMMA 4.4. Let A be a quasi-projective module. Then the exact

g I B denotes the restriction of the map g to B.
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sequence 0 —* T —> S —> A—* 0 splits, whenever S is a submodule of A.

Proof. Let g: A—+A/T be an epimorphism such that g \ S = f.
Let h: A-+ A/T be monic with Im h = S/T. Then there exists an
endomorphism hr of A satisfying hΌ g — h. Since Im hf — S, it is

readily seen that h! is a split map of the sequence 0—* T—>S—>A—*0.
Hence the Lemma.

Dualising 3.4, we obtain an analogous property of quasi-injectives.

LEMMA 4.4'. If A is quasi-injective, then the exact sequence

0 —>A—»X —* Y—+0 splits whenever X is a quotient of A.

As an easy application of Lemma 4.4 we show that big torison-
free quasi-projectives over an integral domain are projective.

THEOREM 4.5. Let R be a ring without zero divisors. Then any
torsion-free quasi-projective R-module containing an R-independent
subset of cardinality exceeding the cardinality of R is projective.

We may assume, without loss in generality, that R is infinite
(since otherwise R becomes a field). Let A be a quasi-projective
torsion-free i?-module and S a maximal i?-independent subset with

S\^\R\. Let F be the (free) submodule generated by S. Then
A| = | S | | i2 | = | S | and so A can be obtained as an epimorphic

image of F. Since F is free, A is projective by Lemma 4.4.

REMARK. ( i ) From the proof of 4.5 it is clear that, if R has
no zero divisors, then a torsion-free quasi-projective i?-module A is
projective exactly when ©m A is quasi-projective for every cardinal
m.

(ii) K. H. Fuller and D. A. Hill (Notices, Amer. Math. Soc, 16
(1969) 961) show that if A is finitely generated quasi-projective, then
φ m A is quasi-projective for any m. An immediate deduction from
(i) above: If R has no zero divisors, then a finitely generated torsion-
free quasi-projective R-module is projective.

COROLLARY 4.6. A quasi-projective module over a ring without
zero divisors is projective if and only if it is torsion-free and possesses
a projective cover.

We need only to prove the "if" part. Let A be torsion-free
quasi-projective and A ~ P/S, P projective and S small. By Lemma
4.2, S is fully invariant in P. If m denotes the cardinality of R,
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then 0 m A ~ (φ m P)/(φm S) is quasi-projective, since φ m S is fully
invariant in φ m P. The projectivity of A then follows from Thorem
4.5.

REMARK. One can deduce that over a ring without zero divisors
a quasi-projective module with a protective cover is either torsion or
torsion-free. For, suppose A, P and S are as in the preceeding proof
and A contains a torsion-free element a Φ 0. If m > y$0 | R | | A |,
then φ m A is quasi-projective, has cardinality m and contains a free
submodule F of rank m. By Lemma 4.4, φ m A and hence A is pro-
jective (and torsion-free).

The following theorem characterises Artin Semisimple rings by
means of quasi-projectives.

THEOREM 4.7. The following properties are equivalent for any
ring R:

( i ) R is Artin Semi-simple.
(ii) The R-modules with a protective cover are precisely the

quasi-projectives.
(iii) Every quasi-projective R-module is projective.

Proof. Trivially (i) implies (ii).
Assume (ii). Let Q be quasi-projective. By assumption Q pos-

sesses a projective cover P. Then P 0 Q will have a projective
cover and hence is quasi-projective by hypothesis. Lemma 3.2 then
implies that Q is projective.

Assume (iii). Since any simple .R-module is quasi-projective, it
becomes projective by assumption. Then all the maximal left ideals
of R are direct summands of the left i?-module R and since R has
1, we conclude that R is Artinian Semi-simple. This completes the
proof.

REMARK 1. Observe that if every ϋϊ-module is quasi-projective
then, by Lemma 3.2, R satisfies the condition (iii) above and hence
R is Artinian Semi-simple.

REMARK 2. Johnson and Wong [9] showed that the quasi-injective
modules over any ring R are exactly the fully invariant submodules
of injective jB-modules. A natural question is whether this can be
dualised to quasi-projectives. Precisely, must every quasi-projective
R-module A be of the form P/S with P projective and S fully in-
variant in P? Jans and Wu [14] answered this in the affirmative under
the assumption that A has a projective cover. In the general case,
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the answer turns out to be in the negative. To see this, consider
M — 0 (Z/pZ), where Z is the ring of integers, φ is a Z-module
direct sum and p runs over the set of all primes in Z. Clearly M
is a quasi-projective ^-module [7]. But M cannot be written as P/S,
where P is a protective (hence free) abelian group and S fully in-
variant in P, since the only fully invariant subgroups of a free
abelian group F are of the form nF, n = 1, 2, .

REMARK 3. In the statement of the Theorem 4.7 (ii), if we
replace "precisely" by "necessarily", we obtain a characterisation of
Jacobson semi-simple rings: A ring R is Jacobson semi-simple if and
only if the R-modules possessing projective covers are necessarily
quasi-projective. To see this, assume the "if" part. Then, by
Lemma 4.2, the small submodules of any projective i?-module P are
fully invariant in P. In particular, let P — R^@ R2 with Rt — R
and let Jt = J, the Jacobson radical of R> for i = 1, 2. Now Jx

is small in Rγ and hence in P. But then Jx would be fully in-
variant in P, an impossibility since Jx can be mapped onto J2 by an
endomorphism of P. Thus J1 — 0 and R is Jacobson Semi-simple.
The converse follows on noting that if R is Jacobson Semi-simple,
then 0 is the only small submodule of any projective iϋ-module.

5* Quasi-projectives over Dedekind domains* In this section
we propose to describe the quasi-projective modules over an arbitrary
Dedekind domain R. First, observe that if A is any quasi-projective

jβ-module, then any exact sequence 0 —• S -^ A -̂-> A/S —> 0 yields the
following two exact sequences.

0 > Hom^A, S) — Hom^A, A) -^-> HomΛ(A, A/S) > 0

?0 > ExVR {A, S) -?—> Ext1,, (A, A) -^-> Ext,, (A, A/S) > 0 .

We first consider the torsion free quasi-projective modules. To
avoid the trivial situations, the integral domains that we consider are
not fields, unless explicitly stated.

LEMMA 5.1. Let R be a Dedekind domain. Then the quotient
field K of R is a quasi-projective R-module if and only if R is a
complete discrete valuation ring.

Proof. Suppose K is quasi-projective. Given any fe Ή.omR(K/R,
K/R), there exists a / ' e Ή.omR(K, K) such that fΌj = jof where j
is the natural map from K onto K/R. Let / " = f"\R. Since Rf S
R, f" is given by a multiplication by an element of R. It is readily
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seen that the association f\—>/" gives an isomorphism of Ή.omB(K/R,
K/R) onto R. Now the exact sequence 0 —> R —> K —> ϋΓ/Jβ —> 0 yields
an exact sequence

ΈίomB(K/R, K) = 0 > Hom Λ (2Γ/i2, J5Γ/22) > Extι

R(K/R, R)

> Ext^K/R, K) = 0

(the first term is zero since K/R is torsion and K is torsion-free)
Thus R s HomΛ(JΓ/ie, if/Λ) ~ Ext^K/R, R) and the Corollary 7.9 of
[13] implies that R is a complete discrete valuation ring.

Conversely, suppose R is a complete discrete valuation ring.
Then any ϋ?-submodule S of K is isomorphic to R or iΓ and hence,
by Theorem 7.9 of [13], Ext^iΓ, S) = 0. £" is then clearly quasi-
projective.

We shall first describe the torsion-free quasi-projectives over
Dedekind domains which are not complete discrete valuation rings.

LEMMA 5.2. Suppose R is a Dedekind domain which is not a
complete discrete valuation ring. Then any torsion-free quasi-
protective R-module A is torsionless.

Proof. Let 0 Φ x e A and S the pure submodule generated by
x. Since R is not a complete discrete valuation ring, A (and there-
fore S) is reduced, by Lemma 3.1. Thus S Φ PS for some prime
ideal P of R. Then S/PS, being bounded and pure, is a summand
of AI PS (Theorem 5 [11]). A nonzero cyclic summand of S/PS will
be isomorphic to R/P and can be written as Ry/Py, for some yeS.
Let g: S/PS-+ Ry/Py be a nonzero map. Consider the following
diagram

h/

f A/Py > 0

where / ' : A -> S/PS is obtained via the projection A/PS -> S/PS and
/ is the natural map. By the quasi-projectivity of A, there exists
h: A—+A making the diagram commutative. Now A(h of) = A(fΌ g) £
Ry/Py, so that Ah £ Ry. Thus h: A-+ Ry = R and xh Φ 0 since fc
does not vanish on the rank 1 submodule S. It follows that A is
torsionless.
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COROLLARY 5.3. Let R be a Dedekind domain which is not a
complete discrete valuation ring. Then any torsion-free R-module A
is ^-projective. Hence any torsion-free R-module of atmost countable
rank is protective.

Proof. Let S be a submodule of A of rank 1. By Lemma 5.2,
A is torsionless so that for each a Φ 0 in S, there exists f:A—*R
such that af Φ 0. Since S has rank 1 and im / is torsion-free, /1 S
is mono. As R is hereditary, S is projective. By finite induction,
it is clear that any submodule of A of finite rank is projective. Then
a well-known step-wise argument (see for example Lemma 8.3.1 [13])
yields that any submodule of countable rank of A is projective.

In the following σ denotes cardinality of the set of all distinct
prime ideals of R.

PROPOSITION 5.4. Let R be a Dedekind domain. Then any
torsion-free quasi-protective of rank m ^ σy$0 is projective.

Proof. Let A be a torsion-free iϋ-module of rank m ^ σ^ 0 and
K be the quotient field of R. It is easy to see that R(P°°) is count-
ably generated. Now K/R is 0 P R(P°°), where P runs over the set
of distinct non-zero prime ideals of R and hence K has a generating
set of cardinality σ#0. If D is an injective hull of A, then D = φ m K
has a generating set of cardinality m. It is then readily seen that
A itself is generated by m elements. Let F be a free submodule
of A of rank m (for example F may be the submodule generated by
a maximal iϋ-independent subset of A). A can be got as an epi-
morphic image of F and hence by Lemma 4.4, A is a direct summand
of F and hence projective.

Combining 5.3 and 5.4, we get the following.

THEOREM 5.5. Let R be a Dedekind domain which is not a com-
plete discrete valuation ring and a ^ y$0. Then a torsion-free R-
module is quasi-projective if and only if it is projective.

REMARK. If we assume the continuum hypothesis and use 5.3
and 5.4, then we can sharpen 5.5 to the following: Let R be a
Dedekind domain wich is not a complete discrete valuation ring and
σ <; 2*°. Then any torsion-free quasi-projective R-module is projective.

Next we consider the case when σ > 2K°.

PROPOSITION 5.6. Let R be a Dedekind domain and A be a
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torsion-free quasi-projective R-module of infinite rank m. Then A
contains a free summand of rank m.

Proof. Let P be any non-zero prime ideal of R. R(P°°) is a
countably generated injective iϋ-module. If Q = ® w R(P"), then, as
R is Noetherian, Q is an injective i?-module. Clearly Q has a gener-
ating set of cardinality m. Let F be the free-submodule generated by
a maximal ^-independent subset of A. Then Q can be obtained as
a quotient of F, Q ~ F/S for some submodule S. Consider the fol-
lowing diagram,

A

f

/ A/S

i
A f—> A/S - F/S 0 T/S

where g: A/S—->F/S is a projection of A/S onto the injective summand
F/S and / is the natural map. By the quasi-projectivity of A, there
exists h: A—>A such that hof = fog. It is clear that Ah ^ F and
since R is hereditary A/z, is projective. As F/S is a direct sum of
m copies of R(P°°), it is clear that the rank of Ah = m. Thus A. =
Ff © iΓ, where if is the kernel of & and F' is a projective module of
infinite rank m and hence is free [11].

Combining 5.3, 5.4 and 5.6 we get,

THEOREM 5.7. Let R he a Dedekind domain with σ > 2*°. Then
any torsion-free quasi-projective R-module A is projective if either
(i) rank A <£ ̂ 0 or (ii) rank A^σ. In the case when ^ 0 < rank A<σ,
A is torsionless, )&rprojective and contains a free summand F having
the same rank as A.

The following theorem characterises torsion-free quasi-projectives
over a complete discrete valuation ring.

THEOREM 5.8. Suppose R is a complete discrete valuation ring.
Then the torsion-free quasi-projective R-modules are just the free R-
modules and the torsion-free R-modules of finite rank.

Proof. By Kaplansky [10], any torsion-free iϋ-module of finite
rank is of the form (φ?=1 iQ 0 (©™=1 Rj) where each R5 = R and
each Ki ~ K, the quotient field of R. Thus if A is any finite rank
torsion-free iϋ-module and S is any submodule, then both are direct
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sums of finite number of copies of K and R, so that

Ext^.4, S) = φr ExtR(K, R) ,

where r is finite. By Lemma 5.1, K is quasi-projective so that

ΈxtR(K, R) = 0 .

Thus Ext^ίA, S) - 0, whence Hom^A, A) £ RomR(A, A/S)-> 0 is exact
for every submodule S of A, where / ' is induced by the natural
map / : A —> A/S. The quasi-projectivity of A then follows. On the
other hand if A is a torsion-free quasi-projective iϋ-module of infinite
rank, then by Proposition 5.4, A is protective and hence free.

COROLLARY 5.9. // A is quasi-projective, then a direct sum® A
of copies of A need not be quasi-projective.

EXAMPLE. Suppose A is any torsion-free module of finite rank
over a complete discrete valuation ring R such that A is not pro-
jective (for example A = K, the quotient field of R). Then any finite
direct sum of copies A is quasi-projective but, by 5.8, no direct sum
of infinite number of copies of A can be quasi-projective.

We shall now describe the torsion quasi-projectives over R.

THEOREM 5.10. A torsion module A over a Dedekind domain R
is quasi-projective if and only if each P-primary component AP is a
direct sum copies of the same cyclic module R/Pk for some fixed
positive integer k depending on P.

Proof. Since a P-primary module over R can be viewed as a
module over the principal ideal domain RP, and quasi-projectivity sur-
vives under this transition, we may assume that R itself is a principal
ideal domain. Our proof would be sketchy since it is similar to
the one given in [7]. Now R{PCO) is not quasi-projective since
otherwise, by Lemma 4.3, every submodule of R(P°°) would be a sum-
mand. Thus a torsion quasi-projective iϋ-module A is necessarily
reduced. Again, by Lemma 4.3, A cannot contain a summand of the
form (R/Pkή © (R/(Pkή) with kλ > k2, since there is an epimorphism
R/(Pkή —> RI(Pki) whose kernel is not a summand. Thus the basic
submodules BP (see [6]) of each P-primary component AP are
bounded and since the AP are reduced, each AP coincides with BP

which is clearly a direct sum of isomorphic cyclic modules. The
"only if" part follows.

Conversely, if A is a direct sum φ w R/(Pk) of isomorphic cyclic
modules, then A~F/PkF, where F is free, say, F = φ w R. Since
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PkF is fully invariant in F, A is quasi-projective, by 4.1.

COROLLARY 5.11. A torsion module A over a Dedekind domain
R is quasi-projective if and only if A is quasi-injective but not in-
jective.

Proof. By Johnson and Wong [9], the quasi-injectives are pre-
cisely the fully invariant submodules of injective modules. The corol-
lary then follows on noting that P-primary injective iϋ-modules are
direct sums of copies of R(PCO) and their proper fully invariant sub-
modules are direct sums of isomorphic cyclic P-primary modules.

The following theorem concludes our investigation of quasi-pro-
jectives over Dedekind domains.

THEOREM 5d2. A quasi-projective module over a Dedekind domain
is either torsion or torsion-free.

Proof. Suppose A is a quasi-projective ϋJ-module with its
maximal torsion submodule At Φ 0. Since R(P°°) is not quasi-pro-
jective for any prime ideal P, At is reduced and thus A has torsion
cyclic summands [11], Let A = (R/Pk) φ B. Now if R is not a
complete discrete valuation ring, B/Bt is torsion-free quasi-projective
and hence is torsionless (5.2) so that B has a projective summand I
of rank 1. If R is a complete discrete valuation ring, then as in the
proof of 5.10, one can then show that Bt = BP is a bounded direct sum
of isomorphic cyclic modules, where P is the unique nonzero prime
ideal of R. Hence B = BP © B/BP, so B/BP is a torsion-free quasi-pro-
jective i?-module and hence contains a summand isomorphic to R or
K, the quotient field of R (5.8). Thus, in either case, A has a sum-
mand of the form (R/Pk) φ C, where C = K, the quotient field of R
or C ~I, an ideal of R. Choose a submodule S of C such that S = R
or S = IPk according as C = K or C ~ I. Then there exists a non-
zero morphism g: R/Pk —> C/S. Consider the following diagram.

(R/Pk) 0 C — - — > (R/Pk) 0 (C/S)

where / ' = (Q f\ f being the natural map and g' = (Q

where g is any nonzero homomorphism R/Pk —> C/S. This g' cannot be

lifted to an endomorphism h of (R/Pk) φ C satisfying h ° / = g', a
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contradiction. We thus conclude that A is either torsion or torsion-
free.

6* Perfect rings* In this section perfect rings are characterised
by means of quasi-projective i?-modulesβ

THEOREM 6.1. Let R be any ring. Then the following properties
are equivalent.

( i ) R is left perfects
(ii) A direct limit of quasi-projective left R-modules is quasi-

projective.
(iii) A direct limit of finitely generated quasi-projectives over R

is quasi-projective.
(iv) Any flat left R-module is quasi-projective^

Proof. Let Q = lim Qi9 ie I where I is a directed set and the Q/s

are quasi-projective i?-modules. To each ie I, there exists, by hypothesis,

an exact sequence 0 —» K{ -Λ Pi -^ Q{ —> 0 where P* is protective and
Ki is small in P .̂ Now {PJίeZ and {Ki}ieI can be made into directed
systems in a natural way so that we get a directed system of exact
sequences. Let K — lim Ki and P = lim P{. Suppose for each ie I

as. Pi—>P and βc. Ki—>K are the natural maps associated with
the direct limits. Since the direct limit commutes with exact se-

quences, 0—>i£—>P—>Q—*0 is exact. We have the following com-
mutative diagram:

0 > ̂  > Pi -• > Qi > 0

0

We claim that Ku is fully invariant in P. Let fe End^(P) and ke K.
As R is perfect, P is a direct sum of cyclic protective iϋ-modules
[12]. Let P' be a finitely generated summand of P containg (A )u

and let P—*Pf be the natural projection. As (P')/ is finitely gener-
ated, we can choose a j e I and a k0- e K3 such that (Pj)(Xj ZD(P')f
and (&i)/5V = k. Consider the following diagram:

3} In a private communication Dr. J. Golan has indicated that he has also proved
the equivalence of (iv) and (i).
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p . > {P.)a.

where h exists by the projectivity of P3. As (Kj)Uj is fully invariant
in Pj (by 4,2), {k5)u5he {Kά)us. Now

(k)uof= (k)uogof(&s
θhoaj e (K^Ujoaj = {K5)β5°u £

Thus (ίΓ)i6 is fully invariant in P whence Q — P/(K)u is quasi-pro-
jective.

Clearly (ii) => (iii) and, since a flat module is a direct limit of
finitely generated projectives, (iii) implies (iv).

Assume (iv) Let A be flat and P projective such that A ~ P/S.
Since A 0 P is flat, it is quasi-projective, by hypothesis. Then
Lemma 3.2 implies that A is projective. Thus a direct limit of pro-
jective left jβ-modules is projective and so R is left perfect, by
theorem P of [2]. This proves (i).

REMARK. If R is left perfect and A is a quasi-projective lelf i2-
module, then a direct sum of any number of carbon copies of A is
again quasi-projective. This property, however, does not characterize
the perfect rings. Indeed, the investigations made in § 5 show that
if R is a countable Dedekind domain which is not a complete discrete
valuation ring and A is a quasi-projective i?-module, then φ m A is
quasi-projective for any cardinal number m.

?• Generalization. In this section, we consider a weakened
form of quasi-projectivity called w. quasi-projectives. The w. quasi-
projective abelian groups were considered in [8]. We give a descrip-
tion of w. quasi-projectives over a Dedekind domain. It is also
shown that w. quasi-perfect abelian categories with enough pro-
jectives are perfect.

DEFINITION. An object A in a category s^f is called weak quasi-
projective (for short, w. quasi-projective) if for any epimorphism
f: A—>B and any g: A\B-+ AjB, there is a g'\ A—>A making the
following diagram
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A > A/B

commutative.

It is clear that any quasi-projective is weak quasi-projective.
But the converse is not true. The abelian group Z{P°°) is w. quasi-
projective, eventhough it is not a quasi-projective Z-module.

We start with the following lemma which gives a criterion for
quasi-projectivity. The proof is straight forward and hence is omit-
ted.

LEMMA 7.1. An R-module A is quasi-projective if and only if
A 0 A is weak quasi-projective.

REMARK. It is clear from 7.1 that, unlike the quasi-projective
case, if A is w. quasi-projective then A 0 A need not be w. quasi-
projective.

The next lemma can be obtained by modifying the arguments
of 3.2.

LEMMA 7.2. [8]. If A® B is w. quasi-projective and there is
an epimorphism f:A—>B, then B will be isomorphic to a summand
of A.

One can define a weak quasi-perfect category in the obvious
manner. Using Lemma 7.1 and proceeding exactly as in the proof of
Theorem 3.4, we obtain.

THEOREM 7.3. A weak quasi-perfect abelian category with enough
projectives is perfect.

If we suitably modify the preceding investigation of the quasi-
projectives over a Dedekind domain and make use of Lemma 7.2 we
can obtain the following theorem whose proof is omitted.

THEOREM 7.4. Let R be a Dedekind domain.
( i ) A torsion R-module A is weak quasi-projetive if and only if
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each P-primary component AP is either quasi-projective or AP ~ R(Poa).
(ii) If the number σ of prime ideals of R is ^ 2**° then the

torsion-free weak quasi-projectives are just the (torsion-free) quasi-
projectives. If σ > 2**°, then a torsionfree weak quasi-projective 22-
module A is projective if either A has rank ^ fc$0 or (ii) rank A>σ.
If y$o < rank A < σ, A is ^-projective and contains a free summand
F whose rank is equal to rank A.

(iii) A properly mixed R-module A is weak quasi-projective if
and only if A~ B φ C where B is reduced torsion-free quasi-projective
of finite rank and C is an injective submodule of K/R, where K is
the quotient field of R.

The authors are indebted to the referee for pointing out a few
inaccuracies and for offering many suggestions for improvement.
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ON THE UNIVALENCE OF SOME
ANALYTIC FUNCTIONS

G. M. SHAH

Let

and

g(z) = z + ^ akz
k

be analytic and satisfy

(a) Re (f(z)/[λf(z) + (1 - X) g(z)]) > 0

or

(b) I f(z)l[λf{z) + (1 - X) g{z)} - 1 | < 1

for \z I < 1, 0 ^ λ < 1 .

We propose to determine the values of R such that f(z) is
univalent and starlike for \z\ < R under the assumption
(i) Re(g(z)/z) > 0, or (ii) ΈLe(zg'(z)lg(z)) > a, 0 ^ a < 1.

We also consider the case when n = 1 and Re(#(z)/z) > 1/2
and show that under condition (a) /(#) is univalent and
starlike f or \z \ < (1 - )̂/(3 + X).

2. LEMMA 1. If p(z) = 1 + b^zn + bn+ιz
n+ι + is analytic and

satisfies Ue(p(z)) > a, 0 ^ α: < 1, /or | s < 1, ίAew

( 1 ) p(s) = [1 + {2a - l)zn u(z)]/[l + znu{z)} , / o r | « | < 1 ,

where u(z) is analytic and \u(z) \ ̂  1 for \z\ < 1.

Proof. Let

( 2 ) TO - lp(z) - a]/(l - a ) = l + cnz
n + cn+1z«+ί + .

ί 7 ^) is analytic and Re (F(z)) > 0 for | z \ < 1 and hence

(3) h(z) = [1 - F(2)]/[l + F(2)] = dn»" + d%+ιz^ + ,

is analytic and | Λ(̂ ) | < 1 for | z \ < 1. Thus, by Schwarz's lemma

(4) h(z) = znu(z) ,

where u(z) is analytic and | u(z) | ^ 1 for \z\<l. Now equations (2),

(3) and (4) prove (1).

L E M M A 2 . Under the hypothesis of Lemma 1 w e have for \z\ < 1

239
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I zpr(z)/p(z) I ̂  2nzn(l - a)/{{I - | s |») [1 + (1 - 2a) \ z \n]}.

Proof. Proceeding as in the proof of Lemma 1, we have in view
of (3) and a result of Goluzin [1] that for | z \ < 1

(5) I hf{z) \^n\z Γ 1 (1 - I h(z) | 2)/(1 - | z \2n) .

Using (3), the inequality (5) takes the form

I F'(z) \^2n\z Γ 1 Re (F(z))/(1 - \ z \2n) .

Hence, in view of (2),

(6 ) I p'(z) \^2n\z I - 1 [Re (p(z)) - a]/(l - | z Π

or,

( 7 ) I zpr(z)jp{z) I ̂  2rc| * | (1 - a/(\ p(z) |)/(1 - | z Π .

Equation (4) gives

(8 ) I h(z) \^\z\n

and hence, by virtue of (3),

( 9 ) \F(z)\£d+ I« |")/α — 1*1")

From (2) and (9),

I p(z) I - I a + (1 - a)F(z) \
^ a + (1 - a) I F(z) \
^ [1 + (1 - 2a) \z |1/(1 - I z \n) .

for 1 ,

The inequality (7), because of the last inequality, reduces to

I zp'{z)lp{z) \^2n\z |*(1 - a)/{(I - | z \«) [1 + (1 - 2a) \ z | ]} for | z | < 1

and this completes the proof.
We remark that in the case a = 0, the above lemma reduces to

a result of MacGregor [2; Lemma 1] and the inequality (6) with
a = 0, n — 1, gives another result of MacGregor [2, Lemma 2].

LEMMA 3. Under the hypothesis of Lemma 1 we
z 11/(1 + | z \n).

/or 13 | < 1
Re

Proof. We have from equation (3), F(z) = [1 - Λ(2)]/[l + Λ,(s)]
and also from (8), | h(z) \ ̂  | z \n for |« | < 1. Hence the image of
I z I < r (0 < r < 1) under JP(#) lies in the interior of the circle with
the line segment joining the points (1 — rn)/(l + rn) and (1 + rn)/(l — rn)
as a diameter. Consequently Re (F(z)) ^ (1 — | z \n)/(l + \z\n) for
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z I < 1. The result now follows from the last inequality involving
F(z) and equation (2).

LEMMA 4. ([6]). // h(z) = 1 + cnz
n + cn+ίz

n+ί + . . . is analytic
and Re (h(z)) > 0 for \ z | < 1, then

[1 - λ I h(z) I]"1 ̂  (1 - \z

/or | z | < [(1 - λ)/(l + λ)]1/Λ, wfterβ 0 ^ λ < 1.

3. THEOREM 1. Suppose that f(z) = z + an+1z
n+1 + an+2z

n+2 H ,

and g(z) = z + 6 % + 1 ^ + 1 + bn+2z
n+2 + ••• a r e analytic and Re(g(z)/z)>0

for \z\<l. If Re (f(z)/[Xf(z) + (1 - λ)^(z)]) > 0, 0 ^ λ < 1, /or
| 2 | < 1, £/^w f(z) is univalent and starlike for \z\ < R l f n , where
R = {[(2n + λ - nX)2 + (1 - λ2)]1/2 - (2n + λ - nX)}/(l + λ).

Proof. Let

then h(z) is analytic and Re (h(z)) > 0 for | z \ < 1. Now

(10) /(z) [1 - Xh(z)] - (1 -

where p(z) = ^(z)/z = 1 + δw+i2n + δw+22;%+1 + - . Multiplying the loga-
rithmic derivative of both sides of equation (10) by z we have

(11) zf{z)lf{z) = 1 + zpf(z)/p(z) + zhf(z)/{h(z)[l - \h{z)]} .

Equation (11) is valid for those z for which 1 — Xh(z) Φ 0 and | z \ < 1.
Since | h(z) \ ̂  (1 + | z \n)/(l - \z\n), 1 - λfc(2) ^ 0 in particular if
I z I < [(1 - λ)/(l + λ)] i ; \ Now from equation (11), we have

I zf'{z)lf{z) - 1 I S I zp'(z)/p(z) I + [ zh'(z)/h(z) \\ 1 -

and by using Lemma 2 with a = 0 and Lemma 4, this gives

, / 2w I z I" , 2n\z\*
\ zf(z)/f(z)

z r a -1 s n - λ(i +
z \n [(1 - [ z \n) - λ ( l + [ z \n) + (1 - [ z

) [(1 - \z l ) -

provided that \z\<[(l- λ)/(l + λ)]1/u.
The fact that | zf(z)/f(z) - 11< 1 implies that Re(zf'(z)/f(z)) > 0,

it follows from the inequality (12) that Re (zf'(z)/f(z) > 0 if

I z | < [(1 - λ)/(l + λ)]1^

and if
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G(\ z | ) Ξ (1 + λ) I z Γ + (4m + 2n\ + λ - 1) | z
(lo)

+ (2nX - An - X - 1) | z \n + (1 - λ) > 0 .

Let I z \n — t and consider the cubic polynomial G(t) for 0 ^ t ^ 1.
G(t) has at most two positive zeros. Since G(0) = (1 — λ) > 0,
G[(l - λ)/(l + λ)] = -AXn(l - λ)/(l + λ)2 < 0 and G(l) = AXn > 0, it
follows that G(ίχ) = 0 for some t, such that 0 < t, < (1 - λ)/(l + λ)
and G(t) > 0 for 0 ^ ί < t, and G(ί) < 0 for ^ < t < (1 - λ)/(l + λ).
Hence Re (zf'(z)/f(z)) > 0 for those z for which only the inequality
(13) is true. Now the inequality (13) holds if, in particular

\2n(1 + λ) I z \*n + (4n - 2nX + λ - 1) | z

+ (2nX - in - λ - 1) | z \n + (1 - λ) > 0

or,

(I s | - 1) [(1 + λ) I * I1* + (An - 2nX + 2λ) | z \n + (λ - 1)] > 0

or,

(1 + λ) \z \2n + {An - 2nX + 2λ) \z \n + (λ - 1 ) < 0 .

The last inequality holds if

(14) \z\*< {[(2n + X - nxγ + (1 ~ λ2)]1/2 - (2n + λ - nλ)}/(l + λ) .

Since f(z) is univalent and starlike for those z for which

Re (zf'(z)lf(z)) > 0 ,

we have that f(z) is univalent and starlike for \z\ < Rlln, where R
is the right side of (14).

If we put λ = 0 in Theorem 1 we obtain the following result
which, when n = 1, reduces to a result of Ratti [5, Theorem 1].

COROLLARY 1. Suppose that f(z) = z + an+1z
n+1 + an+2z

n+2' , αraZ
0(2) = z + 6%+1£

%+1 + 6%+2^
+2 + are analytic and Re (g(z)/z) > 0 /or

2 I < 1. / / R e (f(z)/g{z)) > 0 /or | s | < 1 £/̂ w /(s) is univalent and
starlike for \z\< [(An2 + 1)1/2 - 2n]lln.

The functions f(z) = z(l - zn)2/(l + zn)2 and g(z) - z(l - 2;w)/(l + zn)
satisfy the hypothesis of Corollary 1 and it is easy to see that the
derivative of f(z) vanishes at z = [(4w2 + 1)1/2 — 2n]l!n and hence
[(4%2 + 1)1/2 — 2n]lln is in fact the radius of univalence for such func-
tions f(z). This shows that Corollary 1 is sharp and hence Theorem
1 is sharp at least for λ = 0.

THEOREM 2. Suppose f(z) = z + azz
2 + , and
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g(z) = Z + b2Z
2 + •

are analytic for | z | < 1 αm£ Re (g(z)/z) > 1/2 /or | 2 | < 1. 1/

Re (f(z)/[Xf(z) + (1 - λ)ff(2)]) > 0 for \ z

/(2) ΪS unίvalent and starlίke for | 2 | < (1 — λ)/(3 + λ).

Proof. Let Λ(«) = /(«)/[λ/(«) + (1 - λ)#(z)] = 1 + ctz + c2z
2 + .

Now h(z) is analytic and Re (h(z)) > 0 for | z | < 1 and

(15) f(z) [1 - λ/φ)] = (1 - X)h(z)g(z) .

If we let g{z) = zp(z), then by applying Lemma 1 with a — 1/2 and
n = 1 we have that p(2) = [1 + 2%(2)]~ι, where u(z) is analytic and
! u(z) | ^ 1 for I 2 I < 1. Equation (15) now reduces to

Hence

and

f(z) [1 - \h(z)] = (1 -

zf'(z) _ 1 -

zu(z)] .

zh'(z)

h{z) [1 -

Re
f{z) )

> Re
1 +

zh'(z)/h(z)
11 - \h{z)

Using Lemmas 2 and 4 with n = 1, we get

Re (?£M) ^ Re
f{z) J ~ V 1 + zu(z) / (1 - i 2 |2) - λ(l

for I z | < (1 - λ)/(l + λ).

Hence Re (zf'(z)/f(z)) > 0 if | z | < (1 - λ)/(l + λ) and

Γ(| z I) Re [(1 - 2V(2))(1 + zu(z)] - 2 | z | Re[(l > 0 ,

where Γ(| 2 |) = (1 - | z f) - λ(l + | z The last inequality holds if

T{\ z I) Re (1 + zu(z)) - T(\ z \) Re [z2u'(z)(l + zu(z)]

+ 2 I z \ Re [(1 - 2tt(2))(l + zu(z))] - 4 ] z j Re (1 + zu(z)) > 0 ,

or if

[4 I z I - Γ( | z I)] Re (1 + 2

< 2 I z I (1 - I z |21 it(2) |2)

+ Γ(| z |) Re +

or
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I 4 I z I - T{\ z I) I (1 + I z I | u(z) |) + T(\ z |) | z |21 w'(z) | (1 + | Z | | W(Z) |)

< 2 I z I (1 - I z |21 u(z) |2) .

This inequality holds, in view of (5) with n — 1 if

I 4 I z I - Γ(| z I) I + Γ(| z |) | z |2 (1 - | i*(z) |2)(1 - | z I2)"1

( ' < 2 I z I (1 - I z I I M(Z) I) .

Two cases arise according as 4 | z | — T(\ z |) is nonnegative or not.

Case 1. 4 I z I - Γ(| z I) ^ 0, i.e. | z | ^ [(4λ + 5)1/2 - (λ + 2)]/(l + λ).
Since [(4λ + 5)I/2 - (λ + 2)] < (1 - λ) for 0 ^ λ < 1, it follows, in
view of inequality (16), that Re (zf'(z)/f(z)) > 0 for those z for which
[(4λ + 5)1/2 - (λ + 2)]/(l + λ) ^ I z | < (1 - λ)/(l + λ) and

4 I z I - Γ ( | z I) + Γ ( | z I) I z |« (1 - I **(«) | 2)(1 - 1 t φ ) I2)"1

< 2 I z I (1 - I z I I «(z ) I) .

The last inequality holds, because of the original value of T(\z\), if

2 I z I + 2 I z Γ - 1 + λ ( l + I z \Y - λ I z |2(1 + | z |)/(1 - | z |)

< I 2 |21 M(Z) |2 - λ| z |21 tt(z) |2 (1 + I z |)/(1 - | z |) - 2 | z Γ | u{z) | .

Since | u(z) | sΞ 1, t h e r ight side of inequality (17)

^ I z Γ I u(z) |2 - 2 I z |21 u(z) | - λ | z |2 (1 + | z |)/(1 - | z |) .

Hence inequality (17) holds, if in part icular

(18) 2 I z I + 2 I z |2 - 1 + λ ( l + | z |)2 < | z |21 u(z) |2 - 2 | z Γ | w(z) | .

If we let F(x) = x2 \z\2 - 2x\z\\ where a; = | u(z) |, 0 ^ * ^ 1, then
F(x) is a decreasing function of x for 0 ^ x ^ 1, and hence

= -\z\ for 0 < x < 1 .

Hence inequality (18) holds if 2 | z | + 2 | z |2 - 1 + λ(l + | z |)2 < -1 z |2

or (3 I z I - 1)(| z | + 1) + λ(l + | z |)2 < 0 or 3 | z | - 1 + λ(l + | z | ) < 0
or if I z I < (1 - λ)/(3 + λ). Since (1 - λ)/(3 + λ) < (1 - λ)/(l + λ),
we have shown that

(19)
Re (z/'(z)//(z)) > 0

for [(4λ + 5)1'2 - (λ + 2)]/(l + λ) z I < (1 - λ)/(3 + λ) .

Case 2. 4 | z | - Γ(| z | ) < 0, i.e. | z | < [(4λ + 5)I/2 - (λ + 2)]/(l + λ).
We intend to show that Re (zf'(z)/f(z)) > 0 in this case also. Since
f(z) and g{z) satisfy, in particular, the hypothesis of Theorem 1 with
n = 1, it follows from Theorem 1 that
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Re (zf(z)/f(z)) > 0 for | z | < [(5 - λ2)1/2 - 2]/(l + λ) .

It is easy to see that

[(4λ + 5)1/2 - (λ + 2)] ̂  (5 - λ2)1/2 - 2 for 0 ^ λ ^ 1

and hence in particular

Re (zf'(z)/f(z)) > 0 for | z | < [(4λ + 5)1/2 - (λ + 2)]/(l + λ) .

In view of the above and (19), it now follows that f(z) is univalent
and starlike for | z | < (1 — λ)/(3 + λ) and this completes the proof.

For λ = 0 the above result reduces to a result of Ratti [5,
Theorem 2] and improves a result of MacGregor [2, Theorem 4] since
Re (g(z)/z) > 1/2 does not necessarily imply that g(z) is convex [7].
The functions f(z) = z(l — z)/(l + z)2 and g(z) — z/(l + z) satisfy the
hypothesis of Theorem 2 with λ = 0 and f(z) is univalent in no circle

z I < r with r > 1/3 since f'(z) vanishes at z — 1/3. This shows
that Theorem 2 is sharp at least for λ = O

A function f(z) = z + ΣΓ=2 a>kZk is said to be starlike of order a,
0 ^ a < 1, for I 2 I < 1 if Re (zf'(z)/f(z)) > a for | s | < 1, we now
prove the following result.

THEOREM 3. Let f(z) = z + Σ~=*+i bkz
k and g(z) = z + Σ?=«+i ̂ ^

δβ analytic for | 2 | < 1 and g{z) be starlike of order a, 0 ^ a < 1,
/or I s I < 1. // Re (f(z)/[Xf(z) + (1 - λ)flr(«)]) > 0 /or | s | < 1,

is univalent and starlike for

( i ) I z \< [(1 - λ)/(l + λ + 2n)Y!» if a = 1/2

(ϋ) I z\ < Rιln , if a Φ 1/2 ,

where

R = {[A2 + 4(1 - λ2)(2α: - 1)]1/2 - A}/[2(1 + X)(2a - 1)]

with A — 2nJrXJrl — (2a — 1) (1 — λ).

Proof. Proceeding as in the proof of Theorem 1 we get

Re (zf(z)lf(z)) 2: Re (zg'(z)/g(z)) - | zh'(z)\h(z) | ] 1 - Xh(z) I"1 .

Applying Lemma 3 (to zg'(z)/g(z)) and Lemmas 2 and 4 we get,

(20) Re (ZJ^\ >
f{z)J- 1 + I z | (1 - I 2 I2") - λ(l + I z I")2

provided that j z | < [(1 - λ)/(l + λ)]"\
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Hence Re (zf'(z)/f(z)) > 0 for those z for which \z\< [ l -λ)/( l+λ)] 1 / π

and the right side of inequality (20) is greater than zero. The latter
holds if

G{\z\) ( l

+ [2n + λ + 1 - (2a - 1)(1 - λ)] | z \n - (1 - λ ) < 0 .

Let I z \n = t and consider the quadratic G(t) for 0 ^ t ^ 1. Since
G(0) = λ - 1 < 0, G[(l - λ)/(l + λ)] - 2n(l - λ)/(l + λ) > 0, it follows
that G(ίi) = 0 for some tx such that 0 < t, < (1 - λ)/(l + λ) and
G(t) < 0 for 0 ^ t < tt and G(ί) > 0 for tL < t < (1 - λ)/(l + λ).
Hence f(z) is univalent and starlike for those z for which only the
inequality (21) holds. Now the inequality (21) holds if

I z | < [(1 - λ)/(l + λ + 2n)]ιίn

when a — 1/2 and

z I < {[A2 + 4(1 - X2)(2a - 1)]1/2 - A}l[n/[2(1 + λ)(2α - ΐ)Yln

when α: ̂  1/2, where A — 2n + X + 1 — (2a — 1) (1 — λ) and this com-
pletes the proof.

If we put λ — 0, n — 1 and a — 0 in the above result then
we see that f(z) = z + X"= 2 α ^ under the modified hypothesis
is univalent and starlike for | z \ < 2 — T/ 3 , a result obtained by
MacGregor [2, Theorem 3]. On the other hand if λ = 0 and n — 1,
Theorem 3 reduces to a result of Ratti [5, Theorem 3] The func-
tions

j\Z) — z{L — z )i\L ~τ z ) a n a gyz) —

show that Theorem 3 is sharp at least for λ = 0 and arbitrary n,
since the derivative of f(z) vanishes at

z - {[(n + 1 - a) - ((n + 1 - a)2 - (1 - 2a))ι'2]/(l - 2a)Y'n

for α ^ 1/2 and at z = - l/(2w + 1) when α: = 1/2.

4* Let S(E) denote the functions f(z) — z Λ- Σ ί U UkZk which are
analytic and satisfy | zf'(z)/f(z) — 1 [ < 1 for \z\ < R. Obviously
every member of S(R) is univalent and starlike for | z | < R. We
now prove the following result.

THEOREM 4. Let f(z) = z + an+1z
n+1 + α w + 2 ^ + 2 + •••, and g(z) =

« + &%+iZ%+1 + &w+2^+2 + δβ analytic and satisfy Re (g(z)/z) > 0 /or
I s | < 1. / / | f(z)l[Xf(z) + (1 - λ)flr(s)] - 1 | < 1, 0 ^ λ < 1, for | « | < 1,
then f(z)eS(Rlln), where R is the smallest positive root of the equa-
tion (2nX + λ - n - 1) R2 - (Sn + λ - 2nX) R + (1 - λ) = 0.
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Proof. Let

(22) h(z) = f(z)/[Xf(z) + (1 - X)g(z)] - 1 = cx + cn+1z^ +... .

By hypothesis, h(z) is analytic and | h(z) | < 1 for | 2 | < 1 and hence
by a result of Goluzin [1] we have that for | z \ < 1

(23) I h'(z) \£n\z I - 1 (1 - | h(z) | 2 )/(1 - | z \2n)

and by Schwarz's lemma for | z | < 1

(24) I Λ(*) I ̂  I 2 | .

If we let g(z) = zp(z), then we have from (22)

f(z)[ί — X — Xh(z)] = (1 — λ,)2p(2)[l + h(z)] .

Hence,

zfΊz) ., . zpΊz) , zhΊz)
f(z) ~~

and this gives

p(z) ' [1 + h(z)] [1 - λ - Xh(z)]

11 + h(z) 111 - λ -

Applying Lemma 2, with a — 0, we get, in view of (23), for | z \ < 1

i n I2)
1 - (1 - I z \2η 11 + h{z) I 11 - λ - λA(2)

w 1 g r (l + j h(z) 1)

by using (24), we have

f{z)
n\z\n

1- z \2n ( 1 - \z\n)(l-X-X\z \n)

valid for \z\< [(1 - λ)/λ]1/w. Hence | zf'(z)/f{z) - 1 1 < 1 if

\z \< [(1 -

and

2^ 1 z \n(l - λ ~ λ | ^ | % ) + ^ |

The last inequality holds if

(25) G(\ z \n) == λ I z

- (3n + λ - 2πλ) I z \n + (1 - λ) > 0 .

Let I z \n = t and consider the cubic polynomial G(t) for 0 fj t ^ 1.

(l + I z \n) < (1 - I z \2n)(l - X - X \ z \n) .

+ X - n ~ 1) | z Γ
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G(t) has at most two positive zeros. Since G(0) = (1 — λ) > 0 and
G((l - λ)/λ) = - (n(l - λ)/λ2 < 0, it follows that G(t,) = 0 for some tx

such that 0 < tx < (1 - λ)/λ and G(t) > 0 for 0 ^ t < ίx and G(t) < 0
for some values of t between tx and (1 — λ)/λ. Hence

I zf'(z)lf(z) - 11< 1

for those values of z for which only the inequality (25) holds. Now
inequality (25) holds if, in particular

(2nX + λ - n - 1) | z Γ - (Sn + λ - 2nλ) |3 |% + (1 - λ) > 0

and this completes the proof.
If we set λ = 0 and n — 1 in the above result we have the fol-

lowing.

COROLLARY 2. Suppose f(z) = z + a2z
2 + α32

3 + and #(#) =
z + 62£

2 + δ32
3 + . are analytic and satisfy Re (g(z)/z) > 0 /or

I z \< 1. 7/ ]/(z)Mz) - 11< 1 for \z | < 1, ίΛβn | zf(z)/f(z) - 11< 1
/or I 2 | < 1/4(1/17 - 3).

It may be noted that Corollary 2 implies, in particular, that f(z)
is univalent and starlike for \z\ < 1/4 (i/Ϊ7 — 3) and hence includes
a result of Ratti [5, Theorem 4]. If we take f(z) = z(l-zn)2/(l + zn)
and g(z) = z(l — £%)/(l + zn)> it is easy to see that these functions
satisfy the hypothesis of Theorem 4 with λ = 0. We see that f'(z)
vanishes at z0 = [-3w + (9n2 + 4n + 4)1/2]/(2u + 2) and hence

This shows that Theorem 4 is sharp for at least λ = 0 and also that
Corollary 2 is sharp.

THEOREM 5. Let f(z) = z + an+1z
n+1 + α%+2z

w+2 + . . and g{z) =
2 + δw+1£

%+1 + &W+22
W+2 + be analytic for | 2 | < 1 and g(z) be star-

like of order a for | z \ < 1, 0 ^ a < 1. 1/

I f(z)/[Xf{z) + ( 1 - λ)flr(s)] - K l , 0 ^ λ < l , / o r | s | < 1 ,

^Λen /(^) is univalent and starlike for \ z \ < i21/w, where R is the
smallest positive root of the equation

(2a - ΐ)XR* - (n + 2a - 1 - λ)i22

(26)
+ (2a - 2 - 2αλ + λ ~ n)R + (1 - λ) = 0 .

Proof. Proceeding as in the proof of Theorem 4 we have
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zf'jz) _ zg'jz) mz)
f(z) 9(z) [1 + h(z)] [1 - λ - Xh(z)) '

Hence,

f(z) ) - \ g(z) J \l + h(z)\\l~X- Xh(z) I

Since Re (zg'(z)/g(z)) > a and zgr(z)\g(z) = 1 + cnz
n + cn+iz

n+1 + , we
have by Lemma 3 and inequalities (23) and (24) that

Re (zf'(z)/f(z)) ^ [1 + (2a - 1) | z | ]/(1 + | z \n)
{ ~n\z | /[(1 - \z I*) (1 - λ - λ I z m

v a l i d for \z\< [(1 - X)/X]lίn .

Hence Re (zf'(z)/f(z)) > 0 if | z | < [(1 - λ)/λ]^ and if (in view of
inequality (27))

G(| z \n) = (2a - ) λ I z Γ

- (n + 2a - 1 - λ) I z \2n

(28)
+ (2α - 2 - 2αλ + λ - n) \ z \n

+ (1 - λ) > 0 .

Let \z\ ~ t and consider the cubic polynomial G(t) for 0 ^ ί ^ 1.
Since G(0) = 1 - λ > 0 and G((l - λ)/λ) = ( - ^ ( 1 - λ))/λ2 < 0, it fol-
lows that G(tL) = 0 for some tt such that 0 < tx < (1 — λ)/λ and
G(t) > 0 for 0 ^ ί < tγ and G(ί) < 0 for some t between t, and
(1 — λ)/λ. Hence f(z) is starlike and univalent for \z\ < Rlln, in
view of inequality (28), where R is the smallest positive root of the
equation (26).

The case when λ = 0 in Theorem 5 is of special interest. In
this case equation (26) becomes

(n + 2a - ΐ)R2 - (2a - 2 ~ n)R - 1 = 0

which gives R = 1/3 in case a = 0 and n = 1 and

(29) i2 - {(2a-2-n) + [(2a-2-n)2

if a Φ 0. This proves the following result, which includes a result
of Ratti [5, Theorem 6]

COROLLARY 3. Suppose f(z) = z + an+1z
n+1 + an+2z

n+2 + and

g(z) = 2 + 6 % + 1 ^ + 1 + δ% + 22
% + 2 + are analytic for \z\ <1 and g(z)

is starlike of order a for \ z J < 1, 0 ?S a < 1. / / | f(z)jg(z) — 1 | < 1

/ o r I s I < 1 £&e% /(«) is univalent and starlike for

( i ) I z I < 1/3 i/ a = 0 awώ ^ = 1
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(ii) \z\< Rlfn, where R is given by (29) if a Φ 0.

It is easy to see that the functions f(z) = z(l - zn)/{l + s») <*-*«>/»
and #(z) = z/(l + s»)<2-2«>/» satisfy the hypothesis of Corollary 3 and
also that the derivative of f(z) vanishes at z — 1/3 if a = 0 and
n = 1, and at 2 = {[(w + 2 - 2α)2 + 4(n + 2α - 1)]1/2 - (w + 2 - 2a)}1'"/
[2(% + 2a - ΐ)]lln if aΦO. This shows that Corollary 3 is sharp.
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CRITERIA FOR BANACH SPACES

J E. VALENTINE AND S. G. WAYMENT

It is well known in euclidean geometry that the quadri-
lateral obtained from an arbitrary quadrilateral by joining
its midpoints is a parallelogram. The purpose of this paper
is to show that a complete metric space with a unique metric
line joining any pair of its. distinct points is a Banach space if
and only if it has the above mentioned property.

Let p, q, r, and s be distinct points in a Banach space such that
no three are linear let ml9 m2, m3, and m4 be the midpoints of the
algebraic segments joining p and q, q and r, r and s, and s and p,
respectively. It is well known that m3 — m2 = m4 — m1 and m2 — m1 —
m3 — m4. In Euclidean space one usually refers to this result by
saying that the midpoints mu m2, m3, m4 form a parallelogram. If the
Banach space does not have unique segments joining pairs of distinct
points, then the restriction that the {mj be midpoints of algebraic
segments is easily seen to be necessary. We shall say that the metric
space M satisfies the quadrilateral midpoint postulate provided that
if p, q, r, s are points of M such that no three are linear and if mL,
m2, m3, m4 are the respective midpoints, then TΠJΠ^ — m^m^ and m2m3 =
m1m4. Hereafter we shall assume that M is a complete metric space
with a unique metric line joining any pair of its distinct points and
show that the Quadrilateral Midpoint Postulate characterizes the class
of Banach spaces among such metric spaces.

The technique will be to show that a complete metric space with
a unique metric line joining any pair of its distinct points satisfies
the Quadrilateral Midpoint Postulate if and only if it satisfies the
Young Postulate which may be stated as follows.

The Young Postulate. If p, q, r are points of a metric space M
and qf and r' are the midpoints of p and g, and p and r, respectively,
then qfrr — qr/2.

The result will then follow, for Andalafte and Blumenthal [1] have
shown that a complete metric space with a unique metric line joining
any pair of its distinct points is a Banach space if and only if it
satisfies the Young Postulate.

That the Young Postulate implies the Quadrilateral Midpoint
Postulate is almost immediate. For if a complete metric space with
a metric line joining any pair of its distinct points satisfies the Young
Postulate, then it is a Banach space and consequently satisfies the
Quadrilateral Midpoint Postulate.

251
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Suppose M satisfies the Quadrilateral Midpoint Postulate and p,
q, r, are non-linear points of M with mly m2 the midpoints of p and
q, q and r, respectively.

LEMMA 1. There exists a number k, depending only on p and r,
such that if q, mί9 m2 are as above, then mxm2 = kpr.

Proof. Let s be a point such that no three of p, q, r, s are col-
linear, and let ra3, m4 be the midpoints of the segments joining r and
s, s and p, respectively. Let k = m3mjpr. Then since M satisfies
the quadrilateral midpoint property, mjrie, = mzm4 — kpr. We see im-
mediately that k does not depend on q.

LEMMA 2. The k in Lemma 1 is 1/2.

Proof. Let {#J be a sequence of points tending to x on the seg-
ment between p and r with p Φ X Φ r and such that for each i we
have p, xi9 r non-collinear. Let {Pi} and {n } be the sequences such
that Pi and r4 are the midpoints of the segments determined by p
and xi9 r and xi9 respectively. Then lim ptXi = 1/2 lim pxt = 1/2 px and
similarly lim r&i — 1/2 rx. This, along with the triangle inequality
PiXi + xfc ^ p^i = Λpr, implies & ̂  1/2. However, the inequality
pr ^ p^i + p^i + r^r = ppi + i^r + r^r and the aforementioned limits
imply k Ξ> 1/2. Hence k is 1/2.

THEOREM. A complete metric space with a unique line joining
any two of its distinct points is a normed linear space (Banach Space)
if and only if it satisfies the Quadrilateral Midpoint Postulate.

Proof. We have shown that the Quadrilateral Midpoint Postulate
implies the Young Postulate; that is, if pf and r' are midpoints of p
and q, and q and r, respectively, then p'r' — (l/2)pr. Thus an ap-
plication of the Andalafte-Blumenthal result [1] completes the proof.
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LINEARLY STRATIFIABLE SPACES

Dedicated to Professor John H. Roberts on the occasion of his sixty-fifth birthday

J. E. VAUGHAN

The purpose of this paper is to introduce a new class of
spaces, called linearly stratifiable spaces, which contains the
class of stratifiable spaces and is contained in the class of
hereditarily paracompact spaces. The notion of linearly
stratifiable spaces is related to several of the concepts most
recently studied by the late Professor Hisahiro Tamano, and
also to questions raised by A. H. Stone and E. A. Michael
concerning the normality and paracompactness of certain
product spaces.

The class of linearly stratifiable spaces is composed of special
subclasses called α-stratifiable spaces (where a is an infinite cardinal
number) of which the class of stratifiable spaces is the subclass cor-
responding to the first infinite cardinal. Many results which hold for
stratifiable spaces can be extended to linearly stratifiable spaces (see
§ 4) because the importance of the "countability" inherent in stratifiable
spaces is often due only to the well-ordering of the natural numbers
and not to their cardinality. One notable exception is that while, as
is known, the subclass of stratifiable spaces is preserved by countable
products, the other subclasses are preserved only by finite products.
In addition, the subclass of α-stratifiable spaces is preserved by box
products provided there are fewer than a factors in the product. An
analogous extension of the concept of a Nagata space is given in §6,
and some examples are given in §7.

Stratifiable spaces (originally called Λf3-spaces) and Nagata spaces
were introduced in 1961 by J. G. Ceder [6] along with several other
generalizations of metrizability. In 1966 C. J. R. Borges used an
equivalent definition of Ms-space to show that Ceder's ikf3-spaces had
many important features, and, thinking they deserved a better name,
he called them stratifiable spaces. Since then many authors have
considered this class of spaces, and recently, A. ArhangeFskii [1, pp.
139-142] and Borges [4], [5] have given surveys of results on strat-
ifiable spaces. A further generalization of metrizable spaces, called
perfectly paracompact spaces, was announced in two abstracts [14],
[15] in 1968 by H. Tamano, and he stated two interesting product
theorems for this class of spaces. His definition, however, allows
non-paracompact spaces to be perfectly paracompact (see Example 3.1),
which was not his intention. (In light of this fact and current termi-
nology, it seems better to reserve the term "perfectly paracompact"
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for the class of paracompact spaces in which every closed set is a
countable intersection of open sets. Nevertheless, in this paper we
shall use the term "perfectly paracompact" in the sense in which it
was used by Professor Tamano.) It seems reasonable (see §3) to
suppose that Tamano was interested in a concept similar to linearly
stratifiable spaces. If we substitute the words "linearly stratifiable"
for "perfectly paracompact" in the product theorems given in Tamano's
abstracts, we get the statements below, which seem to be plausible
conjectures. In fact, the author had considered the first conjecture
before becoming aware of Tamano's abstracts. The definition of the
box topology can be found in [11, p. 107].

Conjecture 1. The product of two linearly stratifiable spaces is
paracompact.

Conjecture 2. Any product of linearly stratifiable spaces with
the box topology is paracompact.

One reason that Tamano was interested in Conjecture 2 is that
it would (if true) provide an affirmative answer to A. H. Stone's
question [12, p. 54]: Is a product of real lines with the box topology
normal? In this direction, M. E. Rudin [23] has recently proved that,
under the assumption of the continuum hypothesis, the box product
of countably many locally compact, σ-compact, metric spaces is
paracompact.

In this paper, we shall show that Conjecture 1 and a form of
Conjecture 2 are true for α-stratifiable spaces. These results are given
in §5, and the definitions of these spaces are given in §2. Most of
these results were announced in [18], [19], and [20]. The fact that
Conjecture 1 holds for the subclass of stratifiable spaces follows from
results of Ceder [3, Thm. 2.2, Thm. 2.4].

2. Definitions and characterizations*

DEFINITION 2.1. An ordinal number a is called an initial ordinal
provided for every ordinal β < α, there exists an injection from β to
a, but there does not exist an injection from a to β. We assume
that cardinal numbers and initial ordinal numbers are the same. Let
ω stand for the first infinite ordinal.

DEFINITION 2.2. Let (X, J7~) be a TY-topological space and let a
be an initial ordinal, a ^ ω. The space (X, ^) is said to be strat-
ifiable over a or linearly stratifiable provided there exists a map
S: a x ^ —> ^~ (called an a-stratificatiori) which satisfies the follow-
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ing (where we denote S(β, U) by ί^).
: UβczU for all β < a and all Ue ^ .
: U {Ufi: β < a) = U for all Ue^.
i If Z7c W, then Uβ c Tf̂  for all β < a.

LSIV : If 7 < β < a, then £7r c ίT, for all Ue ^r.

DEFINITION 2.3. A TV-space X is called a-stratifiable provided a
is the smallest initial ordinal for which X is stratifiable over a. A
space which is stratifiable over ω is called stratifiable, and the map
S is called a stratification.

REMARK 2.4. In the case of a stratifiable space, our definition
above agrees with that of Borges [3, p. 1] because (as he noted) if
S is a stratification which satisfies LSl9 LSZI, and LSni, then there
is a stratification which satisfies all four conditions LSZ—LSIV. Ex-
ample 7.5 shows this is not true in general for a > ω.

DEFINITION 2.5. A collection P of pairs P = (Pl9 P2) of subsets
of a topological space (X, ^~) is said to be a linearly cushioned col-
lection of pairs with respect to a linear order ^ provided ^ is a linear
order on P such that (U {P^ P - (P^ P2) e P'})~c U {P2: P - (Px, P2) € P'}
for every subset P ' of P which is majorized (i.e., has an upper bound)
with respect to ^ .

DEFINITION 2.6. (Ceder) A collection P of pairs is called a pair-
base for (X, ^~) provided (1) for each P = (Pu P2) e P, Pt is open and
(2) for every x in X and every open set W containing x, there exists
P = (Pu P2) 6 P such that x e P1 c P2 c W.

THEOREM 2.7. / / (X, J7~) is a Trtopological space and a an
infinite initial ordinal, then the following are equivalent.

( i ) (X, j^Γ) is stratifiable over a.

(ii) (X, %^r) has a linearly cushioned pair-base P and a is cofinal
with P.

(iii) There exists a family {gβ: β < a} of functions with domain
X and range J7~ such that the following hold.

(a) x 6 gβ(x) for all β < a.
(b) For every FaX, if y e [ (J {ffβ(x) % e F}]~ for all β < a, then

yeF.
(c) If β < y < a, then gβ(x) i)gr(x) for all x.

Proof, (i)—>(ii). Let S: a x ^~'—>^~ be an α-stratification for
(X, ^~). Give ^~ any well-order and define
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P = {P{βtU) = (Uβ, U): (β, U)eax le

where a x l ex J7~ denotes the product set a x J7~ with the lexicographic
order. It is easy to verify that P is a linearly cushioned pair-base
for X.

(ii) —>(iii). Let P be a linearly cushioned pair-base for X and
{Pβ\ β < a] a subset of P such that for every PeP there exists β< a
such that P < Pβ. For each a; in I and each β < a define

0,(α) - X - [U {Pii x ί P2 and P - (Px, P2) ^ P,}]- .

Clearly (a) and (c) hold. To see that (b) holds note if y g F then
there exists P G P such that yeP1dP2d X — F. Let β < α be such
that P = (Pi, P2) ^ P^; then Pi is a neighborhood of 7/ which misses
gβ(x) for all a e F. Thus # g [ U {^(»): x € F}]".

(iii)—>(i). For each β < a and each open set Z7 define an open
set

Uβ = X- [U{gβ(x):xeX- U}]~ .

The correspondence S(β, U) = Uβ is easily seen to satisfy LS2—LSIIIf

and LSIV follows from (c). This completes the proof.
For the stratifiable case, Ceder is credited with showing (i) •-• (ii)

in [3, p. 2, footnote 1], and (i) •-» (Hi) is due to Heath [10].

REMARK 2.8. A dual characterization for linearly stratifiable
spaces can be given by stating Definition 2.2 in terms of closed sets
rather than open sets.

The next characterization justifies the terminology "linearly"
stratifiable.

PROPOSITION 2.9. Let (X, J7~) be a Trspace. X is linearly strat-
ifiable if and only if there exists a linearly ordered set A and a map
S: A x J7~"—• <57~ which satisfies LSΣ—LSIV.

Proof. Let a be the smallest ordinal which is cofinal with A;
then a is regular (i.e., there exists no strictly smaller ordinal which
is cofinal with a) and S', the restriction of S to any cofinal subset
of A, will satisfy LSZ—LSIV.

The proof of this proposition also shows that if X is an ^-strat-
ifiable space, then a is a regular initial ordinal number.

The next result, though not a characterization, is useful in ex-
amples.
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PROPOSITION 2.10. If (X, K3r) is stratifiable over a regular infinite
initial ordinal a, then every subset F of X whose cardinality is strictly
less than a is a closed discrete subspace.

Proof. Let P be a linearly cushioned pair-base for X such that
the regular initial ordinal a is coίinal with P. It suffices to show
that Fhas no accumulation points. If x0e X then for every xeF — {x0}
there exists Px e P such that x e {Px)ι and x0 g (Px)2. Then {Px: xeF}
must have an upper bound in P, because it is not cofinal. Hence

is a neighborhood of xQ which misses F — {xQ}.
From this proposition it is clear that a space stratifiable over a

regular initial ordinal can not possess any property which requires
any countable set to have an accumulation point unless the space is
stratifiable. For example, if such a space is a &-space or a separable
space it must be stratifiable. We also note that Proposition 2.10 holds
in particular for <2-stratifiable spaces.

We now recall some definitions.

DEFINITIONS. 2.11. The character of a point x in a space X is
the smallest cardinal number χ(x, X) such that x has a fundamental
system of neighborhoods of cardinality χ(x, X). The character of the
space X is the cardinal number χX = sup{χ(x, X): x e X}. The
pseudocharacter of x is the smallest cardinal number ψ(x, X) such that
x is the intersection of a collection of open sets which has cardinality
ψ(x, X). The pseudocharacter of X is the cardinal number ψX =

, X): xe X}.

COROLLARY 2.12. // X is a non-discrete, a-stratifiable space, then
£ a ^ χX.

3* Pair-base versus pair of bases* As was mentioned in the
introduction, H. Tamano has defined [14] a class of spaces which seems
to be closely related to linearly stratifiable spaces. His definition is
essentially as follows. Tamano called a space X perfectly paracompact
provided there exist two bases %S, Y for the topology of X, a map
φ: Y —> ^/ such that φ^Γ) is also a base, and a well-order on °F such
that for every bounded subcollection Y** aY* we have

(U{F: VeY*})-(z U

In short, the space has a "pair of bases", one of which is linearly
cushioned in the other. We shall show below that this concept is
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weaker than the concept of a linearly cushioned "pair-base" as defined
in §2 in that, for regular spaces, the latter notion implies paracom-
pactness (Theorem 4.11 C) while the former does not. From the
abstract [14] it is clear that Tamano was interested in a class of
paracompact spaces, and from [16] we know that he was aware of
the "pair-base" type of definition (he used it to define elastic spaces,
which are paracompact). It seems probable, therefore, that the type
of base Tamano wanted was a linearly cushioned pair-base. By Theorem
2.7 a jΓrspace having such a base is linearly stratifiable.

EXAMPLE 3.1. A perfectly paracompact space which is not normal.
The desired space is the well-known example of V. Niemytzki. Let
X = {(x, y): x and y are real numbers and y Ξ> 0}, X1 = {(x, y)eX:y = 0},
and X2 — X — Xlβ For each p = {pu p2) e X, let B(p, r) denote the
set of points of X which lie inside the circle with center p and radius
r > 0. Then {B(p, r): r > 0} is taken as a fundamental system of
neighborhoods of points p e X2. For p — (pl9 0) e Xl9 let U{p, r) =
B((pl9 r), r) U {p} and let {U{p, r): r > 0} be a fundamental system of
neighborhoods of points p e Xx. We now define a base "T for the
Niemytzki topology on X. Let ψ{ — {U(p, r): p e Xu r > 0} and 5^ =
{B(p, pjn): p = (pL, p2) e X2 and 1/n ^ p2) for n = 2, 3, . Clearly
3^ — U?=i ^ is a base for X. Next, we define a second base ^ for X.
Let ^ i - 5T U {X}, and ^ a J b + ι = {B(p, 2p2/(2k + 1)): p - (pu p2) e XJ
for k = 1, 2, . Set *%f = (J^o ^it+i Now let ^ Λ be any well-order
on 5 ;̂ for t̂  ̂  1, and define a well-order ^ on T* as follows. For
F, V e V, we say F ^ F ' iff (1) there exists a natural number n
such that F, F ' e 3*ς and V^nV, or (2) F e ^ς, 7 ' e %» and n<m.
We define a map φ:T* -*<%f by

X if F e 3T

Ϊ7ί(ί>i, 0), p2) if F = B[p, — ) and % is even

B(P, *2Δ if 7 = fifp, -2L) and n > 3 is odd .

It is clear that φ(T) is a base since ^(3^) = ^ . Finally, we shall
show that T is linearly cushioned in ^Λ Let ^ * be a bounded sub-
collection of 5^. We must show that

(U {F: VeT**})~~(z U {^(F): F e Γ * } .

If 3^* contains any member of % the inclusion is trivial. Thus we
assume that T* Π ^Γ = 0 . Since 3*"* is bounded, {̂ : T* Π 5^ ^ 0}
has a largest element JV. For each F e 3^*, we have that Fand ̂ (F)
are (essentially) the insides of circles with the same center and the
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circle for φ(V) has at least twice the radius of the circle for V. The
desired inclusion now follows from the fact that if V is in JΓ*, then
V does not reach below the line of height 1/(2N)9 and does not have
a radius of less than (1/N)2.

4* Additional results* We shall now give some important results
for linearly stratifiable spaces which easily extend from the analogous
results for stratifiable spaces.

THEOREM 4.1. Let X be stratifiable over a.
A. Every open set in X is a union of a collection ^ of closed

sets with the cardinality of ^ less than or equal to α.
B. Every subspace of X is stratifiable over a.
C. X is paracompact (hence hereditarily paracompact)*
D. Every closed continuous image of X is stratifiable over a.
E. X is completely monotonically normal (see [21] or [22]).
F. X has a network N = U {Nβ: β < a) such that each Nβ is a

discrete collection in X.

Proof. Clearly (A) and (B) follow from the definition. The proof
of (C) follows from Theorem 1 in [17]. Proofs of (D), (E), and (F)
can be given in a manner similar to the proofs of [3, Thm. 3.1, p. 5],
[22, Prop. A] and [9] respectively.

We conclude this section with two more interesting results.

THEOREM 4.2. A space is stratifiable over a iff it is dominated
by a collection of closed subsets, each of which is stratifiable over a
[3, Thm. 7.2, p. 13].

THEOREM 4.3. If X and Y are stratifiable over a and A is a
closed subset of X and f: A-+ Y a continuous function, then X\J f Y
(the adjunction space) is stratifiable over a [3, Thm. 6.2, p. 11].

5. Products* In [6, Theorem 4.5, p. 107] J. Geder proved that
a countable product of stratifiable spaces is a stratifiable space. In
this section, we shall prove that a finite product of spaces stratifiable
over the same a is again stratifiable over a. Example 7.4 shows that
if a > ω then a countable product of spaces stratifiable over a need
not be linearly stratifiable.

It follows from our product theorem (Theorem 5.2A) and Theorem
4.1C that Conjecture 1 is true in the special case that both spaces are
stratifiable over the same initial ordinal. We also prove (Theorem 5.2D)
that certain products (with the box topology [11, p. 107]) of spaces
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stratifiable over the same a is again stratifiable over a. This result
yields a special case in which Conjecture 2 is true.

LEMMA 5.1. Let a be an infinite initial ordinal number, and
let {Aλ\ XeA} be a family of linearly ordered sets such that a has
cardinality strictly greater than that of A, and a is cofinal with Aλ

for all XeA. If A is finite or if a is a regular ordinal, then A —
Π{Aλ: XeA} can be well-ordered so that for every majorized Ha A we
have Prλ(H) (i.e., the Xth projection) is majorized in Aλ for all XeA,
and a is cofinal in A. Further, if a is the smallest initial ordinal
cofinal with each Aλ, then a is the smallest initial ordinal cofinal
with A.

Proof. For convenience we assume that a is a subset of each
Aλ. Let A be ordered as its cardinal number a(A). Define Tμ,β =
{α = (aλ) eA:aμ^ β} for all β < a and μ < a(A). Let Rβ = Π {Tμ>β: μ <
a(Λ)} for all β < a, and let Dβ = Rβ - U {Rr' 7 < a and 7 < β} for
all β < a. Then {Dβ: β < a} is a partition of A because if a = (aλ) e A,
then for each aλ there exists βλ < a such that aλ ^ βλ. Now {βλ: X <
a{A)} has an upper bound in a because either a{A) is finite, or a is
regular and a{A) < a. Call the smallest upper bound βf, then a —
[aλ)eDβf. Let ^β be any well-order on Dβ and define a well-order
on A as follows. For x and y in A, we say x ^ y iff either

(1) there exists β < a such that x and 7/ are in Dβ and & 5^ y, or
(2) there exists β < Ύ < a such that xeDβ and yeDγ.
If i ϊ is a majorized subset of A, then there exists β < a such

that 6 = (bλ) and bλ = β for all λ e J , and 6 is an upper bound for H.
Hence β is an upper bound for Prλ(H) in Aλ for all X. The remain-
ing assertions follow easily from the definition of ^ .

THEOREM 5.2. Let a be an initial ordinal number a^ω. Let
Xi be stratifiable over a for each i < α>. Then the following hold:

A. Π{Xi\ i ^ n) is stratifiable over a for all n < ω.
B. If each Xi is a-stratifiable, then Π{Xi'. i ^ n} is astratifiable

for each n < co.
C. (Ceder) If each X{ is stratifiable, then Π{Xii i < a)} is strat-

ifiable.
D. If each Xλ is stratifiable over the regular initial ordinal a

for all XeA and a is strictly larger than the cardinality of A, then
Π{Xλ: XeA} with the box topology is stratifiable over a.

Proof. By Theorem 2.7, each X€ has a linearly cushioned pair-base
Pi such that a is cofinal with P*. For each n < ω and each Q =
(P1, , Pn) e U{Pi- i ^ n} define Π?=i Pi = {% = (s<): ̂  € P} for ΐ ^ w},
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and similarly define Π?=i PL Set BQl = JJU Pί, BQ2 = ΠίU PL and
Bn = {BQ = (BQ1, BQ2): Q e Π {P ' ^ ^ ^}) a n d o r d e r t h e i n d e x s e t o f #*
as in Lemma 5.1 so that a is cofinal with Bn. Clearly Bn is a pair-
base for Π {Xi' ί ^ }̂> a n ( i if w e consider ($*) e Π {-X» ί < &>}> then
β = U {J?Λ: n < ω) is a pair-base for Π{^M : i < ω}- We now show that
each Bn is a linearly cushioned collection of pairs in X — Π ί - ^ i ^ n)
Suppose H is a majorized subset of Π?=i P< a n d ^ ί U {J?ρ2 " Qe i ϊ} .
Let JVi = X* - (U {Pii P = (Pi, Pa) e Pr̂ JBΓ) and ^ g P2})~. Then Ni is
an open neighborhood of xt in X4 because Pr^H) is a majorized sub-
set of Pi. Finally, Π?=i ^ i s a neighborhood of a; in X which misses
U {BQ1: Q e H). Thus (U {BQl: Q e H})~ c U {BQ2: Q e H), and this com-
pletes the proof of (A). The proof of (B) follows from (A) and Pro-
position 4,1B. To see that (C) holds, assume that each linearly
cushioned pair-base P< of X4 has a countable cofinal subset (this is
equivalent to Pi being a ^-cushioned pair-base). The preceding argu-
ment shows that each Bn is linearly cushioned with a countable cofinal
subset, and is, therefore, a σ-cushioned collection. Thus B — U {Bn:
n < ώ) is a σ-cushioned pair-base for J\_{Xi. i < o)}. The proof of (D)
is similar to the proof of (B) by use of Lemma 5.1.

Example 7.2 shows that if Xx and X2 are stratifiable over different
aλ and a2 respectively, then Xx x X2 need not be linearly stratifiable.

In [13] E. Michael asked several questions concerning product
spaces. In particular, he asked whether or not there is a space X
such that Xn (the product of X with itself n times) is hereditarily
paracompact for all finite cardinals n, but Xω is not normal. We
raise a related question: If X is stratifiable over a > o), is Xω normal?
For such a space X, it would follow from Theorem 5.2A and Theorem
4.1C, that X% is hereditarily paracompact for all finite n. Thus a
negative answer to the preceding question would provide a negative
answer to Michael's question.

6* α-Nagata spaces* The concept of a Nagata space was intro-
duced by Ceder in [6, p. 109]. In this section we shall extend this
concept and give some basic results. One important difference between
Nagata spaces and the generalization presented here should be men-
tioned. Ceder proved that the Nagata spaces are exactly the first
countable stratifiable spaces [6, Theorem 3.1, p. 109]. The α-Nagata
spaces, however, form a smaller class of spaces than the <2-stratifiable
spaces of character a. The difference is that the α-Nagata spaces have,
for each point, a fundamental system of neighborhoods which is well-
ordered with respect to reverse inclusion (see iV777 below), while an a-
stratifiable space of character a need not have such neighborhood
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systems (see Example 7.3).

DEFINITION 6.1. A TΊ-space X is called a Nagata space over a
(where a is an initial ordinal and a ^ ω) provided for every xe X there
exist collections of neighborhoods of x, {Uβ(x): β<ά) and {Sβ(x): β < a},
such that

iVj : for each x e X, {Uβ(x): β < a) is a fundamental system of
neighborhoods of x,

Nn : for every x9yeX,Sβ(x)Π Sβ(y) Φ 0 implies x e Uβ(y)
NITI: if β < Ί < a then Sβ(x) z> Sr(x) for all x.
The set of ordered pairs

{({Uβ(x): β < a}, [Sβ(x): β < a}): xeX}

is called an a-Nagata structure for X provided for each x in X,
{Uβ(x): β < a} and {Sβ(x): β < a} are systems of neighborhoods of x
which satisfy NIf NIΣ, and NIΠ of 6.1.

DEFINITION 6.2. A Ti-space is called an a-Nagata space provided a
is the smallest initial ordinal for which Xhas an α-Nagata structure.
A space which is an ω-Nagata space is simply called a Nagata space,
and its ω-Nagata structure is called a Nagata structure. This last
definition agrees with the one given by Ceder [6, p. 109] because in
Ceder's definition we may assume without loss of generality that
Sn(x) 3 Sn+1(x) for all n < ω and x in X.

We now give some characterizations of Nagata spaces over a
which extend the analogous results due to Ceder [6, Theorem 3.1,
p. 109] and Heath [8, Theorem 5, p. 94].

THEOREM 6.3. Let (X, j?~) be a T^space, and let a be an infinite
initial ordinal number. The following are equivalent.

( i ) X is a Nagata space over a.
(ii) X is stratifiable over a and for each x in X there exists a

fundamental system of neighborhoods of x {Wβ(x): β < a) such that
β < 7 < a implies Wβ{x) ZD Wr(x).

(iii) There exists a family {gβ: β < a) of functions with domain
X and range j^Γ such that the following hold:

(a) {gβ{%Y- β < oί] is a fundamental system of open neighborhoods
of x for every x in X,

(b) for every neighborhood U of x there exists β < a such that
gβ(%) Π gβ(y) Φ 0 implies that yeU,

(c) ifβ<Ύ< a, then gβ(x) ID gr(%) for all x in X.

Proof. Let X have an α-Nagata structure
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{({Uβ(x): β < a], {Sβ(x): β < a}): xeX),

and define gβ(x) to be the interior of Sβ(x) for all x in X and all
β < a. It is easy to check that (a), (b) and (c) of (iii) hold. This
proves (i) —> (iii). To see that (iii) —> (ii), we note that each a; in I
clearly has the desired fundamental system of neighborhoods. We
need only show that X is stratifiable over a, and to do this we will
show that Theorem 2.7 (iii) holds. Let {gβ: β < a) be the family of
functions given by hypothesis. Clearly 2.7 (iii) (a) and (c) hold. To
see that (b) is also true, assume y$F. Then there exists β < a such
t h a t gβ(y) Π gβ(x) Φ 0 i m p l i e s x $ F. H e n c e ye[\J {gβ(x): x £ F}]~.

The proof that (ii) implies (i) is a slight elaboration of Ceder's
proof of Theorem 3.1 in [6, p. 109].

COROLLARY 6.4. The closed continuous image X of a Nagata space
over a is a Nagata space over a iff for each point x e X there exists
a fundamental system of neighborhoods {Wβ(x): β < a] such that β <
7 < cc implies Wβ(x) z> Wr{x).

LEMMA 6.5. Let a he a regular initial ordinal. If X is a Nagata
space over a, then for every x in X either x is isolated or ψ(x, X) =
χ(x, X) = a.

Proof. If a — ω the result is clear. If a > ω, then the result
follows from Theorem 6.3 (ii) and the observation that the intersec-
tion of fewer than a neighborhoods of a point x will still be a neigh-
borhood of x.

We can now give an analogue to Ceder's result that the class of
Nagata spaces is the same as the class of first countable stratifiable
spaces.

THEOREM 6.6. A Trspace X is an a-Nagata space iff it is a-
stratifiable and there exists for each x in X a fundamental system of
neighborhoods {Wβ(x):β < a} such that_ β < 7 < oc implies Wβ(x) 3 WΊ{x).

Proof. If X is an α-Nagata space, then by Theorem 6.3, we know
X is stratifiable over a and has the desired fundamental system of
neighborhoods. We need only show that X is not stratifiable over 7
for ω <̂  7 < a. This is clear if a = co, and follows from Lemma 6.5
for a > ω since a space stratifiable over 7 has pseudocharacter <̂  7.
The proof of the other half of the theorem is clear.

One can easily check that every subspace of a space which is
Nagata over a is itself Nagata over α, and that a finite product of
spaces Nagata over a is Nagata over a.
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The reader will probably recall that the well-known extension
theorem of Dugundji [7] was generalized from metric spaces to Nagata
spaces by Ceder [6, Theorem 3.2, p. 110] and from Nagata spaces to
stratifiable spaces by Borges [3, Theorem 4.3, p. 7]. We do not know,
however, if Dugundji's theorem can be generalized to all α:-Nagata
spaces.

7* Examples* In this section we denote the first uncountable
ordinal by Ω.

EXAMPLE 7.1. An 42-Nagata space (hence an β-stratifiable space)
which is not stratifiable. Let X = [0, Ω] and give X the smallest
topology larger than the order topology for which every point is isolated
except Ω. Let & = {Va = (a, Ω): a < Ω) U {Wa = {a}: a < Ω) and order
& so that every Va precedes every Wa and a < β < Ω implies Va < Vβ

and Wa< Wβ. Then & is a "linearly closure preserving base" for
X, and {(B, B): Be ^} forms a linearly cushioned pair-base. Xis not
stratifiable because the point Ω is not a Gδ.

EXAMPLE 7.2. A stratifiable space Y and an β-stratifiable space
X such that X x Y is not linearly stratifiable. Let X be the space
of Example 7.1. Let Y = [0, ω] with the order topology. Then Y is
a stratifiable space (in fact, Y is a compact metric space). It is known
that if the point (Ω, ω) is removed from this space, the resulting
subspace is not normal. This can be seen by using the techniques of
Exercise F on page 132 of [11]. Thus X x Y is not hereditarily normal
and by Theorem 4.1.C it is not linearly stratifiable.

EXAMPLE 7.3. An β-stratifiable space of character Ω which is
not an β-Nagata space. Let X be the space described in 7.1. Let
Y = X, but give Y a topology stronger than the topology on X as
follows: Let Lo be the set of limit ordinals in [0, Ω) and define induc-
tively, for each n < ω, Ln as the set of ordinals which have a member
of LΛ_! as immediate predecessor. (This idea was used by C. Aull
[2, p. 50] for a different example.) Define W(a, n) — U {(α, Ω) Π Lk:
k^n}\J {Ω} and W~ - {W(a, n): a < Ω and n < ω}. Then W~ is taken
as a fundamental system of neighborhoods of Ω and all the other
points in Y are isolated. Note that Ω is a Gδ in Y. As in 7.1 we
see that Y is stratifiable over Ω. (Also, one can easily show that
Y is stratifiable.) By Theorem 5.2 X x Y is stratifiable over Ω,
and since X x Y has subspaces which are not stratifiable, we know
X x Y is β-stratifiable. Clearly, X x Y has character Ω, and has
some points which are not isolated, but have pseudocharacter ω (i.e.,
Gβ-points). It follows from Lemma 6.5 that X x Y is not β-Nagata,
and X x Y is not a Nagata space over a for any a ^ ω.
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EXAMPLE 7.4. A countable product of β-stratifiable spaces need
not be linearly stratifiable. Let Xt be the space in 7.1 for each i < ω.
Since each Xt has isolated points, X = ΐ[{Xϊ. i < ω) has convergent
sequences, and also non-stratifiable subspaces. Hence, X is not linearly
stratifiable by Proposition 2.10.

EXAMPLE 7.5. Every regular space (X, J7~) has a "stratification
map" S: a x ^Γ —> J7~ which satisfies LS£, LSn and LSjn of 2.2. Take
a to be the cardinal number of t^~, let ^~ — {Tβ: β < a}, and define

f Tβ if Tβ c U

( 0 otherwise .

It is easy to see that S satisfies LSl9 LSIl9 LSJJJ. Now if this map
S also satisfied LSIV9 then X would be paracompact by Theorem 4.1 C
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ON SPACES OF DISTRIBUTIONS STRONGLY
REGULAR WITH RESPECT TO PARTIAL

DIFFERENTIAL OPERATORS

Z. ZlELEZNY

A distribution T in Ω is said to be strongly regular with
respect to the differential operator P(B), if Pk(D)T, k =
0,1, , are of bounded order in any open set Ωr c c Ω.
Necessary and sufficient conditions on the polynomials P and Q
are established in order that a distribution T strongly regular
with respect to P(D) be strongly regular with respect to Q(D).

Let P{D) be a partial differential operator in Rn with constant
coefficients and Pk(D), k — 1, 2, , its successive iterations. The
following result is due to L. Hormander ([3], Theorem 3.6 and
Remark on p. 233):

If P(D) is hypoelliptic and T is a distribution such that Pk{D)T,
k = 1, 2, •••, have a bounded order in any relatively compact open
subset of Rn, then T is a C~-function.

In other words, the space g^ of distributions in Rn "strongly
regular with respect to P(D)" is contained in the space if of C°°-
functions; in this case g"P = g7. The concept of strong regularity
with respect to P(D) coincides with that of strong regularity in some
variables (see [6], p. 453), when P(D) is the Laplace operator in those
variables.

Suppose now that given are two arbitrary partial differential
operators P(D) and Q(D). Then the question arises: Under what
conditions on P and Q is ifP c WQΊ In particular, if P{D) is "Q-
hypoelliptic," i.e. all solutions U£&r of the equation

P(D)U= 0

are in g^, must then be gfF c gfQ? The Q-hypoelliptic operators were
studied (in a slightly different but equivalent version) and charac-
terized by E. A. Gorin and V. V. Grusin [2].

In this paper we give necessary and sufficient conditions for the
inclusion gV(fl) c %?Q(Ω), where %fP(Ω) and ξ?Q(Ω) are the spaces of
"strongly regular" distributions on an arbitrary open set Ω c Rn.
These conditions are, in general, stronger than the Q-hypeollipticity
of P(D). If the inclusion in question holds for every Q-hypoelliptic
operator P(D), then Q(D) must be hypoelliptic and the problem reduces
to that in Hormander's theorem stated above.

1* The spaces gfP(β) and C'p>°°(Ω).

267
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Let Ω be a nonempty open subset of Rn. A distribution T e ϊ3ϊf(Ω)
will be called strongly regular with respect to the differential operator
P(D), if to every open set Ω' having compact closure contained in Ω
(we express this by writing Ωr aa Ω) there exists an integer m ;> 0
such that Pk(D)T, k = 0,1, •-., are all of order ^ m in Ω', i.e. the
restrictions of Pk(D)T to Ωf are all in &fm{Ω')\ We denote by ίfP(β)
the space of all distributions in Ω, which are strongly regular with
respect to P(D). We also denote by Cp'°°(β), where μ is an integer
^ 0 , the space of all C-f unctions in Ω such that Pk(D)Daf, \a\ ^ μ,
k = 0,1, , are continuous functions; here a = (au , an) and
I a I = a, + + an.

Consider now the spaces g^(β) and &Q(Ω) corresponding to the
differential operators P(D) and Q(D) respectively.

THEOREM 1. If ifP(β) c g"ρ(β), then to any open set Ωf c c i 3
exists an integer μ ^ 0 swc/έ ^Aαί Âe restriction mapping f—>

Proof. Let Ω' be an open set satisfying the assumption fl'cc β.
We first prove the existence of nonnegative integers v and m such
that

( 1 ) {Qk(D)f I ΩΊfe CP-(β), k = 0,1, ...} c &"*{Ω') .

Suppose that inclusion (1) does not hold for any v and m. Then
to every v and m there exist a function / e CP

yOO(Ω) and a & such that
Qk(D)f I β' 6 2$fm(Ω'). Thus we can find strictly increasing sequences
of positive integers viy mi and ki9 and a sequence of functions /* with
the following properties:

( 2) /< G CF>~ψ) ,

( 3 ) Q*(Z?)/i I Ω' G &'mW), k = 0, 1, ,

( 4) Qkί(D)fi I β' is of order mi9

( 5) g^ < i;ί+1 ,

where i — 1, 2, , and g is the order of the operator Q(D).
We denote by Ωi9 i = 1, 2, , open subsets of Ω such that

( 6 ) fl.cc β i + 1 and Q fl< = Ω .

Next we set

«! = 1 and α< = 2~~\Λfr1 , i = 2, 3, ,

is the identity operator, i.e. P°(D)T = P.
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where

Mt = sup {[ P^DWx) I + I Qι(D)Mx) | + 1}

and the supremum is taken over all xeΩt and k, I = 0, 1, , k^.
Note that Qι(D)fi, I — 0, 1, , k^, are continuous functions in Ω,
because of (5).

The function

is defined and continuous in Ω, since the /{'s are continuous in Ω and
the series converges there almost uniformly. Moreover, for any k
we have (distributionally)

(7) Pk(D)f = ±aiP
k(D)fi.

But each term of the last series is a continuous function in Ω, by
(1). Also

α4 sup [ Pk(D)fi(x) i ^ 2-f

x e Ωj

whenever k < i and j ^ i, by the definition of a^ Hence it follows
that the series (7) converges almost uniformly in Ω, for any k. Con-
sequently fe Cp°°(Ω) c &P(Ω).

We now show that / is not in g^β), which is a contradiction
to our hypothesis. We write

3

= 2 J «

In view of (3) and (4), the restriction of Qkj(D)gj to Ω' is a distribu-
tion of order mό. On the other hand, Qkΐ(D)fiy i = j + 1, j + 2, ,
are continuous functions in β, because of (2) and (5). Furthermore,
by the definition of the α/s, the series

converges almost uniformly in Ω, and so QkJ(D)hj is in Ω a continuous
function. Thus

is in Ωr a distribution of order md. Since m3- —> oo, / i s not in &Q(Ω).
This contradiction proves (1).

Consider now the fundamental solution E of the iterated Laplace
equation, i.e.
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Δ*E = δ .

For sufficiently large 7, E is m times continuously differentiate.
Therefore every distribution T on Ω' such that ΔrTe&rm{Ωr) is, in
fact, a continuous function (see [5], vol. 2, p. 47). We choose μ =
2τ + y, where y is the integer occurring in (1). Then, if fe C£>ββ(fl),
it follows that Δ7feC£~(Ω) whence, in view of (1), Qk(D)Jrf\Ω' =
ArQk{D)f\Ω'e&'m{Ω'). Thus, by what we said before, Qk{D)f\Ω'
is a continuous function, for every k = 0,1, •••, i.e. f\ Qf e Cρfββ(fl').
The proof is complete.

2 Necessary conditions* We proceed to derive necessary con-
ditions for the inclusion &P(Ω) c g^(fl). In view of Theorem 1 it
suffices to find necessary conditions for the inclusion

(8) {f\Ω':feσr(Ω)}czCrm.

We accomplish this by means of the standard argument based on the
closed graph theorem and the Seidenberg-Tarski theorem (see [1]).

Let Ωό, j — 1, 2, •••, be open sets satisfying conditions (6). We
define the topology in Cp'°°(Ω) by means of the semi-norms

vj(f) = suv\ P*(D)D*f(x)\,

where the supremum is taken over all xe Ωh \ a | ^ μ and k ̂  j .
Similarly, if fly, j = 1, 2, •••, are open sets satisfying conditions ana-
logous to (6) with Ω replaced by £?', we define the topology in Cςϊ>oo(β')
by means of the semi-norms

Wj(f) = sup I Qk(D)f(x) I .

Then C£'°°(fl) and C$>°°(Ω') become Frechet spaces. Moreover, the
restriction mapping C£'°°(fl)—»Cρ'°°(β') is closed and therefore continuous,
by the closed graph theorem. Hence, to every integer I > 0, there
exists an integer k > 0 and a constant C > 0 such that

( 9 ) wι{f) ^ C max vs(f) ,

for every feCμ

P

yCO(Ω). Applying condition (9) to the function

f{x) - e^>° ,

where ζ = ξ + ίη and f, 37 e Rn, we obtain the following lemma2.

LEMMA 1. If the inclusion (8) holds then, for every integer I > 0,
we can find an integer k > 0 αm£ constants C, c > 0

2 We assume that Da = D^Dζ2 Da

n

n, where Dj = -i(djdxj).
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(10) I Q%) I ̂  C(l + I ξ 1 (̂1 + I P*(ζ) |)eβ|* .

We denote by N(P, a), Va and Wa the sets of all ζ = ξ + i)?€Cw

such that P(ζ) ^ α, | >? | 5g α and | f | ^ α, respectively.

LEMMA 2. 1/ condition (10) is satisfied, then Q(ζ) is bounded on
every set N(P, a) Π F 6, α, 6 i> 0.

Proof. Suppose there are a, h ^ 0 such that Q(Q is not bounded
on N(P, a) n Vb. Then the function

s(ί) = sup I Q(ζ) I
ζeΛ-Γ(P,α)ΠF6ΓlΐFί

is defined and continuous for sufficiently large t, and

(11) s(t) > co a s t > o°

But, for a given t, s(t) is the largest of all s such that the equations
and inequalities

|P(ς + ^ ) | 2 ^ α M ^ | 2 ^ δ 2 ,

I Q(ξ + ^ ) I2 = s\\ ξ |2 g t\ s ^ 0, ί ^ 0 ,

have a solution ξ, η e Rn. Applying to (12) the Seidenberg-Tarski
theorem and next a well-known argument (see [4], p. 276, or [6], p.
317) one shows easily that, for sufficiently large t, s(t) is an algebraic
function. We now expand s(t) in a Puiseux series in a neighborhood
of infinity and make use of (11). It follows that

s(t) > th

for some h > 0 and all t sufficiently large. On the other hand, s(t)
is assumed for some ξ = ξ(t), rj = η(t), and

I ξ(t) \^t.

Choosing in (10) I > μh~ι we obtain a contradiction, which proves the
lemma.

THEOREM 2. // &P{Ω) c &Q(Ω), then the following equivalent con-
ditions are satisfied:

(11) Q(ζ) is bounded on every set N{P, a) Π Vb.
(12) For any a Ξ> 0 there are constants C, h > 0 such that

I Q(ζ) \h^C(l + \η I), for all ζ e N(P, a) .

(I3) For any 6 ^ 0 there are constants C, A' > 0 such that

^ C ' ( l + I P ( Q I), f o r a l l ζeVb.
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Proof. In view of Theorem 1, Lemma 1 and Lemma 2, we need
only to show that conditions (Ii)-(I3) are equivalent. Also the implica-
tions (I2) ==> (10 and (I3) => (10 are obvious. We prove that (10 => (I2).

Consider the real polynomial

W(ξ,v,r,8,t)

= (α2 - I P(ξ + iη) |2 - r2)2 + (s2 - | η |2)2 + (f - | Q(ξ + irj) |2)2

of 2n + 3 real variables. If ξ, ΎJ e Rn lie on the surface

(13) W(ξ, V, r, 8, ί) = 0 ,

then ζ = ξ + iηeN(P, a). Moreover, by condition (10, the surface
(13) is contained in a domain defined by an inequality

where φ{τ) —* oo as τ —»oo. Applying now a theorem of Gorin ([1],
Theorem 4.1) we conclude that there exist constants C, h>0 satisfying
condition (I2). Thus (10 => (I2) The proof of the implication (10 => (I3)
is similar.

3* Sufficient conditions* We now prove that conditions (I0-(I3)
are sufficient for the inclusion under consideration. Our first goal is
to construct a sequence of suitable fundamental solutions for the
operators Pk(D), k = 1, 2, . We achieve this by modifying the
construction of a fundamental solution for P(D) given in [2].

In what follows p and q denote the orders of the differential
operators P(D) and Q(D), respectively.

LEMMA 3. Suppose that conditions (I0~(I3) are satisfied. Then
there exist continuous functions Fk, k — 1, 2, , in Rn with the
following properties:

( a ) For v = p + q + n and any k,

Ek = (λ - A)vFk

is a fundamental solution for Pk(D)y i.e.

Pk(D)Ek = δ

(b) P*(D)Fh = Fk-if for i = 1,2, ••., k- 1.

( c ) Qι{D)Fk, k, I = 1, 2, , are continuous functions in Rn\{0).
(d) For any I there is a k such that Qι(D)Fk is a continuous

function in Rn.

Proof. For any ξ' = (ξl9 , ξΛ-1) € Rn~\ consider the subset of
the complex ζ%-plane



ON SPACES OF DISTRIBUTIONS STRONGLY REGULAR 273

ζn)\£l or | λ + |

where λ > 2p. There exist constants C, h > 0 such that

(14) I Q(ξ', U I S C ( l + \ η n \ h ) ,

for all ξ' e Rn~ι and ζn = ξn + irje U(ξ'). This follows from (I2), when
I P(ξ', ζ j I ̂  1 and can be easily verified in the other case-

Let U~(ζr) be the union of all connected components of U{ξf)
having nonempty intersections with C~ = {ζn sC:ηn < 0}. We denote
by L(ξ') the boundary of C U U~(ξ').

If ζ.eL(f'), we have

(15)

also there are constants C", h' > 0 (independent of ξ') such that

(16) \Q(ζ',Zn)\^C'\P(ξ',ζn)\h' .

Inequality (16) is implied by (I3) and (15), since (£', ζn) e F2 P, when.

For k = 1, 2, ., we set

I

The functions i ^ are obviously continuous, because of (15). We claim
that they satisfy the conditions (a)-(d).

Conditions (a) and (b) follow from general properties of the Fourier
transforms of distributions.

The verification of condition (c) can be carried out in the same
way as in [2] (see the proof of Lemma 4). We give a brief sketch
of the argument.

Suppose first that, for a given k, F(

k

j) is a function obtained by a
construction as above, where the contour of integration (corresponding
to L(ζ')) lies in the complex ζ rplane; in particular F{

k

n) = Fk. Then

Q\D)[Fk ~ JFV>], j = 1, , n - 1; I = 1, 2, . . ,

are continuous functions in Rn; we omit the easy proof of this fact
Thus condition (c) will be verified, if we show that Qι{D)F{j\ I =
1, 2, , are continuous for x3•> Φ 0 (j = 1, , n).

Consider, for example, the function Fk and let xn < 0. In this
case the contour L{ξr) can be replaced by the boundary V~(ξ') of
U~(ξ'). By (14), there are positive constants Cι and C2 such that

for all ξ'eR"-1 and ζn e V~{ξ'). Hence, if ζ = (£', ζ j , we have
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^ o I ^ I Q(ζ) \ι exp {x%{C, \ Q(ζ) |1 '* - C2)} .

It follows that the integral

*-i IJF-(I') (λ + i r i2 + ci)vP*(o /r i2 + ci)vP*(o
converges absolutely and coincides with Qι(D)Fk(x), for every ί.

In case xn > 0 we can reason similarly, replacing L(f') by a con-
tour F+(£0 lying entirely in the half-plane rjn ^ 0.

Condition (d) is a consequence of inequality (16). In fact,

is bounded for ξf e Rn~\ ζn e L{ξf), whenever k ^ h!l.
Lemma 3 is now established.

THEOREM 3. If conditions (10 - (I3) are satisfied, the ^P{Ω) c g^(fl),
for any open set Ω c Rn.

Proof. Assume that T e ^P{Ω) and fix an arbitrary open set
β ' c c i λ We have to show that the restrictions of Qι{D)T, 1 =
0, 1, . . . , to Ωr are all in a space &'m{Ω').

By Lemma 3, there are fundamental solutions Ek for the operators
Pk(D), k = 1, 2, •••, representable according to (a) with the functions
Fk satisfying conditions (b) — (d). Let I be given and let k be the
integer corresponding to I in condition (d)

There are open sets Ωjf j = 0,1, , k + 1, such that

(17) Ωf c c Ωk+1 c c i 3 f c c c . . . c c i 3 0 c c i 3 .

Since Te ίfP(ί2), the restrictions of Pj(D)T,j = 0,1, , to Ωo are all
of order ^m0, say. For every j = 1, 2, , k + 1, we now choose a
function φs e Ξfψ^ such that φ — 1 on Ωά. Then the distributions

Si = 9>iT, Sά = φsP(D)S^l9 j = 2, 3, , k + 1 ,

are all of order ^ m 0 . Moreover

(18) S, = T on 0!

and

(19) P φ ) S , - S i + ι - 0 on fli+1 , i = 1, , fc.

Making use of (a) we may write
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whence

(20) Qι(D)S1 = Σ [P(D)S, - Si+ί]*Qι(D)Es + Sk+1*Qι(D)Ek
j = l

here * denotes the convolution. By (19), the "values" on Ω' of each
convolution

[P(D)Sj - Ss+ι]*Qι(D)Ei

depend on the values of Qι(D)Ej outside a neighborhood of the origin
(see [5], Chapter VI, Theorem III). Therefore the restriction to Ω'
of the sum in (20) is a distribution of order ^ m 0 + p + 2v. On the
other hand, the last term in (20) is of order ^ra 0 + p + 2v, because
of (a) and (d). Hence the restriction of Qι(D)S1 to Ω' is of order
^ m = m0 + p + 2v and m0 can be chosen the same for all I. Since,
by (18), the restrictions of Qι(D)Sι and Qι(D)T to Ωf coincide, the
theorem is proved.

Combining Theorem 2 with Theorem 3 we obtain the following
corollary.

COROLLARY. Each of the conditions (10 — (I3) is necessary and
sufficient for the inclusion &P(Ω) c %?Q(Ω), where Ω is any nonempty
open set.

REMARK. Suppose that

Q(Q = P(Q Σ C)

where P(ζ) is an arbitrary polynomial. Then the operator P(D) is
Q-hypoelliptic (see [2], Theorem 1), but condition (I3) is not satisfied,
unless P(D) (and consequently Q{D)) is hypoelliptic.

REFERENCES

1. E. A. Gorin, Asymptotic properties of polynomials and algebraic functions of several
variables, Uspehi Mat. Nauk, 16 (1961), 91-118.
2. E. A. Gorin and V. V. Grusin, Local theorems for partial differential equations
with constant coefficients, Trudy Moskow. Mat. Obsc., 14 (1965), 200-210.
3. L. Hδrmander, On the theory of general partial differential operators, Acta Math.,
94 (1955), 161-248.
4. , Linear Partial Differential Operators, New York, 1969.
5. L. Schwartz, Theorie des Distributions 7-77, Paris, 1957-1959.
6. F. Treves, Linear Partial Differential Equations with Constant Coefficients, New
York-London-Paris, 1966.

Received July 16, 1971.

SUNY-BUFFALO





PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

Stanford University
Stanford, California 94305

G. R. HOBBY

University of Washington
Seattle, Washington 98105

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS

University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics
Vol. 43, No. 1 March, 1972

Alexander (Smbat) Abian, The use of mitotic ordinals in cardinal
arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Helen Elizabeth. Adams, Filtrations and valuations on rings . . . . . . . . . . . . . . 7
Benno Artmann, Geometric aspects of primary lattices . . . . . . . . . . . . . . . . . . . 15
Marilyn Breen, Determining a polytope by Radon partitions . . . . . . . . . . . . . . 27
David S. Browder, Derived algebras in L1 of a compact group . . . . . . . . . . . . 39
Aiden A. Bruen, Unimbeddable nets of small deficiency . . . . . . . . . . . . . . . . . . 51
Michael Howard Clapp and Raymond Frank Dickman, Unicoherent

compactifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Heron S. Collins and Robert A. Fontenot, Approximate identities and the

strict topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
R. J. Gazik, Convergence in spaces of subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Joan Geramita, Automorphisms on cylindrical semigroups . . . . . . . . . . . . . . . . 93
Kenneth R. Goodearl, Distributing tensor product over direct product . . . . . . 107
Julien O. Hennefeld, The non-conjugacy of certain algebras of

operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
C. Ward Henson, The nonstandard hulls of a uniform space . . . . . . . . . . . . . . . 115
M. Jeanette Huebener, Complementation in the lattice of regular

topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Dennis Lee Johnson, The diophantine problem Y 2

− X3
= A in a

polynomial ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Albert Joseph Karam, Strong Lie ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Soon-Kyu Kim, On low dimensional minimal sets . . . . . . . . . . . . . . . . . . . . . . . . 171
Thomas Latimer Kriete, III and Marvin Rosenblum, A Phragmén-Lindelöf

theorem with applications to M(u, v) functions . . . . . . . . . . . . . . . . . . . . . . 175
William A. Lampe, Notes on related structures of a universal algebra . . . . . . 189
Theodore Windle Palmer, The reducing ideal is a radical . . . . . . . . . . . . . . . . . 207
Kulumani M. Rangaswamy and N. Vanaja, Quasi projectives in abelian and

module categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Ghulam M. Shah, On the univalence of some analytic functions . . . . . . . . . . . 239
Joseph Earl Valentine and Stanley G. Wayment, Criteria for Banach

spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Jerry Eugene Vaughan, Linearly stratifiable spaces . . . . . . . . . . . . . . . . . . . . . . . 253
Zbigniew Zielezny, On spaces of distributions strongly regular with respect

to partial differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Pacific
JournalofM

athem
atics

1972
Vol.43,N

o.1


	 vol. 43, no. 1, 1972
	Masthead and Copyright

