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THE USE OF MITOTIC ORDINALS IN CARDINAL
ARITHMETIC

ALEXANDER ABIAN

In this paper, based on the properties of mitotic ordinals,
some results of the cardinal arithmetic are obtained in a rather
natural way.

In what follows, any reference to order among ordinal numbers
is made with respect to their usual order. Thus, if # and v are
ordinals then w < v if and only if u < v if and only if “uwecv or u = 2”.

DEFINITION. A nonzero ordinal w 1s called mitotic if and only
if 1t can be partitioned into W pairwise disjoint subsets each of type
w. Such a partition is called a mitotic partition of w.

For instance, w is a mitotic ordinal since @ can be partitioned
into denumerably many pairwise disjoint denumerable subsets R; with
1=20,1,2, ---, where the elements of R, are precisely the ordinals
appearing in the ¢-th row of the following table:

01 3 6

9 4 T « « .« .
5 8 « o o o« .
9 .

Clearly, each R, is of type w.

LemMMA 1. Let w be a mitotic ordinal. Then w is a limit ordinal.
Moreover, for every element S; of a mitotic partition (S;);c. of w we
have:

(1) USizsupS,;:’w.

Proof. Since S; is of type w we see that S; is similar to w. Let
f; be a similarity mapping from w onto S;,. But then by [1, p. 302]
we have x < fi(x) for every zcw. Now, assume on the contrary that
w is not a limit ordinal and let %k be the last element of w. But
then clearly, &k = f;(k) and therefore ke S;. However, since 1 is not
a mitotic ordinal, we see that the mitotic partition of w must have
at least two distinct elements, S, and S,. But then k¢S, and ke S,
which contradicts the fact that S, is disjoint from S,. Thus, our as-
sumption is false and w is a limit ordinal.
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2 ALEXANDER ABIAN

Next, since the similarity of w to S; implies the existence of a
one-to-one mapping f; from w onto S; such that z < fi(x) for every
rew, we see that Uw < S; and therefore Uw = U S; since S, <
w. On the other hand, since w is a limit ordinal by [1, p. 323] we
have Uw = w. Hence, (1) is established.

Based on the natural expansion [1, p. 355] of ordinals we prove
the following lemma.

LEMMA 2. Let w be a mitotic ordinal and let w*n be the last
term of the mormal expansion of w. Then

(2)

|

= w°

il
S

Proof. Let w = u + w'n and let (S;);.., represent a mitotic par-
tition of w. From (1) it follows that for every i€ w, we must have
(w + v)eS; for some v < w*n. But then (2) follows from the fact
that (S;);.., is a family of pairwise disjoint elements S;.

LEMMA 3. For every nonzero ordinal e the ordinal w® is mitotic.

Proof. Since w < w* we see that there is a mitotic ordinal of
type " such that 2 < e. Let P be the set of all mitotic partitions
of mitotic ordinals of type " which are less than or equal to w°.
Partial order P by <* as follows:

(Sui)iemu é* (Svi)iem”

if and only if S,, = S,, for every ie (0N @’).

Let ((S.)icow)uca be a simply ordered subset of (P, <*). But
then it is easy to verify that (UucusS.,)icot4 is a mitotic partition
of the ordinal w'4. Hence every simply ordered subset of the non-
empty partially ordered set (P, =<*) has a least upper bound. Con-
sequently, (P, £*) has a maximal element (M;);.,» where " is a
mitotic ordinal such that k < e.

Let (M;) denote the mitotic partition (M;);..r of ®*, i.e.,

(3) (M) = (M)sc ok -

To prove the lemma it is sufficient to show that k¥ = e. Assume
on the contrary that k¥ < e. Thus w*w < w".

For every new, let (M;)n denote the mitotic partition given by
(3) where each entry is augmented on the left by w*n. But then

(M0 (M)l (M3
(M2 (M:)4
(M)5 -
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is clearly a mitotic partition of w*w = w**.. But since ®* < w'w <
" < w* we arrive at a contradiction. Thus, our assumption is false
and k = e.

LEMMA 4. The sum of finitely many pairwise equipollent mitotic
ordinals is a mitotic ordinal.

Proof. Obviously, it is sufficient to prove that the sum of two
equipollent mitotic ordinals is a mitotic ordinal. Let (R;);.s and (S;);3
represent respectively mitotic partitions of mitotic ordinals » and v
where % = % = ¢. Now, let

Ri = (7.07 /rly /"27 *c ') and Si = (807 Sy 82’ c .) .
Consider
Hi = (/"0; Ty Toy =02, (U Rz) + Sy (URz) =+ Siy (U Rz) + Sz, .") .

Clearly, H; < (v + v) and H; is of type u + v for every tec.
But then observing that u + v = ¢ we see that (H;);.. is a mitotic
partition of the ordinal w + ». Thus, % + v is mitotic, as desired.

THEOREM 1. An infinite ordinal is mitotic if and only if it is
equipollent to the last term of its normal expansion.

Proof. Let w be an infinite ordinal. Without loss of generality
we may assume that the normal expansion of w has two terms and
is given by:

(4) w = w'm+ on .

Now, if w is mitotic then by (2) we see that w is equipollent to
the last term of its normal expansion. Conversely, let w be equipol-
lent to the last term of its normal expansion. But then clearly,

(5) W= w'm = 0n .

S

However, since w*m is a finite sum of summands each equal to ¢
in view of Lemmas 8 and 4, we see that w*m is mitotic. Similarly,
o°n is mitotic. But then again, from (5), (4) and Lemma 4, we see
that w is mitotic, as desired.

From Theorem 1 it follows that each of the following ordinal
numbers is mitotic:

@Y, 0° + 0, O + ©, O + VW, - .

Also, since the normal expansion of every infinite cardinal has
one term, from Theorem 1, we have:



4 ALEXANDER ABIAN
COROLLARY 1. FEwery wnfinite cardinal is mitotic.

Next, based on the properties of mitotic ordinals we derive some
results pertaining to the cardinal arithmetic.

THEOREM 2. Let w be a mitotic ordinal and (¢;);.., @ nondecreasing
sequence of type w of cardinals c¢;. Then

(6) Iicwe: = (Tiew)®

Proof. Let (S));.. be a mitotic partition of w. Since (¢;);c,. iS
nondecreasing, we have

e =11 {e;le; € S;} for every jew

and since the right side of the above inequality is a subproduct of
the left side, we have

(7) T e = 11 {e;le; € S;} for every jew .

1EW

On the other hand, in view of the general commutativity and asso-
ciativity of the infinite product of cardinal numbers, we have

(8) Il e = I (I {e:le; € S5} -

iew jew

But then (6) follows readily from (7) and (8).

Based on Theorem 2, we prove a theorem which extends a result
of Tarski-Hausdorff [2, p. 14] to the case of a nondecreasing sequence
of cardinals.

THEOREM 3. Let w be a mitotic ordinal and (¢;);., a nondecreasing
sequence of type w of nonzero cardinals ¢;. Then

(9) Tl e = (supey®.

21E€EW 1EwW
Proof. Since ¢; < sup;., ¢; for every 7 ¢ w, we have
(10) Il e = (sup ) .
1LEW 1EW

On the other hand, for establishing (9), we may assume without loss
of generality, that ¢; > 1 for every 7ew. But then we have:

(11) (supe)” = (5¢)7 = (5 ¢)”

and then (9) follows readily from (6), (10) and (11).
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Thus, Theorem 3 is proved.

Let us observe that the formula analogous to (9) for the sum of
an (not necessarily nondecreasing) infinite sequence (¢;);., of type v
(not necessarily mitotic) of nonzero cardinals ¢; is given by:
(12) S.¢,=TDsupe;.

iev

REMARK. In the arithmetic of ordinal numbers infinite sums and
products of ordinals are respectively equal to the limit of their partial
sums and partial products. In fact, in ordinal arithmetic, evaluation of
the result of an infinite operation as the limit of those of partial ones
is a general method. In contrast to this, in the arithmetic of cardinal
numbers infinite sums and products of cardinals are not equal, in
general, to the limit of their partial sums and the limit of their
partial products respectively. However, as shown below, in cardinal
arithmetie, infinite sums of cardinals and products of nondecreasing
cardinals are respectively equal to the sum of their partial sums and
to the product of their partial products (this, in general, is not true
in ordinal arithmetic).

The statement concerning an infinite sum of cardinals can be
given as a corollary of (12).

COROLLARY 2. Let (¢;);c., be am infinite sequence of type v of
nonzero cardinals c;. Then

(13) e =2>,(2¢).

Proof. From (12) it follows:

> (3he) =X Uec, =T-USupe; = vsupe; = 3,¢; .

u<y 1<U u<v 1<

<l

Next, based on the properties of mitotic ordinals we prove the
following theorem.

THEOREM 4. Let v be limit ordinal and (¢;);.. a mondecreasing
sequence of type w of cardinals ¢;. Then

14 [Me: =TI ([e) -

1< U j<u 1<g

Proof. Without loss of generality, we may assume that the normal
expansion of % has two terms and is given by

U= 0'p + wtq.

Hence, by Lemma 3, without loss of generality, we may assume
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that « is a sum of two mitotic ordinals w and 7, i.e.
(15) u=w+rwthw=r=%w,.

Thus, to prove (14), it is enough to show that
(16) IT e; = 11 (II¢) -

i<wrr i<w+r 1<y
However, since u is a limit ordinal and ¢; < [[ic;..¢; for every
J < u, we see that the left side of the equality sign in (16) is less
than or equal to the right side. Thus, it is enough to show that
the right side is less than or equal to the left side.
Since w and » are both mitotic ordinals, in view of (15) and (9)
we have:

IT (Il e) =TT (L e)-IT (IT e

Jj<w+r 1<y i<w 1<J j<'r i<w+7
(Sup C; )w “. H (H Ci* H cw-}—t)
i<w I<r J<w i<

Sl

= (supc )" (Sup € (sup Cosid)”

<w

= (sup ¢)”-(sup ¢,..)"
<w i<r
= Il ¢ ]l coss = Il e

i<w i<r i<w+r

as desired.
Finally, based on (14) we obtain the formula analogous to (13)
for the product of cardinals.

THEOREM 5. Let (¢;);c, be an infinite nondecreasing sequence of
type v of cardinals ¢;. Then

(17 [Te:=T1(ILc) .

i<v I<v 1%

Proof. As the proof indicates, without loss of generality we may
assume v = w + 1 where % is a limit ordinal. But then from (14) it
follows:

I1 ¢ = (Il ejen = T (L e-co = T (Il -

i<u+1 i<u J<u i<y J<u+l 1<j
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FILTRATIONS AND VALUATIONS ON RINGS

HeLEN E. ADAMS

The concept of a multiplicative filtration on a ring is
generalized so as to include among filtered rings, rings with
valuation, pseudovaluation and semivaluation. The general-
ized filtration induces a topology on the ring, and it is shown
that the Hausdorff completion of the resulting topological
ring can be described by an inverse limit. The paper finishes
with an example illustrating the theory.

1. Definitions and immediate consequences. In this section
we define a generalized filtration and generalized pseudovaluation on
a ring and show that a pseudovaluation induces a filtration on a ring.

If A and B are subsets of a ring we shall write AB to mean the
set {xy: x€ A, ye B}. By an ordered semigroup we mean a semigroup
which is partially ordered as a set such that the ordering relation is
compatible with the semigroup operation. A directed semigroup is an
ordered semigroup which is directed above as an ordered set; and a
quasi-residuated semigroup (Blyth and Janowitz [2]) is an ordered
semigroup 7 with the property: given any s, t € T, there exists ue T
such that ut = s and tu = s.

Let R be a ring and let S be a directed semigroup with the property:

(1.1) given any se S, there exists t €S such that ¢ > s.
A filtration on R over S is a set of additive subgroups {P,}..s of R,
indexed by S, with the following properties:

(1.2) if s,te S such that s = ¢, then P, & P,;

(1.3) for any s, te S, P,P, S P,;

(1.4) given z€ R, se S, there exists ¢ € S such that 2P, & P, and
Px & P,.

Note that M,.sP, is a two-sided ideal of R. For a treatment of
the classical multiplicative filtration on a ring, see Atiyah and
Macdonald [1] and Northecott [6].

The following lemma gives a less general form of a filtration
which will be shown to arise from a pseudovaluation on a ring. The
proof of the lemma is straightforward.

LeEMMA 1.1. Let S be a quasi-residuated, directed semigroup. Let
{P}ses be a set of additive subgroups of a ring R such that (1.2),
(1.3) hold, and A.4)YJ,.sP. = R.

Then {P},.s is a filtration on R.

7



8 HELEN E. ADAMS

The following definition of a pseudovaluation on a ring allows us
to treat at the same time Manis [5] valuations and pseudovaluations
(Mahler [4]) on commutative rings, and semivaluations (Zelinsky [7])
on fields.

Let S be a quasi-residuated, directed semigroup, and let S, be
the disjoint union of S and a zero element Oy with the properties:
0,05 = Og; and, for any s€ S, Os > s and sOy = Oy = Ogs. A pseudo-
valuation on a ring R into S, is a map @ of R into S, such that: for
all ¢, be R,

(1.5) @(aby = P(a)p(b);

(1.6) if se S such that s < @(a), #(b), then @(a — b) = s;

(1.7 2(0) = Og;

(1.8) the set (R\{Os} is nonempty.

Let ¢: R— S, be a pseudovaluation on a ring R. Define, for
any seS§,

(1.9 P, ={x:veR ¢ = s}.

Then, from Lemma 1.1:

ProposITION 1.1. The family of subsets {P},.s of R, defined in
(1.9}, is a filtration on R.

2. The completion of a ring with respect to a filtration.
Throughout this section, R is a ring with filtration {P,},... It will
be shown that the filtration {P,},.s induces a topology .7~ on R com-
patible with the ring structure of R, and the completion of (R, .77)
will be explicitly defined both algebraically and topologically.

From Bourbaki {3, III §1.2, example], the set {P,}..s is the funda-
mental system of neighbourhoods of the zero for a uniquely determined
topology .7~ on R, addition in (R, 77) is continuous, and & is
Hausdorff if and only if ,.sP, = {0}. Further, multiplication in (R,
.7 ) is continuous by the definition of a filtration and [3, III §6.3,
(AV)) and (AVy)]. Hence (R, 77) is a topological ring and, as such,
admits a Hausdorff completion.

Now the Hausdorff completion of a topological ring is just the
Hausdorff completion of the ring considered as an additive topological
group [3, III §6.5]. Multiplication is then defined on the completion
by a continuous extension of multiplication on the associated Hausdorft
ring, in this case the factor ring R/N,cs P

But in this case we already have, from [3, III §7.3, Proposition
2, Corollary 2], that the Hausdorff completion of the additive topological
group (R, .7) is isomorphic, both algebraically and topologically, to the
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Hausdorff group (B, .77) where B =lim R/P,and .7 is the usual topology
induced on R by the topology .~ on R. Hence the Hausdorff com-
pletion of the topological ring (R, .77) is isomorphic to the Hausdorff
ring (B, .7, x) where x denotes the multiplication constructed on
R by means of a continuous extension of multiplication in R/M,.s P..
The main aim of this section is to define explicitly the multiplication
X . This is not a straightforward task since each factor group R/P,,
se S, in the direct product [],.s R/P,, is not a ring.

For reference we define the topological group (B,.7 ) explicitly
[3, IIIT §7]. Now R = {{&,}scs € [[.es R/P,: for all s,te S such that
s=t &< é&). That is, the elements of R are sets of subsets of R,
indexed by S, and written {£,},.s where: for each se §, & € R/P,; and,
for any s, teS such that s < ¢, & & &,. Note that, for each zeR,
{X + P},.s€ R. Equality and addition in R are defined as follows: Let
{E)ses, Mees € Be Then {&},.5 = {N.es if and only if, for each se S,
& =1 and {E)ies + (Dotees = (& + N}eese When there is no risk of
ambiguity, {&}..s will be written as {&}.

The topology .7 is defined on E by inducing the usual quotient
topology on each R/P,, se S, then inducing the usual product topology
on [[..s R/P,, and finally restricting this topology to E, considered
as a subspace of [],.s R/P,.

Let te S and let f.: R — R/P, be the canonical projection defined
thus: For any {&},cs€ R, fu({&)ses) = &. Since R/P, is discrete [3,
III §7.3], the set P, = f7Y(P,) = {{&,},cs € R: & = P,} is an open set in
(B, .97), containing the zero {P},.s of E.

Further, it is easily checked that, for each t € S, P, is a subgroup
of B. Hence the set of subgroups {P,},.; of B forms a fundamental
system of neighbourhoods of the zero of (B, .Z7) and thus, by [3, I
§2.3, Example 3], defines the topology .~ on R.

Next we define a multiplication “«” in R, and show that = is in
fact the required multiplication x. When there is no risk of ambiguity,
we shall omit the multiplication sign *. Note that if each of the
subgroups P,, s€ S, were a two-sided ideal of R, then multiplication
in B would be as simple to define as addition: but this is not the
case.

Let {Ss}seSy {773}3&5‘ GR. Let {Es}ses*{ns}sss = {Qa}ses Where {Qs}ses iS
defined as follows: Let seS. Then by (1.1) there exists te S such
that ##=s. Choose z,€¢&, y,€7,. From (1.4) there exist u, ve S such
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that 2P, & P,, P,y, = P,. Let we S be such that w = ¢, u, v. Define
2, =2y + P, where z€é,,y€n,. The following two lemmas show
that 2, is well-defined and independent of the particular choice of w.

LemMMA 2.1. With w chosen, the coset Q, does mot depend upon
the choice of x and y.

Proof. Let x,4'€é&,; 9, v €9,. Now

vy — @'y = (@ — &)y, + 2(y — V)

(2.2) + (@ — )y — )+ @ —x)y— ).

It is easily checked that each of the summands of (2.2) belongs to
P.. Hence zy — 2’y € P, and the lemma follows.

LEMMA 2.2. Let the notation be as above. Let f, g€ S such that,
Sor all o ,a"c& and for all V,b'cy, o' —a'b’eP,. Then
Q, =ab + P, for any ac&;, ben,.

Proof. Let acé&;, bemn,. Let heS such that 2 = w, f, 9. Let
ceé,, den,. Then, by Lemma 2.1, 2, =e¢d + P, since ceé,,de,.
But ab — cd € P, since a,ccé&; and b, d€n,. Hence 2, = ab + P,.

COROLLARY. The definition of 2, is independent of the particular
choice of w.

Proof. Let w’ €S be another possible choice for w (with possibly
different ¢, u, v, 2, ). Then, by Lemma 2.1, Lemma 2.2 holds for
f =g =, and the corollary follows.

LEMMA 2.3. In the above notation, {Q.},.s€ R.

Proof. By the definition, for each s€ S, 2,e R/P,. Let \, €S
such that » = . Then, by Lemma 2.1, there exist m, n € S such that
2,=2"y + P, for any 2'€¢,, ¥ €9,; and 2,=2"y" + P, for any 2" €é,,
y'en, Let geS such that ¢ = m, n; and let veé, yen,. Then
2,=wy+ P, and 2, =y + P,. Hence 2, @, since P,< P,. Therefore
{2}:cs e R.

PROPOSITION 2.1. With the multiplication defined above, R is a
ring which is commutative [if R is commutative and has identity
{1 4+ P},cs ©f R has identity 1.

Proof. We already have that R is an additive Abelian group.
(i) Using the definition of multiplication in B and the directed
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property of S, it is a straightforward task to show that multlphcatlon
in B is associative and that both distributive laws hold. Hence R
is a ring which, by the definition of multiplication, is commutative if
R is commutative.

(i) Let R have identity 1. As noted before, {1+ P,},.scR.
Again, using the directed property of S and the fact that, for each
seS,1el + P, it is a straightforward task to show that {1 + P},.s
is the identity of R.

Next we show that {P,},.s, the fundamental system of neighbour-
hoods of the zero of (R,.7 ), is in fact a filtration on (R, ) which
defines the topology .7 as at the beginning of §2; and hence the
multiplication « is continuous in (R, .7 , ). We need the following
preliminary result.

LEMMA 2.4. Let e R,tcS. Then there exists we S such that
{m+ PS}SGS*PugPt a/n’d Pu>{x+ PS}SGSgPt'

Proof. By (1.4) there exists ve S such that 2P, & P,; and by
(1.1) there exists we S such that w? = ¢. Let we S such that u =
v, w. Let {7),.s€P,; thatis, », = P,. Letax,ex + P, y,€P,. Then
xy, € P, since P, < P,N P,, and so P, < P,, P,P, & P,. Therefore,
for all 2/, 2”ea+ P, and for all ¥, ¢ en, 2y — 2"y eP,.
Hence, by Lemma 2.2, with f=g=u,s=¢a=ua, and b = vy,
{v + P} {n} = {2} where Q, = P,: that is, {x + P} {n,} € P,. Similarly
Piz + P} < P,

PROPOSITION 2.2. {P.),.s is a filtration on B which defines the
topology 7

Proof. (i) S is a directed semigroup with property (1.1) and, as
noted, each P, se S, is an additive subgroup of R.

(ii) Lett, we Ssuch that w=t. Itis easily checked that P, < P,

(iii) Let t,ueS. Again, it is easily checked that PP, < }N’m

(iv) Let {&}eR,teS. We must show that there exists »e S
such that {&}P. < P, and PT{ES} < P,. Let we S such that w* > t and
let xe&,. Then {£}—{x+ P}eP,. By Lemma 2.4 there exists u e S
such that {x + P}P, < P,. Let re S such that » > u, w; and let
{lye P, Now {E ML} = (&) — {» + PP} + o+ PHCE (&) — {o +
PH(}eP,P, < P, = P, by (i) and (iii); and {& + P}Z, e e+ P, \P, = P,
since 7 = u. Hence, by (i), {£}{{.}e P,. Similarly P} < P,. This
completes the proof.
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THEOREM 2.1. The Hausdorff completion of (R, 77) is isomorphic
to (B, .7, +).

Proof. By [3, III §7.3, Proposition 2], the mapping i: R — R
given by: for all xe R, i(x) = {& + P,}..s, has an image which is dense
in (R, 7). From [3, III 86.5 and III §7.3, Proposition 2, Corollary
1], the mapping 1: R— (R, x) is a ring homomorphism. Hence
ey) = x) X i{y). But

iwy) = {2y + Ploes = {& + Pliese{y + Plics = a)ily) .

Thus the multiplications »« and x, which are continuous in T, agree
on the dense subset #{R) of (B, .). Therefore, by the principle of
extension of identities [3,1§8.1], = and < agree on B. Thus (B, ., =)
is the Hausdorff completion of (R, 7).

3. Example. In this section we illustrate our theory with a
semivaluation on the field @ of rational numbers (Zelinsky [7]).

We shall reserve the sign “ = for the usual ordering on @ and
shall denote the usual absolute value of the rational number z by
|z]. Define S={x: e @, x> 0}. Order S as follows: Forall a, be S,
a>=0b if and only if ab™el (the set of natural numbers). Then
(S, =) is a quasi-residuated, directed semigroup under multiplication.
Define a mapping @: @ — S, as follows: For all xe Q\{0}, plx) = |z;
and @(0) = Og;. Then it can easily be checked that : @ — S, is a
pseudovaluation on Q. (In fact, » is a semivaluation on @, from
Zelinsky [71]).

ProposSITION 3.1.  The completion of @ with respect to @ is iso-
morphic to the ring of formal series D2, 1! a, where 0,€Q,0 = a, <
2, and, for each te I\{1}, a;e{0, 1, ---, i}.

Proof. We shall use the notation of §81 and 2 throughout. Now,
for each se S,
P, ={xxec@, o(x) = s} = {ms: me 4} .

We shall use the fact that, for all p,qel, pl = p = /g and p! =
(p — D! that is, for all {£},.5€Q, & S & & &y, and & & &yt

(1) Let {&)iese@.

Let x,¢£,. Then there exists a unique ¢, € @ such that 0 ¢a, <2
and z, — a,¢ P,. Suppose that z/e &, and a/ e @ such that 0 < a] < 2
and 2] — a/e P,. Then
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al"‘aiz(xi"‘a;)—(xl_al)‘i‘(wl_x;)ePZ'

Hence a, = a], and so a, is independent of z,. Then & = a, + P,

Let x,¢&, — (a, + P). Since &, & & and P, & P, we have
x, €& — (a,+ P,) = P,., Hence x,/2 is an integer. Let a,e {0, 1,2} such
that a, = x,/2 mod 3. Then &, = a, + 2a, + P,.

Next, suppose k ¢ I\{1, 2} such that &, = a, + 357} il a; + P, where
a;€{0,1, ---, 1} for each ¢€{2,3, ..+, k — 1}. As before, we can show
that there exists a, e {0, 1-+-, k} such that &, =a,+>% .3 a;+Pyipre
Further, each «a; is unique.

Let se S. Then there exist unique p, g< I such that s = p/q and
(p,q9) = 1. Now &, & &,,. Hence & = X725 il a; + P,

Suppose that {,},.s and {n,}..s€ S define the same set of a;, t€ I.
Then, for each se€ §, & = 7,. Hence {¢,},.; defines a unique set of a;,
e l.

(ii) Let {a;};.; be given such that a,€@Q,0=<a, <2 and, for
each 7eI\{1}, a;e{0,1, ---, 4}. Let seS. Then, as before, there
exists a unique pel such that p = s. Define & = > il a; + P,.
It is a straightforward task to show that {&},..c Q.

Thus far we have established a one-one correspondence between

the elements of Q@ and formal power series 3., a; il where a,c @,
0= a, <2 and, for each e I\{1}, a;€{0, 1, ---, i}.

(iii) Let {&}.cs,{Ne}ses € Q correspond to the series Se il an, >, il b;
respectively. Now {&},cs + {N}ses = {&, + 7}scs. Hence we can define
addition of the series as would be hoped: >3, ¢! a; + 22, ¢! b, =
>z, 4l (a; + b;) where at the ith stage a; + b, is reduced modulo (¢ +1)
and the integral part of (a; + b;)/(¢ + 1) carried on.

Let {2} = {&}{n.}. Let seS. Then there exists ¢e S such that,
for all zeé, yen, 2, =xy + P, = D214l a; D54l b, + P, for some
ke l. Hence we can define multiplication of the series in the usual
way, taking care to correct each term as described for the addition.
This proves the proposition.

REMARK. The above example illustrates that the definition of
multiplication * in B in §2 cannot be obviously simplified. For
example, if {&},cs = {6 + Plies and {9.},es = {8 + P}ies, then {2},.5 =
{Es}ses{y]s}ses = {15 + Ps}seS' Now & = 1+ Pz = Yoy but ‘Q.t =3+ P4:
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that is, it would not have been sufficient to choose the w of §2 such
that w* = s.

I would like to thank my supervisor, Dr C. F. Moppert, for his
many valuable suggestions.
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GEOMETRIC ASPECTS OF PRIMARY LATTICES

BENNO ARTMANN

The incidence structure derived from a primary lattice with
a homogeneous basis of three n-cycles is a Hjelmslev plane
of level n. A desarguesian Hjelmslev plane H(R) is of level
n if and only if R is completely primary and uniserial of
rank n.

Introduction. The classical correspondence between vector spaces,
projective spaces and complemented modular lattices was extended to
finitely generated modules over completely primary and uniserial rings
and primary lattices by Baer [5], Inaba [7] and, recently, by Jonsson
and Monk [8]. In these extensions, however, an analogue to the
classical projective space is missing. It is shown in the present paper,
that the appropriate concept is that of a Hjelmslev space as defined
by Klingenberg [9], [10] and by Liick [11]. To be correct, this is
only shown for the case of a plane geometry, namely Hjelmslev planes
of level n, corresponding to primary lattices with homogeneous basis
of three m-cycles, and to free modules R®. Also, we have the complete
correspondence only in the desarguesian case. The restriction to this
case is justified, as the author believes, by the fact it is well known
to be typical for higher dimensional spaces in the classical theory.

In the non desarguesian case, there is a coordinatization theory
for Hjelmslev planes of level n given by Drake [6], but this does not
seem to lead to a construction of a lattice from the plane. Every
primary lattice with a homogeneous basis of three n-cycles, however,
leads to a Hjelmslev plane of level n (Theorem 2.13). Planes of level
1 (ordinary projective planes) and of level 2 (uniform Hjelmslev planes)
can be shown to be obtainable from lattices. For uniform planes,
this was done by the author in [2]. A combination of Theorem 2.13
with results of [4] shows that a desarguesian Hjelmslev plane 57 (<2)
is of level n» if and only if <# is completely primary and uniserial
of rank n.

0. Definitions.

0.1. Let &2~ = (p, S, I) be an incidence structure consisting of a
set p of points, a set & of lines and an incidence relation I < p x ©.
We say that two points p,q of 57 are neighbors, p ~ ¢, if there
are two different lines G, H such that p, ¢ IG, H. Neighborhood for
lines is defined dually. A mapping @: 5% — 5#7°* is a morphism of
incidence structures, if it maps points on points, lines on lines and

15
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p»IG implies ppleG.

An incidence structure 57 is called a projective Hjelmslev plane,
short H-plane, if it satisfies the axioms [9, Def. 0]:

(i) For all points p, ¢ of 27 there exists a line G of 27 such
that p, qIG.

(ii) For all lines G, H of 57 there exists a point p of 7 such
that pIG, H.

(iii) There exists an ordinary projective plane .27 and an epi-
morphism «: H— &7 such that ap = aq is equivalent to p ~ ¢, and
aG = aH is equivalent to G ~ H.

Using (iii), we see that neighborhood is an equivalence relation and
the factor structure 57/~ = 57’ is a projective plane isomorphic to .&°.
We call 57’ the canonical epimorphic image and the projection
@ 5 — 57" the canonical epimorphism of £77. In [9] it is shown that
this set of axioms is equivalent to the ones used in [1] to define H-planes.

0.2. We deal with modular lattices with universal bounds N and
U. The lattice operations are denoted by \/, A and we make the
convention that A shall bind closer than \/, that isaVvbdAc=aV
(b ANe¢). Lia,b) is the interval of elements x such that a <2 < b.
We use a0 b to denote independent join, i.e. to indicate ¢ A b = N.
A cycle ae.%” is an element such that L(N, a) is a chain. A cycle
of dimension k is a k-cycle.

Definition [8, Def. 4.2 and Def. 6.1]: A lattice .& is said to be
primary, if:

(i) &~ is modular of finite dimension.

(ii) Every element of ¢ is the join of cycles and the meet of
dual cycles.

(iii) Every interval in .&© that is not a chain contains at least
three atoms.

Furthermore, we make the assumption

(iv) There are three independent n-cycles a,, a;, a; such that U =
a, > a, > a, for the greatest element U of <. This means that &
is of type (0, +++, 0, 3) in the sense of [8, Def. 4.10]. By [8, Lemma
6.4] it follows, that the a, are pairwise perspective. Hence they form
a homogeneous basis of order three of &~ (for a definition of that
concept, see [1, Def 1]). Since the dual -~ of a primary lattice &~
is again primary [8, Cor. 6.2], and the type of & is equal to the
type of &~ [8, Cor. 4.11], we may use duality in deriving results
from (i)—(iv).

For the rest of this paper, &~ will always denote a lattice satis-
fying (i)—(iv), i.e. a primary lattice with a homogeneous basis of
n-cycles a,, a,, a;. For {i, j, k} = {1, 2, 8} we put A, = a; ;. Since
the geometric dimension of & [8, Def. 5.1] is three, & may be
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non-arguesian.

1. The H-plane S#(%°).

1.1. Points and lines in <. Let q be the set on n-cycles of
<, and

p = {pe &L |there is 1€(l, 2, 8} such that p o A, = U}.

Every pep is perspective to some a;, hence is n-cycle. For an n-cycle
q,assume qN A, =#N=+#qgN A, Then wehaveq A\ A, N A, = g Na; #
N since ¢ is a cycle, and by the same reason ¢ A 4; = N. Therefore
L(q, q VV A;) has dimension n and ¢.0 4; = U. Hence we have p = q.

By duality, we get: The set of dual cycles of .&¥ of codimension
n is equal to the set

G = {Ge &~| there is 1€{l, 2, 8} such that G a, = U}.
We call p the set of points of & and ®& the set of lines of &~.

1.2. Geometric elements. Every Element of & which is the
join of independent points is said to be geometric [8, Def. 5.1]. By
definition, a,, a,, a, and A,, 4,, A, are geometric. From [8, Thm. 5.2]
we derive (F'C) (a) For every be{a, a,, a;, A,, 4,, A;} and every

re < with x A b= N, there exists y = « such that y o b= U.

Since the dual (b) of (a) is true as well, & satisfies the condition
(FC) of [1, p. 77].

Let G be a line of &7, say G a;, = U,andr =G A 4, and s =
G N A;. We claim that » and s are points such that G =7 s.
Obviously we have a; A (r\V s)=N. Then, a;,Vr=a;,VGAA, =
(a; V G) N\ A, = A, so that » and a; are perspective with center a;.
Hence r and s are points. Froma;,V (rV s) = 4,V A; = Uand rV
s =< G we get r\ s = G by the indivisibility of complements.

In particular, every line of & is geometric.

Since the independent join of three points is U, and it is easy to
see that the independent join of two points is always a line (by (F'C)
and [1, Lemma 8]), points and lines make up all geometric elements
of & except for N and U.

1.3. For a line G and a point p < G, the interval L(p, G) is a
chain. Proof: Consider two points », s such that .o s= G. For
at least one of them, say », we have r Ap=N. Thenr_p=G
and we have L(p, G) = L(N, r), the assertion.

1.4. Neighbors of » on G. Again let p be a point, G a line and
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» < G. We use € to denote the covering relation in <. Let N =
2 €2 &+ L2, =p be the chain of elements less than or equal to
p, and let p =y, < --+ <y, = G be the chain of elements between
» and G.

LEMMA. For every 1€{0,1--+, n} there exists a point ¢; =< G such
that vy, = p\ ¢, and Z,_; = P N ¢

Proof. For every ¢, p is a maximal cycle contained in y; [8, Cor.
4.7]. By [8, Thm. 4.8] p has a relative complement z; in L(N, y,)
and by [8, Lemma 6.4] there exists a cycle ¢; such that y, = » O
2, =p Ve =, ¢. Since ¢; and p are perspective, ¢; is an n-cycle,
hence a point. Counting the relative dimensions shows p A ¢; = 2,_;.

1.5. Let G and H be two lines and p a point such that p <
G N H. By the last lemma, there is a point ¢ < G such that p Vv
q =G A H. This and the dual statement yield

(8) (a) For points p, ¢ of ¥ and a line G with p \V ¢ < G there
exists a line H such that pVv ¢ = G N\ H.

(b) For lines G, H of ¥ and a point p < G A H there exists a
point ¢ such that p \v ¢ = G A\ H.

1.6. In [1, p. 77/78] it was defined: A modular lattice with a
homogeneous basis of order three consisting of cycles is called an H-
lattice, if it satisfies (F'C) and (S). By 1.2 and 1.5, &~ is an H-lattice.
From an H-lattice an incidence structure (p, ®, I) is derived by defining
p and @ as in 1.1 and incidence by the ordering of the lattice. Using
Theorem 1 of [1], we can now state:

PROPOSITION. &© 4s an H-lattice and the incidence structure
oF = (L) = (0,8, I) derived from & s a projective H-plane.
Two points p, q of & are neighbors in o7 if and only if p N\ ¢ > N,
two lines G, H are neighbors if and only if G \/ H <U.

More information about 57 will be given in the next section.
2. (L) is of level n.

DEFINITION 2.1. (cf. [3] and [6]) Let 5~ and 57 * be H-planes with
canonical epimorphisms ¢: 57 — 97" and k: 57 * — (27°*)" onto ordinary
projective planes. Let +: 57— S57°* be an epimorphism and \: (577*) —
27" an isomorphism. If @ = \k+ we say 5% has a refined neighbor pro-
perty defined by +: 27— o7 *. We define p = ¢ by +p =+rq and G =
H by G = H. Then = is called a refined neighbor relation in 5#.
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We say = is minimal provided the following conditions hold:

(M) Let p, g be points on G and p on H.

(a) If p=q and G ~ H, then ¢ is on H.

(by If p ~q and G = H, then ¢ is on H.

(¢) There exist distinct points @ and b and distinct lines A and
B such that a =b and A = B.

DEFINITION 2.2. The ordinary projective planes make up the
class of projective H-planes of height 1. Suppose 57 is an H-plane
with a minimal neighborhood defined by +: 5% — 5#°*, where 2#* is
of height n — 1. Then one calls £# an H-plane of height n.—It is
suitable to denote an H-plane of height n by 57, and by S7,_, the
plane and by +,_,, Pn_i, M, the maps which define the minimal neigh-
borhood in 5#. Proceeding thus we obtain, for every H-plane of
height n, the following commutative diagram

Fn ——> Hqr > 0 —— I

Vn—1 Vn—2 V1

e o [o

S —— S e e —— A,
2n~1 An—2 21

We set p, = 4+« Yoy, and take g, to be the identity on 57.

We denote by (~ k) the refined neighborhood defined by p.: 27, —

oA (A

DEFINITION. 2.3. If 57, is an H-plane of height %, then the H-
planes 57 in the defining sequence of 57, are of height 7. The notion
of (~ k)-neighborhood is defined in 54 asin 5#,. A k-segment in 5%
is the nonempty intersection of a line with a class of (~ k)-neighbor
points. An H-plane 57, of height n is called of level n, if the follow-
ing axiom of reciprocal segments holds in every plane 5% of the
defining sequence of S#,:

(RS) (a) For all lines G, H of 57, the set of common points of
G and H is a k-segment, for some ke{l,2, ---, i}.

(b) G(~ k)H if and only if the set of common points of G and
H contains an (7 — k)-segment.

REMARK. For the change of (N) [3, p. 175] to (RS), see [4].

2.4. If the cycles a, of & are of dimension 1, then S5#°( %) is
an ordinary projective plane (an H-plane such that two points p, ¢
are neighbors if and only if » = ¢), hence an H-plane of level 1. If
the a; are bicycles, that is of dimension 2, then by 1.5 every point
of 277(.~) has at least one proper neighbor and by [2, Satz 3], S#(.%)
is a uniform H-plane, that is of level 2 [3, p. 179].
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We are going to apply induction to show that 5#°(.%°) is of level
n if the g, are n-cycles. We may assume n > 2. First we have to
show that 57 (<°) is of height n.

2.5. Let a; cover b, and B=15b,\V b,V b,. Then b, b;, b; form a
homogeneous basis of .&#* = L(N, B) (cf. [8, Cor. 4.13]). By [8, Cor.
4.4] <~* satisfies (i) and (i) of Def. 0.2. Moreover, every interval
of &¥* is an interval of &, so &©* satisfies (iii) as well. Hence
Z* is a primary lattice with the homogeneous basis b,, b,, b, of three
(n — 1)-cycles. Let the derived H-plane be S#7* = 572(&F*) = (p*, 8%, I).

Let p be a point of &7 = 22() and G be a line of 5. We
define

W SF — S
by
yp=p A B and v+G =G AN B.

In the following paragraphs, we will show that + is an epimorphism.
If p <@, then p AB< G A B, so the fact that - preserves in-
cidence is trivial.

2.6. Let p be a point of 57, say p_ A; = U, and let B; = b; v
b.. Then (p A B) \V B; = B, and + maps p into p*. We want to show
that it is onto. Let »* be a point of 7% say p* VvV B; = B. Then
p* AN A; = N, and by [8, Thm. 5.2], p* is contained in some comple-
ment p of A;. It follows pep and p = p*.

2.7. Let G be a line of 57, say G a;= U, and GA A; =s
and G A 4, = r as in 1.3. We have b, \V » = b; and b; \V s = b, hence
b; V(GAB) =(®;VG NB=B. Since G\ BAb;, =N, maps &
into @*. Again we have to show that it is onto. Let G* be a line
of 57* and G* = r*  s* for two points of S~ *. There exist points
r,s of 57 such that »r AB=7* and s \B=s* For G=7rVs
we have 4G = G*.

2.8. Since p ~ ¢ in 5~ means p A ¢ > N in &, we have p ~ ¢
in o7 if and only if ¥p ~ g in 7%,

We want to show that the same is true for lines. Assume G ~
Hin 57. We know that this means G A H > p for some common point
p of G and H. Let # be a cycle <G such that GA H=p 2.
We may assume G =+ H, hence the dimension of & is at most n — 1.
Therefore * < G A B and © £ H A B, and we have
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GNHAB=(po 2 ANB
=pANBVz
=4p Ve,

and from @ > N we deduce G ~ +H.

Now let G + H in 5%, then G AN H = p for a unique point p.
There are points #,s of £~ such that G=pC r and H=p_ s.
From this we derive ¥p V v V s < 4G \/ +rH, and since p, 7, 4rs
are three independent (n — 1)-cycles, it follows G A B\ H A B = B,
hence G +~ +H.

Thus we have arrived at: G ~ H in 57 if and only if ++G ~ +H
in S7*.

2.9. By 2.5 — 2.8 we know:

v SF — SF°* is an epimorphism and

p ~ q if and only if +p ~ g,
G ~ H if and only if G ~ H .
Now, for w — 1 >1, we may repeat the procedure and, changing

notation to 5~ = 27, o7* = 2#,_, and + = +,_,, get a sequence
%7%—1———) e _,__)%7

n—1 ?-/’n-z v

where the final incidence structure 577 is an ordinary projective plane.
The mapping
Po = Ay v Yt S, — G
is an epimorphisms such that
*) »~ qin 57 if and only if p = pq in 24 and
G ~ H in o7 if and only if u,G = . H in 274.

Now the canonical epimorphism @,: 57, — £7,” is universal with the
property (*), hence we have a unique isomorphism ¢: 57, — 57, such
that p¢, = 0p,. By the same reasoning for 27, , and vy;: 57, — 57
we get the following commutative diagram

b —
-1

Yn
‘?n/ /!1\ /m \ﬂnﬂ

%'—0—)%‘—‘94;1'
Ui

If we put \,_, = 079, we have @, = \,_®P,_r,_, and ,_: 57, — 57, _,
defines a refined neighborhood in 5#,. Clearly, the same is true for
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all vt 97, — 574 (1 <1< n). Thus we arrive at a commutative
diagram as required in Definition 2.2 We did not yet show that
the refined neighborhood defined by +r,_.: &7, — &7,_, is minimal.
Without knowing this, we define p; and (~ ¢) as in 2.2.

2.10. In order to prove the axioms (M) and (RS) of Definitions
2.1 and 2.3, it is useful to have an alternative description p(~ %)gq
and G(~ 9)H in o7 = o7(<).

(i) Let N=p,<p, < +++p,., <p,=p and N=¢ <K -+ £
¢, = ¢ be the chains of elements below the points p and ¢q. We have
Vut =D N B=p,., hence Vi = Vi@ if and Only if Pu—1 = Qn—ro
Repeating the argument we obtain f,p = p;, which yields fp = pq
if and only if p; = ¢..

(ii) Let G, H be lines of 5#7(.°) and p, 7, s be points such that
G=porand H=p s. Let r,s; be defined like p, in (i), and
p=x, KK - L, =G If p,G = p;H, then

r; = /lﬂ/' _S_ ﬂq_G = fllH
and
S; = #is é /J,;H = #zG .

Hence p o7, = 2; < G A H and from Lemma 1.4 we get
(+) There exists a point ¢ such that p,_; = ¢,_; and

pVaeg=x,=GNH.

Conversely, assume (+). There exists a cycle »; such that »p v ¢ =
L r; = x; and points 7, s such that », <» <G and r, £ s < H [S§,
Thm. 4.8]. From this we derive G = p_ r and H = p s and

pG =p:.or = H .

Letting G=¢9, € 9.+ g, =U and H="hp <K +++ L h, = U we
may equivalently say

G = p,H if and only if 9, = h,_; .
Or, using p =9y, < ++- Ly, = H:
1:G = p,H if and only if x;, = y, .
2.11. We are now ready to verify that «,_,: 97, — 57,_, defines
a minimal neighborhood in S7,.
(Ma) From p A B=gq A B it follows that » and ¢ cover p A q.

Hence p v ¢ covers p and ¢q. Now if G\ H<U, then G AN H > p
and since L(p, G) is a chain, we have
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PpL<PVI=GANH,

hence ¢ < H.

(Mb) Let «; and y; be as in 2.10. By 2.10 (ii) we know @, , = ¥,_,.
Now if p ~ ¢, then p \V ¢ < G, hence p VV q¢ < #,_, = ¥,_, which implies
q = H.

(Mc) Taking 7 =1 in 1.5 we get points with the desired property.
By duality, we have lines G = H such that G \V H is a cocycle of
codimension n — 1, hence +,_,G = +,_ H.

2.12. The axiom of reciprocal segments. By 2.10 (i) an i-segment
is a set of points on a line G such that p;, = ¢; for any two points
P, g of the set.

(RSa) Let » <G A H and p,;, x; as before. Assume G A H=12,_;.
Then for every point ¢ < H we have that

» A q= p; implies ¢ < G, and
» A q¢ < p; implies ¢ £ G, since otherwise G A H > x,_;.

Hence the set of points incident with both G and H is an i-segment.
(RSb) By 2.10 (ii), #:G = ¢, H if and only if G and H have (at least)
an i-segment in common.

THEOREM 2.18. The H-plane S7() derived from a primary
lattice L with a homogeneous basts of three n-cycles is an H-plane of
level n.

Proof. By 2.9, +,_: 57, — 57,_, defines a refined neighborhood
in 27, which is minimal by 2.11. By 2.12, the axiom (RS) of reciprocal
segments holds in 57,. Since 57,_, is derived from a primary lattice
with a homogeneous basis of (n — 1)-cycles, we may assume that 5Z,_,
is of level n — 1. But then 57, is of level n.

3. Desarguesian H-planes of level n.

DEFINITION 3.1. [8, Def. 6.6]. A ring .22 (associative with unit)
is said to be complétely primary and uniserial if there is a two-sided
ideal .o~ of &2 such that every left or right ideal of .<# is of the form
7% (where .&7° = <#). The rank of such a ring is the smallest
integer k£ such that .o7* = (0).

It is a simple exercise to verify that a completely primary and
uniserial ring is an H-ring in the sense of [9 Def. 9].

DEFINITION 3.2. Let <Z be a completely primary and uniserial
ring of rank n. The lattice (577 of all submodules of the (<Z-
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left) module &#* is primary [8, Thm. 6.7] and has the homogeneous
basis a, = #(1,0,0), a, = Z#(0, 1, 0), a, = Z(0, 0, 1) of n-cycles. Let
F(R) = 57 (L (#?)) be the H-plane derived from &(<#%). It is
easy to check that this plane is essentially the same as defined by
Klingenberg [9 Def. 10] via homogeneous coordinates. An H-plane
o7 is called desarguesian if there exists an H-ring < such that
S# is isomorphic to S#(<Z), the latter defined as in [9].

THEOREM 3.3. If & is a completely primary and uniserial ring
of rank n, then the H-plane S#(Z) is of level m.

Proof. Theorem 2.13 and Definition 38.2.

3.4. In [4] it is shown: If 5F = 57 (<#) is a desarguesian H-
plane of level n, then <2 is a completely primary and uniserial ring
of rank n. We combine this with 3.3:

COROLLARY. A desarguesian H-plane 57 (#) is of level n if and
only if F# is completely primary and uniserial of rank n.

3.5. Since the lattice <(#°) defined in 3.2 is arguesian, we
have a correspondence between completely primary and uniserial rings
of rank #, arguesian primary lattices with a homogeneous basis of
three n-cycles and desarguesian H-plane of level n as in the classical
theory of projective spaces. With the appropriate definitions, it should
be not too hard to verify the analogues correspondences for finite
dimensional H-spaces. The coordinatization theorems relevant for this
can be found in [7] and [8] for lattices and in [10] and [11] for
Hjelmslev spaces.
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DETERMINING A POLYTOPE BY RADON PARTITIONS

MARILYN BREEN

In an extension of the classical Radon theorem, Hare and
Kenelly have introduced the concept of a primitive partition,
allowing a reduction to minimal subsets which still possess
the necessary intersection property.

Here it is proved that primitive partitions in the vertex
set P of a polytope reveal the subsets of P which give rise
to faces of conv P, thus determining the combinatorial type
of the polytope. Furthermore, the polytope may be recon-
structed from various subcollections of the primitfive partitions.

2. Preliminary results. Throughout, | P| denotes the cardinality
of P. If Pis a set of points in R?, AU B is a Radon partition for P
if P=AUB ANB= ¢, and conv AN conv B+ ¢. Each of 4 and
B is called half a partition for P and each element of A is said to
oppose B in the partition. The Radon theorem says that for P < R?
having at least d + 2 points, there exists a Radon partition for P.
When P is in general position in B¢ and P has exactly d + 2 elements,
the partition is unique.

In [2], Hare and Kenelly introduce the concept of a primitive
partition: For PZS R* AU B is a Radon partition 4w P iff AU B is
a Radon partition for a subset S of P. We say that the Radon parti-
tion A U B extends the Radon partition 4’ U B’ iff A’S 4 and B'< B.
Finally, A U B is called a primitive partition in P, or simply a primi-
tive, provided it is a Radon partition in P and A U B extends the
Radon partition A’U B iff A”= A and B’ = B. It is proved that
each Radon partition extends a primitive partition having cardinality
at most d + 2.

Theorem 1 follows immediately from the results of Hare and Kenelly.

THEOREM 1. Let P denote a set of d + 2 points n RY and let
AUB be a primitive for P. Then |A|l+ |Bl=d-+ 2 if Pis in
general position.

COROLLARY 1. If AU B 1s a primitive for P, P< R?, then AU B
18 1n gemeral position in R* for some k < d, and [A|+ |B| =k + 2
Jor this k.

THEOREM 2. If PSR! and AU B is a primitive for P, then
dim (conv AN conv B) = 0.
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Proof. By the corollary to Theorem 1, A U B is in general posi-
tion in R* for some k < d.

Recall that dim (aff A N aff B) = dimaff A + dim aff B — dim
(aff A + aff B). Letting j = |A] and [ = |B], for points in general
position, this is equalto j — 1)+ (l —-1)—k=7+1—k — 2. Also,
for & + 2 points in general position, the partition is unique, and so
J+1=1Fk+ 2, and the above is zero.

3. Reconstructing polytopes. Our goal is to establish the rela-
tionship between faces of conv P and primitive partitions for P.
Throughout, P denotes the vertex set of a convex polytope in R,
and [P| = n.

THEOREM 3. If SES P and conv S is a face of conv P, them S
1s not half a Radon partition for P.

Proof. Assume conv S is a proper face, for otherwise the result
is trivial. Let H be a supporting hyperplane to conv P for which
HnNconv P =-convS. Assume PZcl(H,), the closure of the open
half-space H,. Then P~ S& H,, and conv (P~ S)Nconv S = .

The following definitions are useful in obtaining a converse to
Theorem 3.

DEFINITION. Let SS P. Then we say conv S cuts conv P (or
S cuts conv P) iff one of the following is true: Either (1) dim aff
S=dor 2 dimaff S<d -1 and any hyperplane containing S cuts
conv P.

DerINITION. If SE P and conv S cuts conv P, then a subset T
of S is said to be a minimal cutting subset of S for P iff conv T
cuts conv P and no subset of S of cardinality less than | T| cuts conv P.

THEOREM 4. If |[Pl=n=d + 1, and SS P, then the following
is true: conv S is a face for conv P iff for ASS, A is half a primi-
tive for P only in case all the elements opposing A in the primitive
are also in S.

Proof. If conv S is a face for conv P, then by Theorem 3, S
cannot be half a Radon partition for P. Thus if A< S and A is half
a primitive for P, some of the elements opposing A must lie in S.
We must show that all the elements opposing A lie in S:

Suppose not, and let A U B be a primitive for P with AS S, BN
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S+ @, and BN(P~S)= . Since AU B is a primitive, conv 4 N
conv (BN S) is empty. Thus any point in conv A N conv B cannot lie
in conv S. Yet ASS, so conv 4ASconv S, and we have a contradic-
tion. Our supposition is false, and all members of B lie in S.

Conversely, suppose S< P has the property that for ASS, A is
half a primitive only in case all the elements opposing A in the primi-
tive come from S.

Let xe P~ S+ @.

First we assert that z¢ aff S. If ¢ aff S, then reduce S to a
(k + 1)-subset T<S such that aff T = aff S, where k = dimaff S.
Then conv T is necessarily a simplex. Since 7 U {x} is a (k + 2)-subset
of R* = aff (T' U {«}), there is a Radon partition for 7' U {x}. Let 4, U B,
be a primitive for T U {z}. Necessarily « appears, since T is a simplex.
Assume x ¢ B,. Then A4, is a subset of T (and thus a subset of S)
which is half a primitive for P. Yet x opposes A4, and 2 is not in S,
contradicting our hypothesis. Thus we have proved that for x in
P~ S,x¢ aff S. Also, this implies that S = Pnaff S and dim aff
S=d—1.

We assert that S lies in a proper face of conv P. Assume that
S does not lie in a proper face of conv P to reach a contradiction.
Let xe P~ S. If S does not lie in a face of conv P, then conv S
necessarily cuts conv P. Choose S’< S to be a minimal cutting sub-
set of S for P. Let p be in conv S and interior to conv P. We
will show that a subset A of S’ is half a primitive partition AU B
for P, where BZ S:

Consider the ray from a through p. Since p is interior to conv
P, this ray intersects bdry conv P at a point v beyond p. Clearly
ve aff S, or else x € aff (SU {v}) = aff S, a contradiction since z ¢ aff S.
Now v lies in a facet F of conv P. Choose exactly d vertices T in
F such that ve conv T and T determines a simplex.

Let @ = TU S U{x}. Consider the polytope conv Q. We will
show that S’ is half a partition for Q:

By minimality of |S’|, it follows that aff S’ N conv P = conv S'.
For otherwise, conv S’ is not in a face for the polytope aff S’ N conv P
(since the dimensions are the same), and some proper subset of S’
must cut aff S’ N conv P. Thus a proper subset of S’ cuts our original
polytope conv P, contradicting minimality of S’. This implies also
that aff S’ N conv Q = conv S'.

To show that convS N conv(Q ~ §') = ¢, it suffices to show
that aff S’ N conv (@ ~ §') = @. Assume that the intersection is empty
to reach a contradiction. If the intersection is empty, then strictly
separate aff S’ from conv (@ ~ S’) by a hyperplane H. Since H N aff
S = @, H must be parallel to aff S’. Let J be a hyperplane parallel
to H and containing aff §’. Clearly J N conv(Q ~S) = ¢, so J is a
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supporting hypsrplane for conv @ such that J N conv @ = conv S, and
conv S’ is a face for conv@. However, this is a contradiction, for
the segment [z, v] intersects conv S’ at p. Our assumption is false,
conv S’ N conv (@ ~ ') is not empty, and S’ is half a partition for Q.

Let AU B be a primitive inside S’ U (@ ~ S’'). We claim that »
necessarily appears in B, for otherwise we have BZ T, but conv T
is a face for conv @ so by the first part of this theorem, A< T also.
But we chose T to be a simplex, so there is no primitive for T; we
have a contradiction, and z must appear.

Recall that x¢ S. Thus BZS since z€ B. At last we have con-
tradicted our hypothesis, for A U B is a primitive such that A& S
and BZS. Our assumption that S does not lie in a face of conv P
is false, and S does indeed lie in a face.

To complete the proof, it remains to show that conv S is a full
face of conv P. Seclect a face F' of conv P having minimal dimension
for which S F. Clearly S cannot lie in a proper face of the polytope
F. Thus, F<aff S, so PNF<EPnaff S= 8, and vert F = S, fini-
shing the proof.

COROLLARY 1. For a simplicial polytope conv P and S < P, conv
S is a face for conv P iff no subset of S is half a primitive for P.

The proof to Theorem 4 required a construction which we will
need again, and for this reason we list it as a corollary:

COROLLARY 2. Let SESP,xcP~aff S+ @. If S does not lie
in a face of conv P, let S’ be a minimal cutting subset of S for P.
Then aff S' N conv P = conv S’. Moreover, S’ is half a Radon parti-
tion for a subset @ of P where x€ @, and Q may be chosen so that
Q~ S U{x}] s a simplex and lies in a facet of conv P. For any
primittve AU B inside 8" U [Q ~ S'] with AS S, ze B.

COROLLARY 3. If P is in general position, S half a Radon parti-
tion for P,ze P~ S, and S a minimal cutting subset of S for P,
then S’ is half a primitive for P, and this primitive may be selected
8o that x still appears.

DEFINITION. We say that it is possible to reconstruct the polytope
conv P iff for each face F of conv P we can determine the unique
subset S of P such that conv S = F.

The author wishes to thank the referee for the following obser-
vation: Let p determine the collection of all sets S < P for which eonv
S is a face for conv P. Since p is a complete lattice under inclusion,
and each maximal chain in g is of length d + 2, beginning with @&
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and ending with P, we can determine the dimension of each face
conv S from its position in any maximal chain. The lattice p also
determines all inclusion relations between faces and hence gives the
combinatorial type of conv P.

Therefore, when the definition of reconstruct is satisfied, the
combinatorial type of the polytope is revealed.

DEFINITION. Let P, P, be vertex sets for two polytopes conv P,
conv P,, and let R,, R,, denote the set of primitive partitions for P, P,
respectively. We say that R, is ¢somorphic to R, iff there is a one-
to-one map + of P, onto P, having the following property: A U B is
2 primitive for P, iff v(A) U {B) is a primitive for P,.

The following corollary is a direct consequence of Theorem 4.

COROLLARY 4. Let P, P, be vertex sets for polytopes, R,, R, their
respective primitive partitions. If R, is isomorphic to R,, then conv
P, is combinatorially equivalent to comv P,. Thus it is possible to
determine the combinatorial type of a polytepe from the Radon parti-
tions of its wvertex set.

The following example shows that the converse is false. That
is, two polytopes may be combinatorially equivalent although their
vertex sets have non-isomorphic Radon partitions.

ExampLeE 1. Let {1, 2, 3, 4} be the vertex set for a square which
is base for two distinct bipyramids conv P, and conv P,. Let {5, 6}
be the remaining vertices for conv P,, and let the segment [5, 6] pass
through the center of the square. The primitives for P, are

{1,31U{2, 4},
{1,3tu {5, 6},
{2,4 U 5, 6} .
Now let {7, 8} be the remaining vertices for conv P,, where the

segment [7, 8] intersects the base within [2, 4] N rel int conv {1, 2, 3}.
The primitives for P, are

{1,3} U {2, 4
{1,2,3tu{17,8}
(2,4} U{7,8}.
The primitives for P,, P, are not isomorphic, yet the map - from
P, onto P, defined as the identity on {1, 2, 3, 4}, ++(5) = 7, 4~(6) = 8, sets
up a one-to-one correspondence between faces and is inclusion pre-
serving.
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Even for points in general position, combinatorial equivalence of
conv P, conv P, does not imply that R, is isomorphic to R,. However,
in case we have exactly d + 2 points in general position in R?, the
implication does hold.

COROLLARY 5. For ¢ =1, 2, let conv P; be a simplicial polytope
having d + 2 vertices, and let R; be the unique Radon partition for
P,. Then combinatorial equivalence of conv P,, conv P, implies that R,
18 1somorphic to R,.

It is interesting that Corollary 5 may be used to obtain the fol-
lowing familiar result.

COROLLARY 6. Consider the collection & of all sets P in R? con-
sisting of d + 2 points in general position with no point of P interior
to conv P. Then there are exactly [d/2] possible Radon partitions for
P in 2 and each one determines a distinct polytope conv P. There-
fore, there are exactly [d/2] simplicial polytopes having d + 2 vertices.

4. Reductions. Of major interest is the problem of obtaining
a minimal subcollection of primitive partitions for P which will deter-
mine the combinatorial type of conv P. The following theorems are
concerned with one kind of reduction.

For x ¢ P, let &, denote the subcollection of primitive partitions
for P defined in the following manner: A U B belongs to &, iff either
(1) = appears in AUBor (2) |A|+ |B|=d + 1.

Theorems 5 and 6 show that conv P may be reconstructed from & ..

THEOREM 5. For x€ P and SES P ~ {&}, conv S is not a face for
conv P iff there is some member AU B of &, such that ASS, B&S.

Proof. By Theorem 4, if a subset A of S is half a primitive
AU B for P, and BZ S, conv S cannot be a face for conv P.

Conversely, suppose that x is a specified point in P,SES P ~ {z},
and conv S is not a face for conv P. We consider cases:

Case 1. If S lies in a facet F of conv P, then by a fundamental
property of polytopes, conv S cannot be a face for F. Using Theorem
4, since conv S is not a face for the polytope F, a subset 4 of S must
be half a primitive AU B for vert F, with BZS. Moreover, since
Fis (d —1)-dimensional, |A|+ | B| < d + 1, and Condition (2) is satisfied.

Case 2. If S does not lie in a facet and if x¢ aff S, then as in
the proof of Theorem 4, let dim aff S=%k <d and reduce S to a
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(k + 1)-subset T of S such that aff T = aff S. Conv T is necessarily
a simplex. Since T U {z} is a (k + 2)-subset of R* = aff (T U {x}), there
is a Radon partition for T'U {z}. Let A U B be a primitive correspond-
ing to this partition. Necessarily x appears since conv T is a simplex.
Assume xe¢ B. Then A= T S, and Condition (1) is satisfied.

Case 3. If S does not lie in a facet and if x¢ aff S, then we
may call on the technical corollary following Theorem 4 to obtain a
subset S’ of S and a subset @ of P having the property that S’ U
(@ ~ §') is a Radon partition for Q. Moreover, if AU B is a primi-
tive inside S’ U (@ ~ S’), then z appears in B. Thus AS S, BZS,
and x opposes a subset of S in this primitive. We have satisfied
Condition (1) and completed the proof of the theorem.

For x in P, Theorem 5 allows us to recognize all faces of conv P
not containing 2 by listing the primitives in which # appears plus the
primitives having < d + 1 points. Our next problem, of course, is
recognizing the faces containing %, and we would like to be able to
do this from the same collection of primitives. Happily, the next
theorem shows that this is possible.

THEOREM 6. For T& P and x in T, convT is not a face for
conv P off there is some member AU B of &, such that AT, BZT.

Proof. Certainly if there is a primitive AU B with A< T and
BZ T, then by Theorem 4, conv T cannot be a face for conv P.

Conversely, assume that conv T is not a face for conv P and z ¢ T.
Again, we must consider cases:

Case 1. Now if T lies in a facet F of conv P, repeating the
argument in Case 1 of Theorem 5 shows that Condition (2) is satisfied.

In the remaining cases, assume that T does not lie in a facet for
convP. Let S= T~ {z}:

Case 2. If S is contained in a facet F but conv S is not a face
for conv P, then by repeating the argument in Case 1 of Theorem 5,
Condition (2) holds.

Case 3. Suppose S is contained in a facet and conv .S is a face
for conv P. Recall T = SU{«} is not a face, for we are assuming
that T does not lie in a facet. By Theorem 4, there is a primitive A U B
for P with ASSU{z}=T and BZS U {z}. Moreover, since conv S
is a face for conv P, a subset C of S is half a primitive CU D for
P iff D=S. This implies that & must appear in A, for otherwise
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we would have A= S and BZ S, a contradition. Thus A= T, BZ T,
and 2z appears, satisfying Condition (1).

Case 4. If conv S is not in a facet for conv P and % is in aff S,
then unfortunately it is necessary to consider subcases:

(42) If dim aff S = d, then since T # P, there is some yec P~ T
and necessarily v is in aff S. Let 7T be the vertex set for a d-dimen-
sional simplex, ze T'< T = SU{x}. Then T'U{y} is a set having
d + 2 points in R?, so there is a primitive A U B for T’ U {y}. Certainly
y appears (since T’ is a simplex). Assume y€B. Then AT & T,
and BZT. Now if |A| + |B|] = d + 2, then % appears and Condition
(1) holds. If |A| + |B| =d + 1, then Condition (2) holds.

(4b) Similarly, if dim aff S =% < d and if there is some y in
(PNnaffS) ~ T, let T’ be the vertex set for a k-dimensional simplex,
zeT'S T, and repeat the above proof.

(4e) If dimaff S=k<dandif (PNnaffS) ~ T = ¢, then select
a point ye P~ aff S. (This is possible since T # P.) Again, let T
be the vertex set for a k-dimensional simplex, z in T' & 7.

Now we want to use our old friend, the corollary following The-
orem 4, but first we must make a few adjustments.

Let conv R be a new polytope, where R= P~ (aff T ~ T"). We
have thrown away the vertices in aff T except for those in T’. Notice
that © remains. Also y remains since y ¢ aff S = aff 7.

We assert that T’ does not lie in a face of convR: If T’ is in
a face, then let the hyperplane H support conv R with 7<= H. Then
aff " H. But af 7' = aff T, so aff T< H, and H supports conv
P=conv(RUT) with TS H. But T does not lie in a face of conv
P by hypothesis. We have a contradiction, and 7" does not lie in a
face of conv R.

We are ready for the corollary to Theorem 4. 7T’ does not lie
in a face of conv R, and y is in R ~ aff T’'. Thus there is a subset
T of T' which appears as half a Radon partition for a subset @ of
R, where yc Q. Moreover, ¢ may be chosen so that Q ~ (T U {y})
is a simplex and lies in a facet of conv R. For any primitive A U B
inside 7”7 U(Q ~ T") with A= T"”,ye B.

Now if x is in 7", and if z € A, then we have AS T, BZ T (since
y € B), and x appears in the primitive, satisfying Condition (1). If z
is in T but x is not in A, then by our minimality condition of T,
no proper subset of T may cut conv R, 80 conv A cannot cut conv
R, and likewise, conv A cannot cut conv @. Then conv A must lie in
some face of conv @, and certainly conv A N conv B must lie in the
boundary of conv @. By Theorem 1, Corollary 1, necessarily |A| +
|Bl £d + 1, satisfying Condition (2).

We still need to examine what happens in case x doess not appear
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in T”. Again by the corollary to Theorem 4, aff 7" N conv R = conv T
Now conv T’ is a simplex, T"< T/, and ze T'. If « is not in T,
then 2 ¢ conv T, and so z ¢ aff T”. By the very choice of 7", conv T
cuts conv R, and so conv T" does not lie in a face of conv R. Also
xe R~ aff T”, so there is a subset T® of T” which is half a
partition for a subset of R (by the corollary). Let C U D be a cor-
responding primitive. Then C= T® and xeD. Not all of D can lie
in 77, for if it did, we would have a primitive C U D in the vertex
set of the simplex 7", and this is ridiculous. Thus, DZ 7", but D S R,
and the only points of T in R are those in 7’. Thus, DZT. To
review, CES T, DZT, and x appears in D, satisfying Condition (1),
and completing Case 4c.

Case 5. If S is not in a face and x is not in aff S, then as in
Case 4c, reduce conv P to a new polytope conv R, where R= P ~
(aff S ~ ), and where S’ is the vertex set for a k-dimensional simplex
with % = dimaff S. By our earlier argument, S does not lie in a
face of conv R. Also, xc¢ R and x ¢ aff §’. Then by the corollary to
Theorem 4, a subset S” of S’ appears as half a partition for a subset
@ of R. Let AU B be a corresponding primitive. Then by the corol-
lary, A= S” and xe¢ B. Moreover, BZ T = SU {z}, for if B& T, we
would have AS S, BTN Q=S8 U/{x}. But S’ determines a simplex
and ¢ aff S, so S’ U {x} determines a simplex and has no primitives.
Thus A< T, BZ T, and « appears in B, satisfying Condition (1) and
finishing Case 5.

This completes the proof of Theorem 6.

At last we have obtained a reduction in the number of partitions
necessary to reconstruct an arbitrary polytope. Combining Theorems
5 and 6, we have the following corollaries:

COROLLARY 1. The combinatorial type of conv P 1is determined
by &, for any ve P.

COROLLARY 2. For P in general position and %€ P, the combin-
atorial type of conv P is determined by the primitive partitions for P
which contain .

5. Locating points. Another approach to the problem of obtain-
ing a minimal collection of primitive partitions which determine conv P
leads to the method of reconstructing a polytope by locating vertices,
one at a time.

DEFINITION. Let P U {«} be the vertex set for a polytope in R*
and assume that we have reconstructed conv P. We say that we
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locate x relative to conv P iff we are able to reconstruct conv (P U {x}).

DEFINITION. Let P be the vertex set for a polytope in R* and
let * be a point not in P. For F a facet of conv P, we say « is
beyond F iff « is in the open halfspace of H; not containing P (where
H, is the hyperplane determined by F). For E a face of conv P, we
say x is beyond K iff x is beyond F for every facet F containing E.

To reconstruct conv P by locating vertices, one at a time, first
select a (d + 1)-subset S of P for which there is no primitive. (Clearly
S determines a simplex.) The following theorem describes the pro-
cedure for locating additional points.

THEOREM 7. Let P U {x} be the wertex set for a polytope, and
assume that we have reconstructed conv P. Then to reconstruct conv
(P U {x}), it ts sufficient to comsider the primitives AU B for P U {x}
such that A lies in a face of conv P, x € B, and x opposes no proper
subset of A in a primitive.

Proof. Using Theorem 5.2.1 of Griinbaum [1], we see that to
establish the faces for conv (P U {x}), it suffices to examine the faces
for conv P.

For SE P and conv S a face for conv P, S determines a face for
conv (P U {#}) iff no subset A of S appears as half a primitive AU B
with « in B. Also, S U {¢} determines a face for conv (P U {z}) iff for
every primitive AU B with ASS and ¢ in B, then BE S U {«x}.

However, if there is one primitive 4, U B, with 4, =S, x € B,, and
B,< S U {z}, then by general position of the points involved, x ¢ aff S,
x lies in every face containing S, and S U {x} determines a face for
conv (P U {x}). Therefore, if one primitive with 4,=S and z in B,
satisfies B,&S U {x}, then every primitive with ASS and = in B
satisfies BES S U {x}, and it is easy to determine all faces of conv (P U
{x}) from those listed.

As the following example illustrates, the construction in Theorem
7 allows us to locate x relative to conv P but does not allow us to
locate « relative to conv @, where Q&< P.

ExampLE 2. Let {1, 2} U {3, 4, 5} be the primitive partition for the
set P={1,2,3,4,5} in R? and let 6 lie beyond the face conv {1, 4, 5}.
This does not determine the location of 6 relative conv Q, Q = {1, 2, 3, 4},
for 6 may or may not lie beyond the edge [1, 2] of conv Q.

REMARK. It is easy to find examples for which the subcollection
of primitive partitions described in Theorem 7 is minimal. Moreover,
at each stage of the construction at least one primitive is required
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to locate an additional vertex. Thus at least n — (d + 1) primitive
partitions are needed to reconstruct conv P. This lower bound is
always attained for simplicial polytopes having d + 2 vertices.
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DERIVED ALGEBRAS IN L, OF A COMPACT GROUP

DAvID S. BROWDER

Let G be a compact topological group. In this paper, it
is shown that the derived algebra D, of L,(G)(for 1< p <o)
is contained in the ideal S, of functions in L,(G) with
unconditicnally convergent Fourier series. It is also noted
that this inclusion can be strict if G is nonabelian. Finally,
it is shown that the derived algebra of the center of L,(G)
is always equal to the center of S,, generalizing a known
result that D, =S, when G is compact and abelian.

In general, let (4, |l.) be a Banach algebra which is an es-
sential left Banach L,(G)-medule in L,(G) under convolution. For
convenience and with no loss of generality it is assumed that

ez 1AL for every feA.

This paper investigates the relationship between the derived
algebra of A and the ideal in 4 of functions with unconditionally
convergent Fourier series. Bachelis has shown in [1] that in case G
is abelian and A is equal to L,(G), for 1 £ p < <o, the two algebras
coincide.

Bachelis’ result is generalized to the derived algebra of the center
of L,G) and it is shown that for the compact group .54= and A =
L,(54~) with p # 2, the derived algebra is strictly contained in the
ideal of functions in L,(54~) whose Fourier series converge un-
conditionally.

Notation throughout will be as in [4]. X will denote the dual
object of G, the set of equivalence classes of continuous irreducible
unitary representations of G. For each oe¢X, H, will denote the
representation space of o (of finite dimension d,) and & (2) will denote
the product space [[,.: B(H,). Important subspaces of & (Y) referred
to in the text include:

(i) &) ={E={E}): || E,|,, is small off finite sets}

(ii) &) ={E={E} || B, = Seerdo || E, |5, < oo}

(i) &) ={E={E}) | E|}= Xoe:d, || E, ||}, < ).

For feL,(G), f has Fourier series f~ X,.:d,tr(4A,U”) where
A,e B(H,), U eo. The Fourier transform f of f has the property
that F(6) = A and hence:

171l = sup || A [lop -

The author wishes to thank Professor Kenneth A. Ross for
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many helpful conversations on these matters, Professor Gregory
Bachelis for suggesting a shorter proof of (3.8), and the referee.

This paper is based on results in the author’s doctoral disserta-
tion at the University of Oregon, June, 1971.

1. The derived algebra. We begin by defining the derived
algebra D, for an essential left Banach L,(G)-module 4, and noting
a few of its properties.

DEFINITION 1.1. If fe A, we define

£, = sup L2 9l
sea |19l

and let
D,={feA: | fllp, < e}.

The following facts are easy to check.

PropoOSITION 1.2. (i) (DIl ll»,) % a Banach algebra and a
left Banach L,(G)-module in L,(G) under convolution.

(it) [[flla = fllp, for every fe A.

(iii) If we denote the set of trigomometric polynomials by T(G)
then we have

[ fllb, 2053%% for every fe A .

We next give a characterization of D, which is due essentially
to Helgason ([3], Theorem 2).

THEOREM 1.3. (Helgason)

D, ={feA: fEcA, for every Ec &,(3)} .

Proof. Suppose fc A and that for Ee &,(3), fE = §, for some
gz €A. Then the linear map EF— g, of &,(2) into A has closed
graph and is therefore continuous. In particular, there exists a
constant £ > 0 such that

Nfxhll, <k|k]. for every he A .

Consequently, f belongs to D,. R

Conversely, if fe D, then the continuous map § — f+g of A into
A extends to a continuous map E — h; of &,(3) into A. Then the
element fE = h, belongs to A for every Ee &,(3).
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This characterization of D, gives two more properties of D,.

COROLLARY 1.4. (i) D, is an ideal in L,(G) and
(ii) D, is a right ideal in Z,(2).

We denote by C(G) the algebra of continuous complex valued
functions on G, and by K(G) the algebra of functions on G with
absolutely convergent Fourier series (see [4], Sect. 34).

For 1 < p < «, the derived algebra of L,(G) is denoted by D,.

ExampLEs 1.5. (i) Dge = K(G),
(ii) D¢ = K(G), and
(ili) D, = LyG) for 1<p < 2.

Proof. TFirst we show (i). Let f belong to K(G) and g to T(G).

Then || f+gllx = | FG I =1 Fll11§lle = || fllx]|§le. Hence, by (1.2),
f belongs to Dx-.
To see (ii), observe that since || [, = || |lx@ on K(G), it follows

that K(G) = Dg C Dy Conversely, let fe Dy with Fourier series
given by

f~>dtr(A,U7) .
oel

For each g€ 2, let V, be the unitary matrix such that V,4, = | 4,].
For FFc %, a finite set, define:

g= EF atr(V,U) .

Then g€ T(G), ||§ll. =1 and we have:
S Al Al = S dtr | A, = | Fx9() | S (129l S 11 £ llag -

Hence || flx@ = 1/l pe( and fe K(G).
To prove (iii), we use the facts (see [4], 36.10, 36.12) that D, =
L,(G) and

27 flle = WSl = 1 fll: for every fe Ly(G) .
It 1 < p =<2 and fe Ly,(G), then for ge T(G) we see that

Ifxglls < fralle=11FG1 < NFll§lle= 1158
= |Ifll: and

o, = 1 llo, =2 27" ([ f 2 -

Hence, we conclude that || f||5,

2. The ideal in A of functions with unconditionally con-
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vergent Fourier series. Let &# denote the family of all nonvoid
finite subsets of 2. For Fe &, let D(F) = D,erd.,. For f in
L(@), f= D(F) is the finite partial sum of the Fourier series of f
consisting only of terms involving elements of F.. We say that f in
A has unconditionally convergent Fourier series in A whenever

lm [[f = fx DF)[la=0.

We denote by S, the family of all functions in A with this property.
If we also define

17lls, = sup [1£* DCF) |l

then the following facts are easily verified.

ProposITION 2.1. (i) If feS, then |[flls, < o
(ii) (Su || lls,) ts @ Banach algebra.

(1) ([flla = I Flls, for every fe A.

(iv) If feS,, then limg..||f— f«D(F)|ls, = 0.

(v) S, is an essential left Banach L.(G)-module in L,(G) under
convolution.

Since S, satisfies the conditions we have postulated for A4, we
may compute its derived algebra.

THEOREM 2.2. (i) Ds,=D,NS, and || fllps, =flln, for fe Ds,.
(ii) Ss, = S, (isometry).

Proof. Suppose f belongs to Ds,. Then for feS, and ge T(G)
we have

1l gl — *

Hence we have || f|lo, = || fllps, < =, and thus f belongs to D,NS,.
Conversely, if feD,N S, then for ge T(G) and F e &, we have

1f*9« DIF)|ls - If* 0 DIl py1,
g T ewDF) T

Thus it follows that || fllrs, = [, < o, and f belongs to Ds,.
Part (ii) follows immediately from (2.1, iv).

3. Central derived algebras. Let A® denote the center of A.
Then A* = L:(G) N A and (4% || ||,) is an essential Banach Li-module
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in L?(G) under convolution. Before we investigate the derived algebra
of A7, we prove a useful proposition.

PRrOPOSITION 3.1. For Ee &.(3), define a function ¢, on ¥ by:
®g(0) = 1/d, tr(E,) for every c€X. The map E— @, is an isomelric
tsomorphism of

(1) &i2) onto 1.(2),

(i) &7(2) onto c(2), and

(iii)  &@(2) onto cu(2).

For fe L:(G), let f(o) = 1/d, tr(f(0)) = ®;(c), so that f has Fourier
series D exd, ]?' (0)Y,e Then the map f— f s the Gel'fand transform
A, X is the maximal ideal space of A?, and

(V) | Fllo =117l for every fe Li(G).

Proof. Let E belong to #2(%). By Schur’s lemma we have
(1) E, = ¢:(0)1,, for o2 .
It follows that
(2) NE . =lPslle -

Clearly the map EF — @, is linear and carries #%Z(Y) isometrically
onto 1.(2). By (1), E— @, is multiplicative. By (2), the image of
&7(2) is ¢(2), and the image of Z3(Y) is c¢,(Y). The rest of the
proof is analogous to ([4], 28.71).

DEFINITION 3.2. For f in A%, let

1f+gll,

[fllz, = sup ——
gl

geA?

The derived algebra <, of A* is defined as
Fu={fe A ||fllo, < }.

The following properties of <, are easily proved.

ProrosiTION 3.3. (i) (=, |l |l-,) ts a Banach algebra and an
Li(G)-module under convolution.

(i) [[flls = I fll, for every fe A

(ii) [ fllo, = Supserso [f * g [[u/l{ gl for every fe A%

(iv) Dy c =Z,.

Helgason’s characterization (1.8) has an analogue in the central
case. We omit the proof since it is exactly like that of (1.3).
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THEOREM 3.4. (Helgason)
Gy ={fe A fpe(A)° for every Pec(2)}.

We next prove that the center S: of S, is always contained in
Z,. To do so, we use the following well known fact which follows
from a theorem of Seever ([6]).

Facrt 3.5. Let X be a discrete topological space and M a Banach
space. If T: M—1.(X) is a bounded linear map whose image con-
tains the characteristic function of every subset of X, them T is onto.

We also use the following lemma which states that every element
of 1..(2) is a multiplier for S:.

LemMA 3.6. If fe8S; and pel.(2), then there exists g€ Sz such
that g = @f.

Proof. Let f belong to S, and denote by M the collection of all

®€l,.(2) such that <Pjae(Sj)°. Then M is a Banach space under the
norm

@l =19ll.+1lglls, Where g=oFf .

To show M = [.(2), it suffices by (3.5) to show that for 4 X, the
characteristic function @ of 4 is an element of M. To establish
this, we note that the net {f* D(E): E"" C 4} is Cauchy in SZ, so
there is a function ¢ in SZ? such that

lim ||g—f*DE)|s, =0.

gfinite—y

We conclude that g; = QDfo and hence, @ belongs to M.
THEOREM 3.7. Sic o,.

Proof. Suppose f belongs to si;. Then for @ ec,(Y) Cl.(2), qD}
belongs to (S:)° and hence to (4%)° by (3.6). Therefore fe &, by
(3.4).

We now restrict our attention to the case of A = L,(G) for 1 <
p < . As before we write D, = D,; we also write S, =S, and
, = Z,. To compare D, and S, we use the following.
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LEMMA 3.8. Let 1<p<oco. If feL,G) and |[f|s, < o, then
fes,.

Proof. Let f belong to L,(G) with || f|ls, < co. Suppose f has
Fourier series

f~ g,ld,,jtoﬂ(A,,jU(”i)) )
For ¢ e L,(G)* and any nonvoid finite F < Z*, we have
2, P(d (4, U ) ! = [ Flls, [l 2 llop «
Hence, we see

sup | 9, tr(4, U9 | < =,

pfinitec z+ | jer I

which implies
i;l[ Pd, tr(A,, UCP)) | < oo .

Thus the Fourier series of f is weakly subseries Cauchy and, since
L,(G) is weakly complete, the series is weakly subseries convergent.
Therefore, by the Orlicz-Pettis theorem ([2], p. 60, or [6], p.19) it is
norm convergent and unconditionally convergent to some g€ L,(G).
Comparing transforms, we see that f = ¢ and consequently, f belongs
to S,.

Finally, we state the main result of this section, generalizing
the abelian result of Bachelis.

THEOREM 3.9. Let 1 < p < . Then we have
(i) D,cS,, and
(i) =z,=S;.

Proof. Observe that [[flls, = [ fllp, for every feD,, and that
[[flls, = lfllz, for every fe =,. The theorem now follows from
(3.8).

4. 4= as a source of examples. Throughout this section G
will denote &5~ = [[y, %%, where .57, is the symmetric group on three
symbols. Using this group we demonstrate that Bachelis’ result
does not extend to the non-abelian case.

THEOREM 4.1. Let G = A and 1 < p < . Then
(i) D,= S8, if and only if »p = 2, and
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(ii) D,= L, if and only p = 2.

Proof. By (1.5, 1iii) and (3.9), we have
L,(G) = D,c S,C L(G) .
Suppose p == 2. Observe that (ii) follows from (i) because
D,cS,cL,.

Note also that || f[[s, = || fll,, for every fe D,. Hence to prove that
D, # S, it is enough to find sequences {f ™} in D, and {¢g™} in T(G)
such that

(1) [ f™ g™ ||,
N

8% e 1™ 1ls,

We select these sequences as follows. Let o be the representation

class on .4 of dimension 2 (see [4], 27.61). For f and ¢ in T,(.5%)
which will be specified later, form

o as M —— o .,

FO@ =11 f@)
and
6”@ = 11 o) ,

where ¢eG is given by 2 = (x, @, «-+). Then f™ and g™ are
elements of T, (G) where ¢ is the element of ¥, given by
Ui"”‘” =UY®Q-- QU for every zeG .

It is easily verified that

™ s, = 1S M = 115,

HF® g™, =1rf=glli,
and

N\ oA
Hg™ lle =171

Hence, to show (1) it suffices to find f and ¢ in T,(.94) such that

=gl
gl 1111

Let g = 2u!? + 2iu,? and note that || §|l. = 1. The rest of the
argument divides into two cases.

i
oo @
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Case 1. 1 <p< 2. In this case we let f = 2y, so that fx¢g =
¢, and we compute

P 1/p
£l = 2[2 gz] (see [4], 27.61) .

Also, we have

ol ( +2~ﬂ)21/2”’]1/p

I
|E g Hp L
and therefore we conclude

”f* g Hp — QUp—2
— = >1.
L e 111D

Case 2. 2< < <. In this case we let /=2 + 2ul”’. Then
feg= —2u7 + 207 and so we have

- 1/?(42-)“ and  [[fxgll, = 21/?(%)‘“’ :

Therefore, we conclude

=gl = Q=Ur 5 1,
g 1l 171

The question naturally arises as to whether D is equal to &,.
The next example shows that in some cases the answer is no.

THEOREM 4.2. If G = 945° and 1 = p < 4, then D, = &, if and
only if »p = 2.

Proof. By (1.5,1iii) and (3.3, iv} we have

D; = 2, = Li{G) .

Suppose p = 2. Since D; C .7, and || [[., = || i|Dp on D, to show
that D7 #+ 2, it suffices to find sequences {f"} in D; and {¢g"™} in
T(G) such that

I () 4 (n) |

e f I o as Mm—> oo .

1% Ll £ 1

As in the proof of (4.1) we construct the sequences by choosing f
and g on &4 as follows. First, let /= 2y,. Then fxg = g for any
ge T,(F), and || fll,=2[(22+2)/6]'>. Also we have f™ = 2"y, and
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1 f" Mz, = [ f" |, =IFll}. As before, it suffices to find ge T,(5%)
with the property that

Lol <4
N

Again we consider two cases.

Case 1. 1<p<2. Letg=2ul? + 2iu;y. Then as in (4.1), Case 1,
we have

H g ”p = QUr—i2 1.
N ~

Case 2. 2< p< 4. Let g =2u? + 2u. Then ||§|.. =1 and
2137 quer
ol =2[ 237"

Therefore we see

loll,  _[2:-3=17
13111 7115 |55

Finally, we observe that for G = 4= we have the following.
THEOREM 4.3. K(G) & Sci)-

Proof. Since || fll. = | fllxe for f is K(G), it follows that

K(G) = Sk ©Sce -

Also, since || fllsy = Il fllx@ for f in K(G), to show that K(G) #
Sow)» we need only find fe T,(<%) such that

1 £ llxers
oy Rve 1.
e

If we let f= u{ + u?, then we have |[f[l. =13 and || f|x.,= 2.
Hence, the proof is complete.

The techniques used to prove (4.1) — (4.3) can also be applied to
show the following.

THEOREM 4.4. If G = &4~ and 1 £ p < <o, then
2,(G) = Li(G) if and only if p = 2.
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5. Open questions.

(5.1) Is T(G) dense in D,? If so, then it can easily be shown
that D,, is isometrically isomorphic to D,. One easily shows that
the density of T(G) is equivalent to the condition that S,, = D,.

(5.2) Another question of interest is whether or not D, is self-
adjoint (that is, closed under f— f, where f(z) = f(x)) whenever
A is. Equivalently, is D, a left ideal in &,(Y) when A is self-
adjoint?

(5.3) Are there any conditions on a compact non-abelian group
G sufficient to imply that D, = S, for p = 27
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UNIMBEDDABLE NETS OF SMALL DEFICIENCY

A. BRUEN

We construct some new geometrical examples of unim-
beddable nets N of order p? with p an odd prime. The defi-
ciency of N is p — j where either 5 =0 or j =1. In particular,
the examples show that a bound of Bruck is best possible
for nets of order 9,25. Our proof also shows that deriving
a translation plane of order p? is equivalent to reversing a
regulus in the corresponding spread.

2. Background, summary. Let N be a net of order =, degree
k so that N has deficiency d = n + 1 — k. Let the polynomial f(z)
be given by f(x) = x/2[2* + 8 + 2x(x + 1)]. The following result is
shown in [1].

THEOREM 1 (Bruck). Suppose N is a finite net of order n, de-
ficieney d. Then N 1is embeddable in an affine plane of order w
provided n > f(d — 1).

Thus a net of small deficiency is embeddable. However, as is
pointed out in [1], little is known concerning the bound above. It
is our purpose here to remedy this. In Theorem 2 we describe a
construction used in [2] to obtain maximal partial spreads W of
PG(3,q). W yields a net N of order ¢* and deficiency ¢ — 7 where
either 7 = 0 or 7 = 1. Our main result is that N is not embeddable
if ¢ = p is an odd prime. This will show that Bruck’s bound is best
possible for nets of order 9,25 and is fairly good, if not best possible,
for other nets of order 2.

3. The construction. For definitions and proofs of Theorems
2,3 we refer to [2].

THEOREM 2. Let S be a spread of ¥ = PG(3, q) with q = 3, such
that S is not regular. Let w be a line of 2 with w not in S, such
that the q + 1 lines A of S passing through the ¢ + 1 peints of w do
not form a regulus. Let W, be the partial spread of X which is got
by removing A from S and adjoining u: in symbols W, = H U {u}
where H =S — A. Then there exists a maximal partial spread W
of ¥ which contains W,. Furthermore, either

(i) W= W,sothat | W|=¢—q+1 or

(i) W= W,U {v} where v is a line of X which is skew to each
lire of W,. In this case |W|=¢ — q + 2.

THEOREM 3. For any (prime power) q = 8 there exist examples of
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case (). For any odd q with q = 5 there exist examples of case (ii).

We can think of Y in terms of a 4-dimensional vector space
V = Viq) over GF(q). The points and lines of Y are precisely the
1-dimensional and the 2-dimensional subspaces of V respectively. The
lines or components of W in Y correspond to the components of a
maximal partial spread W of V, that is, a maximal collection W of
2-dimensional subspaces of V such that any 2 distinct members (com-
ponents) of W have only the origin of V in common. For a proof
of the next result see [7, p. 8], [4, p. 219].

THEOREM 4. Let U be a partial spread of V = V,(q) having ex-
actly k components. Then there is defined a net N = N(U) of order
q* and degree k. The points of N are the q* vectors in V. The lines
of N are the components of U and their translates (cosets) in V.
Furthermore, if U 1is a spread of V, then N(U) is a translation
plane.

Our main result is that if W is the maximal partial spread of
Theorem 2 and ¢ is an odd prime, then N(W) is not embeddable.

4, The main result. In what follows, if J is a set of vectors,
then {J} will denote the subspace spanned by the vectors in J.

LEMMA 5. Let ¥ = PG(3,q) and let (V, +) = Viq) be the cor-
responding wvector space. Let a,b,c be 3 distinct and pairwise skew
lines of 2. Then we may choose a basis e, ¢, e, e, of V in such a
manner that a corresponds to {e,, e}, b corresponds to {e,, e,} and ¢ cor-
responds to {e, + e;, ¢, + e}.

The following is crucial in our argument.

THEOREM 6. Let n be a square and let N be a net of order n and
deficiency V' n + 1, which is embedded in an affine translation plane
. Suppose further that N is embedded in another affine plane x,.
Then m, is also an affine translation plane.

Proof. 7, is related to @ by Ostrom’s technique of derivation
(see [2, p. 383] and [6, p. 1382]). From this the result will follow, for
it is easy to show that a plane w, obtained by deriving a translation
plane 7 is itself a translation plane [4, p. 224].

We revert to the notation of Theorem 2. Recall that W is a
maximal partial spread of 3 = PG(3,q) with ¢ =3. W= H U {u, v}
where (sometimes) w = v. H is a partial spread contained in the
nonregular spread S of I. H contains exactly ¢* — ¢ lines. Since
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¢ =3 we have |H| = ¢* — ¢ > 3. Thus H contains 3 pairwise skew
lines a, b, ¢ which we will refer to as the fundamental components.
Corresponding to ¥ we have V = V,(¢). As in Lemma 5 we have a
basis ey, e, e, ¢, of V with a = {¢,, e.}, b = {e;, e}, ¢ = {e, + €5, 6, + ¢e,}.
Let L =/{e, e} and M= {e;, e;}. We can write V= L M the direct
sum of L and M. Each vector in V is uniquely expressible as an
ordered pair (z, y) with 2 in L,y in M. The fundamental components
are then sets y = 0, x = 0, y = & respectively. In the sequel it will
be convenient to identify M with L and write V= L& L. We also
let 0 denote the null vector in L, so that (0, 0) is the null vector
of V.

THEOREM 7 (Main Result). Let W be the maximal partial spread
of PG(3, q) constructed in Theorem 2. Assume that ¢q =p =3 1s a
prime. Then the net N = N(W) obtained from W as in Theorem 4
has order p* and deficiency p — J where either 7 =0 or 7 = 1. More-
over, N s not embeddable in a plane.

Proof. By way of contradiction assume that N is embeddable
in an affine plane 7,. Choose the origin of 7, to be the origin of V.
In the construction of W recall that HcC S. Denote the translation
plane obtained from S by #. Thus N(H)cCx. Also N(H)cC N(W)C ..
Therefore, by Theorem 6, x, is a translation plane. We may use the
fundamental components a, b, ¢ to set up Hall coordinates for x, using
the set L (see [5]). Actually it is easy to see that a vector )\ has
in 7w, Hall coordinates (s, £) if and only if A has vector space coordinates
(s,t) in V=L L. Also the Hall addition is precisely the vector
space addition + on L (see [7, p. 4]). Thus the translation plane x,
is then coordinatized by a quasifield @ = (Z, +, ). Those lines of
7, through the origin which are also lines of N = N{W) correspond
to the components of W. Let [ be a line of @, through the origin
of 7, such that [ is not a line of N. Then [ consists of all points
with coordinates of the form (x, x.m) for some m in L. Since @ is
a quasifield we have ( + y).m = x.m + y.m. Therefore [ is a set
of p* vectors in V which is closed under addition. Since p is a
prime, [ is a 2-dimensional subspace of V. And ! has only the origin
of V in common with any component of W. Thus [ yields a line of
PGE(3, q) which is skew to each line of W. But this is a contradiction,
since W is maximal.

Comments. 1. Our argument in Theorem 7 above can be modified
to show the following. Let =, be obtained from the translation plane
7 of order p* by deriving with respect to a derivation set D of p + 1
points on the line at infinity. Then the p -+ 1 lines of 7 joining the
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origin to D yield a regulus in the spread corresponding to w. Thus,
in this case, derivation implies reversing a regulus. It can be shown
(see [2]) that reversing a regulus implies derivation for translation
planes of order ¢? whether or not ¢ is a prime. Thus the procedures of
derivation and reversing a regulus are equivalent for the case of trans-
lation planes of order p*. However, as is proved in [3], they are not in
general equivalent if ¢ is not a prime. The reason is that [ above
is not always a subspace In this general case. So it is not clear
whether or not N is embeddable if ¢ is not a prime.

2. For ¢ = p we have shown that N = N(W) is unimbeddable.
However except for » = 3,5 we do not know whether N(W) is con-
tained in a larger net or even whether there exists a transversal T
of N (that is, a set of p* points of N no two of which are joined by
a line of N). However, it follows from the work in [2], [6] that T
would have to be an affine subplane of 7= having order p.

3. For p =3, N(W) has deficiency 3 or 2. By Theorem 3.3 in
[2], N(W) must have deficiency 3. We have shown that N(W) is
not embeddable. It follows that N{W) is not contained in any larger
net, and that the bound in Theorem 1 is best possible for nets of
order 9.

4. For p = 5 we can obtain an unimbeddable net N = N(W) of
deficiency 4 using Theorem 3. By Theorem 1, N is not contained in
a larger net and so Bruck’s bound is also the best possible for nets
of order 25. Another way of putting it is to say that we have
preduced a maximal set of 20 mutually orthogonal latin squares of
order 25.
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UNICOHERENT COMPACTIFICATIONS

M. H. Crarp AND R. F. DICKMAN, JR.

In this paper we give necessary and sufficient conditions
for the Freudenthal compactification of a rimcempact, locally
connected and connected Hausdorff space to be unicoherent. We
give several necessary and sufficient conditions for a locally
connected generalized continuum to have a unicoherent com-
pactification and show that if such a space X has a unicoherent
compactification, then yX is the smallest unicoherent com-
pactification of X in the usual ordering of compactifications.

A connected topological space X is said to be unicoherent if, H- K
is connected whenever X = H + K where H and K are closed connected
sets. A continuum is a compact connected metric space and a gen-
eralized continuum is a locally compact, connected, separable metric
space. By a mapping we will always mean a continuous function.
If B is a subset of a space X, the closure of B in X will be denoted
by cl; B and the boundary of B in X will be denoted by Fr, B. An
open set (respectively, a closed set) of a space X will be called a
v-open (respectively, v-closed) subset of X provided it has a compact
boundary in X. A space is rimcompact (or semicompact) provided
every point has arbitrarily small neighborhoods with compact bound-
aries. All compactifications considered here are Hausdorft.

In [7] K. Morita showed that for any rimcompact Hausdorff
space X there exists a topologically unique compactification vX of X
satisfying:

(a) For every point «# of vX and every open set R of vX con-
taining « there exists an open set V of vX containing x such that
V<R and Fr,,Vc X.

(b) Any two disjoint v-closed subsets of X have disjoint closures
in vX.

Furthermore if C is any compactification of X satisfying (a), there
exists a mapping h of vX onto C such that 2| X is the identity map.
The compactification vX of X is called the Freudenthal compactification
of X after H. Freudenthal who first defined it [4].

DEFINITION. We say that a connected space X is v-unicoherent
if whenever X = H + K, where H and K are v-closed and connected
sets, H-K is connected.

THEOREM 1. If X is a locally connected, connected, rimcompact
Hausdorff space, then vX, the Freudenthal compactification of X, is
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unicoherent iff X is v-unicoherent.

Proof. Suppose that X is v-unicoherent and vX is not unicoherent.
Then vX = H + K where H and K are closed and connected sets and
H.K is not connected. Let H-K = A + B be a separation of H-K
and let U and V be open subsets of vX containing A and B respec-
tively such that cl,,U-cl,;V = @ and (Fr,,V + Fr,,U)cX. By
Propositions (2.8) and (4.1) of [1],vX is locally connected so if C
denotes the component of U + V + H that contains H and D denotes
the component of U + V + K that contains K, C and D are open
connected subsets of vX such that (Fr,;C + Fr,.,D)cX. By Lemma
5 of [6], C-X and D-X are connected so that L = ¢l (C-X) and M =
cly(D-X) are v-closed and connected subsets of X. Furthermore X=
L + M and L-M is not connected. This contradicts our hypothesis
that X is v-unicoherent and thus vX must be unicoherent.

Now suppose that vX is unicoherent and X is not v-unicoherent.
Then X = H + K where H and K are 7v-closed and connected subsets
of X and H-K is not connected. Let H-K = A + B be a separation
of H-K and let H', K’, A’ and B’ denote the closures of H, K, 4 and
B, respectively, in vX. Since the boundary of H.K in X is a subset
of the union of the boundaries of H and K in X, H-K and hence A4
and B are v-closed subsets of X. Then by property (b) of Morita’s
characterization of vX, 4’ and B’ are disjoint closed subsets of vX.
We now argue that H’.K’ is a subset of A’ + B’. Suppose to the
contrary that there exists a point x in H’.- K’ that does not belong to
A"+ B'. Let U be any open subsets of vX containing % such that
U does not intersect A’ + B’ and such that Fr,, c X. Let @ be the
component of U that contains x and note that Fr,,Q is a subset of X
and Q is an open subset of vX. Then since X is dense in vX and 2 is
a limit point of H' and K’, @-H and Q- K are nonempty sets. But by
Lemma 5 of [6], @-X is connected and since @ misses H-K, @-X
must lie entirely in H or K. Of course this implies that either Q-H
or @-K is empty and this is a contradiction. Thus H'-K' = A’ + B’
and this contradicts the unicoherence of vX. Therefore X is -
unicoherent.

We need the following notation and definitions. Let S*' denote
the unit circle in the complex plane, let I, = {z = ¢*: 0 < 0 < IT} and
let I, ={z=¢"Y: 11 <6 <2lI}. For any space W let o7 (W) denote
the set of mappings of W into S' and let .o(W) be the set of all
mappings of Winto I;,7 = 1,2. Foreach fe (W), 5 =1, 2, let B;(f)
denote the set of all points t € I; such that Fr f'(f) contains a compact
set K that separates W into two disjoint open sets M and N where
f maps M into the arc from 1 to ¢ on I; and f maps N into the arc
from ¢t to — 1 on I;. Finally let E(W) = {f ¢ &7 (W): B(f|f7'(1)) +
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B,(f|f7(I,)) is dense in S'}.

THEOREM 2. Suppose that X is a locally commnected, rimcompact
Hausdorff space. A mnecessary and sufficient condition that vX be
unicoherent is that every element of FE(X) be nullhomotopic.

Proof of the necessity. Suppose that vX is unicoherent and let f
be an element of E(X). For j =1, 2, there exists a point ¢; € I; such
that Fr, f7'(¢t;) contains a compact set K; that separates f'(I;) into
two disjoint open sets M; and N; where f maps M; into the arc from
1 to t; on I; and f maps N; into the arc from ¢; to — 1L on I;. Then
if we let M denote K, + K, + M, + M, and let N denote K, + K,
N, -+ N,, X = M + N and the boundaries (relative to X) of M and N are
subsets of K = K, - K,. We assert that the boundaries of M, = cl., M
and N, = cl,xN relative to vX are also subsets of K. In order to
see this suppose that ¢ is an element of the boundary of M, and x ¢
K. Then since vX is locally connected, there exists an open connected
set R of vX containing x such that R-K = @ and Fr,;Rc X. Then
R-M =+ @ and R-(X\M) + @ since X is dense in vX. Furthermore
R.X is connected by Lemma 5 of [6] and so R-X is a connected
subset of X that meets M and X\M. This implies that R meets K
and this contradicts our selection of . Hence the boundaries of M,
and N, in vX are subsets of K. Also by Theorem 3 of [7], M,
and N, are topologically equivalent to vM and YN respectively.
Then by Lemma 1 of [3], f|M has a continuous extension f, to M,
and f|N has a continuous extension fy to N,. Then since N,-M,C
K, the function % of vX into S' defined by A|M, = f, and h|N, =
S~ is continuous. By Lemma (7.4) of [9, p. 228], & is exponentially
representable on vX, i.e. there exists a real valued funection € on vX
such that A(z) = ¢ for all ze X. It is evident that this implies
that f = h|X is exponentially representable an X and by Theorem
(6.2) of [9, p. 226], f is nullhomotopic.

Proof of the sufficiency. Suppose that every element of E(X) is
nullhomotopic and suppose that vX is not unicoherent. Then by the
proof of Theorem 1 there exists closed and connected sets H and K
of vX such that H.K is not connected, Fr H and Fr K are subsets
of Xand L = H- X and M = K-X are connected. Let H-K = A4 +
B be a separation of H-K. We note that L and M are v-closed subsets
of and thus by Theorem 3 of [7], vL is homeomorphic to H and vM
is homeomorphic to K. It then follows from Lemma 2 of [3] that
there exists a mapping f of H into I, such that f(4) =1, f(B) = —1
and B(f|H-X) is dense in I,. Similarly there exists a mapping ¢
of K into I, such that g(4) =1, g(B) = — 1 and B)(g|K-X) is dense
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in I,. Then if we define h:vX—S' by R|H=f and h|K =g we
have that k is continuous and k = 4| X is an element of E(X). Then
by our hypothesis and Proposition 6.2 of [9, p. 226], k is exponentially
representable, i.e. there exists a real-valued mapping 6 on X such
that for each z e X, k(x) = ¢**. But then 6(4) < {0, =217, =411, -..}
and §(Byc{x1Il, £3I1, ---} and so if a€0(A4) and be §(B), the interval
[a, 8] lies in 0(A)-8(B) since L and M are connected. This is a con-
tradiction since then E(L)-k(M) would then contain a semicircle
whereas it consists of the points —1 and 1. Hence vX is unicoherent.

DEFINITION. A connected space X is said to be weakly unicoherent
if whenever X = H + K where H and K are closed and connected sets
and K is compact, H-K is connected.

THEOREM 3. Let X be a locally connected generalized continuum.
A necessary and sufficient condition for vX to be unicoherent is that
X be weakly-unicoherent.

Proof of the mecessity. Suppose that vX is unicoherent. Since X
is locally compact, X is open in vX and X* = vX\X is closed. Then
by Theorem (2.3) of [2], X = vX\X* is weakly-unicoherent.

Proof of the sufficiency. Suppose that vX is not unicoherent.
Then as in the proof of Theorem 1,vX has a representation vX =
P + Q where P and Q@ are open connected subsets of vX, the bound-
aries of P and @ in vX are subsets of X, ¢l,,P-cl,,Q = A + B where
A and B are disjoint nonempty closed sets and P has a nonempty
intersection with both the boundary of A and the boundary of B.
By Lemma 5 of [6], PP = P.-X is a connected open subset of X and
thus is arcwise connected. Furthermore since the boundaries of A
and B are subsets of X there exists an arc @@ in P’ such that ag-A =
a and aB-B = 8. Let R be the component of P'\(4 + B) that contains
aB\(a + B) and let W be an open subset of vX containing 4 such that
B.clW = ¢ and the boundary of W is a subset of X. Then H =
R-Fr,,W is a nonempty compact subset of R and there exists a con-
tinuum K, of X such that Hc K,c R. Let K be the union of K,
together with all the components of R\K, with boundary entirely in
K,, i.e. having no boundary points in X.(4 + B). Then K separates
R since W-R contains a subare ab\a from some point beag and
X\cl,W contains a subarc a8 of aB. But X\K is connected since
X\K is the union of the closure of @ in X plus all of the components
of X\(4-B) except R plus all of the components of R — K, having a
boundary point in X.(4 + B). This contradicts Whyburn’s charac-
terization of weak-unicoherence in [8, p. 185].
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COROLLARY 3.1. Let X be a locally connected generalized con-
tinuwum. Then X is weakly-unicoherent iff X is v-unicoherent.

This corollary follows immediately from Theorems 1 and 3.

REMARK. The authors have been unable to discover a direct
proof of Corollary (3.1). In general the two types of unicoherency
are not equivalent and in the absence of local compactness, Theorem
3 is not wvalid.

ExampLE. Let Y = {z complex |1/2 < |z] < 1},

S = {#] 2] = 1}, A a countable dense subset of S,
L, = Y.{ray from origin thru z}

C. = {z| |2] =7}, re[1/2,1];

Z = {C,-L,|r is rational, ac A} .

The set Z is countable and dense in Y. Let X = Y~ Z. The set X is
evidently T,, connected and locally connected (in fact, path connected
and locally path connected), rim compact but not locally compact.
Moreover:

1. X is weakly-unichoherent. To see this, note that any con-
tinuum K c X has empty interior in X. If therefore X = H + K, H
closed and connected and K compact and connected, then necessarily
the open set X — H is a subset of K, and thus empty. It follows
that H.K = K, which is connected.

2. X is not v-unicoherent. For let p,qe S — A be two distinct
points. Then L, and L, are compact and disjoint subsets of X. Assume
0 < ARGp < ARGq. Then

H={zc X|ARGp =< ARGz = ARG,} and
K = {:c X|ARGq = ARG. < ARGp + 2}

are closed, connected subsets of X such that X = H+ K, H-K = L, +
L, is compact but not connected.

3. vX is not unicoherent. To show this it is sufficient to show
that vX is just the set Y. To this end we use the characterization
of vX obtained by Morita [6]. We show that

(a) For any point x € vX and open set R of vX containing x, there
is an open set V of »X containing z such that VR and Fr,,VcX.

(b) Any two disjoint v-closed subsets of X have disjoint closures
in vX.
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That (a) holds is evident from the definition of X. To see that
(b) holds, let A and B be disjoint v-closed subsets of X and suppose
that pecl,y A-cl,y B. First of all we note that » cannot belong
to X for then it would lie in A.-B which is empty. In particular p
does not lie in the compact set (FryA + Fr;B). By our construction
of X there exists an open subset V of Y containing p such that
V.(FrzA + FryB) = @ and V-X is connected. Since p belongs to the
closure of 4 in Y, V.X.A is not empty and since V.X misses Fry 4,
V. X must lie entirely in A. But this is a contradiction since V.X
must meet B. Therefore A and B have disjoint closures in Y.

DEFINITION. A mapping f: Xe Y is monotone provided for every
ye Y, f(y) is compact and connected.

THEOREM 4. If X is a locally conmnected gemeralized continuum
and Y 1s any unicoherent compactification of X, then there exisis a
monotone mapping g of Y onto vX such that g|X s the identity.

Proof. Let Z denote the quotient space of Y obtained from the
decomposition whose only nondegenerate elements are the components
of Y\X and let p denote the natural map of Y onto Z. Then since
X is open in Y, Z is a Hausdorff compactification of X. Furthermore
since point inverses of p are connected, it follows from Proposition
(2.2.1) of [9], that Z is unicoherent. Also Z\X is totally disconnected
and by the maximality of vX there exists a mapping % of vX onto
Z such that k|X is the identity and A(vX\X) = Z\X. We assert that
% is a homeomorphism. In order to prove this we need only show
that % is one-to-one on vX\X. To this end let #,yevX, x % y and
suppose that h(x) = h(y). There exists a connected and open set R
of vX containing z such that y¢cl, R = Kand Fr, Rc X. Then Z =
MK) + h(vX\R) and WK)-h(vX\R) = h(z) + h(Fr R) is not connected.
This contradicts the unicoherence of Z and hence % must be a homeo-
morphism. Then g = h™'op is the desired monotone mapping.

COROLLARY 4.1. Suppose that X is a locally connected generalized
continuum. Then X has a unicoherent compactification if and only
if vX 1s unicoherent.

Proof. This result follows immediately from Theorem 4 and the
fact that monotone images of compact unicoherent continua are uni-
coherent.

THEOREM 5. Suppose that X is a locally connected genmeralized
continuum. Then the following are equivalent
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(i) X is weakly-unicoherent

(ii) X s unicoherent

(it)) X 4s v-unicoherent

(iv) X has a unicoherent compactification

(v) every mapping of X into S' with compact boundaries of
potnt tnverses 18 null-homotopic.

Proof. The equivalence of (i)-—(iv) has been established in Theorems
(1) — (4). As an immediate consequence of Theorem (3.3) of [2], we
have that (v) implies (i) and (ii) implies (v) follows from Theorem 1
of this paper.

DEFINITION. A connected space X is said to have the complemenia-
tion property provided whenever K is a compact set in X, X/K has
at most one component with a non-compact closure. See [2] for some
characterizations of this property.

THEOREM 6. Let X be a locally connected generalized continuum
and let 'Y be any unicoherent, locally conmnected continuum. There
exists a unicoherent compactification Z of X with Z\X homeomorphic
to Y if and only if X is weakly-unicoherent and has the complemen-
tation property.

Proof of the mecessity. Suppose that Z is a unicoherent compac-
tification of X and Z\X is homeomorphic to Y. Then by Theorem
(4.2) of [2], X is weakly-unicoherent and has the complementation
property.

Proof of the sufficiency. Suppose that X is weaklyunicoherent
and has the complementation property. Then by Theorem (2.2) of
[5] there exists a compactification Z of X with Z\X homeomorphic
to Y and by Theorem (4.2) of [2], Z is unicoherent. This completes
the proof.

REMARK. It appears to be difficult to establish results concerning
the unicoherence of a compactification of an arbitrary completely regular
space. We can show that the Freudenthal compactification of a
rim-compact, locally connected vy-unicoherent space is the smallest
unicoherent compactification of X with vX\X zero-dimensional.
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APPROXIMATE IDENTITIES AND THE STRICT
TOPOLOGY

H. S. CoLLINS AND R. A. FONTENOT

This paper studies relationships between approximate
identities on a B* algebra A and other properties of the
algebra. If A is commutative, conditions on the approxi-
mate identity for A are related to topological properties of
the spectrum of A. The principal result of this paper is that
for a locally compact Hausdorff space S, Co(S) has an approxi-
mate identity that is totally bounded in the strict topelogy
(or compact open topology) if and only if S is paracompact.

1. Introduction. The problem of extending theorems about
commutative B* algebras to the non-commutative case has received
a great deal of attention in recent years. Because many proofs made
in the commutative case make use of the spectrum (= maximal ideal
space), an obvious question is: what is to replace this device in the
case of a non-commutative B* algebra? Various possible replace-
ments have been sought; e.g.; see Akemann [1] and Pedersen [15,
16]. Much progress has been made for certain types of problems
by means of restrictions on approximate identities for the algebra in
question by Taylor [20, 21], Akemann [2], and others. The class of
problems solved or seemingly susceptible to this technique is rather
large. This fact and the paucity of results for this class of problems
obtained by studying Prim A and the space of equivalence classes of
irreducible representations suggest that the approximate identity is
a useful tool for extending many commutative theorems to a non-
abelian setting. A question that arises immediately in the case of a
commutative B* algebra is: what do restrictions on the approximate
identity imply about the spectrum of A and vice versa? Along this
line, Collins-Dorroh [6] characterize o-compactness of the spectrum
and ask for necesary and sufficient conditions on S that C,(S) (in
this paper, S always denotes a locally compact Hausdorff space) have
an approximate identity that is totally bounded in the strict topology
(called B by Buck). This paper answers this question and several
related ones, including some in the non-commutative context.

2. Preliminaries.

DEerINITION 2.1. Let A be a Banach algebra. An approxvimate
identity for A is a net {e¢;|ne 4} (we generally write simply {e,}) with
lim;|le;x — x| = lim,||zwe; — 2] = 0 for € A and |le;|| =1 for all .
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It is well known that all Bxalgebras have approximate identities.

DEFINITION 2.2. The double centralizer algebra M(A) of a
B* algebra A was studied by R. C. Busby [5] who defined the strict
topology as that topology on M(A) generated by the seminorms x —
maX {||zy|], [|lyx||} for x € M(A) and ye A. Two motivating examples
for the double centralizer algebra concept are the algebra C,(S) of
continuous complex functions on S which vanish at infinity (this class
is identical with the class of all commutative C* algebras by the
theorem of Gelfand), whose double centralizer algebra was identified
by Wang [22] as C,(S), the algebra of all bounded continuous complex
functions on S; and the algebra of compact operators on a Hilbert
space H, whose double centralizer algebra was shown to be the
bounded linear operators on H by Busby. For a definition of M(A)
and some of its properties, the reader is referred to Busby [5]. By
M(A), we shall mean M(A) endowed with the strict topology f.

DEFINITION 2.3. If f € C,(S), the support of f, sptf, is the closure
in S of N(f) = {x: f(x) == 0}.

DEFINITION 2.4. S is sham compact if each o-compact subset is
relatively compact.

DEFINITION 2.5. Let A be a B* algebra and {¢;} be an approxi-
mate identity for A. We shall be interested in the following condi-
tions:

(a) {ei} is countadle, i.e., the range of {¢;} is a countable set;

(b) {e;} is sequential, i.e., A is the set of positive integers with the
usual order;

(¢) f{ei} is canonical, i.e., e; = 0 and if \, <X, then e;e;, = ¢;;

(d) {e;} is well-behaved (after Taylor [21]), i.e., {e;} is canonical and
if xed and {\,} is a strictly increasing sequence in /A, there is a
positive integer N so that ee; = ee; for n, m > N;

(e) {e;} is B totally bunded; i.e., totally bounded in the strict topology;
(f) {e;} is abelian;

(g) {ei} is chain totally bounded, i.e., if {\,} is an increasing sequence
in 4, then {e,; } is B totally bounded;

(h) {e:} is o(M(A), M(A)}) relatively compact, where o denotes the
weak topology on M(A) in the pairing with its g dual;

(i) {e)} is sham compact, i.e., {e,} is canonical and if {\,} is a
sequence in 4, then there is a A in 4 so that A >\, for all integers
N

REMARK 2.6. A sequence {e¢,} in a B* algebra A which satisfies
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lim,|le,x — 2|| = lim, [lze, — «|| = 0 is norm bounded by the uniform
boundedness principle and the Bxnorm property. Thus it is not
necessary to require norm boundedness in 2.1 for this case.

REMARK 2.7. Taylor [21] introduced the notion of a well-behaved
approximate identity and used it to prove many interesting improve-
ments of results of Phillips [9, p. 32], Akemann [2], Bade [3], Collins-
Dorroh [6], and Conway [7 and 8].

3. A characterization of paracompact spaces. Our main result
in this section, 3.10, answers two questions posed in [6, Remark 4.3].
Our interest centers exclusively on B* algebras without identity; for
these, we need information about increasing sequences in the directed
set of an appropriate identity and about supports. Lemmas 3.1 and
3.2 provide what we need.

LemMma 3.1. If A is a Banach algebra without identity, {e;} an
approximate identity for A, and N, A, then INE A3 X\ > N,

Proof. If the conclusion does not hold, then vae 4, x < \,, from
which it follows that e, is an identity for A.

LemMmA 3.2, Let {e;} be an approximate identity for CyS).

(@) If {e} s camomical, them X\, <X, implies spte, Ce;{l}C
Nie,,) and e A implies that the spte, is compact;

(o) If K is a compact subset of S, then Ine€ A so that |e;| > 3/4
on K.

Proof. This is straightforward.

We are mainly interested (in §3) in two types of approximate
identities, viz., well-behaved ones, shown to be important by Taylor
[21], and B totally bounded ones, the study of which motivated this
paper.

LemMMmA 3.3, Let {e;} be an approximate identity for C(S) which is
either B totally bounded or well-behaved. Then there exists a cover of
S by clopen o-compact sets.

REMARK 3.4. All topologies between the compact open and the
strict agree on norm bounded sets. Thus “g totally bounded” may
be replaced in 3.3 by “compact open totally bounded.”

Proof of 3.83. We assume that S is not compact in either case to
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avoid trivialities. Assume first that {e;} is B totally bounded. Re-
placing {e;} by {le;[’}, performing a straight forward computation and
using 3.4, we may assume that {e,} is compact open totally bounded
and e¢; = 0 for each A. Let ¢ X and choose by 3.2 (b) N\, € 4 so that
e,,(®)>3/4. Let K, ={xe S:e;(x)=1/4}. Suppose that {K;} j=1, -+, n
and {N;} =1, .-, n have been chosen so that

(1) e;j>% on K;,, j=1--,m

(2) Kj:{xeS:ezi(x)g% for some i,1§i§j}.
J

By 3.2 (b) again, choose A, €4 so that e, ., > 8/4 on K, and let

‘nt1
1

K, = {xeS: e;,(®) = yr for some 4,1 <7< nm+ 1} .
By induction we obtain sequences {\,} and {K,} satisfying (1) and (2)
above. Let X = J,K,. Xis clearly o-compact and contains x. It is
open since K, C interior of K,.,. To show that X is closed, take a
compact set K. It suffices to show K N X is closed [13, p. 231]. The
total boundedness condition of {¢,} gives the existence of an integer ¢,
so that for all positive integers 7,
. 1
(3) min |[e;. — e, [lx < =
154 ! 4
(1 f Iz = sup,.x |f(x)] for feCuS)). Let yeK, N K where m > i,
By construction e; ., (y) > 3/4 so by (3) there is an integer 1 <7 = 4,
so that e, (y) = 1/2 which shows that y € K;. Thus XN K = KN UK,
so XN K is closed.

For the other part of the lemma, let x¢ X, assume that {e;} is
well-behaved, and choose by 3.1 and 3.2 an increasing sequence {\,}
so that e; () >0. Let K, = spte, and note, by 3.2, that K, C
interior of K,,,. Let X = UK, and note that X is open, o-compact
and x€ X. From 3.2 (a) and the definition of well-behaved approximate
identity, it follows that {e;} is totally bounded in the compact open
topology and that y e X implies ¢;(y) = 1 for j large enough. With
these observations, the proof that X is closed is the same as in the
first part of the lemma.

REMARK 3.5. Note that in 3.3, Us-,spte, < X.

COROLLARY 3.6. If S 4s connected and has an approximate
identity that is either well-behaved or B totally bounded, then S is o-
compact.
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PROPOSITION 3.7. Let F be a closed subset of S. If C«S) has
either a well-behaved or a B totally bounded approximate identity, then
F contains a g-compact set that 1is relatively clopen in F.

Proof. Let {e;} be an approximate identity with either of the
properties above. For e 4, let d, be the restriction of e, to £.. Since
F' is closed, {d,} © Co(F). We claim that {d;} has the same property
as {e;} does; i.e., that {d,} is a well-behaved (resp. 8 totally bounded)
approximate identity for Cy,(F'). To show this, it suffices to show
that if f e C,(F'), then there is an extension g in Cy(S) of f. Let S*
denote the one-point compactification of S and < denote the point at
infinity. Let f’ be an extension of f to F U {<} obtained by defining
f'(e0) = 0. Since feCy(F), f’ is continuous and extends to a con-
tinuous function p on all of S* by Tietze’s Theorem since F' U {co} is
closed in S*. The restriction g of p to S is clearly an extension of
f in Cy(S). This concludes the proof of 3.7.

COROLLARY 3.8. If S is locally connected and CAS) has an ap-
provimate identity that is either well-behaved or B totally bounded,
then S 1s paracompact.

Proof. By [11, Theorem 7.3], it suffices to show that Sis a dis-
joint union of clopen g-compact subspaces. In a locally connected
space, the components are clopen and connected and so o-compact by
3.7.

LEMMA 3.9. Suppose that C,(S) has a B totally bounded approxi-
mate identity and let 7~ be the family of all clopen o-compact sub-
sets of S constructed by the method of the first part of 8.8. If Z C 95
then Uwer W 1is clopen.

Proof. We may assume ¢, = 0 as in 3.3. Let X = UJy.. W and
K be an arbitrary compact subset of S. Since S is locally compact,
it suffices to show that XN K is closed. With each W in % is asso-

ciated a sequence {e)} from the approximate identity such that
G sptey Cc W

(see 3.4) and if vye W,ell(v) > 8/4 for n large enough. From g total
boundedness of {e¢]: Wez,n=1,2 ---}, we get a set {W}i—, .
from 7/ and associated integers {n;} 1 =1, ---, n so that for any V
in Z and positive integer p

(4) minHeZ—egHA’<

1=i5n

NP
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If yeXN K, then ye KN W for some We %, so choosing p large
enough so that ej(v) > 3/4 we see that e;i(v) >0 for some 1 <7< n
so that ve W;. We have established that XN K= KN UL, W; so
XNK is closed. This concludes the proof of 3.9.

In [6] Collins and Dorroh show that if S is paracompact then C,(S)
has a g totally bounded approximate identity and ask two questions:
(1) Does the existence of a B totally bounded approximate identity
imply the existence of a canonical one that is 8 totally bounded? and
(2) Does the existence of a g totally bounded approximate identity
in C,(S) imply that S is paracompact? We add to these a third ques-
tion: Does the existence of a B totally bounded approximate identity
in Cy(S) imply the existence of a well-behaved one? The answer to
all these questions is given in 3.10.

THEOREM 3.10. These are equivalent: (1) S s paracompact;
(2) C(S) has a canonical approximate identity that is B totally
bounded; (3) Cy(S) has a approximate tdentity that is B totally bounded.

Proof. For the first implication see [6]. Since the second implica-
tion is trivial, we prove only that if {e;} is a g totally bounded approxi-
mate identity for C,(S) then S is paracompact. Take 97 to be the
set in 3.9 and well order it. Let W, be the first element in 97~ and
Wi=W, If We 2%, and W= W, let W' = W\(Ug;):;{V)-

Each set W’ is clopen and o-compact by 3.3 and 3.9.

If xS and W is the least element in {W: We 9% and ze W},
then z clearly belongs to W’. The collection {W’: We 9%~} then con-
sists of disjoint sets and so forms a partition of S by clopen g-compact
subsets. We apply [11, Theorem 7.3] to conclude the proof.

4. Non-commutative results and examples. Taylor [21] gives
the following examples of B* algebras with well-behaved approximate
identities: algebras with countable approximate identities, algebras with
series approximate identities (for a definition, see Akemann [23]) such
as the compact operators on a Hilbert space, and subdirect sums of
algebras having well-behaved approximate identities, such as dual
B* algebras which are subdirect sums of algebras of compact operators.

In this section, we give examples of algebras with g totally
bounded approximate identities using some techniques borrowed from
Taylor and some of our own. We also give some partial results, e.g.,
4.1, relating the existence of approximate identities of one type to
existence of another type.
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ProrosiTiON 4.1. Let A be a Banach algebra with a sequential
canonical approximate identity {e,}. Then {e,} s B totally bounded
and well behaved.

The proof requires the following observation whose proof is
straightforward:

REMARK 4.2. If {f;} is an approximate identity for A, then the
locally convex topology on M(A) (see 2.2) generated by the seminorms
x—max{]| fix]l, ||zf:]]} agrees with the strict topology on norm bounded
sets in M(A).

Proof of 4.1. Let m and %, < n, < --- be positive integers.
Choose a positive integer 7, so that %, > m for ¢ = 4,. Then

enlCn;, — e”].) =0

for 4,7 > 1, by the canonical property so {e,} is well-behaved. Total
boundedness in the strict topology follows from 4.2 and the fact that {e,}
is well-behaved. Part (a) of the next result was used by Taylor [21]
in his study of well-behaved identities. We shall use it in 4.5 to
show that algebras with countable approximate identities have ones
with other nice properties.

LeMMA 4.3. Let A be a Banrach algebra. (a) If {e;} is an approvi-
mate identity for A and {f,} is an approximate identity for the normed
algebra generated by {e;}, then {f,} is an approximate identity for A;
(b) If {e;} s a norm bounded met in A and D a dense subset in the
Hermitian part of the unit ball of A so that e,x —x and ze;, — x for
each x im D, then {e;} is an approximate identity for A (here we
assume A is B¥).

Proof. This is a straightforward computation.

Separable B* algebras have many types of approximate identities
as 4.4 shows.

LEMMA 4.4. Let A be a separable B* algebra. Then A contains
an approximate identity that is canonical, sequential, and abelian (and
by 4.1, well-behaved and g totally bounded).

Proof. Let {x,} be a countable dense set in the Hermitian part
of the unit sphere of A, and let x = 3 (1/2"«%. Since @ is a positive
element of 4, the B* algebra C generated by « is isometrically x-iso-
morphic to the algebra C,(S), where S is the maximal ideal space of
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C. Since C(S) is generated by a single function, S is o-compact.
We may select from C(=C,(S)) an approximate identity {e,} for C
possessing all the properties mentioned in the statement of 4.4. It
remains only to show that {e,} is an approximate identity for A.
Adjoin a unit I to A in the customary manner so that the adjoined
algebra is B*, hence we have that [[(I — e)a(I — e){ > 0. From
[10, p. 14] we have that

NI = e)wwi(I — e || = 2"[[(T — epa(l — ey |

so that || (I — ey, || = ||z, (I — ¢) || — 0. Thus applying 4.3 (b) to D =
{z,} and {e,} we see that {e,} is an approximate identity for A.

DerFINITION 4.5. Let {4,} be a family of normed algebras. The
subdirect sum, (3 A,),, of the family {A,} is that subset of P, . A4,
consisting of all a = (a,) € PA, so that {vel|la,|| = ¢} is finite for
each ¢ > 0. The algebraic operations are pointwise and |laj =
sup {|la;|l: ve I}

PROPOSITION 4.6. If A= (3 A)), and each A, has a g totally
bounded approximate identity, then so does A.

Proof. The proof is the same as Proposition 3.2 in [21] where
the same result is proved for well-behaved approximate identities.

REMARK 4.7. Proposition 4.6 is true when “totally bounded” is
replaced by any of the types of approximate identities listed in §2,
except countable and sequential. Dual B* algebras have g totally
bounded approximate identities by 4.6, and 4.5 and 4.6 give a proof,
different from that in [6], that Cy(S), for S paracompact, has a g
totally bounded approximate identity.

CONJECTURE 4.8. We conjecture that C,(S) has a well-behaved
approximate identity if and only if S is paracompact. As we indicated
earlier, our results on this question are incomplete, but we give an
example in §6 that is perhaps illuminating.

5. Sham compact spaces and approximate identities. The
definition of sham compact space and sham compact approximate
identity, given in 2.5, is motivated by the space X of ordinals less
than the first uncountable ordinal with the order topology, and the
algebra C,(X). For example, let 4 = X with the usual order and if
rved, let f, be the characteristic function of the interval [0, A\]. It
is clear that {f;} is a sham compact approximate identity for C,(X).
We note that C(X) cannot have a B totally bounded approximate
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identity since X is not paracompact. Furthermore, it cannot have a
well-behaved approximate identity either since it is pseudocompact.

ProposITION 5.1. Let S be pseudocompact. If C(S) has a well-
behaved approvimate identity, then S is compact.

Proof. Let {e;} be a well-behaved approximate identity for Cy{(S),
suppose that S is not compact, and choose, by 3.1, an increasing
sequence {\,} so that e, # e, , for any integer i. Note that ¢, <
e;,, < +++, i.e., {e,,} is an increasing sequence. Since the sequence {¢,}
is Cauchy in the compact open topology and C,(S) is complete in this
topology, there is a function f in Cy(S) so that e, — f uniformly on
compact subsets of S. By [12, Theorem 2], ¢;,— f in norm so f is
in C(S). By 3.2, f =1 on U7, spte;, which then is contained in the
compact set K = f7{1}. Choosing x € 4 so that ¢, = 1 on K, we obtain
a contradiction to the fact that e, + ¢, for all i.

REMARK 5.2. Proposition 5.1 admits the following non-abelian
generalization, stated here, without proof, for completeness: Suppose
a B* algebra A has a well-behaved approximate identity and M{A)
satisfies the following condition: whenever {a,} is an trcreasing sequence
in A and {a,} converges in the strict topeclogy to = in M(A), then
lla, — x|l —0. Then A has an identity and A = M(A). (See [12,
Proposition 2] to see that this result includes 5.1.)

The next proposition relates sham compactness of S, existence of
sham compact approximate identities in Cy(S) and the property (DF)
of Grothendieck.

DEFINITION 5.3. Let E be a locally convex topological vector
space with dual E*. The space E is (DF') if there is a countable
base for bounded sets in E and if every countable intersection of
closed convex circled zero neighborhoods which absorbs bounded sets
is a zero neighborhood.

REMARK 5.4. The vector space C,(S); is complete and the g
bounded sets coincide with the norm bounded sets so Cy(S); is (DF)
if each countable intersection of closed convex circled zero neigh-
borhoods which absorbs points of C,(S) is a zero neighborhood [17,
p. 67].

We shall use the following remark in the proof of Theorem 5.6.

REMARK 5.5, W. H. Summers [19] has recently shown that C,(S),
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is (DF) if C,(N; Cy(S)) is essential, where C,(N; C,(S)) is the Banach
algebra of all norm bounded sequence from C,(S) with the sup norm
topology (]| |l.) and “essential” means that ||e,{f.} — {f.}ll- —:20 where
{e;} is any approximate identity for Cy(S) and {f.} any element of
C,(N; Cy(S)).

THEOREM 5.6. These are equivalent: (a) Cy(S); is (DF); (b) S s
a sham compact space (¢) Cy(S) has a sham compact approximate
dentity.

Proof. Assume that C,(S); is (DF) and X is the union of compact
sets K,, i.e., X = Uy, K,. For each integer n, let ®, be a function
in Cy(S) so that 0 <9, <1 and ¢, =1 on K,. Let

V=A{reCS): Ife.ll =1,V.}.

V absorbs points of C,(S); therefore it is a zero neighborhood in the
strict topology by (a). It is obvious that the sets {f € C,(S): || fpl| =1}
(for » = 0 in Cy(S)) is a base at zero for the striet topology. Thus
39 = 0 in C,(S) so that {f € CyS):||f®]| =1} V. This shows that
@(x) =1 for & in X. For if not, there is an integer n and a point
%, in K, so that @(x,) < 1. By a standard Urysohn’s lemma argument
31 € Cy(S) so that f(x,) > 1 and ||®f|| < 1. This contradiction estab-
lishes our claim, i.e., XC ™1}, so X is compact.

Suppose that (b) holds. Let 4 be the set of all pairs (K, 0) where
KcDcS8, K is compact and 0 is open with compact closure. If
A= (K, 0) and ), = (K, 0,), we define A =), if x =, or if 0,C K.
If » = (K, 0) let f; be a function in C,(S) which satisfies: (1) 0 < f; <
1; 2 fi=1on K; and (8) sptf, 0. The net {f;} is by (b) a sham
compact approximate identity for Cy(S).

Assume (c¢), with {¢;} a sham compact approximate identity, and
let {f,} be a sequence contained in the unit ball of Cy(S), and ¢ > 0.
Choose a sequence {\,} from A so that |le, f, — f.l| <& for each
integer n. Let A, € 4 be such that x\, > A, for all integers n. Remark
5.5 and the following computation finish the proof;

N>\, implies [[e,f, — full = [[(L — e)full
= || = ;)X — e)full
S A —e)f.l <e for all n.

6. Metacompact spaces—an example. We have been unable to
prove our conjecture that S is paracompact if C,(S) has a well-behaved
approximate identity except in special cases (see §3), but we are able
to give an example that shows that metacompactness is not sufficient
for existence of a well-behaved approximate identity.



APPROXIMATE IDENTITIES AND THE STRICT TOPOLOGY 73

ExampLE 6.1. Let I be the unit interval with the discrete topol-
ogy and I*, the one-point compactification of I, with oo denoting the
point at infinity. Similarly, let N denote the positive integers
with discrete topology, N* the one-point compactification of N, and
w the point at infinity. Let S = I* x N*\{(co, w)}. Being an open
set in a compact Hausdorff space, S is locally compact Hausdorft.

To show that X is metacompact, take an open cover % of X.
For each point (<o, %), there is a finite set F, of I so that a member
of 2 contains the open set U, = {(z, n): & ¢ F',}. Similarly, for each
point (x, w) there is a finite set Gy of N with a member of % con-
taining the open set W, = {{z,n):neéG,}. If (z,y)eX and x # o
and y #= w, (z, y) is discrete. Let W, , = {(x, ¥)}. It is easily checked
that the sets {W,}, {U.,}, and {W,,,} from a point-finite open refinement
of Z7. Recalling that a space is metacompact if each open cover has
a point-finite open refinement, we see that X is metacompact.

Before we show that C,(X) has no well-behaved approximate
identity, we point cut that X is not pseudocompact; thus we cannot
simply apply 5.1. In our demonstration that C,(X) does not have a
well-behaved approximate identity, we first exhibit a o(M(X)), C,(X))
convergent sequence {y,} which is not tight, where a subset H of
M(X) is tight and if it is bounded and for each & > 0 there is a
compact set K, in X so that [p|(X\K.) < ¢ forall e H (|| denotes
the total variation of z¢). We may then apply corollary 3.4 in [21]
to conclude that Cy(X) does not have a well-behaved approximate
identity.

For each positive integer =, let g, be the member of M(X)
defined by the equation f,(f) = f{(ce, m)) — fl(ee, n + 1)) for f in
C,(X). Note that the total variation of g, satisfies the equation
[t l(f) = f((eo, 1)) + f((eo, m + 1)) for f In CyX) and so [[p,] = 2
for each integer ». We now show that g, — 0 in the weak-* topology
of M(X). Let feCy(X) and e N. Since f is continuous at (oo, n),
for each ¢ >0, there is a finite subset I., of I so that if
zel.,, |f(®, n)—f(eo,n)| <e. Thus there is a countable subset I, of
I so that if e, flz, n) = f(eo, n). If I, is the union of the sets
{I.}, we see that it is countable and if x¢ I; then f(z, n) = f(c, n) for
all integers #. Choose a point z,¢ I,. Then the sequence {(z;, n)} con-
verges to the point (z,, w) so that f((z, n)) — f((z;, w)). Thus

lin}zf((oo, n)) = Hn;f((xf, n)) = f{(z;, w))
so that
lim f((o=, m) = f((e2, m+ 1) = 0, e 2(f) 0.

Since f is arbitrary, we have shown that g, — 0 weak-*.
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We next see that {z,} cannot be tight: let ¢ = 1/2 and note that
a compact set in X can contain only finitely many of the points (e, n).
If K is a compact subset of X and (oo, p) ¢ K, we can choose f ¢
Cy(X) so that spt f is compact, f((o,p)) =1, =0 on K, and 0 =
f =1, ie., so that [¢,[(X\K) = [¢,(f)| = [f((>, p))| = 1. Applying
[21, Cor. 3.4.], we see that C,(X) does not have a well-behaved ap-
proximate identity (note that X is not paracompact by [20, 3.1 and
3.2)).

REMARK 6.2. The space C,(X), where X is as in 6.1 is interesting
for several other reasons. First C,(X), is not a strong Mackey space
(see [7] for a definition). Conway in [7] has shown that C,(X) is
strong Mackey if X is paracompact. The problem of finding topologi-
cal conditions on X necessary and sufficient for C,(X); to be a strong
Mackey (or Mackey) space is an intriguing problem. If we let p, be
the element of M(X) whose value at f in C(X) is f((e, 1)), arguments
similar to the above show that {s,} is weak* Cauchy but has no weak-*
limit in M(X), i.e., M(X) is not weak-* sequentially complete (see [6,
5.1). Cy(X); is also not sequentially barrelled (see [23]).

7. Miscellaneous remarks.

REMARK 7.1. It is easy to show that if {e;} is a sham compact
approximate identity for a (possibly non-abelian) Banach algebra A,
then {e;} cannot be well-behaved unless A has an identity. The ques-
tion one really wants to answer is whether A can have another ap-
proximate identity that is well-behaved unless A has an identity
element. If A is commutative, the question is answered in the nega-
tive by 5.1 and 5.6 of this paper. We have the following generaliza-
tion of Theorem 4.1 in [19]:

THEOREM 7.2. These are equivalent: (1) M(A), is (DF') (2) M(A),
s (WDF) (3) I°(A) is both a right and a left essential module (I°(A)
is the set of all bounded sequences in A;l°(A) is a right essential
module means that if {f;} is any approvimate identity for A and & =
{x.} € 1=(A) then lim,; (sup, [z.f; — 2.[)) = 0).

ProPOSITION 7.3. Let A have a well-behaved approvimate identity
and suppose that {e;} ts a sham compact approxvimate identity for A.
Then A has an identity.

Proof. z = (x,) €l°(4); we can choose, by induction, a sequence
{n\;} from 4 so that
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lim|le;®, — x| = lim|[z,e;, — ®,{| =0
k k

for all positive integers n. By the sham compact property, choose ¢,
so that X\ >, for all integers k. Thus e,e;, = e, so that ez, = x, for
all n. Thus lim; (sup l|x.e; — z,])) = 0 and lim, (sup, ||ex, — ®,) = 0,
i.e., I°(4) is both left and right essential. Suppose {f,} is a well-
behaved approximate identity for A and v, < v, < --- is a sequence
in I"sothat 0= f, + f, for all integers i. Since [*{A4) is essential,

there is an element v, is I” so that

. 1
ufo = Fll <

for all positive integers 7. Since {f,} is well-behaved, there is a posi-
tive integer N so that », m = N implies that

flfey = £1) = 0

which further implies that [[f., — f;, || < 1/2 for », m = N. Let C be
the commutative B* algebra generated by {f, : 7= N}. We claim that
spt f,, & N(f.,.,). If this is not true, then sptf,, =sptf,, . =sptf, .,
and so f., , = fiy,, = the characteristic function of sptf,, by 3.2,
contradicting the choice of {f; }7... Thus 3ze N{f,,.)\sptf,y which
implies that || f,, (x) — f @) = 1. This contradiction concludes the
proof that a (nownabelian) B* algebra A cannot have both a well-
behaved and a sham compact approximate identity.

It is is easy to give an example of a 8 totally bounded approxi-
mate identity in C,{S) that is not canonical (and a fortiori, not well-
behaved). Our next result points out the rather interesting fact that
in an abelian B* algebra a canonical chain totally bounded approximate
identity is well-behaved.

PrOPOSITION 7.4. Let {e¢;} be a canonical chain totally bounded
approximate identity for C,(S). Then {e,} is well-behaved.

Proof. Let {)\,} be an increasing sequence in 4 and F'={J7_spt f;, -
Then F' is clopen as in the proof of 3.3 and, for any compact subset
Kof F, K< Nle,,) for some integer N, so that e;, =1 on K for n > N.
If xed, let K =spte, N F: then e;(e; — e, ) =0 for n and m large
enough by the preceding remarks. Therefore {e,} is well-behaved.

Taylor [21] prove several interesting theorems about M(A4) as-
suming that the B* algebra A has a well-behaved approximate identity.
From 4.3 and 7.4 we see that (looking at the algebra generated by
the approximate identity) an abelian, canonical, and chain totally
bounded approximate identity for A is a well-behaved approximate
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identity so Taylor’s theorems hold in this case. We conjecture even
more, viz., that if A has a canonical chain totally bounded approxi-
mate identity, then the theorems in [21] hold. Our reason for be-
lieving this is the next proposition, which shows that a canonical
chain totally bounded approximate identity is “almost” well-behaved.

ProposITION 7.5. If {e)} is a canonical chain totally bounded
approximate identity in a Banach algebra A, then {e,} satisfies the
following condition: if ¢ > 0, {\,} is an increasing sequence in A, and
N e d there exists a positive integer N so that n, m > N implies

exe,, — e ) <e.

Proof. By chain total boundedness of {e¢;}, there is an integer
P so that for all positive integers n

12}12’11’”61(6211 - e’tl') H < —é—
Choose N = P so that if N < n < p, 3¢ > p so that [[e;(e,, —¢,) | <e.
If n,m >N and n < m, choose ¢ >m so that ||e}e;, — e,)| <e.
Then [lex(e;, — e1,) 1| = [le(esn — €5 )es, || = llexes, —e) ]l < e.

ExXAMPLE 7.6. We now give an example of an approximate identi-
ty that is well-behaved and not B totally bounded. Let R denote the
real line and 4 be the set of pairs (i, j) where 4 is any positive integer
and 7 =0 or 7 = 1. Order 4 as follows:

(1) (,5)=@,7)ifi=14and j=7J%

(2) (4,0) > (i, 1) for all integers ¢ and j;

(8) (2,0)>(5,0) if v > 4.

If x=(:,0) let fbein C(R)sothat 0 < f; <1 and f,=1 on [—14, 1]
and /,=0off [~(@+1), ¢+1)]. If »= (1), let f;again be in C(R)
so that 0 < f, <1, fi{w;) = 1 where &, = 1/2(1/(% + 1) + 1/7) and f, =0
off [1/(z + 1),1/i]. The net {f.} is easily seen to be well-behaved but
the infinite sequence {f(¢, 1)} is clealy not g8 totally bounded.

ExAMPLE 7.7. In 8.3, we showed that if C,(S) has an approximate
identity that is well-behaved (or g totally bounded) then S contains
a clopen set X so that Cy(S) = B, B, where B, = {fcCy(S); f =0
on X} and B, = {fe€Cy(S): f =0 on S\X} are 2-sided ideals of C\(S).
Obvious non-commutative generalizations of the above fail as we now
show. Let A be the algebra of compact operators on a Hilbert space
H, {e;: v e I'} an orthonormal basis for H, and A the set of finite subsets
of I ordered by inclusion. If ne 4, let P, be the finite-dimensional
projection defined by the equation
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Pih)=> < h,e, >e, for heH.
7€l

It is easy to show that {P,} is a well-behaved and totally bounded
approximate identity for 4, but 4 has no non-trivial decomposition as
a direct sum of two-sided ideals [14].

REMARK 7.8. It is perhaps worth pointing out that if C,(S) and
Cy(T) have approximate identities with certain properties, so does
Co(SXT) and the converse is also true. Suppose for example that
C,(S) has a well-behaved approximate identity {e;,} and C,(T) has
a well-behaved approximate identity {f.}. If f and ge C,(S} and
Cy(T) respectively let f ® g be the function on S x T defined by
FRy(s, t) = fls)g(t). It is easy to see that f Q) ge C(SXT). Because

the algebra generated by { f ®g!§ 5 g"((%} is dense in C(SXT) by

the Stone-Weierstrass Theorem, the net {¢; Q f.} with directed set
all pairs (A, @) where (\, @) > (W, ') if A >N and a >« is an ap-
proximate identity for Co(SXT) which is easily seen to be well-behaved.
Conversely, if {e;,} is a well-behaved approximate identity for C(SXT)
and t,e T, the net of function (f;) defined by fi(s) = es(s, t,) is a well
behaved approximate identity for C,(S).

ExaMpPLE 7.9. Our investigations of o(M(A), M(A)}) relatively
compact approximate identities is in the first stages only. We wish to
present the following example, however, as it seems interesting. Let
S = the ordinals less than first uncountable with the order topology.
Cy(S) has no a(C,(S), M(S)) relatively compact approximate identity.
For, suppose that C,(S) has an approximate identity {e,} which is
a(Cy(S), M(S) relatively compact. Note that (J¢;|*) is an approximate
identity which is also a(Cy(S), M(S)) relatively compact, so we may
suppose e; = 0. Let \e/ and «, =min{reS:y > =e¢,(y) = 0}
Choose A, € 4 so that e;,>2/3 on [0, x,+1] and let v, =min {x e S: y>x==
e,(y) = 0. Note , =, +1 so x, > w,.

Suppose A, ---, A, and @, -+, %, have been chosen so that:

(1) e, >k/(k+1) on [0,2,, +1] for 2=k =n

(2) », =min{reS:y >v=2¢,(y) =0}

(3) Ly > Ly > 200 > Xy > X0

By induction we select a sequence (\,) in 4 and a sequence (x,)
from X satisfying (1) and (2) and (3). Let x = lub{z,}. By assump-
tion, 3f € Cy(S) so that e; clusters o(Cy(S), M(S)) to f. If y >u,
e, (y) =0 for all » so that f(y) =0. If y<w, then there is an
integer N so that y < @, for n > N so that e, (y) clusters to 1; there-
fore f(y) = 1. We now show that f cannot be continuous at x. Since
{x,} is strictly increasing, «, < x for all n so that e, (x) = 0 for all
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n and so fiz) = 0; on the other hand, x, — 2, so, if f were continuous,
f(z) would be the limit of the constant sequence f(zx,), i.e. 1. This
contradiction concludes the proof that C,(S) has no o(C,(S), M(S))
relatively compact approximate identity.

Our last result (7.10 below) answers only one of a number of
questions of the following form: given an algebra A with an approxi-
mate identity having property P and another approximate identity
{e,}, can we select from A a subset 4, (cofinal, perhaps) so that {¢;: x € 4}
has property P. Kasy examples show that the subset 4, in 7.10
need not be cofinal in A.

ProrosiTION 7.10. If a Banach algebra A has a countable approxi-
mate identity {f,} and {e,} is another approvimate identity, then there
is a countable subset A, of A so that {e; M€ A} is an approvimate
identity for A.

Proof. Choose a countable subset 4, of A so that lim;., e, f; =
lim,., f.e, = f, for each veI.
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CONVERGENCE IN SPACES OF SUBSETS
R. J. Gazik

Under certain conditions on a class & of subsets of
either a uniform convergence space, uniform space, or bounded
metric space, a natural convergence structure for & is defined
which is, respectively, u-uniformizable, uniformizable, metri-
zable. Conditions which are sufficient for the convergence
structure to be separated, topological, regular, are given. In
the uniform space case some convergence properties of %
are investigated and a fixed point theorem is proved for
certain & -multifunctions.

1. Introduction. In order to establish notation and provide
some motivation we will, in this section, review a few basic results
which deal with uniform convergence structures. The reader is
assumed to be familiar with the very basic theorems from the theory
of convergence spaces [5].

In order to obtain concepts like Cauchy filter, uniform convergence,
total boundedness, which were previously defined only in uniform
spaces, Fischer and Cook began the study of uniform convergence
spaces in [4]. A uniform convergence structure 5 on a set E is an
intersection ideal in the collection of filters on E x E which satisfies
the following axioms:

(U,) The filter of supersets of the diagonal in F x E is a member
of 2.

(U,) If <e2, so its inverse.

(U,) If &, & <X and the composition filter o & exists, then
it belongs to 2.

A uniform convergence space (E, Y) is a set F along with a con-
vergence structure X on E. A convergence structure ¢(2) is induced
on F in a natural way: define # e€c(Y) (z) if and only if & x &¢
Y. If P is a property which can be defined by convergence (for
instance compactness, regularity, Hausdorffness, etc.) then, by defini-
tion, (K, 2) has property P if and only if ¢(2) has it. Also, most
definitions of uniform properties are available in uniform convergence
spaces and are generalizations of the uniform topology case. For
example, a filter & on E is a Cauchy filter if & x # ¢2%; (K, 2%)
is complete if each Cauchy filter converges with respect to o(2); (E,
J) is totally bounded if each filter on E is coarser than a Cauchy
filter; a map f between uniform convergence spaces (F, %), (F, ) is
uniformly continuous on E if (f X f)3 C .

With these definitions one obtains results which, for the most

81
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part, parallel the uniform space case. For example, it is true that
each uniform convergence space has a completion [8], and that a
uniform convergence space is compact if and only if it is complete and
totally bounded [4]. The following result is due, independently, to
Keller [6] and Cochran [3].

THEOREM 1.1. FEach Hausdorff convergence space (FE,0) is u-
uniformizable. That is, there exists a uniform convergence structure
Y on E such that 6 = o(2).

If (E, ) is a uniform convergence space, a subset  of Y is a
base for ¥ if each member of 3 is finer than a member of +. The
following result (see [4]) shows the relationship between uniform
convergence spaces and uniform spaces.

THEOREM 1.2. If a uniform convergence structure ¥ for E has a
base comsisting of exactly one filter Z7 then Z/ is a uniform structure
for E; each uniform structure Z for K is a base of exactly one
element for a uniform convergence structure %] for E; Z and [#]
have exactly the same set of Cauchy filters and exactly the same set
of convergent filters.

Now consider the following well known construction: If (E, %)
is a uniform space and & is the class of nonempty, closed subsets
of K, then a uniform structure for & is generated by sets of the
form {(4, B): A, Be &, AcU(B), BcU(A)}, Ue %. It follows that a
filter &# on & converges to 4 € &, with respect to the completely
regular topology on % induced by %, if and only if for each Ue %,
there exists # €. such that FCV(4) and ACV(F) for each
Fe . The topology induced on % is called the uniform topology
on % ]7].

The remarks above motivate the consideration of convergence
of sets of a class & (of not necessarily closed sets) in any space
where “closeness of sets” is meaningful. We will begin the dis-
cussion with uniform convergence spaces. According to Theorem 1.1,
these include Hausdorff topological spaces and many others which
are not topological spaces.

2. Convergence classes. For the remainder of this section a
uniform convergence space (E,Y) will be a set E along with a base
Y for a uniform convergence structure on E.

DErINITION 2.1. Let (E, 2) be a uniform convergence space. A
nonempty class & of nonempty subsets of E is called a convergence
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class for (E,2) if and only if ACV(A) for each Aez’, Ve 7,
SF el

DerFINITION 2.2. Let (E, 3) be a uniform convergence space and
let & be a nonempty collection of nonempty subsets of E. The
function 7(%¥°) from % into the power set of the filters on & is
defined by & ct(Z)(4) if and only if for each Ve 2, £ ¢, there
exists .7 e & such that FC V(A) and AcC V(F) for each Fe & .

THEOREM 2.1. The function ©(%) of Definition 2.2 is a convergence
structure on & if and only if & 1is a convergence class for (E,X).

Proof. It is clear that if & et(¥)(4) and & is finer than &#,
then £ c(¥)(4). If #F,Z et (¥)(A) then, since {F U Z: F €
F,cec&}isabasefor NE, F NZecr(¥)A). Hence, (%)
is a convergence structure for & if and only if the ultrafilter gen-
erated by A4 is in 7(¥")(4) for each Aec%’. But this is equivalent
to the statement that A V(4) for each Ae &, Ve 72, £ el

Some additional properties which may sometimes be required of
a convergence class & for a uniform convergence space (E, X) are:

(A) If A,Be% and AcCV(B) for each Ve 2, £ ecX, then
ACB.

(4,) If A,Be% and ACV(B), BCV(A) for each Ve ¢, Fe
2, then A = B.

(A;) For each £ e and Ve 2, there exists Ue _# such that
U(A)cV(A) for all AeZ.

(A,) For each F el Ve #, 6 Ac%, there exists Ue £ such
that U*(A) C V(A).

(4;) If A, Be &, then AU Be &.

THEOREM 2.2. Let & be a convergence class for the uniform
convergence space (K, 2). Then

(1) If either (A) and (4, or (A, and (A) hold, then (&) is
separated and u-uniformizable.

(2) If (A holds and 7(&) 1s separated, then (A,) and (A,) hold.

(3) (A) implies (4,) and, if (4;) holds, (A,) tmplies (4,).

Proof. (1) Suppose F €7(Z)(A)Nt(&)B)and let Ve_g Fel.
By (A,) there exist U, We _# such that U*B)c V(B), W*A)c V(4).
Then S=UnNWe _# so FcS(A),AcS(F), BCS(F), FcS(B) for
all Fe & and some & € % . From these relations, Ac U*B) C V(B)
and Bc W?*A4) c V(A) so, if either (A4) or (4, hold, A = B; that is,
(%) is separated. It follows from Theorem 1.1 that z(¥") is w-uni-
formizable.
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(2) Suppose ACV(B) forall Ve #, £ eX. Then AU BcV(B)
and BC V(A U B) so, since (4;) holds, the ultrafilter generated by B
converges to A U B. Since 7(¥") is separated B= AU B so ACB.
A similar argument shows that (4,) holds.

(3) If (A) holds, (4,) holds. If AcCV(B) for all Ve 2, _Fe
%Y, then, since A UBe%, AU BcCV(B) and BC V(4 U B); it follows
that AUB= B and A C B.

THEOREM 2.3. Let & be a convergence class for a uniform con-
vergence space (K, 2). If (A,) holds then (%) is a topological space;
that is, there is a topology o(&) on & such that a filter F con-
verges to A€ & with respect to o(%) if and only if F € (& )(A).

Proof. It suffices to show that if & ¢ t(€)(A), then there exists
&, a subset of &, such that Ae 2, 2 ¢F and if Be 2, & ¢
7(&)(B), then Z € Z.

Now suppose F ¢ 7(%)(A). Then for some Ve 2, _£ €2, no
& e F satisfies

(1) Fes implies FCV(A) and A CV(F).

Define a subset 27 of & as follows: 2 consists of all Be &
such that

(2) BcCV(B), and ACV(B), and

(3) there exists Ue & such that if He% and HcC U(B) and
BC U(H), then HCV(A) and A C V(H).

Now Ae 2 for AcCV(A) and we may take the U required by
(3) to be V. ¢ by (1) and (2).

Suppose now that & et(¥)(B), Be 2. We show #Z % by
proving that .2° contains a member of &.

Since B e 2, condition (2) holds for some Ue 2. By (4,) there
exists We _# such that WD) c U(D) for all DeZ. Since ¥ ¢
(& )(B), there exists & € & such that G W(B) and Bc W(G) for
all Ge Z.

Let Ge &. Since Be .27 and G < W(B), B W(G), then G C V(4)
and AC V(@) so G satisfies (2).

Suppose He & and HC W(G), G < W(H). Then HcC W*B) C U(B)
and BC W(G) < W*(H)c U(H) so, since Be #, HC V(A) and AcC V(H).
This shows that each G e & satisfies (3).

In summary, 2, £ €&,s0 Z€&.

THEOREM 2.4. With the same assumptions as in Theorem 2.3,
the topological space (€, 0(Z)) is regular.

Proof. Recall first that a net in a topological space converges
to a point if and only if its filter of final sections converges to the
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same point. In the present context it follows from the previous
theorem that a net (4,:me€ D) in & o (& )-converges to A € & (written
(A,:neD)— A) if and only if for each Ve 2, #FeX A, CV(4)and
AcCV(A,) for n sufficiently large.

Now let (A;;:tel, jeJ;) be a simply convergent double net in
& with (A;:7ed;)— P;e for each 1€l. Let h be the diagonal
net on T = I x [I{(J;: 1€ I) defined by h(i, g) = A, ,: and suppose the
diagonal net converges to Xe&. We prove (%, 0(%)) is regular by
showing that (P;:iel)— X.

Let Ve g2, _#eX. By(4,) there exists Ue _# such that U(B)C
V(B) for all Be . Since the diagonal net converges to X,

(1) Auyw CUX), X U(As ) for (i,9) = (i, ). Since each
(A;25ed) — P,

(2) A;cUPy), P, U(A;;) for each © = 4, and 7 = j(¢, V). Define
well(J;:ieI) by requiring w(i) to be greater than or equal to both
94(%), 5(3, V) if © = 4, and w(3) = g,(¢) otherwise. Then, for ¢ =1, (4, w) =
(%0, 90) 80 by (1), A; iy CU(X) and X U(A4;,00)- By (2) Aiuw < UP)
and P;c U(4;,,,)- Hence, for 1 =1, P, U¥X)C V(X)and XC U¥P,)C
V(P;). It follows that (P;:iel)— X and (&, 0(¥)) is regular.

It should be pointed out that a number of other natural conver-
gences on a convergence class & might be studied. The following
are a few such examples.

(1) &# ey(¥)A) if and only if there exists _# € X such that:
for each Ve _# there is an &% € & such that FFC V(4) and A C V(F)
for each Fe &

(2) F eM@)A) if and only if for each Ve &, _F el acA,
there exists & € & such that FCV(4) and F N V(a) = ¢ for each
Fe 7.

(3) &F ca(@)(A) if and only if there exists _# €2 such that:
for each Ve /2, ac A, there exists & €. &# such that FFC V(4) and
FnNVia) + ¢ for each Fe #.

ExAmMPLE 1. Let Y consist of just one uniform structure _~#
for E and let & be any nonempty class of nonempty subsets of E.
By Theorem 1.2 % is a base for a uniform convergence structure on
E. Clearly ACV(A) for each Ve _#,Ae%, so & is a convergence
class for (E, ). In particular, if & is the class of nonempty _#
closed subsets of E, then, by the discussion at the end of §1, 7(%)
convergence is precisely the convergence of closed sets in the uniform
topology on &. (See [7].)

ExaMPLE 2. Let E be a Hausdorff topological space and, for each
finite subset S of E, define _#(S) to be the filter A (_#7(x) x 47 (x):
xeS) A &, where < is the filter of supersets of the diagonal in
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E x E and 4 (x) is the neighborhood filter at x. The collection
3 ={_#(S): S is a finite subset of E} is a base for a uniform con-
vergence structure on E. It is not hard to see that the convergence
induced by 2 is precisely convergence in the topological space E.
Each member of each _#(S) contains the diagonal so any & is a
convergence class for (E, 2).

If E is a closed interval of real numbers, & the class of nonempty
closed subsets of K and _# the usual uniform structure on E, then,
by Example 1 and results from [7], (&, 7(¥")) is compact with respect
to the base {_#}. Now the base 3 of Example 2 induces the same
convergence on K as does {_Z}, but (&, t{(¥")) is not compact with
respect to 3.

Question. 1If % is the class of nonempty, closed subsets of a
compact uniform convergence space (E, ), is there a base @ for a
uniform convergence structure on E such that 5 and @ induce the
same convergence on K, and (¥, (%)) is compact with respect to @?

ExampLE 3. Let E be a Hausdorff topological space and & any
collection of nonempty subsets of E. Define # to be the filter
generated by sets of the form U(G; x G;:i€I) where I is finite, each
G;isopen and U(G;:iel)= E. The collection ¥ ={_g&, 7* _#° «-+}
is a base for a convergence structure on E and & is a convergence
class for (E, 2). The topological convergence on E is generally not
the same as that induced by Y. In this case F ecz(&)(4) if and
only if for each Ve # and each natural number =, there exists
F €. such that FCV"(4) and A CV*(F) for each Fe 5.

ExampLE 4. Let E be a regular, Hausdorff topological space, &
the class of nonempty, closed subsets of E and 3 the base of the
previous example. Then (%) convergence is precisely the conver-
gence of closed sets defined by Choquet on p. 90 of [2].

Question. If E is a topological space, & its convergence class
of closed sets, is there a base Y for a uniform convergence structure
on FE such that one of the natural convergences (C), M%), ete.
induces the convergence defined by Choquet on p. 87 of [2]?

Of course, the meaning of 7(%), ¥(%"), M¥’) or a(&”) convergence
is known as soon as a base for a uniform convergence structure is given.
In this regard, see [3] for an explicit construction of a uniform con-
vergence structure for an arbitrary Hausdorff convergence space, and
see [4] for construction of natural uniform convergence structures on
funetion spaces.
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3. Convergence classes for uniform spaces. Let (E, #) be a
uniform space and let & be any nonempty class of nonempty subsets
of E. Since ACV(A) for Ve # and (4;) of §2 holds, & is a con-
vergence class for (E, #) and 7(¥") induces a regular topology ¢(%")
on . A net (A,;neD)in ¥ o(¥)-converges to Ae % if and only
if for each Ve _Z, A, cV(4) and Ac V(4,) for n sufficiently large.
In fact, we have the following:

THEOREM 3.1. If (E, 7) is a uniform space and & 18 a mon-
empty collection of nonempty subsets of E, thewn the topological space
(%, 0(%)) is uniformizable.

Proof. For each Ve _JZ, define 7 (V) ={(A,B):A,Bes,AC
V(B), BC V(A)}. Then each .7 (V) contains the diagonal in & x &
and the inverse of 7 (V) is itself. Also 7 (V)> . 7 (U)o7 (U) if
U-UcV. Thus u(%), the filter generated by the 7 (V)’s, is a
uniform structure for &. But, from the definitions and the remarks
preceding the theorem, a net o(¥’)-converges to Ae % if and only
if it converges to A with respect to the topology generated by u(%).

Some additional axioms which may sometimes be required of a
convergence class & for a uniform space (E, #£) are:

(B) If A, Be%, then AU Be Z.

(B,) If Acclos B, then AC B.

(B;) If Aceclos B and Bceclos A, then A = B.

(B) If S is linearly ordered and (4,:n€S8) is a decreasing net
in & (n=m implies 4, A4,) such that N A4, =+ ¢, then any net (x,:
ne R) with R cofinal in S and z,€ A, for ne R, which converges,
converges to a point in clos (N A4,).

THEOREM 3.2. If & 1is a convergence class for a uniform space
(E, 7), then

(1) If (B, or (B, tis satisfied, (&, p(&’)) ts Hausdorff.

(2) If (&, u(¥)) is Hausdorff and (B, holds, then (B,) and
(B,) hold.

(3) (B, tmplies (B,) and, if (B,) holds, (B,) implies (B,).

Proof. This follows from Theorem 2.2.

ExAaMPLE 5. A simple example of a convergence class & for a
uniform space (E, #) for which (%, (%)) is Hausdorff and & does
not consist of closed sets is obtained by taking % to be the class of
all nonempty, regular open subsets of E. Recall that an open set
G is regular open if G = Int (clos G). It is clear, then, that & satisfies
(Bs) so (%, n(¥)) is Hausdorft.
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DErFINITION 3.1. A net (4,:7m€ D) in & is increasing (decreasing)
if D is totally ordered and n = m implies 4, D A4,.(4,.D A4,).

THEOREM 3.3 Let (E, #£) be a compact uniform space ard &
a convergence class for (B, ). Then

(1) An increasing net (A,: ne D) in & converges if and only
if there ewists Ae & such that U A, Cclos A and ACclos(U A,).

(2) If (A,:nme D) is a decreasing net in <, N A, #+ ¢ and (B,)
18 satisfied, then (A,: n <€ D) converges if and only if there exists A e
& such that A Cclos(N A,) and N A, Cclos A.

Proof. A proof of (1) is given. The proof of (2) is similar. If (4,:
n e D)— A then, if Ve _#Z A, cV(A) and AcCV(4,) for n sufficiently
large. But since (A,: # € D) is increasing, UA,C V(4)and AC V(U 4,).
Since V was arbitrary, U A, Cclos A and A Cclos (U A4,).

Now suppose 4 ¢ & exists which satisfies U A, Cclos 4Aand AC
clos (UA,). Then, for Ve #,neD, A, V(A). Thus, to show (4,:
ne D) — A it suffices to show that A C V(A4,) for some n e D.

Suppose this is not so. Then there are points y, € A — V(4,). The
net (y,: % € D) has a convergent subnet by the compactness of (£, 7).
Clearly, the subnet converges to a point weclos A Ceclos(U A4,). If
U*cCV, then Ulx)N A, # ¢ for n sufficiently large. But (y,:n e D)
is frequently in U(z) so there is an index n € D such that y, e U(z),
t,e Ux),t,eA,. Then y,e U¥t, CV(t,) < V(A, which is a contra-
diction.

DEFINITION 3.2. If & is a convergence class for (E, ) then
(&, (%)) is said to be monotone complete if and only if each increas-
ing net in (&, (%)) converges and each decreasing net (A4,:n € D)
for which N A4, # ¢ converges.

THEOREM 3.4. Let (E, #) be a uniform space. Then

(1) If f:(E, _7Z)—(E, _Z) is uniformly continuous and & 1s
any convergence class for (B, £) such that Ae & implies f(A)e &
then g: (%, (@) — (&, (Z)) defined by g(A) = f(A) is uniformly
continuous.

(2) If (7, (%)) is separated and monotone complete, then either,

(a) g(A) = A for some Ac <&, or

(b) there exists A€ & such that g{A)C A and N (g"(A):n =1, 2,
cer) =g or

() g(4), A are not comparable for each A€ &.

Proof. (1) If f is uniformly continuous then (f x f)_Z =_Z.
Then, if .7 (V) is a generator of ¢(%”), there exists UeJ such that
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Vo(f x fYU). Itisaneasy computation to show that (9 x ¢).9 (U)C
T (V) 80 (g x )(&) = (%) and g is uniformly continuous.

(2) If Acg(A) for some Aec%’, then AcCg(4d)cCg(4).--is a
monotone net in & and hence converges to Be#. By (1) g{d)C g’
(A) < .-« converges to g(B). Since (&, u(%’)) is separated, B = g(B).

If A>g(A) for some Ae %, ADg(4) D g*(A) ---is a decreasing
net in (&, p{#’)). 1If it is true that (¢9"(A):n =1,2, ---) = ¢, then
g*"(A) — B, g1{A) — g(B) and B = ¢g(B). Hence, if neither (a) nor (b)
holds, it must be that A & g(4) and ¢g{(4) ¢ A for all Ae%. That
is, {¢) holds.

Recall that if f:(E, #)— S is a bijection, then there is a
finest uniform structure for S which makes f uniformly continuous,

namely (f %< f) (_F).

DEeFINITION 3.3. If &, &, are convergence classes for (E, 7)),
(H,, %) respectively, the natural uniformity p[z, €] on [&, & =
{A x B: Ac%,, Be &,} is the finest uniform structure on [Z7,, &3]
which makes the bijection f: (&, X &%, t{E) X &) — [F, &)
defined by f(A4, B) = A x B uniformly continuous.

THEOREM 3.5. (1) Let ©,, &, be convergence classes for (H, 5 ).
Then (A, X B,:ne D) converges to A X B in (&, &), ul&,, €)) of
and only if (A,: ne D), (B,:neD) converge to A, B in (&, u(&)),
(&%, p(&%) respectively.

(2) If (A,:neD), (B, ne D) are nets in (&, u(&)) which con-
verge to A, B respectively and A, C B, for n sufficiently large, then
A c clos B.

Proof. (1) If(A,:nmneD)— Aand (B,: neD)— B, then (4, X B,:
neD)— A X B by the continuity of the map f: (4, B)— A X B. If
(A, xB,:neD)—Ax Band Ve _Z, then, when . (V) = {(S, M): Sc
VM), M cV(S)}, 22(V) = {(R, Y), (F, X)): (R, F)e 7 (V), (Y, X) e
T {(V)}isin p{&) x #(Z). Thus, by definition, (f x f)SZ(V)(A x B)=
{RxY:(R,A) e g (V),(Y,B)ye. g (V)} is a neighborhood of A x B.
It follows that (4,, 4)e .7 (V) and (B,, B) € .7 (V) for n sufficiently
large so (A,:neD)— A and (B,:neD)— B.

(2) We have for Ve _JZ, an index ne D such that A, B,, AC
V(A,), B, cV(B) so ACV*B) and the result follows from this fact.

The result above, as well as the theorem below will be used in
the next section.

THEOREM 3.6. Let & be a convergence class for the the uniform
space (K, £). Then
(1) If (AsineD)— A and xve A, then there exists a directed set
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H and functions p: H— D, m: H— E, such that p(H) s cofinal in
D, the net m converges to © and m(h) € A,u, for all he H.

(2) If (A,:neD)— A and a net m: H— E converges to x with
m(h) € Ay, (H) cofinal in D, p: H— D, then xcclos A.

Proof. (1) Order D x _# by (n, V) = (m, U) ifn =z mand VC
U. By convergence, if (n, V)eD x _Z there exists p(n, V)e D and
m(n, V) € Ay, such that p(n, V) = (x, m(n,V)) e V. The result fol-
lows from this.

(2) If Ve _Z,mh)e V(x) N A, for h sufficiently large. But,
by convergence, there is an index % such that A, < V(4) also. It
follows that for some ae€ A, some ke H, (m(h),x)eV, (mh),a)e V.
Thus a € V*(x) and the result follows.

4. TFixed point theorem for Z-multifunctions. Let & be a
convergence class for the uniform space (E, ~#). If Fi(E, 7#)— (%,
(%)) is a function, then F",n = 2,3, ... is defined inductively as
follows. (Notice that F*(x) need not be in & if » >1.) If zcE,
F*x) = UF(y): ye F(z)) and F**'(x) = U F(y): y € F"(x)) for n > 2. If
F*x)e % for each n and each xz¢ E, then F is called a Z-multi-
function.

DEFINITION 4.1. A <-multifunction F: (E, #£)— (&, (¥)) is
condensing if F' is continuous and Ve _Z, » + y, «, y € E implies there
exists n = n(x, y, V) such that F(x) x F*(y) V.

ExAMPLE 6. With respect to the hypotheses of the next theorem,
we remark that (&, (%)) can be compact without & consisting only
of closed sets. Let E be the closed unit interval and let & consist
of all subintervals (open, closed, or half open, half closed) of F along
with all singleton subsets of E. Then (&, #(%")) is compact.

THEOREM 4.1. If (E, #) is compact and Hausdorff, (&, (%)) is
compact and F: (K, _Z)— (&, M(¥)) 1s condensing, then there exists
x, € B such that , € clos F(x,).

Proof. Suppose z¢ F(x). Then for some ye F(z),y #z. If Ve
_~, there exists n(V) such that

(1) F*P(@) x F*"(y) V.
Since (%, u(¥’)) is compact so is [&, &, €’] by Definition 3.3. Hence,
with _# directed by reverse inclusion, the net p defined by p= (F""(x) x
Fr"(y) x F*"*(x): Ve #) has a convergent subnet t: D —[&, &, €.
If t— A x B x T, then by (1) and Theorem 8.5, A x BCV for each
Ve _#Z. Since (E,_#) is Hausdorff, A x B is contained in the
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diagonal of E x E so A = B = {x,} for some «, € E.

Now y e F(zx) so F*"(y) c F*™*(x). It follows from Theorem 3.5
that x,eclos 7.

Consider ze T. By Theorem 3.6 and the fact that ¢ is a subnet
of p, there is a net m: H— E and a function f: H—_#, such that
f(H) is cofinal in _Z, m — z, m(h) € F(F"/ " (x)), he H. So,

(2) m(h) e F(u(h)), u(h) € FrI7) ().

By compactness of (E, _#), (w(h): he H) has a convergent subnet w.
By () w—x, and since F is continuous, F(w)— F(z,). By (2), the
fact that m — z, and Theorem 3.5, z € clos F{(x,).

In summary we have T < clos F(w,) and %, € clos T so «, € clos F(x,).

COROLLARY 4.1. Let & be thet set of all non-empty closed subsets
of a compact, Housdorff uniform space (E, £ ) and let a continuous
Sfunction F: (E, Z)— (&, n(¥)) satisfy the following condition: Ve
S x#=y tmplies F*x) X F*(y) CV for some n = n(x,y, V). Then
there 1s a unique x,€ K such that x, € F(x,).

Proof. By results of [7], F/* maps F into & for each n =1, 2,
3, .-+ and (&, (%)) is compact. Hence, by the previous theorem
z, € clos F(x,) = F(x,) for some x,¢ E. If also z€ F(x), then given
Ve _#, it is true that (v, x)e F"(®) x F"(%,) <V for some m. It
follows that (v, ®,)e N{V:Ve #}, & +# , which contradicts the fact
that (E, _#) is Hausdorff.

COROLLARY 4.2. (Bailey [1]). Let (E, d) be a compact metric space
and f:(H,d)—(E,d) a continuous function such that if x + y, there
exists n = n(x,y) such that d(f"(x), f"(v)) < d(z,y). Then f has a
wunique fixed point.

Proof. Under the hypothesis of the theorem it is easy to see
that if 6 > 0 is given and x # y, there exists » = n(x, y, 6) such that
a(f*(x), f"(y)) < 6. Then, with _# the natural uniform structure
induced by d, the hypotheses of Corollary 4.1 are satisfied for f and
(E, 7) so the result follows.

Now let (E,d) be a bounded metric space and & any class of
nonempty subsets of E. The well-known Hausdorff function 2 on &
is defined by A(a, b) = max {m(4, B), m(B, A)} where m(4, B) = sup {d(z,
B): x € A} and d(z, B) = inf {d(x, ¥): y € B}.

THEOREM 4.2. Let (E,d) be a bounded metric space and let & be
any nonempty class of nonempty subsets of E. Let & satisfy (B, of
§3 with respect to the natural uniform structure on E generated by the
Vi’s, Vs = {(x, y): d(x, y) < 0}. Then (&, u(%")) is uniformly metrizable
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and one metric for (&, u(&’)) ts the Hausdorff function on &

Proof. 1If i{A, B) = 0, then m(4, B) = m(B, A) = 0. Given § >0,
it follows that AcC V,(B) and BC V,(4). Since (B, holds, A = B.
Clearly h(A, By = k(B, A) and, if A = B, h(4, B) = 0.

To prove the triangle inequality it suffices to show that m(4, B) <
ml{A, X) + m(X, B) for each A, B, X %. Let 6 >0 be given.

(1) m(A, B) < d{a,, a) + d(a, x,) + d(z, b) + 6 for some a,€ A and
all ac A,z X, be B.

Also m(A, X) = d(a, X) for all ac A so given a,<€ 4,

(2) there exists z, € X such that m(4, X) > d(a,, ) — 0; similarly

(3) m(X, B) > d{(x, b} — 6 for some b cB. Combining (3), (2),
and (1) we have m(4, X) + m(X, B) > m(4, B) — 30 and it follows
that m{A4, B) < m(4, X) + m(X, B).

We have shown that & is a metric on & Now let U,e _Z(h),
_# (h) the structure on % generated by £. A computation shows that
if (A, Bye U, then A C V,,(B) and B V,,(A), Vo = {(, ¥): d(z, y) < 20},
hence U, 7 (Vy) so £ (h) = p(C). Similarly .7 (V;) C U, so then
Z(h) = 1(0).

The author wishes to thank the referee for several helpful sug-
gestions.
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AUTOMORPHISMS ON CYLINDRICAL SEMIGROUPS

JOAN MURPHY GERAMITA

This paper characterizes the automorphisms of a cylindrical
semigroup S in terms of the automorphisms of the defining
subgroups and subsemigroups. The following theorem is re-
presentative of the type of information given in this paper.

Let F: R — A be a dense homomorphism of the additive
real numbers to the compact abelian group A. Let 1 be a
positive real number. Multiplication by 21 shall also denote
the automorphism of A whose restriction to F(R) is given by
F2F-1. The set of all such 1 for a given F is called 4.

Theorem. Let f and 2 be as above. Let G be a compact
group. Let

S={p, fp)g:pecHand geGlUa X AXG.

Then a: S — S is an automorphism if and only if «(p, f(p), 9) =
(ap, f(ap), «(f(p)E(9)); a(o0, @, g) = (o0, 4a, =(a)é(g)), where z: A>G
is a homomorphism into the centre of G and, £&:G— G is an
automorphism. Theorem. Let S be as in theorem above.
Let -%7(G) be the automorphism group of G, and Z(G), the
center of G. The automorphism group of S is isomorphic
as an abstract group to -7(G) X( Ar X Hom (4, Z(3))) with
the following multiplication

(E! (Zy T))(E, (z; ?D = (E ° Ey (Zz’ (z'o j)(& ° 1_-)» .

Cylindrieal semigroups play an important role Mislove’s description
of Irr(X) and are the building blocks used in the construction of a
hormos. Hofmann and Mostert [3] have shown that every compact
irreducible semigroup is a hormos. The definition and description of
a cylindrical semigroup, given in §I, is from their book.

I. Definitions and notation. All spaces are Hausdorff. All
homomorphisms are continuous unless otherwise stated. A homomor-
phism will be called abstract if it is not assumed continuous. A group
considered with the discrete topology will be ecalled abstract. A
topological semigroup is a topological space, S, together with a con-
tinuous associative multiplication m: S x S— S; m(s, t) = st. All
semigroups are topological with identity 1. A topological group is a
semigroup with the map ¢: S— S, ¢(s) = s, continuous also. An <deal,
I, in a semigroup, S, is a subset of S such that: if xeS then
@IulIrycI. If Sis compact and abelian then S has an ideal M(S)
which is minimal with respect to set inclusion, is unique, and is a
group. An idempotent x € S has the property x* = x. The maximal
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subgroup of S containing an idempotent ¢ is called the group of units
of e and denoted H(e). The group of units of 1 is also denoted H(S)
and called the group of units of S. If @: S— S is an automorphism
then a(H(S)) = H(S) and a(M(S)) = M(S).

NotATION. The following notation is standard throughout the
paper.
[a, b]—In a totally ordered set, the closed interval from a to b.
]Ja, B]—The open interval from a to b.
H—The semigroup of nonnegative real numbers under addition
with the usual topology.
H*—The one point compactification of H, written [0, c].
Hi—H*|[[r, «].
A—The abstract group of positive real numbers under multi-
plication.
R—The group of real numbers under addition with the usual
topology.
Z(G)—The center of a group G.
[p]—The image of p under the quotient map H* — H}*.
*_As in B*, the closure of BcC X, except as noted above
for H.
X\A—For AcC X, the complement of A in X.

1. DEFINITION. Let A and G be compact groups. Let A be an
abelian and f: H— A a homomorphism such that f(H)* = A. Consider
H* x A x G with coordinate-wise multiplication, and let S be that
subsemigroup defined by:

S={p, f(p),9):pecH, geGlU> X AXG.

Any homomorphic image of S is called a cylindrical semigroup.
The following theorem which describes cylindrical semigroups is
from [3, p. 85, Prop. 2.2].

THEOREM A (Hofmann and Mostert). Let S be a cylindrical semi-
group as defined above. Let ¢ be the identity of G and

S’:{(pyf(p);e):peH}Uoo ><A><e'

Let ¢:— T be a surmorphism onto a compact semigroup T. Then
there are:

(i) compact semigroups T,, T/, X and a compact group B,

(ii) surmorphisms hy, hy, hs, by, ¢, 0.

(iii) monomorphisms 1., 1,
such that the following diagram commutes:



AUTOMORPHISMS ON CYLINDRICAL SEMIGROUPS 95

g M, g M om

. < b

H* x A X G thhZXi—d—aHT’*xBxG—hs—» X
U i i
[ T, 27

U 19} U
S’ —_— T} — 6(8")

(z, #’ are projections; ¢sod1=¢).

Moreover, hy|p«yzy, 18 @ monomorphism and h,o1, is a surmorphism.

From this theorem it is possible to describe T in terms of equiv-
alence classes of elements in HY X B x G.

F(0) is the identity of A. 7, if it exists, is the least real number
such that ¢(r, f(r), e) = ¢(eo, a, g) for some ac A4, gcG.

B=2g(c x Axe. T =¢S) xe.
Let f: H— B be given by f(p) = ¢(co, f(p), ) then

w(T!) = {([p], f(p),e): pe H} U [r] X B X e.

If there is no such », then +(T))C H* X B x G.
Let

G = {9€ G: 6(p, (D), 9) = ¢(p, f(p), &)}

and

Gy = {g€ G: ¢([r], £(0), 9) = 4([r], £(0), &)}

where r < . {G,;: p€ H*} has the following two properties:

(1) Gin& Gy for p=gq;
(2) G[p] = ﬂGm .
a>p

Each Gy, is a normal subgroup of G. Denote G/G;,, by G and assume
Gy = {e}.

up({(p, f(p), 9): pe H,ge G} = {(Ip], f(p), 9G,): P H, g€ G}
where
(9Gu)@GH) = 99Gps3; -
2o(co X A X G) = ([r] x B x G)/K where K is a normal subgroup of
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[*] x Bx G. K has the property: if ([r], b, )€ K and ([r], d,7)c K
then b = b if and only if g = g.

We shall identify T with its image 4,(T) and refer to #,(7T)) as
T'. Since B is a compact abelian group and f: H— B is onto a dense
subset of B, we may as well consider them as f and A to avoid extra
notation. We say

T = {(lp, f(0), 9Gr»): e H, g€ G} U ([r] X B x G)/K .

II. Automorphisms on semigroups of the form of S. We first
consider automorphisms of the cylindrical semigroup S given in Defini-
tion 1. M(S), the minimal ideal of S, is = x 4 x G. H(S), the group
of units, is {(0, f(0),9):9€G}. From Theorem A we have that an
automorphism «:S-—S can be thought of as an automorphism on
S’ x H(S).

Consider the situation where G = {¢}. We have S = 8S’, M(S') =
o X A x e and S\M(S’) is isomorphic to H by (p, f(p),e) — p. For
an automorphism a: S — 8, a(M(S')) = M(S'); and, «a restricted to
S\M(S’) corresponds to an automorphism of H. Since the only auto-
morphisms of H are multiplication by a positive real number », we
have a(p, f(p), e) = (\p, f(AD), €).

How shall & behave on M(S")? Let R be the additive group of
real numbers, then f: H— A can be extended to F: R — A (for x ¢ H,
F(x) = f(—2)™ and F(R) will be dense in A. Let afp, f(p),e) =

(»p, f(Ap), ¢). Then:

a(e=, f(p), &) = al(p, f(1), e)(e=, f(0), )
= a(p, 1(p), e)a(=, f(0), e)
= (\p, F(\p), ¢)(>=, £(0), €)
= (oo, f(Ap), ©) .

Define A: F(R) — F(R) by MF(2)) = F(\z). |y M(S') — M(S’) must
be an extension of X. This extension will be called .

Any homomorphism between dense subgroups of compact groups
can be extended to a unique homomorphism between the groups. If
original map is an automorphism then the extension is also. The
existence and unigueness of the extension, as a function, follow from
the fact that the subgroups are uniform spaces and the groups are
completions of them [1]. That the extension is a homomorphism is an
easy consequence of the definition of the extension.

2. LEMMA. Let S'={(p, f(p),e):peH}Uc X Axe If fis
neither one-to-ome mor constant then the only automorphism of S’ s
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the identity. Otherwise, a: S'—S' is an automorphism iff a{p, f(p), €)=
(Ao, f(\p), €), a(eo, a,e) = (oo, \a, ) where FAF ™ is open and conti-
nuous or F is constant.

Proof. If a: 8’— S’ is an automorphism the discussion above shows
that a(p, f(p),e) = O\p, F(AD),e) and a(eo,a,e) = (oo, Na,e). If f is
constant then A = {¢}; S’ is isomorphic to H*; and multiplication by
any ) is an automorphism.

Suppose f is not constant. Consider the map N: F(R) — F(R) given
by MF(x)) = F(ax). If F' is not one-to-one then the kernel of F in
R is cyclic and M R — R must preserve this kernel. This implies 1
is an integer. Since A must also be an integer, we have N = 1.

If F is one-to-one then X is an automorphism of the abstract
group F(R). To be an automorphism of F(R) with the induced topology
from A, M(=F)\F~™') must be open and continuous. The remark im-
mediately preceding this lemma guarantees that X can be extended
to A when it is open and continuous.

Let 4, = {ne4: FAXF™ is open and continuous}.

When G # {¢} we have a: S x H(S)— S x H(S) where H(S) is
isomorphic to G and M(S) = «© x A X G. Since «a(H(S)) = H(S),
(0, £(0), 9) = (0, f(0), &(g)) for some automorphism &: G — G. Hence,
the only possibility for a(ee, f(0), g) = (=, a, h) is when a = f(0).
o restricted to M{S) must therefore have the form a(e,a,g) =
(oo, M, T(@)E{(g)) with N e 4, & as above and 7: A — Z(G) (center of G), a
homomorphism. 7 must be continuous since 7 = @ oao¢ where w, is
the projection onto G, and ¢ is the map A — = x A X G given by
i(a) = (oo, a, e). Similarly 7 must be a homomorphism. Since elements
in o X A X e commute with elements of « X f(0) X G, maps A
into Z(G).

3. THEOREM. Let S be asin Definition 1. a: S— S 1s an auto-
morphism off a{x,a, g) = O\, \a, T(a)é(g)) where ne Adp; Tt A — Z(G) s
o homomorphism and & G— G 18 an automorphism.

Proof. The above discussion establishes the only if part. Let
N, T, & be given as deseribed in the theorem. &: H* x A x G— H* x
A % @ can be defined by a(z, a, 9) = (\x, A, T(@)2(g)). It is immediate
that @ is an abstract automorphism. Since H* x A x G is compact,
we need only that & is continuous. Let U x V x W be a basis open
set. @ U X Vx W) =\N"UxX NV X ENc(WV)™MNEY(W). Since
and ¢ are continuous, MU, NV and &7Y(W) are open. Since G is a
topological group, for any set X, Xé(W) is open. Hence & (U x V'x W)
is open. Let o = &,.
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IiI.  Automorphisms on semigroups of the form of 7. Recall
T={(pl, fp),9Gm):veH, geG}U ([r] x A X G)/x. It is easier to
keep track of the situation by considering cases determined by », G,
and K.

Case (a). Let » < = and G = {e}. Then K = {([r], f(0), e)}.

4, LEMMA. Let T be given by Case (a). The only automorphism
on T 1s the identity.

Proof. Let a be an automorphism of 7.

Suppose p < r. ai[p], F(p), e) = ([q], f(9), e) for some g < r since
a(M(T)) = M(T). First, let us take the case where p = r/n for some
integer n. If p < ¢ then there exists »’ < » such that a([p'], f(»), &)=
([2], f(p), €) and a([np'], f(nD"), &)= ([np], f (D), e)=(Ir], f(r), e) € M(T).
But »p’ < r since np = » and " < p. This means a([np'], f(np'), e) ¢
M(T). We have a contradiction; so p = ¢. If we assume p >g¢q, a
similar contradiction arises from ng < ». So, if p < and p = r/n

then a([p], f(p), e) = (Ip], f(p), e).

For p < », if » # r/n then there exists a sequence, possibly finite,
of integers {n;} such that p = > ,7»/n;. «a is continuous so, again,

a([pl, 7(p), &) = ([p], f(Dp), €)-
allr], £(r), &) = lim e([P], (D), )
= lim ([p], 7(D), &) = ([7], f(r), &) .

p<r
For p >r,p = nr + p where p’ < r. We have:

a([pl, f(p), &) = a([nr], f(nr), a(p'], £(©), e)
= (a[r], f(r), e))"([0'], F (@), ©)
= ([r], £(r), &"([p’], £ (1), &) = (Ip], F(D), €) .

S0 « ig the identity map.
Case (b). Let r =, G, = G, for all p and K = {(co, f(0), e)}.
In this case, T is of the form of S where G = G/G...

Case (c). Let r < oo, Gy, = Gy, for all p and K = {([7], £(0), e)}.
Let G/G[,.] = G.

5. THEOREM. Let T beas in Case (¢). o: T — T is an automor-
phism if a(,a, g) = (v, a, 7(@)&(g)) where t: A — Z(G) is a homomor-
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phism and &: G — G is an automorphism.

Proof. From Lemma 4 we have ) = 1 and the precise arguments
in the proof of Theorem 3 concerning = and & hold here.

Case (d). Let r < oo, Gy % Gy, for [p] # [g] and K = {([7], £(0), )}.

In this case, the description becomes more complicated but is in
fact, no more difficult to prove. The previous cases allowed 7: A— Z(G)
to be defined in M(T) and then used in T\M(T). Here, since G =
G/Gy,, # G/Gy,; for [p] # [r], it is not possible to start by taking =
defined in M(T) to be any homomorphism in Hom (A4, Z(G)). Rather,
we start with a homomorphism A: H— T\M(T) which must also deter-
mine a homomorphism f(H)— Z(G). The latter homomorphism can
then be extended to define z. Without loss of generality, we may
assume Gy, = {e}.

6. THEOREM. Let T be as described for Case (d). Let & G—G
be an automorphism. If r < oo, let &(Gr,) = Gy for all pe H. If
r = oo, let there exist a N€ A, such that &(Gy,) = Gun for all pe H.

Let h: H— T be a homomorphism such that hin) = ([p], f(9), 9Gs)
and

{h(p)(7], f(0), G} S[r] X A X (G/Gin)

represents the graph of a homomorphism f(H) — Z(G/G.).

a: T— T is an automorphism iff a([p], f(p), 9G:,) = BAP){0, £(0), &(9)),
and a([r], e, G, = ([r], M, T(@)&(g)G,) where 7: A — Z(G/G,) is a
homomorphism.

Proof. Let us assume 7 = oo, The proof for » < o follows this
one replacing A by 1 and p by [p]. Let « be given.

Define &: G — G in the usual way by considering a|, . Itis still
the case that (p, f(p), G,) — (\p, F(\p), 9G,). This follows directly
from the top level of the diagram in Theorem A. One can show that
§(G,) = G;, by considering (p, f(p), G,) written as (p, f(p), 9G,) for
g€ G,. Ned, since once again ) must be extended to an automorphism
of A in M(T) (see Theorem 3).

Define

h: H— T by h(p) = a(\'p, F(N'D), Gi-1,)
h is the composition of three homomorphisms
J

A

BB 2.7 %7 where fip) = (p, fp), G) -
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Define Mi(p) = h(Zp). Nk is also a homomorphism but not of the type
specified by the theorem.
Define 7: A — Z(G/G..), as was done in Theorem 3, by considering

@) wxaxe -

Note:

W) (==, f(0), Go) = afe=, F(N'D), G)
= (o0, f(p), 9G) = (o=, f(0), T(f (D)) -

So {h(p)(eo, f(0), G..)} represents the graph of a homomorphism from
f(H) — Z(G/G,). We shall sometimes write z(a) as 7(a)G.. We ob-
serve that {A(p)(ce, £(0), G.)} = (MA(D)(e=, (0}, G.)}, so k and Nk can
be made to determine the same <.

For the converse let & and % be given. & determines M€ d,. \h
determines the graph of a homomorphism since k& does. Define 7(f(p)) =
To(h(AD)(0, f(0), G.,)) where 7, is the projection. 7 can be extended
in the usual way to A.

Define a: T— T by

a(p, f(p), 9G,) = Mu(p)(0, £(0), &(g))
a(e, a, 9G.) = (oo, \a, T(@)&(9)) .

Showing « is an abstract homomorphism is straightforward. One can
prove « is continuous by writing T as the image of S and considering
open sets. This proof is omitted because it is uninteresting and re-
quires complicated notation.

Case (€). Let r = =, G, = G, # G., and K = {{=o, £(0), ¢)}.

This situation is a simple version of Case (d). Since G, = G,, for
all », we no longer have \ determined by & G — G. Any choice of
ne dp will give an automorphism.

Case (f). Let K = {([r], f(0), e)} and K = [r] x A x G. Let T =
{(Ip], 7 @), 9Grw): e H, g e GYU[r] X Ax G and let T ={([p], F(»), 9Gi}
U(r]l x A x G)/K. Let k: T— T be the map which is the identity
on T\M(T) and the quotient map on M(T). Recall: if ([7],a,9)cK
and ([r],a,9)€ K then a=a iff g =g. When r < «, if k() is a
convergent net in 7 such that k{¢,) ¢ M(T) and lim k(¢,) € M(T), then
ty is a convergent net in T. Let 7, (K) = {ac A:([r],q, g) e K for
some geG). Let B be the abstract isomorphism g: 7, (K)— G given
by g = B(a) if ([], @, 9) € K.

7. LEMMA. Let T and T be as above. Let & T — T be charac-



AUTOMORPHISMS ON CYLINDRICAL SEMIGROUPS 101

terized by (A, 7,8 or by (\, h,©& as given in 3,5,6. Let m,(K) and
B be as above. There exists an automorphism o: T — T such that
ak = k& off M.,k is an automorphism and t(a) = Ba)E(B(a)™" for
acrm,(K).

Proof. Suppose @ induces an automorphism « such that ak = ka.
Consider @|,#, as an automorphism on the group M( T). This induces
&l ym on M(T) and for a|,, to be well defined and one-to-one we
must have @(K) = K. For ([r], a, B(a)) € K we have &([r], a, B(a)) =
([r], ra, T(a)é(B(a))) € K. Hence, naerm (K) and B(wa) = t(a)(B(a)).
Since & is also an automorphism v 'a € 7 (K) and A is onto. B(\a) =
T(2)é(8(a)) implies 7(a) = B(M)E(B(@) .

The proof of the converse is straightforward. It is convenient to
consider the continuity of @ on T\M(T) and M(T) separately and then
consider a net converging to M(T).

8. THEOREM. Let T,T and k be as in Lemma T. a: T— T is
an automorphism iff there exists an automorphism & T — T such that
ak = ka.

Proof. Let a:T— T be an automorphism. We consider two
cases: r < « and = . Let r < . We know from Theorems 5
and 6 that & is determined by (&, &) or (§, 7). Constructing % is the
more general situation. An argument similar to that of Theorem 4
establishes that

ak([p], f(0), Gu) = k2], f(D), §G1r) -

Let G = {e} and G = G/Gy,.

Define &: G — G by &g) = m,ak([0], 1, g). Clearly £ is an automor-
phism.

Define h: H— ' by:

h(p) = k~'ak(p], f(D), Gir)) when p <7 ;
h(r) = li;n h(p) ;

WMp) = (Mr))*h(g) when p=mnr+q,q¢<r.

It is immediate that 4 is a homomorphism. Since ak([p], f(p), Gi») =
k(pl, 7 (0), 9Gin), we have also ak([r], a, G,) = k([7], a, 9G(,).

Define 7: A— Z(G) by t(a) = 9G;,; such that ak([r], a, G1) =
k([r], a, 9G;,)). 7 is well-defined since if ([r], a, ¥) € ([7], @, g9) K then
(Ir], f(0),yg™) e K and y = ¢g. It is also immediate that ¢ is an ab-
stract homomorphism. 7(f(p)) = mz(h(p)([r], £(0), €)) so T is continuous
on f(H) and hence on A. Even if & is more efficiently given by (&, 7), h
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can be defined andAthe above will show 7 continuous.
Define a: T — T by (&, h) or (&, 7).

ak([pl, @, 9Gr) = k([p], a, T(@)&(9)Gr) = ka([p], a, 9Gyy) -

So ak = ka.

Now, let » = o and G = G/G... Define £ as before. Either &
determines \ (as in 6); or, define A by checking ak(p, f(p), G,). If
f is not one-to-one then, Ax =1 or A = {1}. If f is one-to-one then »
is one-to-one on f(H) < A and can be extended to \ continuous on A.
Since a' is also an automorphism the above process can be done for
A7 which means A\ is open on A and hence M€ 4,.

Define h: H— T by h(p) = k'ak(\"'p, fF(ND), Go-1,). h is a homo-
morphism since % is an isomorphism.

Define 7(f(p)) = ms(h(p)(==, £(0), G.,)). T is continuous since % and
7wz are, and can be extended to A.

We define & T — T by (A, & k) or (\, &, 7). Again, ak = kQ.

So, for each case, &, an automorphism of 7 inducing &, can be
constructed.

IV. Automorphism groups. This section describes the group
structure of the groups of automorphisms given in ITand III. All groups
discussed here are discrete. Bowman [2] has described the topology
of these groups. Since in each case the group is described as a semi-
direct product of groups of homomorphisms; we give the definition
of semidirect product below.

Let A and B be two groups. Let ¢: A— .o/ (B), the group of
automorphisms of B, be a function such that:

(1) g(a)(g(a)b) = glaa,)(b);
or

(i) g(a)(9(a)b) = 9(a.a)(b). B
A X B is a group with the following multiplication: (a, d)(@, b) =
(a@, b(g(a)b)) when g is of type i; (a, b)(@, b) = (ad@, (9(@)b)b) when g is
of type ii. The semidirect product will be denoted A x,B.

Recall, the operation in .o (G) is composition of functions; in
Hom (A4, Z(@)), multiplication of functions; in 4, multiplication of real
numbers.

We begin with .57 (S) where S is as in Definition 1. We have
from Theorem 8 the correspondence a — (), 7, &) for ac.o7(S). It is
immediate that this correspondence is one-to-one.

9. THEOREM. Let S be as in Definition 1. The automorphism
group of S is isomorphic to

7 (G) X4 (4r %, Hom (4, Z(G)))
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where

9.(M(@) =ToX  (of type ii)
GE)N, T) = (N, Eo7)  (of type Q).

Proof. Showing that the correspondence given by Theorem 3 is
a homomorphism is only a matter of computing oo & where a, & are
in .27(S). The multiplication given by ¢, and g, is as follows:

E (N ONE X, T)) = (E08, (W, (ToN)(EeT)) .

Proceeding to the various forms of T discussed in §III, we have,
in Case (a), o7(T) = {1,;}. In Case (b), T is really of the form of S
so Theorem 9 applies. For Case (c) we have the following.

10. THEOREM. Let T be as in Theorem 5. .57 (T) is isomorphic
to (@) x,Hom (A, Z(®)) where g(€)(t) = Eo7 (of type i).

Proof. In this case T is almost like S. A is forced to be 1. ¢
here corresponds to g, in Theorem 9. (£, )&, T) = (§o&, 7(£0T)).

For T described by Case (d), we construct a group isomorphic to
the desired subgroup of Hom (H, T). Let H = {hcHom (H, T): h is
as in Theorem 6}. H is a group under the following operations. Let
ki) = (Ip], (D), 9:Gip). Define hyxh, by b+ ho(p) = ([p], f(D), 9.9:Gr0)-
This group can be mapped isomorphically into [l,.» (G/G{,;) and & is
given by h(p) = (Ip], f (), h(p)). Let 5~ be the image of H in
H,eu (G/Gy). 57 is an abelian group under coordinate multiplication.

11. THEOREM. Let T and 57 be as above. Let 5, be the sub-
group of o7 (G) satisfying Theorem 6, (5(Gipy = Gupy). Consider € 5,
inducing a map called &: G/Gp,;— G/G ;7 (T) 18 isomorphic to 5, X 97
where g(E)iAL = foho\"! (of type i).

Proof. There are several things to check in this theorem. Again
we will consider » = o as in the proof of Theorem 6. Ehn": H— G/G,
since & is the induced map G/G,~1, — G/G,.

From Theorem 6, we note if «a is given

h(p) = a(Z"'p, F(N D), G))
and
(f(p) = w(a(p, f(p), Go)(==, f(0), G.))
= 7500((}2’(7\’27»(00’ f(o)y Goo)) .

If h is given a(p, f(p), G,)=Nh(p)= h(\p) and =(f(p)) =T.(h(\p)(<=, f(0), G.)).
From this we see the correspondence between « and (&, k) is one-to-one
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and that the construction of = does not depend on which representation
is used.
The multiplication in 5, x ,57 is

(51, ﬁl)(éz; }'Ez) = (51 ° 52, (51)(51 ° ]’22 ° >\'1Hl)) .

We note that ﬁl(éﬁzxﬁ) determines 7 where 7 = (7,0\)(£,07;) which
is exactly the product we expeet to see in «,o,. From here it is
immediate that the correspondence is an isomorphism.

In Case (¢) we replace Z, in Theorem 11 by 5, x 4, where
teH, if §G.) = G.. The automorphism group of 7' is isomorphic to
(8, X Ag) x,57 where g((&, \))h = Ehn"' and ¢ is of type i.

In Case (f) the isomorphism group of T is a subgroup of .oz (7).

V. Examples. The following semigroups can be found in Chapter
D of [3].

12. Example. Let Z be the integers under addition. Let A =
G = a&/Z. Let f: H— A be given by f(p) = p + Z. Then

S={p,p+Z,q+ Z):pcH qeR}U ~ X R|Z X R|Z.

<7 (S) is given by 9. Since f is not one-to-one 4, = {1}. Y (R/Z) =
{—1,1} and Hom (R/Z, R/Z) = Z.

7 (S)={—-1, 1} x,,Z and the multiplication is given by (x, k)(y, n)=
(xy, kb + 2n).

13. Example. Let S be as in 12. Let T be the homomorphic
image of S obtained by letting » = 1 and not changing A or G. 7(7)
is given by 10 and o7 (T) = .7 (S).

14. Example. Let S be as in 12. Let T be the homomorphic
image of S obtained by letting G, = Z for p < «~ and G. =R/Z. T
is described in §1II, Case (e). 7 (T) is given by Theorem 11 and the
comment following it. This is a particularly simple example where
dp={1} and 5, = &5 = & (G). & = Hom (H,R/Z) = R. 57 must
represent homomorphisms #: H— T. It does in this way: h.(p) =
(0,0 + Z,rp + Z).

7 (T)={~-1, 1} xR where multiplication is given by (x, r)(y, s) =
(xy, r + xs).

15, Example. Let S be as in 12. Let T be the homomorphic
image obtained from S by letting K= {(,p + Z,p + Z): pe R}.
The automorphisms of T are given by 7 and 8. They are a subgroup
of .7 (S).
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We examine &7 (S) = {—1,1} X, Z to see which automorphisms
satisfy 7. Let (x,k)e.o7(S). 7 (K)=R/Z and B(p + Z) = p + Z.
k is the homomorphism called ¢ in 7 and 7(a) = B\a)&(B(a))™". We
have k(p + Z)=kp+Z=p+Z —ap+Z. If c=1,kp+ Z= 2
fo=-Lkn+Z=2p+ Z. o (T)=1{Q1,0),(-1,2)} considered as
a subgroup of .7 (S).
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DISTRIBUTING TENSOR PRODUCT OVER
DIRECT PRODUCT

K. R. GOODEARL

This paper is an investigation of conditions on a module
A under which the natural map

A®(HCQ>—9H(A®CA()
is an injection. The investigation leads to a theorem that
a commutative von Neumann regular ring is self-injective if
and only if the natural map
(IF) @ (1IGg) —> I(Fa @ Gg)

is an injection for all collections {F,} and {Gg} of free modules.
An example is constructed of a commutative ring K for which
the natural map

Rl[s]1 ® RI[t]] — RI[s, t]]

is not an injection.

R denotes a ring with unit, and all R-modules are unital. All
tensor products are taken over R.

We state for reference the following theorem of H. Lenzing [2,
Satz 1 and Satz 2}:

THEOREM L. (a) A right R-module A 1is finitely generated if
and only if for any collection {C.} of left R-modules, the natural
map AR IC,— (AR C,) is surjective.

(b) A right R-module A s finitely presented if and only if for
any collection {C,} of left R-modules, the natural map AR IIC,—
II(AQ C,) is an tsomorphism.

THEOREM 1. For any right R-module A, the following conditions

are equivalent:

(a) If {C.} is any collection of flat left R-modules, then the
natural map AR UC,— (AR C,) is an injection.

(b) There is a set X of cardinality at least card (R) such that
the natural map AR RY¥ — A* is an injection.

(e) If B is any finitely generated submodule of A, then the
inclusion B — A factors through a finitely presented module.

Note that condition (¢) always holds when R is right noetherian,
for then all finitely generated submodules of A are finitely presented.

Proof. (b)=(c): If R is finite, then it is right noetherian and
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(c) holds. Thus we may assume that R is infinite.
Let f: F— A be an epimorphism with F, free, and set K = ker f.
There is a finitely generated submodule G of F such that fG = B.
We have a commutative diagram with exact rows as follows
(Diagram I):

KR9RX— o F3RY ARRY — >0
i@ [O o
0 K¥ FX a%X 0
DIAGRAM [

Since G is finitely generated, G* < ¢'(F® R*¥). A short diagram
chase (using the injectivity of ¢”") shows that (G N K)* < ¢(KR R¥).

card (G) < card (R) because R is infinite, hence card (GN K) <
card (X). Thus there is a surjection a+ g, of X onto GN K. The
element g = {g,} in (GN K)* must be the image under ¢ of some
element 2/, @7, + -+« + h, X7, in KX R*. It follows easily that
G N K is contained in the submodule H of K generated by &, «--, h,.
Note that GN H =GN K.

G + H is contained in some finitely generated free submodule F,
of F. The map f induces a monomorphism of G/(G N H) into A, and
this monomorphism factors through the finitely presented module
F,/H. Since fG = B, the inclusion B— A also factors through F,/H.

(¢c) = (a): Consider any x belonging to the kernel of the natural
map ¢: AR IIC,— II(AX C,). There is a finitely generated submodule

B®IIC, A®IIC,
E®]IC,
4 [
ME®C,
¥
1 (B®C,) HA®CY

Diacram II
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B of A such that xis in the image of the map BR IIC,— AR IIC,.
By (c), the inclusion B — A factors through some finitely presented
module FE.

We have a commutative diagram as follows (Diagram II):

¢’ is an isomorphism by Theorem L, and + is a monomorphism
because all the C,’s are flat. Another diagram chase now shows that
x = 0.

COROLLARY. Suppose that R is (von Neumann) regular. For
any right R-module A, the following conditions are equivalent:

(a) If {C.} is any collection of left R-modules, then the natural
map AR IC,— II(AR C,) is an injection.

(b) There is a set X of cardinality ot least card (R) such that
the natural map AR R* — A* is injective.

(e) All finitely generated submodules of A are projective.

Proof. (b) = (c): If B is a finitely generated submodule of A,
then Theorem 1 says that the inclusion B-— A factors through a
finitely presented module E. FE is flat (because R is regular) and
hence is projective. Thus B can be embedded in a projective module.
Since R is semihereditary, B must be projective.

(¢)=(a): All the C,’s are flat (since R is regular), and all finitely
generated submodules of A are finitely presented, so this follows
directly from Theorem 1.

THEOREM 2. Assume that R is a commutative regular ring. Then
the following conditions are equivalent:

(@) If {F.} and {G,} are any collections of free R-modules, then
the natural map (IIF,) Q ([IG) — II(F, X Gs) is an injection.

(b) There is a set X of cardinality at least card (R) such that
the natural map R* @ R* — R*¥™¥ is an injection.

(¢) R is injective as a module over itself.

Proof. (b)=(c): By [1, Theorem 2.1], it suffices to show that
any finitely generated nonsingular R-module B is projective.

[1, Lemma 2.2] says that we can embed B in a finite direct sum
QRQ.P--- PQ., where each Q; is a copy of the maximal quotient ring
Q of R. Then B can be embedded in a direct sum B, & --- D B,,
where B; is a finitely generated R-submodule of @,. Since R is
semihereditary, B will be projective provided each B; is projective.
Thus without loss of generality we may assume that B is an R-
submodule of Q.

Let b, ---, b, generate B. Since R is an essential submodule of
@, there is an essential ideal I of R such that I < R for all 4.
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Since R is commutative, the multiplications by the elements of I
induce homomorphisms of B into B. Together, these homomorphisms
induce a homomorphism f: B— R’. @ is a nonsingular R-module be-
cause it has the nonsingular R-module R as an essential submodule.
Thus no nonzero element of B is annihilated by I; i.e., f: B— Rf
is an injection. Since card (I) < card (R) < card (X), there must
also be an embedding of B into R*.

Since the natural map R* @ R* — (R*)* is injective by (b), the
corollary to Theorem 1 says that all finitely generated submodules
of R* are projective. Thus B must be projective.

(¢)=(a): By [1, Theorem 2.1], all finitely generated nonsingular
R-modules are projective. Since R, is nonsingular, I7F, is non-
singular; thus all finitely generated submodules of IIF, are projective.
By the corollary to Theorem 1, the natural map (IIF,) ® (IIG,) —
II[(ITF,)® G,] is an injection. Likewise, each of the maps (IIF,) R G; —
I (F,® G;) is injective. Thus the map (I/F,) Q (IIG;) — II(F.Q G5)
must be injective.

In particular, Theorem 2 asserts that if R is a countable com-
mutative regular ring which is not self-injective, then the natural
map R* ® R* — R**¥ igs not an injection for any infinite set X. For
example, let F, F,, -.- be a countable sequence of copies of some
countable field F; let B be the subalgebra of IIF, generated by 1
and PF,. R is obviously a countable commutative regular ring.
Since IIF, is a proper essential extension of R, R, is not injective.

If N is the set of natural numbers, then the natural map
R¥® RY — RY*¥ is not an injection. Thus the tensor product of
two one-variable power series rings, R[[s]] ® R[[¢]], is not embedded
in R|[s, t]] by the natural map.
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THE NON-CONJUGACY OF CERTAIN ALGEBRAS
OF OPERATORS

JULIEN HENNEFELD

Let E be a Banach space and B(E') be the space of all
bounded linear operators on E. It was shown by Schatten,
that if E is a conjugate space then B(FE) is isometrically
isomorphic to a conjugate space. The fact that for an ar-
bitrary Banach space, the unit ball of B(E) has extreme
points suggests that B(E) might always be a conjugate space.
In this paper it is proved that if £/ has an unconditional basis
and is not isomorphic to a conjugate space, then B(E) is not
isomorphic to a conjugate space. An even stronger result is
proved.

Furthermore, it is shown that if £ has an unconditional
basis or a complemented subspace with an unconditional basis,
then the space of all compact linear operators on E is not
isomorphic to a conjugate space.

The result of Schatten is proved in [3; p. 4]. It is a theorem
of Kakutani, that the identity of a Banach algebra is an extreme
point of the unit ball. It follows that the invertible elements of
norm one, whose inverses also have norm one, are extreme points of
the unit ball. Hence, one cannot readily invoke the Krein Millman
Theorem to prove non-conjugacy of B(E). For X and E Banach spaces
let B(X, E) denote the space of all bounded linear operators from X
into E.

THEOREM 2.1. (Bessaga-Pelczynski). A conjugate space contains
no complemented subspace isomorphic to ¢,

Proof. See [1; p. 250].

THEOREM 2.2. Let X, E be Banach spaces.

(1) If E has an unconditional bastis {e;} and E is not isomorphic to
a conjugate space, then B(X, E) is not tsomorphic to a conjugate space.

(2) If E has a complemented subspace which is mot isomorphic
to a conjugate space and which has an wnconditional basis, them
B(X, E) ts not isomorphic to a conjugate space.

Proof. (1) Since E is not isomorphic to a conjugate space, the
basis {e;} is not boundedly complete [2; Cor. 12, p. 37]. Since {e;} is
also unconditional, E cannot be weakly sequentially complete and
hence has a subspace isomorphic to ¢, by [2; Thm. 5, p. 39 and Thm.
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6, p. 71]. Then since FE is separable this subspace isomorphic to ¢,
must be complemented [2; p. 92].

Let @ be a projection from K onto M, the subspace of FE iso-
morphic to ¢, Fix z,€ X. Let R be a projection from X to [z].
Define . &: B(X, E) — B(X, E) by T = QTR for each Te B(X, E).
Then A (P T) = QQTRR = QTR and hence & is a bounded projec-
tion. The map which sends T onto & Tx, for each Te B(X, E)
is a one-to-one, bounded map from the image of & onto M,. Hence
B(X, E) has a complemented subspace isomorphic to ¢,, and by Theorem
2.1 B(X, E) cannot be isomorphic to a conjugate space.

(2) FE still has a complemented subspace isomorphic to c,.

THEOREM 2.3. Let E have an wunconditional basis {e;}. Then
& (K), the space of compact linear operators from E to E, is not
wsomorphic to a conjugate space.

Proof. The map which sends a compact operator A onto the
operator whose matrix with respect to {e;} consists of the diagonal
of the matrix of A4, is a bounded projection from % (E) onto a sub-
space isomorphic to ¢, [4; p. 493]. Then apply Theorem 2.1.

COROLLARY 2.3. Let E have a complemented subspace M with
an unconditional basis. Then & (E) 1s not isomorphic to a conjugate
space.

Proof. Let Q: E— M be a bounded projection. Define .&7: € (E)—
& (E) by A = QAQ for each Aec & (E). Then & is a projection
onto a subspace isomorphic to & (M). Since & (M) has a comple-
mented subspace isomorphic to ¢, so does & (H).

REMARK. It is an open question whether a separable Banach
space has a complemented subspace with an unconditional basis. It
is a reasonable conjecture that for any separable Banach space E, & (F)
is not isomorphic to a conjugate space.

The author wishes to thank the referee of a previous paper for
calling his attention to the Bessaga-Pelczynski Theorem.
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THE NONSTANDARD HULLS OF A UNIFORM SPACE

C. WARD HENSON

Let (X, Z/) be a uniform space in some set theoretical struc-
ture .#Z and let *X be the set corresponding to X in an
enlargement *.#Z of .. In this paper a set of %/ -finite
elements of *X is defined and this set is used to define a non-
standard hull of (X, Z/). The main result is that, with some
specific exceptions depending on the existence of measurable
cardinal numbers, this nonstandard hull is the same as the
smallest of the nonstandard hulls defined by Luxemburg.
This result is used in giving a characterization of subsets of
X on which every uniformly continuous, real valued function
is bounded. Also, two examples are given to illustrate the
possible structure of the nonstandard hulls.

The nonstandard hulls defined by Luxemburg [4] are obtained
from sets F' of “finite” elements of *X which may be written in the
form

F ={p|pe*X and *f(p) is finite for all f in &}

where & is a set of uniformly continuous, real valued functions on
(X, Z’). The concept of finiteness introduced in this paper is entirely
different. An element p of *X is Z/-finite if, for each A in % there
is a sequence q,, + -+, ¢, in *X which satisfies the conditions (i) ¢, = p,
(i) ¢, = *x for some # in X, and (iii) for each y =0, ..., » — 1 the
pairs (¢;, ¢;+,) and (g;.i, ¢;) are both in *A.

Our main result is that the set of Z/-finite elements of *X is
equal to the set

{p|pe*X and *f(p) is finite for every uniformly continuous,
real valued function f on (X, %)}

if and only if it is impossible to partition X into a measurable cardinal
number of subsets {X,|ac I} which are “uniformly open” in the sense
that there is an A in % such that

xe X, implies {y|(y,x)e A} C X,

for every a in I. In particular, these two sets of finite elements of
*X are equal whenever the number of topologically connected com-
ponents of (X, %) is smaller than every measurable cardinal number.

This result is used in giving a characterization of those subsets
Y of X such that every uniformly continuous, real valued function
on (X, %) is bounded on Y, generalizing a Theorem of Atsuji [2].
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Also, two examples are presented which illustrate the possible struc-
ture of the nonstandard hulls defined using the set of Z/-finite ele-
ments of *X. These examples are based on ideas due to L. C. Moore,
to whom the author is grateful for many helpful conversations on the
subject of this paper.

1. Throughout this paper _# denotes a set theoretical structure
and *_# denotes an enlargement of _#. (The image of an element
x of _# under the embedding into *_# is denoted by *x.) Whether
# and *_# are taken to be structures for type theory (as in [4]
and [6]) or to be structures for the e-language of ordinary set theory
(as in [5] and [7]) is a matter of taste. Most references in this paper
will be to [4], although the concepts and results in [4] can easily be
set in the frameworks of nonstandard analysis described in [5] and
[7].

As is usual, it is assumed here that the set N of positive integers
and the set R of real number are elements of _#, and that the
embedding % +— *z is the identity on R (and thus also on N.) The
extensions to *R of the operations + and . on R, as well as of the
ordering < on R, will be denoted by the same symbols. In general
the embedding © —— *x is not the identity on sets in _#. Given an
element A of _# it is convenient to introduce the notation *[A] for
the set of standard elements of *A; that is,

*[A] = {*a]ac A} .

In dealing with uniform spaces there are certain useful operations
on subsets of a cartesian product C x C. If A and B are subsets of
C x C, recall that A-B and A~ are defined by

AoB = {(x, 2)| for some v, (xz,y)€ A and (y, 2) € B}
A7 ={@, 9y, ») e A}.
The set A" is defined recursively for » = 1 by:
A=A, A" = A"A.
Also, given an element x of C, the set A(x) is defined by
A@) = {yl(y, x) e A} .

Note that if A, B and C are elements of _# then *4 and *B are
subsets of *C x *C (= *(C x C).) Moreover, the following equalities
hold:

*(AoB) = (*A)°(*B)

*(A—-!.) — (*A)-—l
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(A = (4
“(A@) = CA(C2)

(where x€C and n = 1.)

Throughout this paper (X, %) denotes a uniform space which is
an element of _/. The set of all uniformly continuous, real valued
functions on (X, %) is denoted by C(X, Z). It is assumed that the
reader is familiar with certain parts of the nonstandard theory of
uniform spaces, as presented in [4] or [5]. In particular, recall that
the monad of the filter % (that is, the intersection of the family
*[Z] of subsets of *X x *X) is an equivalence relation on *X. The
equivalence class of p is denoted by x(p), for each p in *X.

The collection *[Z/] generates a filter on *X x *X which will be
denoted by Z. A simple, direct argument can be used to show that
7 is a uniform structure on *X and that the mapping & +H—— *x is
a uniform space embedding of (X, %) into (*X, 7;). Alternately, let
Z be any set of bounded semimetrics on X which defines 2. (o(x, )
is a semimetric on X if p is nonnegative, symmetric, satisfies the
triangle inequality and o(x,2) = 0 for any 2 in X.) For each p in
7 a function 0 may be defined on *X x *X by

o(p, @) = st (*o{p, 9)) -

(Here “st” is the standard part operation on finite elements of *R.)
Then 0 is a semimetric on *X. For each pc.2Z and ¢ > 0 in R, let

Then the collection {A(pe, d)|0ec .2, 0 > 0} generates %~ so that the
collection {*A(p, d)|pe &, 6 > 0} generates 7. But

*A(p, 0) < {(p, @) | 0(p, q) = 0}
and

{(p, 9 10(p, @) < 6} < *A(p, d) .

Therefore %7 is the uniformity on *X defined by the set {0|pe .7}
of semimetrics on *X.

Let X, = {¢(p)|pe *X} and let %/, be the quotient uniformity on
X, induced by 7. Denote the quotient mapping from (*X, Z;) onto
(Xy, %,) by w. The previous remarks show that (X,, %) is the non-
standard hull for (X, %) constructed in [4] using any set .22 of
bounded semimetrics which defines Z7. (See also p. 56 of [5], where
(X,, #,) is constructed and called T,.)

The definition of % makes it clear that w(p) = p(g) if and only
if » and ¢ have exactly the same neighborhoods in the ?;-topology
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on *X. Thus 7 is not only uniformly continuous, but also z(*A)
(which equals {(¢(p), t(@)) |(p, @) € *A} by definition) is in %, whenever
Aisin %. Therefore 7 is an open mapping. Moreover, any net in
*X which is mapped by 7 onto a Cauchy net (convergent net) in (X,, %)
is a Cauchy net (convergent net) in (*X, ?}). If the Z/-topology on
X is Hausdorff, then the map taking z to x(x) is a uniform space
embedding of (X, z) into (X,, %,). (Otherwise it simply identifies
those pairs of points which have exactly the same neighborhoods in
the Z/-topology.)

Constructing “nonstandard hulls” of (X, %) in general involves
two distinet steps: (i) the identification of a set F' of “finite” elements
of *X, and (ii) the construction of a uniformity on F (and then on
the set {¢(p)|p € F} by a quotient operation.) There are many dif-
ferent useful concepts of “finiteness” for elements of *X, each one
motivated by considerations depending on the kind of mathematical
structure which X is assumed to carry. However there seems to be
only one natural way to carry out step (ii)—by putting on F the
uniformity obtained by restriction from Z%. In that case, the non-
standard hull constructed using F is just the subspace 7w(F) of
(X,, %5)-

For example, let . be any set of semimetrics which defines Z.
In defining a nonstandard hull using &4 Luxemburg [4] takes F to
be the set

{p|*o{p, *z) is finite if x e X and pe &}.

The uniformity put on F is the one defined by a set {¢'|pe &} of
semimetrics on F, where

0'(p, 9) = st (*o(p, 9))

for each p in % and p,q in F. If &2 isthe set {min(0,1)|pe &},
then .27 also defines %. Moreover, the uniformity defined on ¥ by
the set {0|p e .22} is easily seen to be the same as the one defined on
F by {0|pe.&”}. That is, this uniformity is just the restriction of
Z to F.

In this paper an entirely different concept of “finiteness” for ele-
ments of *X is introduced. It is based on the intuitive idea that a
point is “finitely far away” from a set if there is a finite chain of
small steps from the point to (some element of) the set, no matter
how small the steps are required to be. Thus an element of *X is
taken to be finite if it is “finitely far away” from *[X], relative to
the uniform space (*X, “Z/). (See Definition 1.2)

DErFINITION 1.1. Let (Y, 7") be any uniform space.
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(i) If Ae7 and z,yec X, then an A-chain from x to y is a
finite sequence ,, +--, 2, in Y which satisfies: «, = 2, #, = ¥ and, for
each 1 =0,+-+, 2 —1, (;,2,.,)€AN A" (The number of steps for
such an A-chain is n.)

(ii) If x,yc Y, then x =,y if and only if there is an A-chain
from « to v.

(i) If #,ye Y, then x =, y if and only if =z =,y for every A
in 77

I

If A isin ¥7; then AN A~ is symmetric and contains the diagonal
of Y x Y, so that =, is an equivalence relation on Y. Therefore =..
is also an equivalence relation on Y. The latter relation can be cal-
culated from any collection .2 which generates 7 as a filter on
Y x Y, in the sense that

r=,y——ux =,y for every Ac.=7.

Also, observe that if A is in </, then the equivalence classes under
=, are both open and closed in the 7 -topology on Y.

Definition 1.1 will be applied to both of the uniform spaces
(X, %) and (*X, ‘Zj/) Since *[Z/] generates 7 as a filter on *X x *X,
it follows that for each p,qge*X

p=yq—p=.,q for every Aec 2.

Note that for each Ae Z, *(=,) is also an equivalence relation
on *X, and in general it will not be the same relation as =.,. Indeed,
p and q are in the same *(=,) equivalence class if there is a *-finite
sequence (hence an internal element of *_#) q,, +++,q, in *X which
satisfies: ¢, = », ¢, = ¢ and (q;, ¢;») € *(A N A7) for every 1 =0, +--,
w — 1. Such a *-finite sequence may exist without any such finite
sequence existing: in that case p =.,q would be false.

DEFINITION 1.2. An element p of *X is Z/-finite if, for each
A€ 7/, there exists an ¢ in X which satisfies p =., *x.
The set of Z/-finite elements of *X will be denoted by fin. (*X).

It is clear that if p is Z-finite, then every element of p(p) is
also Zr-finite. In the language of [4], this says that fin, (*X) is
p-saturated. Also the condition p efin, (*X) is equivalent to a con-
dition on the ultrafilter {Y|Yc X and pe*Y} determined by p.
Namely, p is Z/-finite if and only if for each A € Z there exist e X
and % =1 such that pe (*4A)"(*x) = *(A"(x)). Therefore, if p is Z/-
finite then each element of the monad of the ultrafilter {Y|Yc X
and pe*Y} is also Z-finite. In the language of [4] this says that
fin, (*X) is p,-saturated.
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If o is any semimetric on X which defines a weaker uniformity
than %, and a € X, then the function f(x) = p(x, @) is Z-uniformly
continuous (since [o(x, a) — o(y, a)| = p(x, y).) Thus the sets F of
finite elements of *X considered in [4] are all of the form

F = {p|*f(p) is finite for every fe .7}

where % is a set of Z~uniformly continuous, real valued functions
on X. The next result shows that each of these sets has fin, (*X)
as a subset.

THEOREM 1.38. If feC(X,Z) and pecfin,(*X) then *f(p) is
finite.

Proof. Since f is uniformly continuous, there exists 4 in Z
which satisfies

@, ped— [flo)y -y =1.

Since p is Z-finite, there is a *A-chain ¢,, +-., ¢, from p to *z, for
some z in X. Therefore

() = )| = T1*A) — Mg |

=n.

It follows that *f(p) must be finite.

THEOREM 1.4. fin, (*X) 4s closed in the ”;/-topology on *X, and
pns, (*X) C fin,, (* X).

Proof. For each A in % the set
{p|p =., *x for some z¢ X}

is a disjoint union of =., equivalence classes, each of which is open
and closed in the %—topology on *X. It follows that this set is, it-
self, open and closed in that topology. Finally, fin, (*X) is an inter-
section of such sets, so that it must be a closed set.

That pns, (*X) is a subset of fin, (*X) follows immediately, using
the obvious fact that *[X] is a subset of fin, (*X) and using Theorem
3.15.2 of [4]. (This Theorem implies that pns., (*X) is the closure
of *[X] in the ‘Z/—topology on *X. The extra assumptions on *_#
made in [4] are not needed for this result. See also Theorem 7.5.3
of [5].)

Let £ be an uncountable cardinal number which is strictly larger
than the cardinality of some filter basis for Zr. It is well known that
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there must be a set <# of bounded semimetrics which defines Z and
which has cardinality less than £. Theorem 3.15.1 of [4] implies that
if *_ is k-saturated, then (X, %) is a complete uniform space.
(Theorem 3.15.1 has the added assumption that *_.Z is an ultrapower
of _/, but this is not necessary. It may be removed by noting that
the completeness of (X;, %, can be proved by considering only Cauchy
nets over index sets of cardinality less than &, and then using Theo-
rem 1.8.3.)

Therefore when *_.7 is k-saturated the uniform space (*X, /N/)
is also complete. By Theorem 1.4 this implies that the restriction of
7 to fin,, (*X) defines a complete uniform space. It should also be
noted that each set of the form {p|*f{p) is finite if fe .7 } is closed
in the ‘Zfﬂ;’—topology when & is a subset of C(X, %). Therefore each
of the nonstandard hulls of [4] is a complete uniform space when *_~7
is k-saturated, even when & may have cardinality = k.

2. This section is concerned with the relationship between
fin, (*X) and the set

F, = {p|*f(p) is finite for all fe C(X, %)} .

As argued in §1, n(F,) is the smallest of the nonstandard hulls of
(X, %) constructed in {4]. By Theorem 1.3, fin, (*X) is a subset of
Fi. In fact, the two sets are equal, except in certain circumstances
depending on the existence of measurable cardinal numbers. (Corollary
2.5) The principal tool in proving this is the following result.

LEMMA 2.1. If A is in % and x =,y for all x,ye X, then
there 1s a semimetric 0 on X which satisfies

(1) the uniformity defined by o contains A and is weaker than
2, and

(ii) for each p,qe*X,

P=., q— *0(p, q) ts finite .

Proof. The proof uses a modification of a construction given in
[3]. Let A be in 2 and suppose x =,y holds for all z,ye X. It
may be assumed that A is symmetric (replacing A by AN A if
necessary.) Let Z be the set of all the integers. Select a sequence
{4,]neZ} of symmetric sets in & as follows: (i) 4, = A, (ii) for
% > 0 define A, inductively by

A, = (4,.),
(iii) for n < 0 select A, inductively so that
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(4. < Apsr
Then {A,|ne Z} is a chain of sets in %, and it satisfies
(2.1) (A c A,., forall neZ.
Moreover, since % = 0 implies 4, = (4%”, it follows that
(2.2) U{d,lmeZ}= U{4"|n = 1}.

The assumption that © =,y holds for every z, ¥y € X means that
the right side of (2.2) is equal to X x X. Therefore a function g on
X x X may be defined by

2" if (x,y)ed,~ A,
99 =10 it .y ed foral neZ.
In particular, for n = 0
9(z, ) 2" —— (v, y) e A" (= 4,) .

Passing this to *_/, it follows that for any p,qge*X and ne N

*9(p, @) = 2" —— (p, @) € (*4)" .
Therefore, if p,qe *X, then

*9(p, q) is finite —— p =.,q .

The desired semimetric p is then defined from g by
n-—1
o{x, y) = inf {Z g(®;, %0 1) | %, + -+, 2, 18 & sequence
i=0
in X, x, =« and xn:y}.

(That o is nonnegative, symmetric and satisfies p{x, ) = 0 for all «
in X follows from the fact that the function g has the same properties.
That p satisfies the triangle inequality is equally obvious.) The
fundamental fact about p is the inequality

(2.3) o, y) = 9@, y) = 20(x, y)

which holds for all z, ye X. The first inequality follows immediately
from the definition. The second is proved by showing that if x,, -+ -, @,
is a sequence in X,

(2.4) 9@, 3.) = 2+ 3 9@, 0i1) -

The proof of (2.4) is by induction on %, using (2.1). The details are
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like those in the proof of Theorem 6.7 in [3], and they will be omitted.
Passing the inequality (2.3) to *_#, it follows that *o(p,q) is
finite exactly when *g(z, y) is finite. Therefore, for any p,ge*X

P =.,q— *o{(p, q) is finite .

It thus remains only to show that o satisfies (ij. The definition of
g implies that A = {(z, ¥}|g(z, ¥) £ 1}, and by equation (2.3) it follows
that A contains the set {(z, v)|p(x, v) < 1/2}. This shows that A is
in the uniformity defined by o. Finally, for each ne Z

A, ={, 9ok, ) = 27 C{, ylolw, y) =27 .

This shows that the uniformity defined by o is weaker than %/, and
completes the proof.

Throughout the rest of this section let .2~ denote the set of all
cardinal numbers £ which support @w-complete, free ultrafilters. It is
well known that if .25 is nonempty, then the smallest member &, of
2 is actually measurable. (In fact, every w-complete ultrafilter on
£, i1s < k,-complete.) Moreover, in that case the class .27 consists
exactly of the cardinal numbers >k, (There does not seem to be any
accepted term designating the members of 27 Some authors call
them “measurable” but this does not agree with current terminology
in set theory.)

Given a set I in .2 and an element p of *I, let Fil{p) denote
the ultrafilter {J|J <1 and pe*J} on I determined by p. (Fil,(p)
will be used for Fil{p) if necessary to avoid confusion.) Recall that
Fil(p) is a free ultrafilter if and only if p is not standard.

LEMMA 2.2. For each pe*I, Fil(p) is w-complete if and only if
*f(p) is finite for every veal valued function f on I.

Proof. Given any real valued function f on I and n = 1, define
A, (f) ={z|ecel and [f)| = n} .

Then {A,(f)|n =1} is a decreasing chain of subsets of I and the
intersection of the chain is empty.

If pe*I and there exists a real valued function f on I such that
*f(p) is infinite, then p e *A,(f) for every n = 1. That is,

{4 e =1}

is contained in Fil(p). This shows that Fil(p) is not w-complete.
Conversely, suppose Fil{p) is not w-complete. Then there exists
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a decreasing chain {A4,]n = 1} in Fil(p) whose intersection is empty.
It may be assumed that A, = I. Thus a real valued function f may
be defined on I by

S@) = max{n|zcA.}.

Evidently A4,(f) = A, for each » = 1. The assumption that pe*(4,)
for all » = 1 implies that [*fip)| = = for all » = 1. That is, *f(n)
is infinite.

Let < be the discrete uniformity on X (that is, <& is the prin-
cipal filter on X x X generated by the diagonal set.) Clearly C{X, &)
is the set of all real valued functions on X and fin.(*X) = *[X].
Thus Lemma 2.2 says that

fin. (*X) = {p|*f(p) is finite if fC(X, 2))

if and only if the cardinality of X is not in .27
The next results describe completely the conditions under which
an element of F, is not “Z“finite.

THEOREM 2.3. If pe*X is not z/-finite but *f(p) is fiwite for
every f e C(X, %), then there exists an element A of Z which satisfies

Y e Fily(p) — the number of =, equivalence classes which
intersect 'Y is in 7.

Proof. Assume that pe*X is not Zfinite, and that *f(p) is
finite whenever f e C(X, 7). There exists a symmetric element A of
77 such that p =.,*x is false for every xe X. Let {X,|lacl} be a
one-to-one enumeration of the =, equivalence classes, and let a func-
tion ¢ from X to I be defined by

>pe X, .

Xy = a —

It will be shown first that *¢(p) is not a standard element of *I.
If otherwise, there exists a €l which satisfies *a = *¢{p), and hence
pe*(X,). Let A, equal AN (X, x X,) and let 2, be the uniformity
obtained by restricting 9% to X,. Sinece X, is an =, equivalence
class, « =, y holds for every =,y < X,. By Lemma 2.1 there exists
a semimetric 0 on X, which satisfies (i) the uniformity defined by
0 on X, contains A, and is weaker than 7, and (ii) for any #,se¢
(Xa),

7 =8 — “o{r,s) is finite .

Since X, is an =, equivalence class, » =., s is equivalent to » =, , s,
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for elements 7, s of *(X,). Thus (ii) implies
(ii") for any 7, se *(X,),

* =.,8—— *p(r, s) is finite .
Let 2z, be a fixed element of X, and define a function 2 on X by

0 if g
ha) = e,
oz, ) if xelX,.

Given 6 > 0, there exists an element B, of %, which satisfies
((U, y)eBa___’lo(x: y) < 5

by (i) above. This implies that B, contains a set of the form
BN (X, x X,), where B is in %/, and it may be assumed that Bc A.
If (x,y) € B, then either  and y are both outside X,, and A(x) =
hy) = 0, or (%, y)€ B,. In the latter case

[h(@) — W) | = [0(x,, ) — @, »}| = pl@,¥) < 9.

Therefore, % is an element of C(X, %’). This implies that *h(p) is
finite. However, since pe*(X,), *i(p) = *o(*»,, p). Thus, by (ii’)
above, p =.,*x, which is a contradiction. This shows that *c(p) is
not a standard element of *I.

Now let Y be any subset of X which satisfies pe*Y, and let
J =¢(Y). It must be shown that there exists an w-complete, free
ultrafilter on J. If not, then the ultrafilter Fil(*¢(p)) is not w-complete.
(It is free since *c¢(p) is not standard.) In that case, by Lemma 2.2
there exists a real valued function f on .J such that *f(*c¢(p)) is
infinite. Define a function ¢ on X by

0 if cx)ed
g(@) = .
Sfle()) if e@)ed.
If (®, y) e A, then x=,y and hence ¢(x) = ¢(y). This implies that g
is in C(X, ). But *g(p) = *f(*c¢(p)), so that *g(p) is infinite. This
contradiction shows that Fil,(*¢(p)) is an w-complete, free ultrafilter
on J, and completes the proof.

THEOREM 2.4. If Y C X and the number of =, equivalence classes
which itntersect Y is in 5%, for some A in %7, then there exists an
element p of *Y which is not Z/-finite but which satisfies: *f(p) is
finite for every f e C(X, Z).

Proof. Given Ae % and Y C X as stated, there is a subset W
of Y which has one element in common with each =, equivalence
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class which intersects Y. Moreover, there exists an w-complete,
free ultrafilter on W. Since *_~Z is an enlargement of _# this
means that there is an element p of *W which is not standard and
such that Fil,(p) is w-complete. By Lemma 2.2, *f(p) is finite for
every real valued function f on W, hence for every f in C(X, %).
It thus suffices to show that p =.,*x is false for every z in X.
Otherwise, there exist x€ X and n =1 which satisfy (p, *z)e *B~,
where B is AN A™'. Since pe*W it follows that for some we W,
(w, x) € B*. Therefore (p, *w)e (*B)*. But since p is not standard,
this implies that there exists w’'e€ W such that w’ is distinet from
w and (w', w)e B*™. That is, w' =, w and hence W has two elements
from the same =, equivalence class. This contradiction proves that
P has the desired properties.

COROLLARY 2.5. The equality
fin,(*X) = {p|*f(p) is finite for all f e C{X, %)}

holds if and ownly if the number of =, equivalence classes is not in
%" for every A€ %

In cases where the cardinality assumption of Corollary 2.5 holds
(in particular, if there is no w-complete, free ultrafilter on X) then the
smallest nonstandard hull constructed in [4] is also the subspace
w(fin,(*X)) of (X,, %,). This fact is helpful in determining the ele-
ments of this nonstandard hull, since it is usually easier to show that
¢(p) is an element by showing that p is Z~finite, and to show that
¢(p) is not an element by exhibiting a function f in C(X, %) such
that *f(p) is infinite. (See the examples in §4.)

3. Atsuji [2] has given a condition on (X, %) which is equivalent
to the statement that every function in C(X, %) is bounded, and
which is closely related to the concepts discussed above. In this
section a nonstandard proof is given of a natural generalization of
Atsuji’s Theorem. (The ideas used in proving this Theorem are also
used in §4.)

DEFINITION 3.1. A subset Y of X is finitely chainable in (X, %)
if, for each A € Z, there exist y,, ++-, ¥, in Y and # = 1 which satisfy

YT A (y) U -+ U AYy,) .

The uniform space (X, %) is finitely chainable [2] if X is finitely
chainable in (X, %).

THEOREM 3.2. For any subset Y of X, Y is finitely chainable in
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(X, %) if and only if *Y C fin,(*X).

Proof. Suppose Y is finitely chainable in (X, ). Given A€ %,
there exist ¥, +++, ¥, in Y and n = 1 which satisfy

YT AYy) U --- U A™w,) .

If follows that *Y < (*4A)*(*y) U +-+ U (*4A)"(*y). If A is symmetric,
this implies that each element of *Y is in the same =., equivalence
class with one of the elements *y,, ---, *y,. Therefore *Y is contained
in fin,(*X).

Conversely, suppose Y is not finitely chainable in (X, Z). Thus
there exists a symmetric set 4 in % such that for any # =1 and
Yy, +++, Y € Y, the union A*(y) U --+ U A*(y,) does not contain Y. For
each y€ Y and n = 1 define

Sn,y) = {x|jxeY and 2xz¢ ANy)}.

The assumptions on Y imply that the collection {S(%, y)} has the finite
intersection property. Since *_.# is an enlargement, there exists
pe*Y which satisfies p e *S(n, y) for every y€ Y and n = 1.

It will be shown that p is not #-finite, thus showing that *Y
is not contained in fin,(*X). Otherwise there exist xe X and n =1
which satisfy (p, *x) € (*4)". This implies that there exists y in Y N
A™(x), and therefore pe A™(y). That is, p¢*S(@2n,y), which is a
contradiction.

The following result generalizes the theorem due to Atsuji [2]
which states that (X, %) is finitely chainable if and only if every
function in C(X, %) is bounded.

THEOREM 3.3. For any subset Y of X, Y 4s finitely chainable in
(X, ) if and only if every function in C(X, Z) is bounded on Y.

Proof. If Y is finitely chainable in (X, %), then by Theorem 3.2
*Y c fin,(*X). For any function f in C(X, %), this implies that
*Y < {p|*f(p) is finite} by Theorem 1.3. Therefore the set

{I"f(p)|lpe*Y},

which is internal, has a finite upper bound M in R. But this implies
that f is bounded by M on Y. That is, each member of C(X, %) is
bounded on Y.

Conversely, suppose each function in C(X, %) is bounded on Y.
To show that Y is finitely chainable in (X, %) it suffices to prove
*Y c fin,(*X), by Theorem 3.2. If not, then by Theorem 2.3 there
must exist an element A of % such that the number of =, equivalence
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classes which intersect Y isin .2#7 In particular there are countably
many (distinet) =, equivalence classes X, --., X,, ---, each of which
intersects Y. The function f defined on X by

n if xzeX,
Sw) = .
0 if zeX,, alln=>1

is therefore unbounded on Y. However, f is constant on =, equiva-
lence classes, and thus f is in C(X, %’). This is a contradiction, and
completes the proof.

REMARK. Theorem 3.2 allows us to say exactly when there is
a single function f in C(X, %) which satisfies

fin,(*X) = {p|*f(p) is finite} .

Namely, this equality holds if and only if the sets {x||f(®)| < =} (for
n = 1) are all finitely chainable in (X, %’). (The equality holds if
and only if {p||*f(p)| < n} C fin,(*X) for all » =1 (by Theorem 1.3)
if and only if {z||f(x)] < n} is finitely chainable in (X, %) for all
% =1 (by Theorem 3.2).)

In particular, if Z- is the uniformity defined by some metric o
on X, then the equality

fin, (*X) = {p[*0o(p, *x) is finite}
holds for some (or, equivalently, every) « in X, if and only if

{yloly, ») < n}

is finitely chainable in (X, %) for every » = 1.

4, Given a metric 0 on X, Robinson [6] says that p and ¢ are
in the same galawy of *X if *o(p, q) is finite. Generalizing this idea
Luxemburg [4] defines » and ¢ to be in the same galaxy relative to
a set .&” of semimetrics on X if *o(p, q) is finite for every o in 4
The following definition of the Z/-galawxies of *X arises naturally from
the considerations which led to Definition 1.2.

DEFINITION 4.1. If p,qe*X, then p and q are in the same Z/-
galaxy if p =2 q.

THEOREM 4.2. If p and q are in the same Z/-galaxy and 0 s
any semimetric on X which defines a uniformity weaker than %,

them *o(p, q) is finite.

Proof. Since p defines a uniformity weaker than Z7 there exists
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A € Z7 which satisfies
(@, yed—pk,y) =1.

Since p and q are in the same Z-galaxy, there is a * A-chain q,, «+-, q.
from p to q. Using the triangle inequality for *p yields

0, Q) = 3 70(g, Giv) S
Therefore *o(p, q) is finite.

DEFINITION 4.3. A subset Y of X is chain connected in (X, Z)
if =,y for every x,y€ Y. The uniform space (X, %) is chain
connected if X is chain connected in (X, %).

THEOREM 4.4. Let &7 be the set of all semimetrics which define
weaker uniformities than Z and suppose that Y is chain connected
wm (X, Z). Then for every p,qe*Y:p and q are in the same Z-
galaxy if and only if *o(p, q) is finite for every p in X

Proof. Let Y and .&” be as stated and assume p,qge*Y. The
implication in one direction is contained in Theorem 4.2. Conversely,
suppose that *o(p, q) is finite for all p in &% To prove that p and
q are in the same Z/-galaxy it is necessary to show that p =.,q for
every symmetric set A in Z/. Given such an A, the fact that Y is
chain connected in (X, %) means that there is an =, equivalence class
W which contains Y. Let 4, = AN (W x W) and let % be the re-
striction of % to W. As in the proof of Theorem 2.3, an application
of Lemma 2.1 yields a semimetric 0 on W which satisfies (i) the uni-
formity defined by o on W is weaker than %, and (ii) for any », s€
*W, r =.,8 if and only if *o(r, s) is finite.

Select w, in W and let f be the function defined on X by

x if zeW.
Then f is constant on =, equivalence classes so that f is uniformly

continuous as a map from (X, %) to (W, Zw). It follows that the
semimetric o’ defined on X by

o', y) = o(f(@), f())

defines a weaker uniformity on X than %. By assumption, this
means that *0'(p, q) = *0(p, q) is finite. Therefore p =.,q by (ii)
above, completing the proof.

COROLLARY 4.5. If (X, Z) is chain conmected and & is the set
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of all semimetrics which define weaker uniformities on X than %,
then the Z/-galaxies form the same partition of *X as do the galaxies
determined by S~

REMARK. As was noted above, if A4 is in %, then each =, equiva-
lence class is open and closed in the Z/-topology on X. Therefore if
X is connected in the Z~topology, then (X, %) must be chain con-
nected. Applying the same reasoning to the uniform space (*X, ??)
shows that any subset of *X which is connected in the ?’?—topology
must be entirely contained in one Z/-galaxy.

THEOREM 4.6. If (X, %) is chain connected, then the following
conditions are equivalent:

(1) There is a semimetric 0 which defines a uniformity weaker
than 77 and which satisfies: p and q are in the same Z/-galazy in
*X if and only if *o(p, q) is finite:

(ii) There is an element A, of Z which satisfies:
for each AeZ there is an n =1 such that A, C A"

Proof. (i) — (ii): Let o be as in (i) and define
A = {(=, w)| oz, y) <1}

as that A, is in 2. If A, does not satisfy (ii), then there is an ele-
ment A of 2 such that for no n =1 does A" contain A,. That is,
for each 7 = 1 there exists a pair z,, ¥, of elements X which satisfy
o, ¥,) =1 and (%,,y,) ¢ A". Let w be an infinite member of *N.
Then *o(*x,, *y,) <1, so that by (i) there is a *A-chain ¢, ---, ¢,
from *x, to *y,. That is, (*z,, *y,) is an element of (*A)" = *(4").
But since @ is not standard, this means that (x,, v.) € A" holds for
infinitely many values of & in N. This contradicts the choice of the
pairs (x,, ¥,) and proves that A, satisfies (ii).

(ii) — (i): Assume that A, satisfies (i1). Then for each A in %,
*A4,c *A" (for some 7 depending on A.) Therefore p =.,, ¢ implies
» =.,q, for every p,ge*X and every AcZ/. Thus the =., equiva-
lence classes and the %/-galaxies are exactly the same. The existence
of the semimetric required in (i) now follows, using Lemma 2.1 and
the fact that (X, %) is chain connected.

REMARK. Suppose (X, %) is chain connected and % is defined by
a metric p,. If (X, %) satisfies the conditions in Theorem 4.6, then
there exists a metric o, which defines Z and also satisfies: p and ¢
are in the same Z-galaxy if and only if *o,(p, q¢) is finite. That is,
Z/ can be “remetrized” so that the Z/-galaxies and the galaxies
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defined by the metric coincide. To construet p,, simply choose o as
in 4.6.i and define

ou(®, y) = max {0z, y), min (0, ), 1)} .

The following two examples were developed in collaboration with
L. C. Moore, and are based on ideas due to him. In each case the
uniformity % is defined by a metric on X. The first example shows
that a Z-finite point need not be in the same Z-galaxy with any
standard point, even when (X, %) is complete. The second example
shows that even when the original space (X, Z) is arcwise connected,
the smallest nonstandard hull of (X, %) constructed in [4] need not
even be chain connected (or, what is the same, the uniform space

obtained by restricting % to fin, (*X) need not be chain connected.)

ExAamMPLE 1. In this example X is the set of all pairs x = (%,, %)
of positive integers, and % is the uniformity defined by the metric
0, where

2L + oY if Y=Y
xl yl xZ y2

o, y) = . i
L B 5 Y if @ %y, .
Ty Y, X, Y.

(The metric o is obtained in the following way: for each x in X let
% be the sequence % = (q,, @,, a,, -+-), Where

g o=

T W

and all other a, are 0. The distance p{z, y) is then just the [, norm
of & — 7 as an element of the linear space of all sequences which
have finite support.)

For an element (p, q) of *X to be Z-finite, it is necessary (by
Lemma 4.2) that *o((1, 1), (p, ¢)) be finite. This implies that p/q and
g/p are finite elements of *R (or, what is the same, that p/q is finite
but not infinitesimal.) Suppose, conversely, that ¢/p and p/q¢ are
finite. It will be shown that the element (p,q) of *X is Z finite.
If either p or ¢ is finite, then the other must be. That is, (p,q) is
in X. Assume therefore that » and ¢ are bothin *N ~ N. Givena
standard real number 6 > 0, a number r in * N may be chosen which
satisfies the inequalities
4.1) T[—% + L] <o0=Z(r+ 1)[£2 + i] .

q Db q D

For any ke N, the *p-distance between the elements (p, ¢ + k) and
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(p,q + kr + r) of *X is equal to

p P |+Iq+k¢_q+kr+¢
qg+kr q+kr+r » p

which is bounded above by

LT,
q P

Now choose the smallest s in *N which satisfies

) 0

q+sr 4

The inequalities (4.1), together with the fact that p/q is finite but
not infinitesimal, implies that »/p is finite but not infinitesimal. This
shows that s is actually in N, and the sequence (p, q), (p,p + 1), ++-,
(p,q + sr) is a d-chain in *X with a finite number of steps.

Since p/q and r/p are each finite but not infinitesimal, there are
standard integers m, m such that m/n is within §/4 of

D
q + sr

and n/m is within 6/4 of the reciprocal

q + sr
D

It follows that the *p-distance between (», g + s7) and (m, n) is less
than 6. This shows that there is a d-chain from (p, ¢) to a standard
element of *X, for each standard 6 > 0. Therefore (p, q) is Z/-finite,
as claimed.

Given a Z~-pre-nearstandard element (p,q) of *X, p/¢ must be
finite but not infinitesimal, by Theorem 1.4 and the previous argument.
If (p, q) is not standard, then p is infinite. Therefore every standard
element of *X is a *p-distance of at least p/q away from (p, q). But
p/q is not infinitesimal, so this is a contradiction. Therefore pns, (*X)
is simply the set of all standard elements of *X. This shows that
(X, ) is complete and that the Z~topology on X is discrete.

Also, there are elements of fin, (*X) which are not standard (for
example, (@, @) is one whenever  is infinite.) Since the Z-topology is
discrete, each standard element of *X comprises a Z-galaxy by itself.
Thus there are Z/-finite points which are not in the same Z~-galaxy
with any standard point. In fact it can be shown, by an argument
similar to the one used to characterize fin, (*X), that the set 4 of non-
standard, Z-finite elements of *X comprises a single Z/-galaxy.



THE NONSTANDARD HULLS OF A UNIFORM SPACE 133

Note that if @w and ' are distinct elements of *N, then the *p-
distance between (®, w) and (', ®') is 2. Thus the image under =
of fin,(*X) in X, has at least as many elements as *N. Since the
enlargement *_~ can be chosen to make the cardinality of *N arbi-
trarily large, this shows that the various nonstandard hulls of (X, %)
constructed in [4] depend on *_# as well as on (X, %).

ExaMpPLE 2. In this example X consists of a countable set of
points {a,|n = 0}, together with certain arcs joining a, to the other
distinguished points. For each n =1 the arcs joining a, to @, form
n subspaces X(n,1), .-+, X(n, n), each two of which have only the
elements @, and @, in common. Moreover, if 1<j<m1=<k=<n
and n = m, then X(m, j) and X(n, k) have only the element a, in com-
mon.

The metric o which defines % is given first on the subspaces

1 1
4k 4k

—k 4+

Figure 1.
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X(n, k) and then extended to all of X. For a given 1 =k < m,p is
defined on X(n, k) in such a way as to make the subspace X(u, k)
isometric to the subspace of the Euclidean plane pictured in Figure 1.
(This subspace consists of the seven line segments obtained by joining
adjacent pairs of points in the sequence: (0, 0), (0, n), (1/4k, n), (1/4k, — k),
1 — 1/4k, — k), (1 — 1/4k, n), (1, w»), (1, 0).) In each case the isometry is
assumed to take a, to (0, 0) and to take a, to (1, 0). Therefore there
is a function f from X into R* whose restriction to a given subspace
X(n, k) yields the assumed isometry.

The metric o is defined on the rest of X x X as follows. Let
2,y € X and suppose o(z,y) is not yet defined. That is, e X(m,J)
and ye X(n, k), where the pairs (m,j) and (n, k) are distinct. If
n % m, then o(z, y) is defined to be p(z, a,) + o{a,, y). If n = m, then
oz, y) is defined to be

min {0, a;) + 0(a, ¥), 0(x, a.) + 0, Y)} -

It will be shown first that for every 2,y X and » = 0

(4‘2) 10(:'7, y) é (O(xy an) + lo(a/ny y) .

If n =0 or if x and y are both elements of the union X(n,1) U +-+ U
X(n, m), then (4.2) is obvious. Thus assume 2 € X(m, j) where m=n.
In that case

(4.8) o, a,) = (@, a) + P, a,) .
If ye X(n, k) for some k, then

(O(aO’ y) é (O(aO, a’n) + (O(CL”, y) °

This inequality, together with (4.3) and (4.2) when n = 0, proves (4.2)
in the present case. By the symmetry of o, it remains only to con-
sider the case when y e X{(m, j) for some m == n. In that case

(o(a’n, y) = IO(CLOy a’n) + IO(G’O’ y) M

This, together with (4.3), shows that o(z,a,) + p(¢., ¥) is bounded
below by p(z, a,) + o{a,, ¥). An application of (4.2) when n = ¢ com-
pletes the proof.

To prove the triangle inequality in general, let z,y,2¢ X and
assume z € X(n, k). If neither » nor y is in X(n, k), then

o, 2) + p(z, ) = o(w, b) + o(b, 2) + p(z, ¢) + 0(c, v) ,

where b and ¢ are each either a, or a,. Since b, ¢, z are all in X(n, k),
(b, ¢) = p(b, 2) + p(z, ¢). This, together with two uses of (4.2), proves
the triangle inequality
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(4.4) o, y) < o, 2) + 0z, ¥)

in this case. By the symmetry of o it remains only to consider the
case when x e X(n, k) but y¢ X(n, k). Then

oz, 2) + 0(z,y) = oz, 2) + p(z, b) + (b, ¥)

for b = a, or a,. The triangle inequality applied to w, z, b (which are
all elements of X(m, k)) together with one use of (4.2) yields (4.4) in
this case, and completes the proof. Thus o is a metric on X.

In passing to consideration of *X, note that there are subsets
*X(w, @) of *X which correspond to the subsets X(n,k) of X. In
particular, for each p in *X there is at least one pair (w, ®’) which
satisfies 1 < @ < w and p e *X(w, ®). Moreover, if p and ¢ are both
elements of *X(w, '), then *o(p, q¢) = *d(*f(p), *f{q)), where *d is the
extension of the Euclidean metric to *R%

The analysis of fin,(*X) depends on the following fact.

LEMMA. If p is Z/-finite and pec*X{w, '), where @' € *N,w e
*N ~ N and o' < w, then the standard part of the first coordinate of
*f(p) is either 0 or 1.

Proof. Let p, w and @’ be as stated. Since p is Z-finite, *0(*a,, P)
must be finite, by Theorem 4.2. Therefore *f(p) is a finite distance
from (0,0) in *R? so that the second coordinate of *f(p) must be
finite. If @’ is infinite, this implies that the first coordinate of
*f(p) must be one of the numbers: 0,1/4w’,1 — 1/w’, or 1. These
numbers have standard part 0 or 1.

Thus it may be assumed that o’ is finite. Let A be the set of
all ¢ in *X(w, ®") such that *f(¢) has an infinite second coordinate or
has a first coordinate different from 0 or 1. Then if ge A but re
*X ~ A, it follows that *p{q,r) > 1/8®»’. In addition, A has no
standard element (since the only standard element of *X(w, @) is *a,.)
Thus there is no 1/8w’-chain from any element of A to any standard
element. This shows that no element of A is Z/-finite. Thus, in
this case, *f(p) actually has first coordinate equal to 0 or 1.

Now consider the point *a,, where w is any infinite element of
*N. For each standard % in N there is a 1/k-chain from *a, to *a,
in *X(w, k) (since the three segments in *f(* X(w, k)) which lie below
the horizontal axis in * R* have finite length when % is finite.) There-
fore *a, is Z/-finite. However, there cannot be any sequence ¢, *+-, ¢,
of Z/-finite points which satisfy: ¢, = *a., ¢, = *a, and *0{q;, ¢;+.) <
1/2 for all ¢ =0, --., n — 1. Otherwise, by the Lemma, there must
exist 4,0 <7 < n — 1, such that the first coordinates of *f(g;) and
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*f(q;+,) have standard parts 1 and 0 respectively. But this would
imply *0(q;, ¢;.,) > 1/2, which is a contradiction.

Thus it has been shown that the uniform space resulting from
restricting Z to fin, (*X) is not chain connected. The example is
completed by noting that since X is essentially a union of polygonal
paths from a, the space (X, %) is arcwise connected.

REMARK. The last example shows that restriction of % to a -
galaxy need not yield even a chain connected uniform space. In some
cases, however, the Z/-galaxies are exactly the connected components
of *X under the “Z‘?—topology. For example, let % be a wuniformity
defined by a metric ¢ 'on X which satisfies the following convexity
assumption: for each z, y€ X and 0 > 0 there exists z € X which satis-
fies

|0, 9) = ol 1)| < 8

|p(y, 2) — —;—p(x, y)( <.

(This is equivalent to saying that the completion of (X, p) is metri-
cally convex, and it is true, for example, when X is a normed linear
space.)

Passing to *_#, and letting ¢ be infinitesimal, it follows that for
each p, g€ *X there exists € *X which satisfies

st(*o(p, 7)) = st(*p(q, 7)) = —é—st(*p(p, ?) -

Used repeatedly, this shows that whenever *p(p, q) is finite, »
and ¢ must be in the same Z/-galaxy. Moreover, the restriction of
Z to any Z/-galaxy yields a chain connected space. On such a galaxy
Y the restriction of % is defined by the semimetric 0 defined by
o(p, @) = st(*(p, q)), as discussed in §1. If *_7 is W,-saturated, then
(Y, ) is a complete semimetric space, by the Remark following Theo-
rem 1.4 (and the fact that Z/-galaxies are closed in the Z-topology.)
In fact, it has been shown above that (Y, @) is convex. As is well
known, these facts imply that Y is arcwise connected in the o-topology.
It follows, using the Remark following Corollary 4.5, that the Z-
galaxies are identical to the connected components of *X in the Z-
topology.



THE NONSTANDARD HULLS OF A UNIFORM SPACE 137

REFERENCES

1. M. Atsuji, Uniform continnity of continuous functions on metric spaces, Pacific J.
Math., 8 (1958), 11-16.

2. M. Atsuji, Uniform continuity of continuous functions on untform spaces, Canad.
J. Math., 13 (1961), 657-663.

3. J. L. Kelley and I. Namioka, Linear Topological Spaces, van Nostrand (Princeton,
1963).

4. W. A. J. Luxemburg, A general theory of monads, in W. A. J. Luxemburg, ed.,
Applications of Model Theory, Holt, Rinehart and Winston, (New York, 1969), 18-86.
5. M. Machover and J. Hirschfeld, Lectures on Nonstandard Analysis, Lecture Notes
in Mathematics No. 94, Springer-Verlag, (Berlin, 1969).

6. A. Robinson, Non-standard Analysis, North-Holland, (Amsterdam, 1966).

7. A. Robinson and E. Zakon, A set-theoretical characterization of enlargements, in W.
A. J. Luxemburg, ed., Applications of Model Theory, Holt, Rinehart and Winston,
(New York, 1969), 109-122.

Received July 30, 1971.

DUKE UNIVERSITY






PACIFIC JOURNAL OF MATHEMATICS
Vol. 43, No. 1, 1972

COMPLEMENTATION IN THE LATTICE
OF REGULAR TOPOLOGIES

M. JEANETTE HUEBENER

The present paper is concerned with the lattice of regular
topologies on a set, and establishes the following results: a
complete, complemented sublattice of the lattice of regular
topologies on a set is exhibited and shown to be anti-isomorphic
to the lattice of equivalence relations on the set; the lattice
of regular topologies on a set is shown to be nonmodular if
the cardinality of the set is at least four; the problem of
complementation for regular topologies is reduced to consider-
ing T, regular topologies without isolated points; conditions
are found which are equivalent to a regular topology having
a principal regular complement; then follow some conditions
under which the problem can be reduced to considering con-
nected spaces; the final section consists of constructions of
complements for certain classes of regular topologies, which
classes may or may not be exhaustive.

Principal regular topologies and relations. Let (&7 V, A) be
the lattice of all topologies on a set E. (&7 V, A) is complete, anti-
atomic, complemented, and, if | E'|, the cardinality of E, is at least
three, it is not modular, [10, pp. 384-5, 389-397]. Next, let (Z, VY, A"
be the lattice of all regular topologies on K. (<2 VY, A7) is complete
but not a sublattice of (&7 V, A). The greatest lower bound in &#Z
of a collection of topologies in <# is only the least upper bound of
all the regular topologies which are weaker than the collection’s
greatest lower bound in &7 [8, pp. 754-755].

The anti-atoms of & are the ultraspaces on E; these are topol-
ogies of the form &(x, ) = P,(x) U Z where Z is an ultrafilter on
E different from /' (x) ={A C E: x € A} and where P,(x) = {ACE:x ¢ A}.
Frohlich [5, p. 81, Satz 3] showed that every topology 7 on E is the
infimum of the ultraspaces on E which are finer than <.

The special sublattice of (<4 V, A), which is anti-isomorphic to
the lattice of preorders on E, is called the lattice of principal topo-
logies. From this sublattice Steiner [10, p. 383, Theorem 2.6; pp.
389-397] and van Rooij [16, p. 807] take their complements. Now
an ultraspace is said to be principal if its topology is of the form
&(x, ' (y)) where x = y. A topology 7 is principal if 7 =1, or if ¢
is the infimum of the principal ultratopologies finer than 7. These
topologies are also characterized [10, pp. 381-2, Theorem 2.3] by the
fact that they have a base of open sets which is minimal at each
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point, i.e. for any x € E/ every open set containing & must contain the
open set

B,={yeE:S@, Z (y) =} .

(Throughout the paper B, in a principal topology ¢ will denote the
o-open set minimal at the point x.) TUsing this characterization it is
easily seen [10, p. 382, Theorem 2.5] that the principal topologies
form a sublattice of (&% VY, A). The mapping establishing the anti-
isomorphism between this lattice and the lattice of preorders is given
by

() = G. = {(z, v): S, Z(y) = 7}
and
77HG) =7 = NS, Z (): (=, y) € G} .

In the lattice of regular topologies there is a sublattice of the lattice
of principal topologies which has a familiar structure:

THEOREM 1.1. A principal topology © on E is regular iff its
representation satisfies the condition S, Z(y)) = v implies S(y,
ZZ{x)) = T for any x, y € E.

Proof. Suppose 7 is principal and regular and that &S(z, Z/ (y)) =
7. Then ye B, and B, B,. Now ~B, is a closed set not containing
y; accordingly there exists Uet such that UD ~B,and UN B, = @
which implies that U = ~B,ez. If xe ~B,er, then B, B,C ~B,
which is a contradiction. Hence z€ B, and S(y, % (x)) = .

Conversely, in terms of the base of minimal open sets, the con-
dition, &(z, Z (y)) = t implies S(y, 7 (x)) = v for any =, y € E, become
yeB, iff e B,. Hence B, = B, or B, B, = ¢ for every xz,yecFE.
In which case, if U= U ({B,;ycU}etr and e ~U then B,NU =@
and it follows that ~U = |J{B,:x € ~U}e7. Every open set being
closed implies 7 is regular.

COROLLARY 1.2. A principal topology T is regular off G. is an
equivalence relation.

That the lattice of equivalence relations is complemented is proven
mot a mot as in Steiner [10, p. 389, Theorem 5.1].

COROLLARY 1.3. The lattice of principal regular topologies on K
18 a complete sublattice of (2, Y, A" and (< V, N).
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Finally, for | E'| < 3 the lattice (<2 VY, A" is a modular sublattice
of (4 V, A). If | E| = 4, then the lattice (&2, V, A7) is not modular:
Let a, b, ¢, d be distinet points of E. Define each of the following
principal regular topologies by its base of minimal open sets

Tany {@, 0}, {c}, {d} and {z} for x + a, b, ¢, d
Tanen 1@, b}, {¢c,d} and {z} for z +# a, b, ¢, d
Teaen 14, d}, {c, b} and {x} for x = a, b, ¢, d
Tarey 10, 0, ¢,d} and {x} for x # a, b, ¢, d .

Then we have the following diagram of least upper bounds and
greatest lower bounds in (<2, VY, A".

N
|

T(ab)ed)

Clad)(eb)

z-(abcd)

FIGURE 1

Greatest lower Bounds in .# and continuous functions. In a
paper in 1968 [14, p. 1087, Theorem 1], J. Pelham Thomas charac-
terized the strongest regular topology on a set weaker than a given
topology on that set: If z is a topology on E, then there is a unique
regular topology 7* weaker than 7, such that, if Y is any regular
space, then the continuous maps (E, 7) — Y are the continuous maps
(E, *) — Y. Furthermore 7* is the least upper bound of the regular
topologies weaker than z. In this vein we have the following lemmas.

LEmMA 2.1. A function f:(E,0) — (Y, 0) is continuous where
(Y, o) is a regular space iff f(E) Ccl, (f(x)) for every xc E.

LEMMA 2.2. If, for every regular T, space (Y, p), every continuous
function f: (E,v)— (Y, p) is constant, then, for every regular space
(Y, p), every continuous function f: (E,v) — (Y, o) satisfies the condi-
tion f(E) cecl, (f(x)) for every xe E.

Using the Thomas result we conclude that
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COROLLARY 2.3. In order for ¢ A"t =0 it is mecessary and
sufficient that every continuous fumnction on (E,o A7) to a regular
T, space be constant.

It is now possible to reduce the problem to T, regular topologies.
Let 7 be a regular topology on E and E* the set of point closures
{el. @):x€ E}. Then E* is a set of equivalence classes of E and
@: E— E* given by @(x) = cl. (v) is the canonical map. If ¢* is the
quotient topology relative to @ and 7, that is, the finest topology on
E* such that @ is continuous relative to (H, 7), then t* is a regular
T, topology, lattice-isomorphic to 7 [15, p. 92, Theorem 14.2]; further,
®: (K, 7) — (E*, *) is open and closed [9, p. 155, Theorem 9.3.6], and
(E*, t*) is called the T, quotient of (E, 7).

THEOREM 2.4. If the T, quotient (E*,T*) of a regular space
(E, 7) has a (principal) complement in the lattice of regular topologies
on E*, then (E,7) has a (principal) complement in the lattice of
regular topologies on E.

Proof. Let f be a choice function on the subsets of FE,c* the
regular complement for z* and S = {y € E: y = f(cl. (y))}. Define o to
be the topology on E with the following base

{(7'B*) — S: B*eo*} U {{y}: ye S} .

The topology ¢ is, in fact, regular. Suppose F' is closed in (E, g)
and z¢ F. Then ~F = (7'B* — S)U A for some AC S and some
B*eco*. If ¢S, then {x}eco and FC E — {z}eo. If ¢S, then
®x € B* €o* and there exist disjoint sets U*, V* € 0* separating @(x)
and ~B*. In which case, »7'!U* — S and ¢™'V* U S are o-open sets
separating ¢ and F. Note that ¢ is principal if o* is.

Next, if Aeo A7, then pAect* and A = @~'B* for some B* € ¢*.
Hence ¢:(E,0 A7) — (E*,0* ANt*) is open. If 4:(E,0 N7)— Y is
any continuous function to a regular T, space Y, then y(cl,\.(%)) = y(x)
forany x € E. Hence 4@~ (E*, 0* A T*)—Y is a welldefined continuous
function. Since o* A"t* = 0 then 9™ must be constant, which
implies that + is constant and hence ¢ A"7 = 0.

Finally 6 Vv 7 = 1. For ¢S we have U*ez* and V*eg* such
that {pz} = U* N V* which implies that

{v} = (7' U)N(p™'V* — S)er Vo.
Principal complementation and connectivity. In order for a

regular topology 7 and a principal regular topology ¢ to have a least
upper bound of 1, it is necessary and sufficient that the minimal open
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sets of ¢ be discrete in z. That they have a greatest lower bound
of 0 is characterized in terms of continuous functions. Now a func-
tion is continuous on (F,c A 7) iff it is continuous on both (F, o)
and (E, 7). Relative to continuity on principal regular spaces, we
have the following:

LEMMA 3.1. Let ¢ be a principal regular topology on HE. A
Sfunction f: (E, 0) — (Y, p), where p is a T, topology, is continuous iff
f s constant on each minimal c-open set.

THEOREM 3.2. If (E,7) is a regular T, space with o disjoint
open cover {E,}, of E and if, for each «, the topology v, = 7| E, has
a principal complement o, in the lattice of regular topologies on
E, then T has a principal complement in the lattice of regular topo-
logies on K.

Proof. For each « let B* be some one minimal open set in o,.
The set |J. B* and, for all o, all minimal open sets B, in o,, different
from B“, define a minimal open base for a principal regular topology
o on E such that ¢| E, = o..

Let f be any function on F to a regular T, space which is con-
tinuous relative to the topology ¢ A 7. Then for any a, f.=f|E,
is continuous relative to the topology (¢ A7) | E,. But (¢ A7) | E, =
0, N\ T, 80 f, is constant on FK,. Since f was continuous relative to
¢ then f must be constant on J,B* Hence f is constant on all
of K.

Lastly ¢ v 7 = 1: if 2 is any point of F = |J, B, theno, V 7, =
1 implies that there are sets Uco and Ver such that {g} = (UnN
E)N(VNE)=Un(VNE)eo Vr.

The complementation problem for locally connected regular spaces
is then reduced to the complementation problem for connected spaces.
Further, the proof of the previous theorem suggests several lines
of development.

THEOREM 3.3. Let (E,7) be a regular T, space whose set & of
components satisfy the following conditions:

(1) & 1is countable.

(ii) For each Ce & the restriction 7|C has a principal regular
complement.

(iii) FEither & has finitely many singletons or infinitely many
nonsingletons.
Then T has a principal regular complement.

Proof. Without loss of generality, by (i) the collection of com-
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ponents forms a sequence {E,}, such that, by (iii) each singleton is
followed by a nonsingleton. For each =, let 7, = | E, and o, its
principal regular complement.

Now for any nonsingleton FE, there must be at least two distinect
minimal open sets in o,; otherwise 7, = 1. But 1 is not connected
unless | E,| = 1.

For each n, choose A" and B™ minimal open sets in ¢, such that
B+ A" if |E,| > 1. Then the sets

(i) B"U A" for all n such that |E,|# 1 and [E,.,|#1

(ii) B"U E,.; U A" for all » such that |E,.,|=1

(iii) B U E, U A*" for all n such that |E,| =1

(iv) B, for all minimal o, open sets with B, # A*, B, n =1, ---
define a base of minimal open sets for a principal regular topology ¢
on E such that o, = 0| E, for each n.

Let f be any function on ¥ to a regular T, space which is con-
tinuous relative to the topology ¢ A z. Then f, = f| E, is continuous
relative to the topology o, A 7, for each n. Hence f, is constant on
E, and since f is constant on each set in ¢ then f is constant on
all of E.

For each z not in some B"” or A" there are sets Uet and B, €0,
such that {x} = (UNE,)NB,=UNDB,coV r. For any xc B* there
is a neighborhood Uezt of » such that UnN B" = {z} and, since com-
ponents are closed and x¢ E,.,, E,.,, such that UN E,., = @ and
UNE,.,= @. Hence

(@) =UnNB*UA*er Vo if |E,)| | Bl #1;
= Uﬂ(B”UEn+1UA"+2) if IEn-H] = 1;
=Un@B UL, UA" It [B,|=|E,|[=1.

Similarly for any x€ A*. Thus ¢ Vv 7 = 1.

THEOREM 3.4. Let (K, t) be a regular space and D a dense subset.
If ©|D has a complement ¢* in the lattice of regular topologies on
D, then v has a complement in the lattice of regular topologies on E.

Proof. Define ¢ to be the topology on E with the base ¢* U {{y}:
y ¢ D}. Then o is regular, 0| D = ¢*; o is principal iff o* is principal.
Now clearly c A7)|DZo|DAT|Dso(c A"t){D=o|DA7|D=0.
In which case, for any nonemply Uco A"t we have UD D since
UND= ¢ is impossible. Hence ¢ A"t = 0. Obviously o vV 7 = 1.

It is now clear that the complementation problem can be reduced
to considering spaces without isolated points, because in the following
result (W, | W) has no isolated points.
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COROLLARY 3.5. Let (E,7) be a regular T, space, I the set of
isolated points, W = int. (E — I) the interior of E — I. If (W,t/W)
has a principal regular complement then there is a principal regular
complement for .

Classes with complements. In this section our task is to con-
struct principal regular complements for various classes of regular 7,
topologies. The first result provides the basic construction used in
the following theorem to handle the class of supra-DN spaces. The
definition of this class is a generalization of the DN spaces of B. A.
Anderson [1, p. 989] and was suggested by Harold Bell as a means
of extending methods developed for the DN spaces. The question
remains open whether this class exhausts the regular T, spaces.
Subsequent results show an approach to a different class of spaces
and to arbitrary products of such spaces.

THEOREM 4.1. Let (E,7) be a regular T, space, ¢ > |E/|, and
{S,: 0 = n <7 < &} a wellordered family of disjoint discrete nonempty
subsets of E whose union is dense in E. Suppose that for such n > 0,
any open set containing cl. (U,<. S;) meets S,. Then T has a principal
regular complement d. Moreover there is some point x € E such that
cloa- (%) = E.

Proof. Define o to be the principal regular topology with the
base of minimal open sets {S,:n = 0} U {{z}: ¢ U.2, S,}- Then for
any x€ E we have {x}eo V 7.

On the other hand, for each S, let x, be any point in cl. (S,).
Suppose there is an ordinal n such that

CIo/\’r (xn) #* Clo/\"r (wo) .

Let m be the least such ordinal. Then there are disjoint sets U*,
V*ea A"t such that cl-. (x,) < U* and cl - (x,) < V*. Also, for
every v < m, Clyar. (%) = clar (¢,). But then cl,.». (x,) is a 7-closed
set containing all the sets cl .- (z,) D S, for v < m. By the regularity,
every Ueo A"t such that x,€ U must contain cl .-, () Dcl. (U;<n S))-
So U* meets S, Cclyar. (%,) € V* which is a contradiction. Hence
cloar: () = E and ¢ A7 = 0.

DEFINITION. A space (K, 7) is said to be supra-DN if, for any
open set U such that cl. (U) — U # @ there is a discrete set SC U
such that cl. (S) — U= O.

Note that any first countable space is supra-DN.

THEOREM 4.2. If (E,7) s a regular T, supra-DN space without



146 M. JEANETTE HUEBENER
1solated points them T has a principal regular complement.

Proof. Let x, be any point of F and U, = FE — {z,}€7. Then
there is a discrete set S, U, such that {x,} = cl.(S,) — U,. For the
induction, consider any ordinal »n between 1 and &, where & > |E|;
suppose that for each g < n the set S; C E — el. (U, S;) is defined,
nonclosed, discrete, and either cl. (J,.;S,) €7 or any open set con-
taining cl. (U« S;) meets S;. Now for any subset A C E, either the
boundary of E — cl.(A) is nonempty or cl. (4) is open. Hence if
cl. (U, <. S;) is not open then the boundary of U, = E — cl. (U... S, €7
contains some point x, and U, contains a discrete set S, such that
z,€cl. (S,) — U,. So any open set containing cl. (U,<. S,) contains
the boundary of U, and hence, as a neighborhood of x,, meets S,.
If, on the other hand, cl. (U,<. S, €7, let #, be any point of V, =
E—-cl.U;..S) and U,=V, — {x,}Jer. Then there is a discrete
set S,c U, such that {z,} = cl. (S,) — U,.

Consequently e¢l. (U.,z. S,) = F and S, = {z.:cl. (U,<.S;) €7} is
discrete. Lastly, if cl, (U.<;<. S;) €7 then any 7-open set containing
cl, (Uosr<n S;) S,y and hence containing z,, meets S,. Otherwise
el (Ui<y<. S;) € T and any U et such that U>el. (U,gr<. S;) must meet
S.. The conclusion then follows by the previous theorem.

DEFINITION. A space (F,7) is said to be Bolzano-Weierstrass
compact if every infinite subset of E has a limit point in E.

DEFINITION. A space (E, 7) is said to be locally-B.W.-compact if
each point in the space has a fundamental system of neighborhoods
each of which is Bolzano-Weierstrass compact.

THEOREM 4.3. If (E,7) is a separable, regular T, locally-B.W.-
compact space without isolated points, then T has a principal regular
complement.

Proof. Let @ ={q, q,, -++} be a countable dense subset of K.
Let V, be a B.W. compact neighborhood of #, = ¢,. Since 7|Q is T,
without isolated points, there is a countably infinite discrete S,C
int. (V) N @ with #,¢S,. For every xz¢S, the T, regularity of E
and the discreteness of the countable set S, imply that there is an
open set V, such that 2e V,cecl. V,c V,cl. V.Nel. S, = {«}, and if
z,yeS, and © % ¥, then cl, V,Nel. V, = @. Hence, for each z¢ S,
an infinite discrete set S, may be chosen so that ze€S,c V. N Q.

The points of S, may be denoted by #,, for »=1,2 ..., with
2, = &,. The corresponding discrete sets may be denoted by S,,. For
each n, let y,.ccl. (S.,) — S, cecl. V,

1n®
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For eachk>1let Q, = Q —cl. (U,c: U= S,) et | Q. If Q.+ O,
let 2, be the least element in the order on Q,.

V. a B.W.-compact neighborhood of x, in ~cl, (U, Us=: S,0)

S, a countably infinite discrete set in V, N @, with 2,€ S,

Zpw n=1,2, -+ the points of S, in the induced order

S.. the corresponding countably infinite discrete sets chosen from
the intersection of @ and a neighborhood, of x,,, whose closure is in
V. with z,, = z, € S,, and satisfying cl. S,, N cl. S,, = @ for n = p, and

Yin € €l (Sin) — Siane
Clearly cl. (U7~ Uz~ S;u) Dl (@) = E.

Define a principal regular complement ¢ for 7 with a base of
minimal open sets consisting of

U =8,

U, = Six U{¥u-0} U Su for k> 1,

Upi = Spi U {¥pti—n} for p, k> 1,

{y} for all y¢ (Ux Uw) U (Usx Upt)-

The minimal open sets are discrete in (E, ) because S,, was chosen
in a closed neighborhood outside cl. (U,<: Un=: S,») Which contains
cl. (Si), and because ¥,y € cl. (Suu—y) and cl. (S,u—) N el (S.) = @

Lastly, if Uet Ao, U=+ @, then UN (Uy.x Spr) = @. Let & be
the least ordinal for which there is a g such that UN Sz # @ and
B the least such 8. Suppose & = 1. Then 8 =1 and yz5_, € Uz C
Ueco. But 9z, is a 7-limit point of S;7.,, so Uet meets Szzy
which contradicts the minimality of 5. Hence @ = 1. Similarly 8 =1
and S, = U, c U for every Uet Ao and ¢ A"7 = 0.

Note that local compactness and countable compactness imply
local-B.W.-compactness.

THEOREM 4.4. For each 1€0 let (E;, ;) be a regular T, space for
which there exists a principal regular topology o, on K, such that

(a) o;v7, =1

(b) There is a subset W, E; such that Uco; A t; and U+ ©
mply that UD W,

(e¢) If Uer,; satisfies UD W, then there are o;-isolated points
in U.

(d) The set of oi-nonisolated points is dense in (E;, T;).
If E = Tlico E; and 7 = [{;cs7; then (B, 7) has a principal regular
complement.

Proof. Well order 8; let (x,);e E. If x; is isolated in o; for every
1€0, then let B(x;); = {(x;);}. Otherwise, there is a least element
€0 such that z; is not ox-isolated; let B(x;); = B: X (%;)i.. where B;
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is the minimal o;-open set containing x;. The collection {B(z;);: (z;); €
E} forms a base of minimal open sets for a principal regular topology
o on E.

Using hypothesis (a) for the first nonisolated coordinate, it is
easily seen that o Vv 7 = 1.

Next let 4, A’c o A 7 be nonempty. Now A!, A*e 7 implies that
there are indices 4, %, »--, %, € 6 such that A' and A® contain rectan-
gular neighborhoods. Hence there are points (x;);€ A* and (y;);€ A®
such that z; = y, for ¢ # 1, ---, 7, and, by (d), x;, ¥; are o;-nonisolated
for ¢ =4, ---, %, only. Let j = min{i, ---, ¢,} and A} = {z e E;: {2} X
(%;);2; € A'} € T;, the inverse image of A' under the (x;);.;-section; since
x; is o0;-isolated for 7 < j then for any o;-nonisolated point ze A,
B, X (2;)ix; © A'. In which case, B, C A% and hence A% € o;. Similarly
Ai={ze E;: {2} X (¥:)in; € A%} € 0;A7T;. Thus by (b), W, A NA%eo;N7;
and by (c), there is an isolated point a} = ¥} in A5 N A% which means
that

()sns X x5 € A" and (¥)sny; X Y;€ A%

Continuing this process and replacing «;, -+, #;, and y;, - -, ¥;, locates
a point common to A' and A% The absence of disjoint sets in 7 A ¢
implies that 7 A"¢ = 0.

In particular, the principal regular complement constructed in
Theorem 4.3 satisfies conditions (a), (b) and (d) required of the factor
spaces in Theorem 4.4; condition (c) can be accomodated without losing
others.
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THE DIOPHANTINE PROBLEM Y2 — X*=A IN A
POLYNOMIAL RING

DENNIS L. JOHNSON

Let C[z] be the ring of polynomials in z with complex
coefficients; we consider the equation Y2 — X% = A4, with
A€ C[z] given, and seek solutions of this with X, Y e C[z] i.e.
we treat the equation as a ‘‘polynomial diophantine’’ problem.
We show that when A is of degree 5 or 6 and has no multiple
roots, then there are exactly 240 solutions (X, Y') to the problem
with deg X <2 and deg Y < 3.

It is possible that, A being of degree 6, solutions (X, Y) exist
with deg X > 2 or deg Y > 3. We “normalize” the problem so as to
remove these from our consideration, and give the following definitions:
if A is any polynomial of degree d, we shall permit its formal degree
to be any integer divisible by 6 and greater or equal to d. Given A
of formal degree 6%k, we require the solutions X, Y of the equation
to be of formal degrees 2k, 3k resp., i.e. deg X < 2k, deg Y < 3k.
This problem will be called the problem of order k. The restriction
on the degrees of X, Y causes no loss in generality, for if & is chosen
large enough, it will exceed 1/2deg X and 1/3 deg Y. Furthermore,
the classification by k& has a natural geometric interpretation. We
confine our attention to the problem of order 1. The order restriction
enables us to projectivize the equation to an equation of degree 6k,
with deg A = 6k, deg X = 2k, deg Y = 3k.

Suppose then that A has formal degree 6, and (X, Y) is a solu-
tion of proper formal degree, deg X <2, deg Y <8. The projec-
tive curve K: w® — 3Xw + 2Y = 0 has the z-discriminant Y? — X® = A4,
so the function z: K — S* (proj. line) has its branches among the roots
of A, for finite 2. At z= « we introduce Z = 1/2, @ = w/z = Fw
and get

) =0:

Pt — 3§3X<

® |-

)w + 278 Y<

|-

If X=a?+ ¢+, Y= b2*+ ..., then
FZQT)S'—'3(a0+a1§+a222)w+2(b0+ b]_Z'}“ "'):0
and

g — 3ay + ) -
oW

Now at Z=0 (i.e. # = ) z has a branch point if and only if 0F/0w = 0;
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i.e. we must have
W* — 3a,W + 2b, = 0
and
3W* — 3a, =0

which is true if and only if 4= —al+ b =0 ie. if and only if
deg A < 6. Hence if deg A < 6, we put a “formal root” of 4 at o
with multiplicity 6-deg A.

We now assume the roots of A to be distinct. This entails
deg A = 5 or 6, with no multiple (finite) roots. The roots will be called
2, *++,%. Note that if either X or Y were zero at z,, the other would
also be, since A is zero there (for the case z, = o just imagine the pro-
jective form of Y? — X*® = A; the statement then reads that deg A <6
and if deg Y < 3 then deg X < 2 and conversely). Hence 4 would
have at least a double zero at z,, (or at «:deg A < 4) contrary to hy-
pothesis. Hence X,Y = 0 at z, and deg X =2ordeg Y =3. Away
from a branch point we may write locally:

Y-Y+VA+Y-Y-VEA

wo= 0y ~Y+VE + 0}/ - Y- VA

wo= 0 Y+ VA + 0}/ -Y - VZ

I

Wy

for proper choice of the roots; as we go around 2,1 A changes to
—V'A, and we get a root permutation w, — w, w,— w,. Thus the
branching number b, at z, is 1, and the total branching is 6, so the
genus is ¢ = b/2 —r+ 1 =1, i.e. K is a torus.

We should also prove that K is irreducible; but if K were re-
ducible, factoring as (w — a)(w* + aw + B) (where «, 8 are polynomials
in z by Gauss’s lemma) i.e., we have 3X =a*— g and 2Y = —ap,
and A =Y*— X® =45+ 15a°8* + 12a'8 — 4a® = —(a® — 4B)(2a® + B)%.
It is easy to see that dega =<1, deg 8 < 2, and hence deg(a® — 48) < 2.
Since deg A =5 we see that deg (2a* + B8) = 1, whence A has double
roots, contrary to hypothesis.

Thus, any solution X, Y gives us an elliptic curve K represented
as a 3-sheeted branched covering of S* with branch points at z, where
z: K— 8? is an elliptic function of degree 3. Furthermore, w is also
a function on K, and its poles are among those of z, and of order <
the order of the z-poles: for expanding w, at z = « we get

w,.o =0 b2+ o0 +1V (0 — a)z® + -+ + @0*Fete.
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i.e.
w, = <(o‘§/——b0 +vV 4+ coz‘ﬁ/—b0 — VZ)z + lower powers of z

i.e. the order of w is < order of z at all places z = . (Clearly w
has no other poles). Note also that the sum Sw, of the three values
of w over any z is zero.

Now suppose conversely that we are given a branched covering
of S* with 6 simple branch points at the roots of A; we then have
an elliptic curve K and a meromorphic funection z: K — S* with 3 poles
(one of which is double if a branch point is at <o) at places k,, k., k..
Now the set of meromorphic functions w on K whose poles are among
the k, form a vector space V of dimension 3. Given any such w, the
sum w, + w, + w, of its 3 values over any z gives us a function which
is:

(1) finite for finite z

(2) of order < the order of z at z = «

(3) symmetric in the sheets, so rational in z.

Hence Yw, must be linear in z: Jw, = a,2 + b,, where a, and b, are
constants depending on w. Note that a, and b, are clearly complex-
linear in w, i.e. a, b: V— C are linear maps. Furthermore, since both
w=1and w=zarein V we have a and b are linearly independent:
for

al) =0 a(z) =3
b(1) =3 bz) =0

and so a, = 0, b, = 0 defines a one dimensional subspace of V i.e.
a w =0, defined up to a constant multiple, of degree <38, with its poles
among those of z, and with Yw, = 0. Hence w satisfies some equation

w* — 8Pw + 2Q = 0, with P & Q rational in z;
but
—3P = waw, + w,w, + w,w, is finite for z finite ;

hence P is a polynomial; also its degree is <2 since the order of w,
is < that of z at . Likewise @ is a polynomial of degree <3 in
2. Finally w is not rational in z since if it were, it would actually
be linear, w = az + b, and then

Sw,=3w=3az+30=0, i.e. w=0.

Hence w® — 8Pw + 2Q = 0 is irreducible, and thus defines the curve
K. Because of this, we must have the branch points as roots of the
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discriminant @* — P? (%20); i.e. A|Q* — P?% deg @Q* — P*< 6, and is
<6 if and only if as we have seen previously, - is a branch point
of K; in the latter case we also have deg A = 5, and so in every
case we have deg (Q*— P°) = deg A, i.e. A=k(Q — P°) for some
constant &= 0. If now we replace w by w/a(aeC), we replace
P by Pla* and Q by Q/a® and Q* — P* by (Q* — P°)/a’; Hence we
may choose a scale factor «, determined up to a 6th root of unity,
and a rescaled w such that Q* — P®= A, i.e. (P,Q) is a solution.
Thus we have shown that any 3 sheeted covering of S* with simple
branches at A = 0 gives us exactly 6 solutions to the problem (These
6 solutions are distinct since two could be equal if and only if P or
@ = 0, which is impossible). Furthermore, if we have two different such
branched coverings K, K,, then the corresponding solutions (P, @),
(P,, Q.) must be distinct, since the data (P, Q,) actually define K.

Thus the only remaining problem is to enumerate the different
coverings possible.

We choose a base point qe S? distinct from the roots z, and
loops p, (¢ =1, +--, 6) encircling the roots z, acting as free generators
of the fundamental group 7,(S* — U, 2;), subject only to the relation

- ps = identity. Choosing a numbering 1, 2,3 of the sheets over
g, each p, determines a permutation 7, (in S;) of the sheets, and these
completely determine the surface. Since the branches are all simple,
these permutations must be transpositions: (12), (23) or (31). Also not
all the 7, can be equal, for then two sheets over ¢ would remain
unconnected from the third. If we choose «,, .- w; arbitrarily then
7y is determined by 77w, --- m; = e. Note however that z,, .- 7; may
not be chosen all equal, since w; would also be same by virtue of the
relation. Hence we may choose 7w, --- 7, in 3° — 3 ways, obtaining
all possible coverings of the required nature. Two such choices 7., 7,
give the same covering if and only if they differ by a renumbering
of the sheets over ¢, i.e. if and only if n) = gm,¢g™" for some ge S;.
Since at least two different transpositions occur among the =z, con-
jugation by the elements of S, produces exactly 6 different equivalent
choices of «,; hence the total number of different surfacesis (3° — 3)/6 =
(8* — 1)/2 = 40. Remembering that to each such surface there are 6
solutions, we have:

THEOREM. If A s a polynomial of degree 5 or 6 without multiple
roots, them there are exactly 240 distinet solutions of the equation
Y:— X° = A in polynomials X, Y for which deg X < 2, deg Y < 3.

It should be pointed out that, in principle at least, the deter-
mination of the solutions (X, Y) for a given A could be solved by
classical elimination theory. For example, if X = a,2* + a2 + a, and
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Y =102+ 02"+ bz + b isasolutionto Y?— X =A =2+ +++ + a,
then treating the a, and b; as unknowns, formal manipulation and the
equating of coefficients gives us 7 polynomial equations in 7 unknowns
which presumably (assuming independence) gives a finite set of so-
lutions for the unknowns a, b;. This also shows us that the a, and
b; are algebraic over the field of the a,. In practice, however, this
elimination would probably not be computationally feasible.

Received July 15, 1971. This paper presents the results of one phase of research
carried out at the Jet Propulsion Laboratory, California Institute of Technology, under
Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Adminis-
tration.

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY






PACIFIC JOURNAL OF MATHFMATICS
Vol. 43, No. 1, 1972

STRONG LIE IDEALS

ALBERT J. KARAM

R is 2-torsion free semiprime with 2R = RE. A Lie ideal,
U, of R-strong if auac U for all ac R,ucU. One shows
that U contains a nonzero two-sided ideal of K. If R has an
involution, », (with skew-symmetric elements K ) a Lie ideal,
U, of K is K-strong if kuke U for all ke K, ucU. It is
shown that if R is simple with characteristic not 2 and
either the center, Z, is zero or the dimension of R over the
center is greater than 4, then U= K. If R is a topological
annihilator ring with continucus involution and if U is closed
K-strong Lie ideal, U= C n K where C is a closed two-sided
ideal of R. A Lie ideal, U, of K is HK-strong if u®<c U for
all e U. A result similar to the above result for K-strong
Lie ideals can be shown. Let R be a simple ring with in-
volution such that Z = (0) or the dimensior of R over 7 is
greater than 4. Let ¢ be a nonzero additive map from R
into a ring A such that the subring of A generated by
{¢(x): xc B} is a noncommutative, 2-torsion free prime ring.
Suppose ¢(xy — y*z*) = 9(2)d(y) — $(y*)$(z*) for all z,yeR.
As an application of the above theory, ¢ is shown to be an
associative isomorphism.

1. Introduction. R will denote a semiprime ring such that
2R = R and if 2r = 0, then » = 0. We call the latter property 2-
torsion free. Z will denote the center of R. If R has an involution,
¥, defined on it, S and K will be the set of symmetric and skew-
symmetric elements respectively. The Lie and Jordan products are
[, y] = 2y — y2 and zoy = a2y + yx for any w»,ye R. If X, YE R,
[X, Y] will denate the additive subgroup generated by the set
{lz, y: v € X and yec Y}. An additive subgroup, U, of R is a Lie
ideal of R if [U, Rl < U. If R has an involution, we can similarly
define a Lie ideal of K.

This paper is concerned with the study of different classes of Lie
ideals of both R and K. A Lie ideal, U, of R is said to be R-strong
if auae U forallae R, we U. If U isa Lie ideal of K, U is K-(HK-)
strong if kuke U (u*e U) for all ke K, ue U.

In the classical theory of the Lie structure of an associative ring,
the main theorem [6; Th. 1.3] states: if R is simple and U is a Lie
ideal of R, either US Z or [R, R]< U. We attempt to develop some
criteria for differentiating between Lie ideals of R containing [R, R]
and R itself. Similar criteria are developed for Lie ideals of K. We
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will have occasion to use the following results of Herstein [6; pp
1,5,10, and 28j:
(i) R has no one-sided ideals which are nil of bounded index;
(ii) If ae R is such that [a, [a, z]] = 0 for all x€ R, then a€ Z;
(iii) Let R be simple with involution and characteristic not 2.
If Z = (0) or the dimension of R over Z is greater than 4, then R =
S = K where S and K are the subrings of R generated by S and K
respectively.

If X&R, #(X)={aecR: Xa= (0} and £ (X)={acR:aX =
(0)}. The next two lemmas are analogs of a results of Baxter [3;
p. 2].

LEmMMA 1.1. If U is a Lie ideal of R such that w* = 0 for all
we U, then U = (0).

Proof. Let ueU,acR. As [u,a]leU,|[u,a]*=0. Therefore,
wauwauw = ulu, a]* = 0 and R is nil of bounded index. By the previously
mentioned results, 4R = (0). But R is semiprime, so Z(R) = (0).
Thus » = 0.

LEMMA 1.2. Let R have an tnvolution, . If U is a Lie ideal
of K such that w* = 0 for all we U, then U = (0).

Proof. Let u,ve U, then 0 = (w + v)* — w* — v* = uv + vu. As
[u, vje U, 2uve U. Since 2R = R, [uv, K] S U. Thus, for each ke K,
uoluv, k] = 0, and so, even more v{uo-fuv, k]} = 0. Since # and v anti-
commute, expansion of this expression yields uvkuv =0. Now suvse K
for any se€S. So uv(suvs)uv = 0. Therefore, given ac R,a=s + k
where s€ S and k € K, then (uv)a(uv)a(ur) = 0. We conclude that uvR
is nil of bounded index. This guarantees uv = 0 for all u,ve U.
Now, —uku = u[u, k] = 0. Repeating the previous arguments for s<
S and ke K, we conclude that » = 0.

2. R-strong Lie ideals. In this section U will denote an R-
strong Lie ideal. If a,be R and u,ve U, one can easily show that
the following are in U: aub + bua, abu + uba, and uau. We associate
with U the set By = {be R: aobe U for all e e R}. This set is a Lie
ideal of R and w*e B, for all we U. The latter can be seen by
observing that if we set b = u above, we obtain au® + w’ac U. Thus,
via Lemma 1.1, U 5= (0) implies B, # (0).

LEmMa 2.1.
(i) By 18 an R-strong Lie ideal
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(i) wwu*e B, NU for all wue U,xc R.

Proof.

(i) We know that B, is a Lie ideal of R. For arbitrary z, y ¢
R and be By, [#0b, y] and [z, bloy are in U. Thus, by adding and
subtracting these terms, we have that xby — ybx and bxy — yxb are in
U. Now,

2(yby) + (yby)r = {(zy)by — yb(xy)}
+ {yb(yx) — (yx)by} + {y(b> + xb)y} .

Since each term on the right is in U, x(yby) + (yby)x € U and B,
is R-strong.

(i) As w’e By, w2u* € By. Moreover, w’ru’ = u(uzu)u € U. There-
fore, wxu*c B, N U.

THEOREM 2.2. C = B, NU is a nonzero two-sided ideal.

Proof. Note that C is an R-strong Lie ideal. Also C = (0) since
if this were so, for each we U, w’R would be a nil right ideal of
bounded index. Let beC and z,ye R;2b + bxe U. Also

(xb + bx)yy + y(xd + bx) = {x(by — yb) — (by — yb)x}
+ {(y2)b + byw)}
+ {b(zy) + (yx)b} .

As each term on the right isin U, (xob)oy€ U. Thus, z-beC. Now
20b = xob + [2, 0] C. Since 2R = R, Rb< C. Similarly, bR & C.
Thus C is a nonzero two-sided ideal of R.

We note that C is the same as the set L, = {ue U:uaec U for
all ¢ € R} which was used by Zuev [10] in his study of the Lie struc-
ture of R.

COROLLARY 2.3. If R is simple and U =+ (0), U = R.

This corollary allows us to study the R-strong structure of the
ring as it relates to minimal idempotents of R. If ¢ is a minimal
idempotent, elUe is an eRe-strong Lie ideal. Since eRe is a division
ring either e¢Ue = (0) or eUe = eRe. We use this fact to prove the
next theorem.

THEOREM 2.4. Let H be the homogeneous component of the socle
which contains e. Then either HSU or HS & (U) N Z(U).
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Proof. Recall that H is a simple ring. The theorem then follows
by considering HnN U.

COROLLARY 2.5. If R is completely reducible, U s the direct sum
of the homogeneous components of the socle which it contains.

This result is similar to that of Kaplansky [7].

Assume that R has the additional properties that 3R = R and R
is 3-torsion free. Let W be any Lie ideal of R such that u*e W for
all ue W. Let u,ve W. We have a = 2(v*u+vuv+uv®) = (u+v)*+
(w—v? —2ule W,5=1[v,[v,u]l]e Wand v = [+, u] € W. From these
we have: 3(v'u + uv’)=a+pec W,6vuv=a—28e¢ W,6v'u =a+3ve W,
and 6uv* = @ — 3ve W. We now have enough to show a result similar
to Theorem 2.2.

THEOREM 2.6. Let W bz a Lie ideal of R such that w*e W for
all wue W. Then either W contains a nonzero two-sided ideal or u*e Z
for all we W.

Proof. Let a,be Rand we W. Since 2a|[a, u]=[a, [a, u]]+][a® u] €
W and 2R = R, a[a, w] € W. Linearization of this expression yields
alb, u] + bla, u] € W. Upon multiplication by 6 and replacement of b
by +°, we obtain 6{a[*, u]+v*[a, u]} € W. As 6v*a,u]e W, 6a[v’, uje W
and this implies a[v*, ] € W. It immediately follows that R[+*, u]R &
W of R[v*, u]R = (0), we are finished.

Assume R[v*, u]R = (0) for all u, ve W, then [+*, 4] R is a nilpotent
ideal, hence [+*, u] = 0 for all u,ve W. As [¢} a] = [v, va + av]e W,
[v* [+% a]] = 0. Thus, by remarks in §1, v* € Z.

The obvious corollary holds in the case where R is simple.

3. K-strong Lie ideals. Let R have an involution, =, and let
U be a K-strong Lie ideal. For u,ve U and k,le K, the following
are in U: kul + luk, klu + wlk, and wkuw. We associate with U the
set B(U) = {be R: ba — a*b*e U for all ae R}. This is the analog for
Lie ideals of the set which Baxter [3] uses in his study of the Jordan
structure of S. When there is no confusion, we write B(U) = B.

LEMMA 3.1.
(i) B is a right ideal
(ii) KB< B

(ili) e B for all ue U
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Proof. The proofs of (i) and (ii) are straightforward. We prove
(ifi). As uwe U, vwa — a*(u)* = w’a — a*u’. Then

wa — a*u? = {{u, ua+a*ul} + {w(a — a*)u} .

The first { } is in U since ua + a*ue K. The second { } is in U
since (¢ — a*) e K and U is K-strong.

Now from Lemma 1.2, we know that if U = (0), B = (0).
For ue U, ke K,aec R and b, c € B, direct computation leads to the
following facts: ac*be B, ¢*be B, bkb* ¢ BN U, and wkue BN U.

THEOREM 3.2. Let R be a simple ring with characteristic not 2.

If Z = (0) or the dimension of R over Z is greater than 4, then U =
K.

The proof of this essentially the same as the proof of Theorem 7

[3; p. 7]. As a corollary, we include a slight extension of a theorem
of Baxter [1; p. 74].

COROLLARY 3.3. Let R be as im the theorem. SoK, the additive

subgroup of R generated by the set {sok:s€ S and ke K} is a K-strong
Lie ideal and hence S-K = K.

The following results on <2(B) and <~ (U) will be particularly
useful in the next section.

THEOREM 3.4. .<7(B) is a self-adjoint two-sided ideal.
Proof. The proof is similar to the proof of Theorem 2 [4; p. 563].

Knowing that <~(B) is a two-sided ideal, we can easily show that
Z(B)N B = (0) and <~ (B)yNU = (0).

THEOREM 3.5. . (UN B) = & (U).

Proof. It suffices to show “(UNB) S & (U). Let be UN B,
ke K, and xe¢ <~ (UN B). As bk—kbe Un B, vkb = —x(bk — kb) = 0.
Thus, Z(UNn BK< . (UnN B).

Let we U, then e UN B so «u® = 0. Since w’k + kuw*e UN B,
euku = z(wk + kudu = 0. Let ae R;ua* + auc K, therefore 0 =
zu(ua* + au)u = xu’au’. If we replace a by ax, we have (vu’a)® = 0.
That is, 2u’R is a nil ideal of bounded index and so zu®* = 0 for any
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u € U. TUpon linearization we obtain

(3.5.1) xuv = —xvu for wu,veU.
Since zuvu = —zvu? = 0 and vkve U, we have
(3.5.2) xu(vkv)u = 0.

Let we U and seS;zuv(ws + sw)vu = 0. Replacement of & by
xw, expansion of the expression, and repeated use of (3.5.1) yields,
0 = —axwvuswvu. By repeated use of (3.5.1) and finally (3.5.2), we
have swvukwvu = 0. Given ac R, since a = s + k for some s€ S and
ke K, we can write zxwvuawvu = 0. Replace a by ax to obtain

cwvu(ax)wou = 0 .
Then zwvuR is a nilpotent ideal so zwvu = 0. As uk — kue U.
(3.5.3) 0 = zwo(uk — ku) = —xwvku .

Let s€S; awv(ws + sw)v = 0. Moreover, since swvwsv = 0, we have
swvswy = 0. From (8.5.3), swvkwv = 0. As before, this implies

(3.5.4) xwy = 0.

Immediately, 0 = zw(vk — kv) = —awkv. In particular zwkw = 0.
Since swse K, sw(sws)w = 0. Also, 0 = sw(swk — kws)w = xwswkw.
Again, letting a = s + &k for a ¢ B, we have zwawaw = 0. Via the
same techniques, zw = 0 or x e ¥ (U). Hence, £ (UN B) & < (U).

4. Topological annihilator rings. In this section R will denote
a semiprime topological annihilator ring with continuous involution
such that 2R = R and if {2x,} is a net convergent to 0 ¢ R, then {z,}
is also a net convergent to 0. U will be a closed K-strong Lie ideal.

The definition of an annihilator ring says that < (R) = Z(R) =
(0) and if A(L) is a closed right (left) ideal not equal to R, then
ZF(A) # (0) Z(L)=+(0). So if B= B(U), H= <(B)¢ B is dense
in R. It is easy to show that if U is closed, B is closed. If X &
R, ClI(X) will denote to topolopical closure of X.

The following results have proofs which are similar to those given
by Baxter in [3; p. 4].

THEOREM 4.1.
(i) B 1s a two-sided ideal
(ii) {&ZB)} = <« (B*)
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(iiiy B = B*
(ivy U< B.

For any «,yecR, we adopt the following notation: (x,y), =
2y — y*z* and (z, y); = 2y + y*2*. Using the results of the last
theorem, we prove

THEOREM 4.2. U = CN K where C is a closed two-sided ideal.

Proof. Let V be the additive subgroup of S generated by the
set {(u,a);: ue U and ac R}. If we show (U + V) to be a right ideal,
since it is self-adjoint, it must be a two-sided ideal.

Since UZS B, (4, a), = ua + a*uc U forallae BR. Let cec R, then

auc + c*ua* = ((@, )z, 0 + (4, (—a*c)), eV
and
auc — c*ua* = ((a, w);, ¢); + (4, (—a*c)); e V.

Since 2R = R, for any 2d € R, w(2d) = (4, d), + (4, d),€ U+ V. Thus,
URS U+ V. Also,

(u, @);(2d) = (u, ad), + {a*u(—d) + (—d)*ua} + (u, ad),
+ {d*ua — a*ud}e U+ V

and VRS U+ V. Thus (U+ V)RS U + V, or the desired conclu-
sion that (U + V) is a two-sided ideal.

Let C=ClU+ V), USCNK. Let xeCN K. There exists
a net {4, + v,} such that «, + v,— where u,e U and v,eV. As
e K, Uy + V0)* = ~Up + Vo —2* = —2. Thus u, — v, — 2. By sub-
tracing these expressions we obtain 2u,—2¢. Therefore u,—x. Since
U, € U and U is closed, e U. Hence, CN K = U.

5. HK-strong Lie ideals. In this section U is an HK-strong
Lie ideal. R will have those properties as described in §1. We
further assume that 3R = R and R is 3-torsion free. HK-strong Lie
ideals were defined by Herstein [5]. Baxter [2; p. 393] showed that
if R is simple with either Z = (0) or the dimension of R over Z
greater than 16 with UZ Z, then U = K. This can be refined by
using entirely different techniques.

As before, we associate with U the set B(U). Bis a right ideal
and KBS B. However, we are no longer guaranteed that u?e B for

all we U. Hence the possibility that B = (0) does arise.

LEMMA 5.1. Let u,v,we U and ke K.
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(i) 6vuvelU

(ii) 6(uvw + wou)e U

(i) wv(wk — kw) + (wk — kw)yvuec U
(iv) v — vww’eB.

Proof. (i) and (ii) follow in a manner similar to the remarks
preceding Theorem 2.6. (iii) holds because 2R = R and 3R = R.
Finally (iv) can be verified in the same manner as [6; p. 33].

If B= (0), w*v—ovu® = 0 forall u, ve U. LetseS. Since [¥, s] =
[w, us + su] e U, [u*, [u?, s]] = 0. Also, if ke K, [u*, [u, k]] = 0, there-
fore [u?, [u?, k]] = [u®, welu, k]] = 0. We know that this implies

[w, [, a]] =0

for all e« e B. Thus, from the first section, u*e¢ Z.
We now refine Baxter’s theorem.

THEOREM 5.2. Let R be simple and of characteristic not 2 or 3.
If Z = (0) or the dimension of R over Z is greater than 4, then either
U=Kor U’c¢Z for all ucU.

Proof. If B+ (0), by the remarks preceding Lemmas 1.1 and 5.1
we have the alternative result.

We relate the notations of K- and HK-strong Lie ideals by calling
attention to the fact that if U is HK-strong, BN U is K-strong.
Clearly BN U is a Lie ideal. If ke Kand ue BN U, then [k, [k, u]] =
Fu + uk® — 2kuk. Now, ku + uk*e BNU by the definition of B.
Therefore, kuke BN U since 2R = R.

Herstein [6; p. 28] has shown that K*® is a Lie ideal of R. It is
not difficult to show that if U is an HK-strong Lie ideal such that
BN U=(0), then any x€ BN S commutes with every element in K
We need this fact to prove

THEOREM 5.3. Let R be o topological anninilator ring with pro-
perties as described in the previous section. Assume also that 3SR = R
and if {3x,} is a net convergent to 0e R, {x,} is a net converging to
0. If U s a closed HK-strong Lie ideal, then either u*c Z for all
ue U, U contains the intersection of K with a closed two-sided ideal,
or v — vule L (K) for all uw,ve U.

Proof. If B=(0),w*eZ. Assume B = (0) and BN U = (0).
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Since BN U is K-strong, Theorem 4.2 guarantees the existence of C,
a closed two-sided ideal, such that CN K= BN U& U.

Let BNU = (0). As K*® is a Lie ideal of R, t = w’v — vu*e K*N
(BN S). Also, by the remarks preceding the theorem, [¢,[¢,a]l =0
for all a ¢ B. Therefore, tcZ. Let ke K;th+kt=th—k*t*e BNU=
(0). Therefore, th = 0 or t = vw?v — vw'e .~ (K).

7. Application. We now parallel some of the results obtained
by Small [9] and Riedlinger [8] concerning an additive mapping whose
multiplicative property is defined relative to an involution. Let R be
a simple ring with involution, %, and characteristic not 2 such that
Z = (0) or the dimension of R over Z is greater than 4. Notice that
under these conditions R cannot be commutative. Let ¢ be a nozero
additive mapping from R into an associative ring A. Assume R’ =
$(R), the subring of A generated by {4(r): » € R}, is a noncommutative
prime ring such that 2R’ = R’ and R’ is 2-torsion free. Let ¢ enjoy
the further property that ¢(zy — y*2*) = ¢(x)g(y) — o(y*)e(a*) for all
z,ye R. We would like to show that ¢ is an associative isomorphism.
We will have occasion to use the following theorem by Baxter [1; p.
73] which was slightly modified by Herstein [6; p. 29]: If R is such
that 2R = R and K = R, then S = KoK, the additive subgroup of R

generated by the set {kol: k, le K}.

The next lemma is the key to much of what follows.

LEMMA 6.1. KergnN K = (0).

Proof. We show Ker¢ N K to be a K-strong Lie ideal. Letle
Ker¢ N K and ke K. Since o([k, I]) = [#(k), ()] = 0, Kerp N K is a
Lie ideal of K. Thus [k, [k, l]]eKer¢ N K or ¢([k, [k, 1]]) = (0). We
may expand this and obtain

s([k, [k, ) = (kL — 2klk + 1K) = g(k* + 1K) — 26(klk) = 0 .

Now, okl + k) = ¢(k)o(l) + é(D)p(k*) = 0. Therefore ¢(klk) = 0 or
Ker ¢ N K is a K-strong Lie ideal.

By Theorem 3.2 either Ker¢ N K = (0) or Ker¢g N K = K. Assume
the latter. Fors,teSand k, le K, [¢(k), (1)] = 0 and [¢(k), ¢(s)] = O.
As [s, t] € K, 0=4¢([s, th=[¢(s), #(t)]. Because any x € R can be written
as ¢ = s + k, we have [¢(z), ()] = 0 for all z, ye R. Therefore, R’
is commutative, a contradiction. Thus Ker ¢ N K = (0).

Let 2,y € R, then
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d((xvy — y*a*)e* — w(wy — y*2*)*) = {@)6(y) — s(y*)g(x*)}p(a*)
—d(@){p(y*)g(x*) — s(®)p(v)} .
If y = s, we can write,
#((wy — y*a¥)a* — w(y*a* — xy)) = $(@'s — sv*’) = (@)(s) — F(8)d(x*")
and

{p(@)(y) — d(¥*)p(@*)}p(@*) — s(@)p(y*)p(x*) — ¢(2)p(y)}
= (8(®))°s(s) — o(s)(8(x*))" .
This can be rewritten as
(6.1.1) {8(@*) — (3(®))*}8(s) = p(s){(@*") — (p(2*))*}

for all xe R and se S.

LEMMA 6.2. For any s€S and
ke K, {4(s) — ((5))°} and {s(k) — (¢(k))’}

are in Z', the center of R’.

Proof. Set u equal to either {¢(s®) — (4(s))’} or {s(k*) — (#(k))}.
From (6.1.1), ¢(s)u = ug(s). Consider 2¢(¢t, --+t,) where t,eS. We
write

2¢(t1t2 A tn) = ¢(t1tz ceely, +ty oo tztx)
+ G(liy e oe by — £y oo L)
= @(tuly oo bty + tyoee Lty)
+ {8()p(ts <+« E) — 8(ts -+ - &)B(L)} -
By induction, » commutes with (¢, -++¢t,) and é(¢, +-- ). Since
tifyeeot, + t, oo tt, €S, u commutes with (s, -« %, + b oo (AR
Thus, [u,¢(tt,---t,)] = 0. That is, w commutes with ¢(S). But
under our hypothesis, S = BE. Hence, v commutes with #(R) and,
indeed, with ¢(R) = R’. Thus ue 2.

COROLLARY 6.3.
(6.3.1) {p(x®) — (¢p(x))*} e Z’ for all xcR.

Proof. If x =s+ k, since ¢(sk + ks) — {¢(s)p(k) + ¢(k)¢(s)} = 0,
{8 — (@)} = {8(5") — (6(s))°} + {8(F") — (8(K))’} € Z".

Let z,ye B. If we linearize (6.3.1), we obtain
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d(xy + yx) — {s(@)8(y) + ¢(¥)p(®)}e Z .

In particular, for s,teS, é(st + ts) — {#(s)p(t) + o(t)p(s)} € Z’. Also,
B(st — ts) — {¢(s)s(t) — ¢(D)é(s)} = 0. Addition of these terms leads us
to 4(st) — ¢(s)¢(t) € Z’. Similarly, we can show that ¢(kl) — ¢(k)s(l) €
Z' for k,le K.

For notational convenience, let ¢(xy) — ¢(x)é(y) = «* for any =,y €
R. Thus the above says that s*, k'e Z’. The definition of ¢ tells us
that s* = —k*. Also, we have k' = I*. Since these terms are in Z,
#(s)k' — l*¢(s) = 0. Upon expansion and rearrangement of terms, we
obtain

(6.4.1) {8(skl — Uks)} — {8(s)p(R)p(l) — (Dg(k)$(s)} = O .

We can write ¢(sk — ks) = 4(sk)¢(l) — ¢(I)¢(ks). Replacement of this
in (6.4.1) and rearrangement of terms yields

$6(0) — JOk = 0
or
6.4.2) s¢(l) = s(Dk* = —p(l)s* .

Let m € K, by the above, there exists 2’ € Z’ such that ¢(ml+Im)=
é(m)d(l) + ¢(l)g(m) + 2'. As a result of (6.4.2) and this relation we
have that s*g(ml + Im) = ¢(ml + Im)s* or s* commutes with ¢(K-K).
The preliminary remarks guarantee for us that Ko K=S. So, using an
argument exactly like that in Lemma 6.2, we can show

(6.4.3) steZ .
LEMMA 6.4, xve€ Z’ for all x,ye R.

The proof follows directly from (6.4.3) and the remarks immedi-
ately after Corollary 6.3.

COROLLARY 6.5. If Z' = (0), ¢ is an associative isomorphism.
Proof. As Z' = (0), ¢(xy) — ¢(x)¢(y) = 0. Thus ¢ is an associa-
tive homomorphism and ¢(R) = ¢(R). Moreover, since R is simple, ¢

is an associative isomorphism.

Let 2/(= 0)e Z’. Since 7 (z') = {*" e R: vz’ = 0} is a two-sided
ideal in a prime ring, .o7(z") = (0).

LEMMA 6.6. k* =s" =0 for all se 8, ke K.

Proof. From (6.4.2) s*¢(l)= —¢(l)s* for e K. By Lemma 6.4, s ¢
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Z', therefore s*¢(l) = 0. Suppose s* == 0. By the remarks preceding
the lemma, we have ¢(I) = 0, that is, K & Ker ¢. Therefore, Ker ¢ N
K = K, a contradiction. We conclude that 0 = s* = —k°.

COROLLARY 6.7. ooy — yx) = 6(@)é{y) — ¢(y)e(x) for =, y<c R.

We have shown that when Z’ = (0), then ¢ is an associative iso-
morphism. Therefore, the following theorem is proved except when
Z' = (0).

THEOREM 6.8. ¢ is an associative isomorphism.

Proof. From Lemma 6.6, (s’)* — 4(s)s" = 0. Expansion and rear-
rangement of terms leads to (s)* — 4(s)s* = (s)** — s*¢(k) = 0. From
Lemma 6.4, (s)** e Z" so s'¢(k)e Z’. Let I K. There exist 2z, and z;
in 7’ such that s’¢(k) = 2{ and s'¢(l) = 2i. As s°e Z’, we can write
0 = [z, 2] = (s)[¢(k), p(D)] for all seS and k,lc K.

If (s°)* + 0 for some s€ S, then by the remarks preceding Lemma
6.6, [s(k), ()] = 0 for all k,le K. As ¢(k,1]) = [¢(k), 5(D)] = 0, we
conclude that [K, K] = Ker¢ N K = (0). This implies K = R is com-
mutative, a contradiction. So (s°)> = 0 for all s S. Since the center
of a prime ring is an integral domain, s°* = 0. Upon linearization of
this expression, we obtain ¢(st + ts) — {(s)s(t) + ¢(H)¢(s)} = 0 for all
t,seS.

For k,le K, k'e Z’. 'Thus there exists z;€ Z’ such that k' — 2z} =
0. Since k€S, (k)" =0 and so ()" — ¢{(k){k' — z;} = 0. Expansion
and rearrangement of terms leads to k¥ — k*¢(l) + zi¢(k) = 0. In view
of Lemma 6.4, there is an element z,e¢ Z’' such that k¥ = z,. There-
fore we can always find z;, zi, € Z’ such that k*s(]) = 2i¢(k) + 2. where
k is an arbitrary fixed element in K and ! is allowed to vary in K.
Note that k*e Z’. For me K, there are 2, and 2, in Z’ such that
k*¢(m) = zi(k) + 2. Thus 0 = (k*)*[¢(0), o(m)] = [K*¢(1), E'¢(m)]. Via
the same argument as above, we can show k* = 0. Linearization of
this expression leads to ¢(kl + lk) — {¢(k)¢(l) + ¢(D)s(k)} = 0. Now,
using this fact and the fact that both ¢(sk) — ¢(s)¢(k) = 0 and
o(st + ts) — {8(s)8(t) + #(t)e(s)} = 0, we have that

Py + yz) = 3(x)6(y) + Hy)s()
for all ¢,y B. From Corollary 6.7, we know
o(xy — y») = 6(@)$(y) — s(y)s(x) .

Addition of these two expressions yields ¢(xy) = ¢(x)s(y) or that ¢ is
an associative homomorphism. Therefore, ¢(R) = ¢(R) and Ker ¢ = (0)
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since R is simple. Hence ¢ is an associative isomorphism.
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ON LOW DIMENSIONAL MINIMAL SETS

SooN-Kyu Kim

Let (X, G, f) be a topological transformation group. Sup-
pose that the phase space X is compact, separable metric, and
locally contractible and the group G is the additive group of
all real numbers R with the usual topology. If X is a minimal
set of dim;(X) =< 2 then X is a manifold, imposing a further
condition on the action when dim;(X)=2. Hence X is a
singleton, a circle or a torus according to its dimension.

A topological transformation group is a triple (X, G, f) consisting
of a topological space X, a topological group G, and a continuous
map f from G X X into X such that f(e, ) = %, f(k, f(g, ) = flgh, %)
for any % in X and any ¢, & in G and the identity element e of G.

The phase space X of a topological transformation group (X, G, f)
is called a minimal set if for each x e X the closure of the orbit of
x is X itself. A locally contractible space X is a space such that for
each 2 ¢ X and for any open set U containing 2 there is an open set
V containing z, which is contractible in U to the point x.

Chu [3] has shown that if the phase space X is a compact Haus-
dorff minimal set and dim,(X) < n, then H"(4, L) =0 for every
proper closed subset A of X under any connected topological group G.
Here dim,(X) is the cohomology dimension of X in the sense of Cohen
({2], [4D) and L is a principal ideal domain. The Alexander-Spanier
cohomology theory is used here. Using this result, Chu has answered
questions that were raised by Gottschalk [6]. He proved that the
universal curve of Menger and the universal curve of Sierpinski are
not minimal sets under any connected topological group.

Chu has also shown that some cohomological natures of a minimal
set are similar to those of a generalized manifold. We try to see
whether certain minimal sets are actually generalized manifolds. In
this regard, we have some results in low dimensions as mentioned in
the abstract.

We use the section theorem of Bebutov and Hijek and the umbrella
theorem of Bing-Borsuk that we state here.

The section theorem ([11: p. 332] and [8: p. 210}

Given a topological transformation group (X, R, f) with X separable
metric and a non-fixed point x, in X there exist sections S 2, gener-
ating arbitrary small neighborhoods of #, in X. If X is locally compact
or locally connected, then S may be taken compact or connected
respectively. Furthermore, if X is compact and locally connected,
then S may be taken locally connected.

171
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The umbrella theorem ([1: Cor. 5.3]).

In an n-dimensional locally contractible separable metric space X
the set of all centers of n-dimensional umbrellas (see [1] for definition)
contained in X is of the first category of Baire.

We note that if the phase group is discrete then X is not neces-
sarily a homogeneous space hence not a manifold ([5], [6: p. 139]).

1. Zero and one dimensional minimal sets.

THEOREM 1. Let (X, R, f) be a topological transformation group
with X a locally connected compact separable metric space and R the
additive real group. Suppose X is a minimal set of dim, (X) = 0 or
1. Then X is a singleton or a circle.

Proof. Since X is necessarily connected, X is a point if dim,(X)=0.
Let the dimension of X be 1. Since each point € X is not a fixed
point, by the section theorem of Bebutov and HAajek there is a section
generating arbitrary small neighborhoods of # in X. That is, there
exist 0 > 0,¢ < 0 and a set S, in f(S(x, d), [ —¢, €]) such that for each
y € f(S{z, 0), [—¢, €]) there exists a unique ¢, € R such that [¢{,] < ¢ and
fly, t,) € S!, where S(z, 6) is a d-neighborhood of z and S{z, 0) is the
closure of S(x, 0). Furthermore, z is in S;. There is a homeomorphism
h: S; x[—e¢, ] = f(S], [—¢, ¢]) € X defined by hls, t) = f(s, t),seS,, te
[—e, ¢€].

Let S,={f(y,t,) e S.|yeS(x, 6)}. Then S, x (—¢, ¢) is homeomorphic
to an open neighborhood of z in X. So we may regard S, x (—¢, ¢) as
a neighborhood of « in X. Since the dimension of S, x (—¢, ¢) is 1, the
dimension of S, is 0 by [4: p. 222]. Since S, may be taken connected,
S, is the point z itself. Hence (—¢, ¢) is a neighborhood of x in X.
This proves that each point x in X has an interval neighborhood.
Since X is compact, X is a circle.

2. Two dimensional minimal sets. Let (X, R, f) be again a
topological transformation group (continuous flow). If a minimal set
of dim,(X) = 2 is a manifold then it is either a torus or a Klein bottle
since its Fuler characteristic has to vanish [12: p. 197]. Since a Klein
bottle cannot be a minimal set by a result of Kneser [10: p. 153]
(we are told this by Arthur J. Schwartz), X must be a torus.

The following seems plausible.

Congecture. Let (X, R, f) be a topological transformation group
with X a locally contractible compact separable metric space. Suppose
X is a minimal set and dim,(X) = 2. Then X is a manifold, hence

a torus.
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If we further assume that X is almost periodic, then X is a
homogeneous space [6: p. 343]. By an almost periodic topological
transformation group we mean that for given ¢ > 0 there exists a
relative dense subset of numbers {r,} such that for all x € X, d(f{=, ?),
flx, t + 7,)) > ¢ for all te R and each 7,, where d is a complete metric
on X. A set Y of real numbers is called relative dense if there exists
a T >0 such that YN({t — T,t+ T)+# @ for all te R. Itis known
that such a space X is a torus by a result of [6: p. 39] and Lie group
theory. And Bing and Borsuk showed that such a space is a manifold
[1: p. 110]. But we give here a proof because the method of Theorem
1 can also be applied to prove this result and we hope that the
technique used in the proof is useful to prove that each point z in X
has a Euclidean neighborhood without assuming almost periodicity of
the action, thus proving the conjecture.

THEOREM 2. Let (X, R, ) be a topological transformation group
with X a locally contractible compact separable metric space and R the
additive real group. Suppose X s an almost periodic minimal set
of dim, (X) = 2. Then X is a manifold (hence a torus).

Proof. Note again that X is necessarily connected. Since each
2 in X is not a fixed point, by the section theorem of Bebutov and
Hajek there is a section generating arbitrary small neighborhoods of
2 in X. That is, as in Theorem 1, © has an open neighborhood of
the form S, x (—¢, ¢) in X. Here a section S, may be taken connected,
locally connected and locally compact. Since the dimension of S, X (—¢, €)
is 2, the dimension of S, is at least 1 (in fact, it is 1 [4]). Since S,
is locally compact, connected and locally connected, there is a non-
degenerate arc «, in S, which contains y for each yeS,. Then
a,[0, 1] x [—¢, ¢] is a closed 2-cell in X, and @ x 0 =z € «,[0, 1] X [—¢, ¢].

Suppose «,(0, 1) X (—e¢, €) contains a limit point x, of X — (&,[0, 1] x
[—e¢, ¢]). Take an open set V, of w, in a,(0,1) X (—¢, ¢) such that V,
is compact and V, < «,(0, 1) x (—¢, ¢). Let V be an open neighborhood
in X such that V, = a,(0,1) x (—e,e) N V. Since X is locally con-
tractible, there is an open neighborhood U of x, in X such that U is
contractible in V to the point x, and U N (X — («,[0, 1] x [—¢, €]) = @;
i.e., there is a continuous map H: U x [0, 1] — V such that H(y, 0) =
Y, H(y, 1) = &, for each ye U. Then for a point ze U N (X — («,[0, 1] x
[—e, ¢el), H.:[0,1] — V is a path from z to x, and H.,[0, 1] N (a,[0, 1] x
[—e e VN(al0,1] x [—¢ ¢]) = Voo V,Ca,(0,1) x (—¢,&). There-
fore, there is a path from z to x, which misses «,[0,1] x [—¢,¢] —
a,(0,1) X (—¢,e).

Qonsidering the path is ordered from z to x, there is a point
w;€ V, such that ) is the first point of the path H, which meets V,.
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Therefore, there is 2-dimensional umbrella with x; as its center (see
[1] for definition). Then each point of X is a center of a 2-dimensional
umbrella by the homogeneity of X that follows by the assumptions.
This contradicts the umbrella theorem of Bing and Borsuk.

Thus an open 2-disk «,(0,1) X (—¢,¢) is an open set in X. If
z € a,0,1) then «,0,1) X (—¢,¢) is an open neighborhood of x in X.
Otherwise to get an open neighborhood of 2 that is an open 2-disk
we appeal to the minimality of X (or homogeneity of X in this case).
For if x has no open neighborhood that is an open 2-disk then there
is no element of R that sends « into the open set «,(0,1) X (—¢,¢).
This contradicts the minimality of X.

Therefore, X is a compact 2-manifold. Hence X is a torus by
the remark that we made in the beginning of the section.
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A PHRAGMEN-LINDELOF THEOREM WITH
APPLICATIONS TO .# (u, v) FUNCTIONS

TaoMmAS L. KRIETE, III AND MARVIN ROSENBLUM

A well-known theorem of Paley and Wiener asserts that
if f is an entire function, its restriction to the real line
belongs to the Hilbert space & *L¥—r, 7) (where & is the
Fourier-Plancherel operator) if and only if f is square
integrable on the real axis and satisfies | /(z)| = Ke*"™+ for
some positive K. The “if” part of this result may be viewed
as a Phragmén-Lindelof type theorem. The pair (¢i**, ¢i7®)
of inner functions can be associated with the above mention-
ed Hilbert space in a natural way. By replacing this pair
by a more general pair (u, v) of inner functions it is pos-
sible to define a space .#Z(u, v) of analytic functions simi-
lar to the Paley-Wiener space. For a certain class of inner
functions (those of “type €”) it is shown that membership in
A (u, v) is implied by an inequality analogous to the ex-
ponential inequality above.

A second application of our results is to star-invariant
subspaces of the Hardy space H2. It is well known that if
% is an inner function on the circle and f is in H?, then in
order for f to be in (uH?! it is necessary for f to have a
meromorphic pseudocontinuation to |2z| > 1 satisfying

f@p=sg =M@ s,
1—12]%

If u is inner of type @, it is proved that this necessary con-
dition is also sufficient.

Let I' = {¢": 0 < 0 < 2z} be the unit circle and
R={x: —oo <2< oo}

the real line considered as point sets in the complex plane C. Let D
and D_ be the interior and exterior of the unit circle and let 2 and
2_ be the open upper and open lower half-planes in C. A function
@ is outer on D or 2 if @ is holomorphic on D or 2 and of the
form

0@ = exp | £ 21 0(@9), ze D,

or

D(z) = expi.g 1+t hdt, zeQ,
w JR t — 2

175
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where k, k, are real with ke L'(I"), k,e L'(R), and o is nor-
malized Lebesgue measure on I'. A function FF on D or 2 is in
Nt if F is holomorphic on D or 2 and if there exists an outer
function @ that is not identically zero and such that @F is a
bounded holomorphic funection on D or 2. If F is in %t* on D or 9,
then f(e”’) = lim F'(re”) exists for almost all ¢’ ¢ I", or

f(@) = liLm F(x + i)

exists for almost all # in R. Such f form the class /" of func-
tions on I" and R respectively. We shall systematically use capital
letters F, G, -++ for functions in N* and lower case letters f, g, -«
for the corresponding functions in _s~*.

Every outer function is in M*. A function U in N* is 1nner if
|w| =1 a.e.. Every function F' in %+ has a factorization of the
form F = UG, where U is inner and G is outer.

Suppose U and V are inner functions, say, on Q. _#Z(u, v, R) is
the set of functions f on R such that wf and vf* are in 4"+ on R.
(f* is the complex conjugate of f). _#(u, v, I') is similarly defined.
As shown in [5] one can associate with each f in _Z(u, v, R) a
unique function F' separately meromorphic in Q and 2. such that
UFeNt, VFeN*, and

(1) F@) = lim F(o + iy) = lim F(x — i)

for almost all @ in R, where F(z) = F*(z*), ze Q. If F is mero-
morphic in 2, then an extension of F' to a meromorphic function on
Q U Q_ satisfying (1) is said to be a meromorphic pseudocontinuation
(relative to R) of F. Similarly, to each f in _#Z(u, v, I') one as-
sociates a unique F meromorphic in DU D_ such that UFeN*,
VFe N+, and

(2) F(e") = lim F(re”) = lim F(re)
Tl rll

for almost all e’e " where F(z) = F*(z*"), ze D. Meromorphic
pseudocontinuation is defined relative to I" in a manner analogous to
the R definition.

Considerations about . #(u, v, R) may be motivated by examin-
ing the special case when U(z) = V(2) = ¢'*", 7 = 0. Then

A (u, v, R) N L*(R)
is the class of functions that are the restrictions to R of entire

functions of exponential type < ¢ such that S | F(x) Pde < . Such
R
entire F' can be characterized by this integral condition together
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with the inequality
[F(2) < K|y|™|sinh (27 y)|

for all ze 2 U 2_, where K > 0. The object of this paper is to ex-
tend this type of function-theoretic characterization to more general
A (4, v) classes. The above mentioned application to star-invariant
subspaces arises from the fact that M1, v) N L}(R) = HY(Q)ovH*%),
where H*Q) is the Hardy space of the upper half-plane. In § 3 and
4 applications are given to factorization problems for nonnegative
operator-valued functions and to generalized Paley-Wiener represen-
tations.

1. A Phragmén-Lindelof Theorem. In this section we sghall
derive a Phragmén-Lindelof type theorem for certain functions
holomorphic on D, and then transcribe the result to obtain a like
theorem for functions on 2. A rather different Phragmén-Lindelof
type theorem is discussed by Helson in [2, p. 33].

Recall that a Blaschke product B on D has a representation

(3) B@® = [LnBi2), Bie) = 2L =% 4eD),
2,11 — 2z

where 3..(1 — |2;]) < . We take z¥/|z;] =1 if 2z; =0. The
support supp B of B is the intersection of I" with the closure of
{z;};2. A singular inner function S has a representation

(1) S(z):exp(— Srjj:fzp(ds))zep,

where £ is a positive singular measure on I". The support supp S
is the closed support of the measure .

Any inner function U on D can be factored in the form U =
¢BS, where ceC, |¢] =1, B is a Blaschke product and S is a singu-
lar inner function. The support supp U of U is supp B U supp S.

A closed set N on I' is a Carleson set if N has zero Lebesgue
measure and if the complement of N in I" is a union of open arcs
I; of lengths ¢; such that > ;.,¢;loge; > — oo.

THEOREM 1.1. (Carleson [1]). A closed subset N of I' is a Car-
leson set on I’ if and only if there exists an outer function G on D
that satisfies a Lipschitz condition and such that

g(e?) = lim G(re®)
rt1

vanishes on N.
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DEFINITION 1.2. An inner function U on D is of type € if

(i) supp U is a Carleson set, and

(i1) 3z [dist (z;, supp U)] < oo,
where {z;};<, are the zeros of U in D repeated according to multipli-
city.

LemMmA 1.3. Let B be the Blaschke product given by (3) and
suppose B is of type €. If G is a Lipschitz outer function on D
such that g(e’) = lim,,, G(re*’) vanishes on supp B, then

(5) S -1 |10 - 29 [ o@) < = .

721

Proof. Since G is Lipschitz there exists K > 0 such that
lg(e’)| = K|e” — \|
for all ¢ in I" and )\ in supp B. Thus for ) in supp B,
L —12 S [ (1 — 2fe”)™g(e”) P o(db)
<@ — [z E 1L =26 (@ = Vo).
Applying Parseval’s equality to the Fourier series for the function
(1 — zFei?) (¢ — ) shows that this last expression is equal to
K*(lzi =M+ (1 —]2]).

Since >;5(1 — |2;]) < « and we are free to let A vary over
supp B this inequality implies (5).

The following theorem is our Phragmén-Lindelof result for func-
tions on D.

THEOREM 1.4. Let U be an inner function of type € on D.
Suppose F is holomorphic in D and there exists M > 0 such that
(6) |[FRP=M1—-[2z)7QA—-[URIM zeD.

Then Fe N+,
Proof. U has the factorization U = ¢BS, where [¢| =1, B is a

Blaschke product of type & and S is a singular inner function of type
&. We have

(1) A—=1zH7"A-1TUERDP
=1—[z"A-[B@H+[BEIFA-[2)TA-[SEI
=A-[zP)7"A=[BE@H+A—-]2/"A-[8®Ff) zeD.
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If B is given by (3), then
1-B@F=1- B!+ X |TBE| - IBED
=T - 1B@D.
Thus A
(8)  (A—lePA-BEOPNSNE~|z0I1-2az".

If S is given by (4), then
1S@) = exp{—ZgF(l 2P|t - zl—z;z(dé)}, 2eD.

Applying the elementary inequality (1 —e™*"/h) < a if a, h = 0, with
h=1— |z and a =2 S |t — 2| p(de) yields
r

(9) A—-1zP)7A-[8@D = Zgrle“ = 2|7 p(dg), ze D .

Suppose now that (6) holds and let G be a Lipschitz outer func-
tion such that g(e¥) = lim,., G (re¢’’) vanishes on supp U. We have
from (6) — (9) that

|GRF(2) P = M350 =120 1—27z"G@)
+ 2MSF | — 27| G(2) | p(dd), 2z D .
But for some K >0
|G(z) P < K?|e® — 2|7 if e esupp U,
and g is supported on supp S & supp U. Thus for all ze D
|GRIF(2) | = M]_ZZI(I — 12 P)I1 =227 G+ 2M K* ((T) .

It now follows from Lemma 1.3 that

sup SP; Glre)F(re®) Fo(dd) < oo
so GFe H*. It is easy to multiply G by an outer function G, and
obtain G,GF bounded, and so F' is in N-.

We shall next recast Theorem 1.4 for functions holomorphic on
Q. Any inner function U on £ has a factorization U = ¢BSV*,
where ce C, |¢| =1, B is a Blaschke product on 2, S is a singular
function on 2, and V°(z) = ¢“*, where 0 < ac R. Then supp B is
defined to be the set of limit points on R U {cc} of the zeros of B,
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and supp S is defined to be the support of the singular measure in
the representation for S analogous to (4), (Hoffman [3] p.132-133).
We define supp V* to be empty if ¢ =0, and {} if ¢ > 0. The
support supp U of U is supp B supp S U supp V*.

A closed subset N of the extended real line Riy{c} is a Carleson
set if N N R has Lebesgue measure zero, - € N, and the complement
of Nin R U {e} is a union of open intervals

Ij:(aj9bj)’_m§a'j<bj§°o’ j:152;“'

such that >3;..0;log d; > — oo, where

b, — a,; .
5, = i = 0 L =12
I LG

We understand in the above that «/« = 1
Now let a: D-— 2 {c} be the mapping defined by

a®) =il + 2) (1 — 2)™

if 21 and a(l) = -, and let B8 be the inverse of a. Then if
2, %€ 2,

lz1—z2iz .
lz, + iz, +0f

|8(z) — Bz) P =4

Moreover 8 maps (—oo, o] onto I" and N is a Carleson set on
R U {e} if and only if g(N)U{l} is a Carleson set on I'. If U is
inner on 2 then Uo«a is inner on D and supp (U-a) = B (Supp U).
Furthermore if {z;};., is the sequence of zeros of U, then {8(z,)};s, is
the sequence of zeros of U o a.

DEFINITION 1.5. Let U be an inner function on 2. U is of type
€ if supp U U {c} is a Carleson set on R U {c} and

inf {zj — A Jz
j;1<}.els\rllppU (1 + 7\:2) (1 ‘l‘ |z.1' |2) ) <

where {z;};», is the sequence of zeros of U in £ repeated according
to multiplicity.

The following lemma follows from the above discussion.

LeMMA 1.6. Let U be inner on 2. Then U is of type € if and
only if Uoa is of type € on D.

We can now recast Theorem 1.4 for the half-plane.
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THEOREM 1.7. Let F be holomorphic in 2 and suppose that U 1s
inner of type € in Q. Suppose that there exists K > 0 such that

(10) [FR)P=KImz)" 1L+ [2) Q- [UR) /) for ze L.
Then FeRt on Q.

Proof. Set G = Foa, so G is meromorphic on D and

|GR) P = K[Ima@]" 1+ [ak) )1 - |Ula@)]), 2D .

We can replace 1 + |a(z)]* by |7+ a(z)|* and the inequality still
holds but for a different constant K. Now

Ima) =1 -2zl — 2™
and
li+az)=4]1-2]7,
80
IGRIF=K' L—-12)" Q- |Ula@) ), zeD.

But by Lemma 1.6 U « is of type &, and thus Theorem 1.4 implies
that GeN* on D. We then deduce that FF = G- g is in N+ on Q.

2. The classes .# (u,v,I') and _# (u,v, R). Suppose U is
inner in D. Then U has a meromorphic pseudocontinuation to a
function U on D U D_ that is given by

U(z), zeD

(1) U@ =110+, zeD_.

If supp U= I, then U on D has a single valued meromorphic con-
tinuation to D_ that coincides with U as given by (11). If F is
meromorphic on D_ then F(z) = F*(z*~') defines F' to be meromorphic
on D. Of course F need not be a pseudocontinuation of F.
Analogous definitions are made for 2. Suppose U is inner on £.
Then U has a meromorphic pseudocontinuation on 2 U 2_ given by

U(z) ze Q

(12) VO =110 @)  zeo .

If F' is meromorphic on 2, then F(z) = F*(z*) defines F' to be mero-
morphic on Q..

We say that F is 7 on Dif FeN* on Dand F(0)=0. _¢7is
defined to be the set of all f such that f(e’) = lim,,, F'(re¥) a.e.,
where F ey on D.

Suppose U, V are inner functions on D. _#; (u, v, I') is the set



182 THOMAS L. KRIETE, IIT AND MARVIN ROSENBLUM

of all functions f on I" such that wfe _+ "t and vf*e +77. _#, (u,
v, I') can be characterized as follows: fe_+(u, v, I') if and only if
there exists a function F separately meromorphic in D and D_ and
such that

(13) (@) = lim F(re'?) = lim F'(re¥) a.e.,
r11 rl1

with

(14) UFeR-on D and VFe% on D.

In case U and V are of type & we can deduce (14) from an in-
equality involving F, U and V.

THEOREM 2.1. Suppose U and V are of type €, and F is mero-
morphic vn D and has a meromorphic pseudocontinuation to a func-
tion F on DU D_. Further suppose there exists K > 0 such that

(15) IFRPFP=KA—-[2zP)7(URI[*-1VQEI), 2]+ 1.
Then f(¢) = lim,,, F(re?) e _z, (u, v, I').

Proof. If F satisfies (15) on D then
[URFERP=K1L—- 271 —-[URVE P,
so UF eN* by Theorem 1.4.
If F satisfies (15) on D_, then for all ze D,
(V@F@P=KzPQL—[2D70 - URVE)

so~Vﬁ’ eM" by 1.4. But we also deduce that V(0)F(0) =0, so
VFeN;y. It therefore follows from the characterization of _7, (u, v,
I') given in (13) and (14) that fe_+; (u, v, I').

In case fe LX), i.e., in case S | f]Pdo < =, we have a stronger

result.

THEOREM 2.2. Assume that U, V are imner of type © on D and
felXD). Then fe_#z(u, v, I") if and only if there exists a func-
tion F' satisfying the hypotheses of Theorem 2.1 such

f (€ = lim F(re’’) a.e..
711

Proof. It follows from Theorem 2.1 that if F satisfies (15) then
Jfe _#,(u,v, I'). Conversely, suppose f e _#u,v, ") N LXI"). Then

ufe 4+ 0 IN) = H and vf*e s~ n LA S H? with S vf*do = 0.
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Thus uf and vy*f* are in (wvH?* N H? where x(¢?) = ¢¥.
Now any ge (uvH?»* N H* is the boundary value function of

G(z) = S 1 — 2z (1 — u*(e®)v*Eet)U(R)V(2)g(e®)a(ds), ze D .

But then it follows from the Schwarz inequality that
(16) IGAFF=K1—[2P)"A-[U®RVE ), zeD,
where K = S |gFdo.

By applying (16) to g = uf and g = vy*f* we obtain
1) JURFEPFP=KL1-[z)"A-|U@VEIP, zeD,
and
18) |V@F@EIF=K|zF1—-[zPD" Q- |U@VE, 26D,

where K = Sr | f[Fdo.

It is easily seen that (17) and (18) together is equivalent to
(15).

COROLLARY 2.3. Assume that V is inner of type € on D and
feH*on I' Then fec(wHY)" if and only if there exvists a meromor-
phic function F on D U D_ such that

19) [ = li¥n F(re) = lilm F(ref) a.e.,
for which there exists K >0 with
|[FRPF=KQL—-[2)"A—|V({#)]) zeDUD-_.
Proof. Note that (vH?»* N H* = _#\1, v, I'), and use 2.2.

COROLLARY 2.4. Assume that U, V are inner of type € on D
and feLXI'). Then fe _#Zw,v, ") if and only if there exvists a
function F meromorphic in D with pseudocontinuation F such that
(19) holds and there exists K > 0 such that

|FRPF=KQ-[2z)7(UR|[*—[2V(E)][), zeD.
Proof. Note that #Z(u, v, I") = #,(w, yv, I').

The same kind of problem can be considered on 2 with minor
modifications in the proofs.

THEOREM 2.5. Suppose F is meromorphic on 2 and has a mero-



184 THOMAS L. KRIETE, III AND MARVIN ROSENBLUM

morphic pseudocontinuation to a function F' on 21U Q_. Assume that
U and V are inner functions of type € on 2. Further suppose that
there exists K > 0 such that

[FRIFP=K(Imz)" A+ [z )(UR [ — V(@[ ze2nL_.
Then f(x) = lim,,, F'(z + iy) € A (@, v, R).

THEOREM 2.6. Assume that U, V are inner of type € on 2 and
feIl*R). Then fe _#(u, v, R) if and only if there exists a function
satisfying the hypotheses of Theorem 2.5 such that

f(=) = lilm F(x + 1y) a.e..

3. Factorization of nonnegative functions. In this section we
shall reformulate an operator factorization theorem of the type set
down in [5] in terms of inequalities of the type discussed in § 1 and
2. Throughout & is a complex separable Hilbert space and B(¥) the
space of bounded operators on . We shall restrict ourselves to
considerations involving £ rather than D in order to simplify the
exposition. Following [5] we say that a holomorphic function F on
Q taking values in B(%¥) is in N}, if there exists a nonzero com-
plex-valued outer function @ such that @F is a bounded holomorphic
function on £ that takes values in B(¥’). Any F in 9Nj., has
strong boundary values a.e., that is, the limit lim,,, F(z + 1y) = f(2)
exists a.e. in the strong operator topology.

We say that a holomorphic function G in R}, has a meromor-
phic pseudocontinuation G if G is meromorphic in 2_ and the strong
limits lim,,, G(x — 7y) and lim,,, G(x + iy) exist and are a.e. equal.
For such G we define G by G(z) = G*(z*), ze 2 U 2_.

THEOREM 3.1. Let U be a complex-valued inmer fumction on £
and F a meromorphic function on 2 tlaking values in B(¥) such
that UF e NE ... Then F(x + iy) has strong boundary values f(x) a.e.
as y | 0. Assume that {f(®)c, ¢) = 0 a.e. for each ¢ in &.

Then F has a foctorization F(2) = G(2)G(z), zc R, where G is
n N, and has a meromorphic pseudocontinuation G such that
UG e R ). If there is real interval I such that £(.) is a.e. bounded
on I and U is analytically continuable across I, then G s analytical-
ly continuadble across I,

Proof. This theorem is a summary of results proved in [5].

THEOREM 3.2. Theorem 3.1 may be modified as follows:
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(i) The hypothesis “UF € N} o,” may be replaced by the stronger
hypothesis “there exists K > 0 such that

(20) NFRIF=sKIm2)7 A+ [2P)(UR T - [URI)
Sor all z in Q7.

(i) If in addition one assumes that r {f@e, ¢y dx < oo for

all ¢ in &, then G can be chosen to in addition satisfy
@)  [{GRe O P=KIm2) L+ (2L~ |UR), ce®
for some K, > 0 (K, depends on ¢) and all z€ 2 Q2_.

Proof. The proof of 1.4 shows that (20) implies that UF € N} ...

Assume the hypotheses of (ii). Now f = g*g, where g(x) are
the strong boundary values of G(z + iy) as ¥y } 0 and y 1 0. We have
[<g(-)e, e P = llgC)elPllelf = {f()e,edlielf for all ¢ in &, so
{g(+)e, > € LA(R) for all ¢ in &. (21) now follows from Theorem 2.6
and the fact that {g(-)e¢,c>e _#(1, u, R).

As an example suppose F'(-) is an entire function taking values
in B(¥) such that (F(x)c,¢) =0 whenever cc % and z€ R, and
there exists 7 = 0 and K > 0 with

IF@IP <Ky (L +|2]) sinh2ry,z =2 + iye®.

Then F is factorable, F'(z) = G(2)G(z), where G(-) is an entire
function taking values in B(%"). This follows from Theorems 3.1
and 8.2 (i) with U(z) = ¢**. G(-) is entire by the last statement in
Theorem 3.1. It also is deducible from Theorem 3.6 of [5].

If in addition to above F'(-) satisfies Sm {F(x)e, > dx < oo, then
by (21) G satisfies

KGR, )P =Ky 1+ [2) (1 —e™),

for all z =« + 4y with ¥y 0 and ce &. K, is a constant depending
on c.

4. A Fourier type transform and the Paley-Wiener represen-
tation. As before let U and V be inner functions in 2 and denote
the space _Z (u, v, R) N L*(R) by .#*u, v, R). This space is easily
seen to be a Hilbert subspace of L*(R). As noted in the introduction
A*(e'", ¢, R) is the restriction to the real axis of a classical Paley-
Wiener space of entire functions. That

A (e, 67, R) = & *L* (-7, 7),
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(where & is the Fourier-Plancherel operator on L*(R)), is the content
of a well known theorem of Paley and Wiener.

In [4] one of the present authors generalized this theorem to
give an integral representation for any of the spaces _Z*(u, v, R).
In this section we combine this result with Theorem 2.6. First we
shall set down some basic facts from [4]. For simplicity we assume
that U and V have no zeros and are normalized so that U(7) and
V(i) are positive. U then has a factorization U(z) = S(2)e’** where
S is a singular inner function in 2 and « = 0. Using the usual
representation for singular inner functions we can combine the two
factors in the following convenient form:

(22) U(z) = exp ( i SR* lt_ffzi y(dt))

where ¢ is a finite positive measure on the extended real numbers
R* = R U {c} whose restriction to R is singular and with pg({«}) =
a. In the integrand, and elsewhere below, we always take
(2 0)/o = z for any complex z. V has a similar representation with
corresponding measure 7.

Let 7 be the total variation of g and suppose that a is an R*-
valued measurable function defined on [0, 7] such that m(a=*(E)) =
U(E) for every subinterval E of R*. For example, we could take
a(t) = inf{re BR*: p((—oo,x]) = t}. Extend the definition of a to
[0, o) by setting a(t) = « if { > 7. For each t = 0 let

Uz) = exp(igz%dx) .

It is clear from (22) and a change of variables that U. = U. More-
over, U, is an inner function for each ¢ and U, divides U, if
0=s<t.

In a like manner one can associate o, b: [0, 0] — R* and V,
(analogous to 7, ¢ and U, with the inner function V. Note that
V,= V. U, and V, have pseudo-continuations to 2_ given by (12).
For any z in QU Q2_ let

b(t) — 7

H:(t) = Vt(z) m

and

H-t) = U= 20+ y>y,
a(t) — z

Now let H*(2) and H*({_) denote the usual Hardy spaces of
functions analytic in 2 and Q_ respectively, which can also be con-
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sidered as orthogonal complements of each other in L*R). It was
shown in [4] that the mappings W, and W, given by

(W) @) = @m)~" S“ HA(t)glt) dt, Tmz > 0
and

(W.g) @) = oy | " Ho@odt, Imz < 0,

are isometries from L*0, «) onto H*(2) and H*L2_) respectively.
Let E: L*(— o0, 0)— L*0, ) be the operator (Eg)(t) = g(—1t).
The W,E @ W, can be considered as a unitary operator from

L (=0, 0) @ LX0, o) = LXR)

onto H*Q2_) H¥ Q) = L*(R). This operator takes L*(—s,t) onto
AUy, v, R) for all s, ¢ =0. If ¢ and v are supported on the single-
ton {eo} or, equivalently, if a(f) = b(t) = o a.e., then W,EH W, is
the adjoint of the Fourier-Plancherel operator. Combining this with
Theorem 2.6 yields the following result.

THEOREM 4.1. Let U and V be inner functions of type €. Let
F be analytic in QU 2_ and suppose that the two sided boundary
Junction f(x) = lim,_, F(x + ty) exists a.e. and lies in L*R). Let
s,t = 0. Then the following are equivalent.

(1)
[ F@P=K(Imz)7 1+ 2P (UR[T-1V]), zeQU L.

(ii) There ewxist a.e. unique functions g, in L*0,t) and g, in
L0, s) such that

F@) = @0 | B @) do
+ (@r) SSH;(x)gz(x)dx, Imz=0.
Moreover, || £ 115 = 1l g.lf + ] g2 [z

Added in proof. We refer the reader to the papers.

6. H. S. Shapiro, Generalized analytic continuation, Symposia on
Theor. Phys. and Math. Vol. 8, Plenum Press, New York (1968),
151-163.

and,

7. R. G. Douglas, H. S. Shapiro and A. L. Shields, Cyclic vectors
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and invariant subspaces for the backward shift operator, Ann. Inst.
Fourier, Grenoble, 22 (1970), 37-76,
for more detailed information on meromorphic continuation and (vH?)*.
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NOTES ON RELATED STRUCTURES OF A UNIVERSAL
ALGEBRA

WiLLIAM A. LAMPE

The related structures of a universal algebra 2 that are
studied here are the subalgebra lattice of %, the congruence
lattice of %, the automorphism group of U, and the endo-
morphism semigroup of %. Characterizations of these struc-
tures known, and E. T. Schmidt proved the independence of the
automorphism group and the subalgebra lattice. It has been
conjectured that the first three of the structures listed above
are independent, i.e., that the congruence lattice, subalgebra
lattice, and automorphism group are independent. One result
in this paper is a proof of a special case of this conjecture.
Various observations concerning the relationship between the
endomorphism semigroup and the congruence lattice are also
in this paper. In the last section a problem of G. Gritzer
is solved, namely that of characterizing the endomorphism
semigroups of simple unary algebras. (An algebra is simple
when the only congruences are the trivial ones.)

The characterizations of the various related structures are as
follows: the congruence lattice is an arbitrary algebraic lattice
the subalgebra lattice is an arbitrary algebraic lattice; the auto-
morphism group is an arbitrary group; the endomorphism semigroup
is an arbitrary semigroup with identity. The “independence of
the automorphism group and the subalgebra lattice” is more
precisely phrased as: for each pair (@, ¢>, where & is a group
and & is an algebraic lattice with more than one element, there is
an algebra U with & isomorphic to the automorphism group of U
and with 2 isomorphic to the subalgebra lattice of the same algebra
9. All statements about the independence of related structures will
be phrased in this way.

Mentioned above was a proof of a special case of the independence
of the triple consisting of the automorphism group, the subalgebra
lattice, and the congruence lattice. As a corollary one gets a proof
of a special case of the independence of the pair consisting of the auto-
morphism group and the congruence lattice. E. T. Schmidt published
what was supposed to be a proof of the independence of this pair of
structures. But, his proof [10] was incorrect. (See e.g. Exercise 31
of chapter 2 of [2]). The author has just completed a proof of the
independence of this pair [8].

The terminology essentially conforms to that in [2]. w(or w,)
will denote the equality relation on the set A, and ¢(or ¢,) will denote

189
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the total relation. ©(a,, a,) will represent the smallest congrucence
collapsing @, and a,. & = (L, A, V) will denote a lattice. C() =
(Z®); &> will denote the congruence lattice of 2. S =< @Q); &>
will denote the subalgebra lattice of A. &) = (GA); o> will denote
the automorphism group of A. G = {EN); o> will denote the endo-
morphism semigroup of 2.

An important algebra for dealing with endomorphism semigroup
and automorphism group problems is the algebra of left multiplications
{(&) of the semigroup &. The operations are all left multiplication
maps and the endomorphisms are all right multiplication maps. As
in Cayley’s Theorem, the semigroup of right multiplications of & is
isomorphic to .

Many of the details of the proofs which are left out can be found
in the author’s dissertation [6]. The various characterizations men-
tioned above can be found in [1], [2], [3]. E. T. Schmidt’s result on
the independence of the automorphism group and subalgebra lattice
is found in [11].

1. The property restricting the representation of (@, &, £, as
(B, S(2), EQA)).

Let % = (A4; F) be an algebra. The lattice € is assumed to be
an algebraic lattice. Let ace L, and let (x;|i€l) be a family of
elements of L.

Essentially the property mentioned in the heading is: there exist
a,, @, € A such that for any 2 # a, and for any congruence 0, if a, =
z(0), then a = a,(0). We will give a generalization of this property
and a property of the congruence lattice equivalent to the more
general property. Also, the class of algebraic lattices having the
equivalent property will be discussed.

Let a,, a,€ A with a, = a,.

(**) There exists a partition {4,, A,} of A such that a;c 4; and
for any {(x, y) € 4,x 4,, 0(a,, a,) < O(x, y).

(*) If a=s V¥ (x;|tel), then a £ z; for some <.

Notice that the originally stated condition is a special case of
(**) where A, = {«,}). Obviously, if an element a of ¥ has property
(*), then a is complete-join irreducible. Also, a has property (*) if
and only if a’s dual ideal is completely prime.

ProrosiTioN 1. If property (**) is satisfied for <{a,, a,», then
O(a,, a,y satisfies property (*) in the congruence lattice of 2UA.
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REMARK. This statement was first observed by G. Gratzer.

Proof. Suppose that (@;|iel) is a family of congruences and
that O(a,, a;) & V (@;]t€I). There exists a sequence a, = 2, *+-, 2,,
= a,, with z; € A such that z; = 2,,,(®;,) for some 7;€I. Since a,¢
A, a,€ A, and {4, A} is a partition of A, there is a k such that z,¢e
A, and 2z, € A,. So O(ay, a,) & Oz, 241) E Ds,-

PROPOSITION 2. If there is a congruence O different from » having
property (*), then © = O(a,, a,) for some a,, a, in A with a, #* a, and
property (**) is satisfied for {a, a.).

Proof. Always 0= VY (0(z, y) |z = y(0)). Since O has property (*),
O = O(zx, y) for some z,ye A. Fix aq, a, such that 6 = 6(a,, a,). Set

B, = {z|0(z, a,) 2 6(a,, @,)} ,
B, = {y|6(y, a,) 2 6(a,, a,)},
B, = {z|6(a,, 2) = 6(a,, 2)} .

Set 4, = B, and A, = B, U B,. It follows that A4,N 4, = @. Clearly,
a, €4, and a,€ 4,. Also A = A4, U A,.

Let x,€ A, and x, € A, and consider O(x, x,). First suppose that
2, € B,. Thus, O(x,, a,) 2 0(a,, a,) and O(x,, a,) 2 O(a,, a,). Now, since
O(ag, a,) E O(xy, ay) V O, ) V B(x,, a,) and since @(a,, a,) has (*), we
have that 6(a,, a,) & 6(x,, ;). Now suppose that z, € B,. So g(a,, a,) S
O(ay, ©,) S 6(as, @) V 0w, %), and thus, 6(a, a) & €(x,, ).

Combining these two propositions with the congruence lattice
characterization theorem, we get the following statement.

ProrosiTION 3. If & s an algebraic lattice, the following are
equivalent:

(i) there exists a # 0,a € L, such that a has property (*);

(ii) there ewists an algebra A = {A; F> with C®Ql), the con-
gruence lattice of A, isomorphic to L, and there are a, a,€ A, a, +
a,, such that (**) is satisfied for {a,, a,);

(ili) for any algebra A = (A; F') with €Ql) isomorphic to L,
there are a,, a,€ A, a, # a,, such that (**) is satisfied for {a,, a,y.

Let 9% be the class of algebraic lattices having an a = 0 with
property (*). Several simple observations can be made. The five
element modular non-distributive lattice is not in .2 since none of
the dual ideals generated by a nonzero element is prime. Every
distributive algebraic lattice with a complete-join irreducible element
isin 2. If & and &, are algebraic lattices, then &, + &, € 27 (where +
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denotes ordinal sum). (The zero of ¥, is a nonzero element in 2, +
€, having (*)). Every algebraic lattice € is both a complete sublattice
of and a homomorphic image of a member of .5 since €, + Le 5.
(€, denotes the m-element chain.) Also, observe that for a family
(8;|teI) of algebraic lattices, I7(¥;|t€I)e .2 if and only if there
exists at least one jel with 8¢ 9.

2. The construction for representing <&, %, %> as {S),SEN,E2)>.
First we need some notation. Let U = (A4; F'> be an algebra and
XS A, Set FO, X) = {p|® is an endomorphism of %I, {x} = xp™
for all ze X}, and set @R, X) = <(F &, X); o>. In other words, an
endomorphism @ is in FQ, X) if (A — X)p < A — X and a9 = « for
ze X. Clearly, @, X) is a nonempty semigroup with identity.

@) is the subalgebra system of . Recall that S®) is the
subalgebra lattice, that €() is the congruence lattice, and that (20
is the endomorphism semigroup.

THEOREM 1. Suppose that U and B are algebras, that A is simple,
that there is o US A, |U| =2, US D for every De . &#), and that
there is an {a, a,y € B® with a, # a, for which property (**) is satis-
fied. There exists an algebra W' such that:

(i) S@R) is isomorphic to S();

(ii) €QU) is isomorphic to C(B);

(iii) E@QU) s isomorphic to FE, U).

Proof. Let %A = (A; F) and B = (B; G) and U = {u,, w,} and let
{a,, &> € B* have (**) and let a, # a,. Assume that A and B are
disjoint. For each xz e B U U define a nullary operation f, whose value
is @. Let {4,, A} be a partition of B for satisfying (**). Define four
unary operations as follows:

@) = uo,xeAUA
b U, TE A,

9:4) a,, 0therw1se

ao,xeA .
al,xeB
z,2€A—U
9.{x) = {uy, x€ BU {u,}
o, T = U,

gs(x) =

po
4

For xc A, set £ =2 if xcB and set £ =aq, if e A. Let x;€ 4.



RELATED STRUCTURES OF A UNIVERSAL ALGEBRA 193

Extend the operations of F and G to A’ as follows: For feG set
flag, «++,Qn) = f(@y +++,8,,). For fekF, if all a;e A, then keep
the value of f in %, and set f(a, +++, @,_,) = u,, otherwise. Set
Fr=FUGU{f.lecBUU}U{g:|i=1,2,8,4). Set A" =<A4"; F".

For each De . (), set D= DUB. For each pc F(, U), define
@ by letting 2 = zp if x€ A and 2 =2 if e B. For & ez ()
define 6* by letting #* = w,, the equality relation on A, if #(a,, a,) & O
and 6* = ¢, U{{z, b)lzed, b= a(@)}U{{bzdlxec A, b= a,h)} in case
O(a,, a) SO. Now set @ =6 U O*. To complete the proof one shows
that D— D, » — », and @ — @ are isomorphisms. The lengthy, but
routine, calculations are left to the reader.

In the proof above the operation g, guarantees that an endomorphism
o of A has the property that 4o & A. The operations g, 9., g,
guarantee that g, =a, iff %, =u, iff ¢, =0¢, = u, =u,. That Y is
simple guarantees that if ¢, y€ A and = y and & = y then z = u, =
u,. Finally ¢, guarantees that if €A and y€ B and # =y then
ay = a,.

3. Representing (@, &, &> as (&), S, E€QW)>.

Lemma 1. If A = {A4; F) is an algebra, then there is an algebra
A = (4; F) such that:

(i) WU 4s simple;
(ii) D s a subalgebra of W if D is a subalgebra of A';
(iii) E®Y) = {plec EQ),» is 1 — 1 or @ is constant}.

REMARKS. Roughly (iii) says E(Y') is as big as is possible given
(i) and (ii).

Suppose & is a semigroup in which every element is right cancella-
tive or a right zero. Every endomorphism of ¥(&) is 1 — 1 or constant.
By applying this lemma to ¥(&) we get an easier proof that (&; €,
is representable. (See [3].)

Proof. Add an additional operation g defined as follows:

u, if =+ y
9@, y, u, v) = .
v, ifx=y.

Suppose © = y and @ is any congruence of &’ with © = y(@). Let
u,veA. Thus, u =g, vy, u,v) =9,y u,v) =v0). Sob =r¢ and
(i) is established.

The rest is routine.
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The operation used in the above lemma was used in [5] in a
different context, but in each case the purpose of the operation is to
“fill out” subalgebras in a direct power. This 4-ary function is equi-
valent to the ternary diseriminator function [12] [9] in that each can
be expressed as a polynomial in the other.

A modification of the above 4-ary function is used in Lemma 6.
It does not appear that the modified 4-ary function is equivlent to a
ternary function.

LemMMA 2. If 9 4s any algebra, then there is an algebra A =
(A Fy and U S A’ with |U| = 2 such that:

(i) &) vs isomorphic to S(A');

(ii) UES D for all De & (W);

(ili) FA, U) s isomorphic to S(A).

Proof. Add two elements u,, u,. Let u, and u, each be the value
of a nullary operation. Extend every operation f of ¥ by setting
Sy, oo, 2,) = u, if ;€ U. The rest is obvious.

The next lemma is a theorem due to E. T. Schmidt [11]. Recall
that () is the automorphism group of .

LEMMA 3. If G is any group and 8 is any algebraic lattice with
[L| > 1, then there is an algebra W with & isomorphic to &) and
& isomorphic to S().

THEOREM 2. If & is any group, if & and &, are algebraic lattices
such that |L,| > 1, and if there is an a = 0, a € L,, with property (*),
then there is an algebra A such that:

(i) O s isomorphic to S2);

(ii) R, is tsomorphic to SA);

(iii) 8, is isomorphic to €XL).

REMARKS. A best possible representation theorem would, of course,
have the restriction that | L,| > 1. Also, if | L,| =1, then it is necessary
that |G| = 1. Of course any triple of the form (1, €,, £) is represen-
table. (€, is the one element chain.)

Proof. Let B be the algebra given by Lemma 3 when applied
to @ and &,. Let B’ be the algebra given by Lemma 2 applied to B.
Let ®B” be the algebra given by Lemma 1. Let € be the algebra
constructed in the proof of the congruence lattice characterization
theorem [2], [4] or [7]. Let % be the algebra given by Theorem 1
when applied to B” and €. The rest is routine.
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COROLLARY 1. If & s any group and L s any algebraic lattice
with a = 0, a € L, having property (*), then there is an algebra W with
S isomorphic to &) and L isomorphic to C().

COROLLARY 2. If &, is any algebraic lattice and &, is an algebraic
lattice with an a # 0(a € L)) such that a has property (*), then there is
an algebra A with SH) isomorphic to &, and CQA) isomorphic to ..

4, Necessary conditions for (&,%) to be representable as
(E@QD), €QA)>. Recall that if & is a semigroup, ¥(S) is the algebra
of left multiplications of &. U = {(A; F') is some universal algebra.
The basic thing established in this section is a relationship between
C(R(E@QN)) and E@). If » is an endomorphism, then set x = y(e,)
iff xp = yp. e, is a congruence.

Let & = (S;-> be a semigroup with identity, and let z,seS.
The right multiplication map for s is defined by zp, = wxs.

Thus, if € E®), then we have the congruence ¢, on ¥ and the
mapping o, on E(A). So we have the equivalence relation ¢,, on E(2).
Observe that since o, is an endomorphism of ¥(E(2)), ¢,, is a congruence
of L(&®D)).

The proof of the next lemma involves only routine calculations.

LEMMA 4. If ey = N(ey,li€ 1), then &,y = (g4, 1€ I).

COROLLARY. ¢&,-—¢,, 15 @ mapping, and this mapping preserves
arbitrary existing meets. In particular, it is order preserving.

This mapping need not be 1 — 1.

LEmMMA 5. If¢,, =¢ (P is a right zero), then e, S &, for every
endomorphism .

Proof. Trivial.

€, can be ¢ and ¢, need not be ¢. &, = ¢ means @ is a right
zero in €(), but @ need not be a constant map. But @ is a constant
map iff &, =¢. On the other hand, if ¢, = ¢, then ¢,, = ¢ (i.e., if @
is a constant map, then @ is a right zero). Also, there is a @ with
& = @ and &,, = » (the identity map).

To summarize we state the following theorem.

THEOREM 3. Suppose & = (S;:> is a semigroup with identity
and & =<L; V, \) is an algebraic lattice. Set 2 = {¢, |s€S}. If
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(&, & 1is representable, then there is a subset H of L and there are
two mappings « from S onto H and B from H onto ¢ such that
the following hold:

(i) (B =¢,, for all seS;

(ii) B preserves arbitrary existing meets;

(i) f e, = ¢, them sa is the maximum element of H and
(™ =1;

(iv) 0¢ H (and 08 = w);

(v) if 1e H, then te >/

COROLLARY. If (&, €,> is representable and €, is the n-element
chain, then 27 U {¢} is a chain of lemgth < n.

5. More on the class of representable pairs, Throughout this
section, & = (S; -> will be a semigroup with identity and £ will be
an algebraic lattice. The ordinal sum of the lattices will be denoted
by +. €, is the n element chain. U = (A4; F') is an algebra.

In the preceding section, a necessary condition for (&, &) to be
representable as (E(%), €QN)> was given. Roughly the condition states
that & gives a lower bound on the cardinality of L, namely, |.227|,
and an upper bound on the meet struture of part of €. This suggests
that one could take a representable pair and expand the lattice and
expect the result to be a representable pair. A few such expansions
are given here.

Sort of a multiplication formula for members of the class of all
representable pairs is given.

One could question whether or not there exist a semigroup with
identity and an algebraic lattice which are in some vague sense com-
pletely “incompatible.” Theorem 4 gives a negative answer.

First we will state the theorems, and then we will give sketches
of their proofs.

THEOREM 4. If & is any semigroup with identity and % is any
algebraic lattice, then there is an algebra W with & isomorphic to &)
and & isomorphic to a sublattice of E(2L).

This follows from Theorem 7.

THEOREM 5. If (&;8) 1is representable, then {(&;& + €,> s
representable.

COROLLARY 1. If {(&;€,) is representable, then {S; C,) is repre-.
sentable for any n = k.

COROLLARY 2. If every member of & ts right cancellative or 1is
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a right zero and n = 2, then (&, €,> is representable.
See [3], or see the remarks after Lemma 1.

THEOREM 6. If (&, &> is representable and L, is any algebraic
lattice, then both {&,, & + & + € and (&, & + & + €,> are repre-
sentable.

THEOREM 7. If {&,, &) is representable and ¥, is any algebraic
lattice, then (&, (& x &) + €,> is representable.

This is a special case of Theorem 8.

THEOREM 8. If (&, &> and (&, &> are representable, then
(&, x &, (% X L&) + &) 1s representable.

Note that each of the “+ €,”’s gives us a nonzero element in
the resulting lattice that has property (*). (See §1.)

In Theorem 6 one can easily do without the “+€,” in the first
pair (i.e., one can show (&, &, + &) is representable) in case %,
already had a non-zero element satisfying property (*). A similar
comment can be made for the other pair in Theorem 6 in case &,
already had a non-zero element satisfying (*). To do the same for
Theorem 7 or 8 would seem to require that both £, and &, have such
an element.

Proof of Theorem 5. Let U represent (&; 8>. Let U = {u, v} be
a two element set disjoint from A. Set A’ = AU U. Extend each
feF to A’ by setting f(x, +++, ®,_,) = w if there is an x;e U. Let
u, v each be the value of a nullary operation. Define a unary opera-
tion p and a binary operation g as follows:

z, if veA;
plw) = v, if v =u;
w, if ®=wv;
z, if x,yec A or if y=u;
9@, y) =y, if € =u;
v, ifxory=wv.

Let QU = <A FU{p, g, u, v}y. For each e F () define » on A’
by 2p = ap if €A and 2@ =2 if 2 U. For each e & Q) set
0 = 6 U w,.

@ — @ is an isomorphism from G() onto Q). 6 —06 is an
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embedding of €(2) into CA). Q) ={0|0cz W} U{cs}). The
details are almost identical to the details in [3].

Proof of Theorem 8. Let U, = (A,; F,y and %W, = (4,; F> be
algebras with &(2,) isomorphic to &, and €(2;) isomorphic to £,
Assume A, N A, = @. Let A, = A, U A, U {u, v} where w == v and u,
ve A, UA,. Let x,.--,2,,€A4,, and let feF,, Extend f to
A, by setting f(x, +++,2,_) = u if there exists 2,¢ A;,. Let a;¢
A; and define two unary operations g, and g, by g.(a) = g,(w) = u
and go(a) = ¢,(v) = v and g,(a;) = a; and g¢,(u) = v and g¢,(v) = u.
Define a binary g, on A, by setting g.(z, v) = ¢.(v, x) = x and g,(x, v)
= u otherwise. Take each of w and v as the value of a nullary
operation. Let

Uy = (A F, U F, U {90, 915 G5, U, v}y = {As; Fo)

For each + = (@, ,> € EQl) x K@) define a mapping + on A,
by 2y = 29, if € 4; and 2y =2 if x = % or 2 = v. For each @ =
(B, 0>z (A) x & (A) set D = 6,U 6O, Uw,. To complete the proof,
one would show that (2, = {00 e Z () x € A)} U {,,}, that & —
@ is an embedding of €(2() x €() into €(2,), and that 4 — ¥ is an
isomorphism of &%) x E@QL) onto E3L). A few of the details follow.

Let ¢ be an endomorphism of . Note that xo = « for x = u or
x = v since % and v are the vaules of nullary operations. Let a;¢ A..
Now ¢,(a,0) = g,(a,)0 = wo = u. Thus, a,0c 4, or a,0 = u. Suppose
a0 = u. Then v = a0 = g,(e,)o0 = g,(a0) = g.(w) = v. Since u #= v,
it follows that a0 ¢ A, Similarly, a,0e A,. Thus, 0 = {(o|,, 0,4).

Suppose a;€ 4; and a, = a,(¥) and suppose ¥ e & (3,). Then v =
v(¥) since u = go(a,), v = go(a,) and go(a,) = go(a)(¥). For xe 4, U 4, it
happens that & = u(y) iff x=v because g,(x) ==, g,(w) =v and g,(v) =
u. So if xe A, U4, and ye{u,v} and z = y(¥), then u = v@). If
u = v(¥), then ¥ =¢, because for any we A4, » =u¥). (This is
because % = g,(u, ®) and & = gy(v, ¥)-) ¥y, €€ (A). Thus, if ¥ +~¢,,
then ¥ = @ for some @ € z"(%;) x & (A,), namely, for & = ¥|,, ¥, >.

Proof (of Theorem 6). Let U, = (A;; F), for 7 = 0, 1, be algebras
with A, N A, = @. We shall prove the theorem by showing that
&), €QL) + C€@L) + € and (EQL), E®L) + €AH) + €, are repre-
sentable. First we consider the case with &(,).

Let v and u,v¢ 4, U 4, and let 4, = 4, UA, U {w, v}, For
feF,; extend f to A, as in Theorem 8. Define the unary operations
Jo, 9. as in the proof of Theorem 8. Define the binary operation g,
by setting g.(a,, v) = 9.(v, a)) = a, for a, € A, and g,(x, y) = u otherwise.
Let a,€ 4, and a,, b, € A,. Define the binary operation g, by g,(a,, b) =
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v, if a, # b, and g,(x, ¥) = u otherwise. Define the binary operation
9. by g.(a, ¥v) = v and g.(z, ¥) = w otherwise. Take each member of
A, U {u, v} as the value of nullary operations. Set

Wy = (A Fy UF, U{ge, -+, 93 Ufu, v} UA> = Ay F .

For each @c E¥,) let® be defined by xp = @ if x4, and
2 =w if x¢ A, For each # ez () + z () define 6 by 6 =
OUw, U, if 0eZ @) and 6 = 0 U, .., if 6Z7().

To complete the proof for this pair, one would show that ¢ — @
is an isomorphism of &(2,) onto G(¥,), that ® — O is an embedding
of €(%,) + €(Q) into €@QL,), and that (2L, = (O]9 e &) + F@)}IU
{t4,}- A few of the details follow.

As in the proof of Theorem 8, for oe E(®), Ao & A, Clearly
2o = x for x¢ A, — A, since every element is a nullary constant.

Let # ez (U,). For zcA,z=u iff x=v as in the proof of
Theorem 8. Let a;, b€ A;. If u=v(6), then a,= u because g,(u, a,) = v
and g,(v, a,) = a,. If a,# b, and a, =b,(0), then u = v because g,(a,, b) = u
and g,(b, b) = v. Let xc A, — A, and let ze¢ 4,. If a, = x(@), then
z = u(0) because g.(a,, ) = z and g,(x, 2) = u.

We now turn to considering the case for (E®l), €Ql) + €3 +
€,>. We may now assume without loss of generality that () is
the one element group and that there are no nullary operations in
2. That this assumption can be made is verified in [6] and [7].

Let w,r,s¢ 4,. Let A, = A, U {w,r,s}. For feF,or F,, change
the value of f(x,, -+, 2,..) to w where in the above case it was wu,
i.e., in the case when there is an x; not an element of the appropriate
A;. Extend the g; in the following way: ¢,(r) = g,(s) = v; go(w) = w;
g(w) = w; g.(r) = r; g.(s) = s; still keep g.(a,, ¥) = ¥, but let g.(x, ) =
w otherwise; keep gs(a,, b) = v for a, # b, and g,(x, y) = u otherwise
except let g,(w, w) = w; g,(w, @) = 9,(v, w) = g,(w, w) = wand g,(x, y) =
% for any other new pair. Define three new operations as follows.
Let ,ye A, z2€ A,U{u, v, w} and let a, € 4,. Set g;(w, w)=w, g;(w, x) =
%, 95(¥, ®) = v, g5(2,, 2) = @, and gi2,a,) = z. Set gi(r) = s, gs(s) = 7
and g,(z) = © otherwise. For =, yec 4; set g,(r, ) = g,(x,r) = r and
g%, s) = g.(s, x) = x, if ¥ # r, and g,(x, y) = © otherwise. Take w, r, s
as values of nullary operations but don’t take A, U {u, v} as nullaries.
Set

W, = {Ag; Fy U F, U{go, -+, g} U{w, 7, s} .

For @ e E(,) define » on A, as follows; xp = xp if € A,,2p =
xif 2 =w,r, or s, and for xe A, U{u,v,w} set ep =2 if pisl -1
and xp = w if not. Let @ ez () + Q). For O ez QL) set 6 =
0 U @y G u0,0,r,e and for @ e Z7(U,) set O = 0 Uty uuww U Dirn-  The
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outline of the rest of the proof is clear. Some details follow, par-
ticularly concerning endomorphisms.

Let ® ¢ °(%;). All the statements made about & in the previous
case still hold with one change. Here if a,€ A, and € 4, — 4, and
x = a,, then for all ze A,, 2 = w (instead of ). Some more should
now be said. If x¢ A, and w = (@), then u = v because g,(w, z) =
w and g,(z, ) = v. If u = v(#), then one gets w = u using g,. Similar
to the case with » and v, for any xe€ 4, x = » iff » = r = s(use g,).
Using ¢, we have that if » = s(0@) and z ¢ A,, then z = r(®).

Note that there can be no constant endomorphisms because there
are three nullary operations with different values. Let oe E(QL).
Let xe A U A, U{w}, and let ye A, U 4, U {u, v, w}. Using g¢,, x6 # u
or v, and using ¢, yo ¢ {r,s}. Thus, (4, U A4, U{who & A, U A, U{w}.
Let a,¢ 4, Now wo = w. If a0 = w, then we would have ¢ is a
constant endomorphism because the congruence relation induced by
o would be ¢,,. Soaoced, U A,. Now, as before, 4,0 = A,. Similarly,
one gets (A, U{who & A, U{w}. Using the congruence strue-
ture and the fact that wo = w, either Ao & A4, or (4,U{u, v, w}ho =
{w}. Clearly, if Ao < A4,, then a0 = a,. When A0 & A, using the
congruence structure and g,, one gets uo = u and vo = v. Finally,
the congruence structure requires that if ¢ is not 1 — 1 on A4,, then
o must be constant on A, U {u, v, w}. And if ¢ is constant on A, U
{u, v, w}, then ¢ would have the value w there.

6. Concerning (&, €,>. From §4 we know that a necessary
condition for the representability of (&, €, is that |{e, |sc S}U{c}| = 3.

A stronger condition is proved to be sufficient. The represen-
tability of (&, €,> has been characterized [3] (or see the remarks
after Lemma 1), and {8, &,) is representable iff |{¢, |s€ S} U{}| =< 2.

The method for proving the next lemma is very similar to that
in Lemma 1. Recall the definition of ..

LevmumA 6. Let 9 = (A4; F') = be an algebra, and let 6 = w,0 ¢
(). There 1s an algebra A = (A; F') so that:

(1) &) =7

(ii) @) = {w, @, ¢};

(iil) e EQW) iff pe EQL, e, = w, 0, or ¢ and following conditions
are satisfied:

(a) if e, = @, then e = 6 or ¢

by if ¢, = w and + s any map with ¢p = 0, then .oy = 0.

REMARK. Obviously, one could not improve upon condition (a),
but perhaps a proof could be given with (b) changed to read” --..,
then ¢,,4 = @, ® or ¢.” Notice that all automorphisms are kept.
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Proof. Add one 4-ary operation g defined as follows:

u, if x = y(@), u = v(6) or
if ¢ = y(@), v = v(®) and
rFEY,UFV
v, otherwise .

Set A = (A; FU{g}). Clearly, (i) holds.

Proving that 6 € 2°(’) involves only routine calculation. So let
Oecz () with w # @. So there exist x, ¥ with ¢ = y and 2 = y(9).
Suppose = = y{@). We will show that @ =¢. Let u % v. First
assume u #* v(@). Then u = g(=, y, u, v) = 9(y, y, u, v) = v(®). Now
assume u = v(@). Since x # y(@), there is a ze{x, y} with 2z = u(®)
and z # v(0). From above u = 2(®) and v = 2(9). Thus, u = v(@). So
® =¢. Now suppose for every u,v, with w = (@) that u = v(0).
Thus, ® = 0. (We are still assuming @ # w, that = # y, and that
z = y(@).) We will show that in this case @ = 6. Let w = v(®)
with w = v. Then w = g(x, ¥, 4, v) = 9(y, ¥, %, v) = v(®). So® S @ and
0 =&. Thus W) = {0, 0, ¢} and (ii) holds.

Obviously, if ¢ € E('), then € E(N) and e, €{p, #,¢}. Suppose
g, = 6. Since 9*c E(N'), then €, = 6 or ¢.

It is a routine calculation to show that if ¢, = ¢ and @ e E®Xl),
then @ e E().

Let ¢ € E() with ¢, = 6 and with ¢,, = @ or ¢. Consider g(z, ¥,
u#, v). There are two possibly troublesome cases. One is if g(z, ¥, u, v)
=% and g®, yP, up, vp) = v®. The other is if gz, y, u,v) =2
and g(z@, yp, u®, v®) = up. The latter is the easiest to dispense
with. If g(xe, yp, up, v9) = up and u®p # v®, then 2@ # yp. Thus,
x # y(@) and u % v(@). So g(@,y,u,v) =u and g,y u, V)P = UP.
So now assume g(x@, y@, up, vP) = v@ and ¢g(x,y, u,v) = w. Thus,
either z = y(®) and u Zv(@) or x = y(@) and = v(@). Suppose x %y
and w == v. Then 2@ = yp and u® = vp. Now x@ = yp(0) iff up = vp(0).
Indeed, suppose that z@ = yp(@). Then (xP)P = (yP)P and &4, = 6.
So by assumption &. =¢. Thus, (uP)p = (vP)P, and uP = vP(H).
Similarly if ue = vp, then 29 = yp. Thus, either 2@ = yp(@), up =
vP(0) or xp = ypB), up = vP(0), v # YyP, uP #+ vP. In any case,
9@, yp, up, v9) = up #= vp. So x = y(@) and 4 = v(6). In this case
u® = v@. Therefore, g(x,y, u, V)P = uP = v = g@EP, YP, UP, VP).
Thus, ¢ € E@).

Suppose @ is 1 — 1 and € E®'). Let  be any map with ¢y =
0. Consider ,.y. Suppose &,,4 = @. Then, &y = ¢. So there exist
2,y such that x = y(#). Since 0 # w, there exist u,v with w = v
and % = v(@). Since u +# v, it follows that (u®)y # (v@)y. Thus,
uP # vp(@). Similarly, since x = y, 2@ # yp(0). This implies that

9, ¥, u, v) =
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gz, ¥, u, V)P = vP #+ uP = g(xP, yP, uP, vP). But since @ is an
endomorphism, we have that ¢,,y #* @. Suppose €,,4 = ¢. By a similar
argument we would get that €,., # ¢ unless @ = ¢. S0 €.,y = 6.
Let e E@) with ¢, = w. Let 4 be any map with ey = 6.
Suppose ¢€,.4 = 6. Routine computation shows that @ e EQl).
The crucial point in these computations is that the assumption ¢, =
6 implies @ presves both # and not-&. Therefore (iii) holds.

Recall that if & = {S; ) is a semigroup with identity, then .5 =
{eo,] €S}, X(®) is the algebra of left multiplications. E(8(®)) =
{0,|s€ S}

THEOREM 9. Let & = (S; -) be a semigroup with identity.

(A) If {S; €,) is representable, then |27 U {¢}| < 8.

B) If |27 U{}| £ 8 and if for right cancellative r and for m
that is neither right cancellative nor a right zero r-m is also neither
right cancellative nor a right zero, then {(&;&,) is representable.

REMARK. If | 2% U{}] = 2, the rest of (B) holds trivially. So
the sufficient condition includes all those representable pairs derived
from Corollary 2 to Theorem 5.

Proof. For part (A) see the corollary to Theorem 3.

Suppose the hypotheses of (B) hold. If | 277 U{c}| =2, then {(&; &,>
is representable. By Theorem 5, {&; €,> is representable. Suppose
then that 27" U {¢} = {w, 0, ¢} and that @ = @ # ¢. Suppose ¢, = 6.
Since

2
Com) = Epppy s

it follows that
. =0 or ¢.

Let ¢, = w and ¢, = €. Since r-m is neither right cancellative nor
a right zero, it follows that

Eo,00y = Eo,, = O .

Now apply Lemma 6 to & and ().

7. (&,€,) for unary algebras. In [3] G. Gratzer characterized
the endomorphism semigroups of simple algebras. He also showed
that not all such semigroups were isomorphic to endomorphism semi-
groups of simple unary algebras. Since previous representations
involving congruence lattices and endomorphism semigroups had needed
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only unary algebras, he raised the question, “What semigroups are
isomorphic to the endomorphism semigroups of simple unary algebras?”
The answer to that question is that there are hardly any such
semigroups.

Every endomorphism @ induces a congruence relation which we
have denoted by &,. The difference with unary algebras is that every
endomorphism also induces another congruence. Throughout % = (A4;
F» will denote a unary algebra. For e E() and z,yc A set = =
y(@,) iff there exist natural numbers 7,5 such that x9’ = ypi(x@’ =
x). 0, is the “extra” congruence. To prove that the substitution
property holds for #,, one needs that each operation of 2 is unary
or nullary.

LEMMA 7. If pis1—1 and @, = w or ¢, then ® is onto or A =
{ap™|n = 0,1...} for some ac A.

Proof. = = xp™(@,) for any natural number = (by using the
numbers %, 0). In particular =z = x¢(@,). Thus, if 6, = @, then x =
2@, and therefore, @ is the identity map. Therefore, we can assume
0, = ¢, and this implies © = y(®,) for any x, yc€ A. Thus, for some 1,
j, Pt = yp. If 1 <4, then since @ is 1 — 1, we have that x = ypi,
If y <7, then y = xp*“. Thus, vxe{yp"|n=0,1, ...} or ye{z@"|n =
0,1, .--}. Suppose ® is not onto. Then there is an a such that a =
2@ for all xce A(x # a). Thus, a¢{zp|n =0,1, ...} forany x € A(x #
a). Now since xef{ap™|n =0,1, .-} or ac{zp"|n=0,1, ...} for all
xe A, we have ze{ap"|n =0,1, ...} for all xze A.

LEMMA 8. If @, = w or ¢ and @ is 1 — 1 but not onto, then A
s not simple.

Proof. By Lemma 7, A = {a®"|n =0, 1--.} for some a€ A. For
n>1, ap” = (ap”")®. Since ® is not onto a # x® for any =xc¢€ A.
Suppose a@® = a®’ and 1%j. We may assume % < j. Since @ is 1 —
1, a = ap’#. Since j —1=1,a = (ap’ . Thus, ap’ = ap’ if 1%
j. Now set F = {ap"|n =10,2,4,...} and D = {ap*|n=1,3,5, «--}.
By the above, DNE = @. Clearly, DUE = A. Let @ be the
equivalence relation whose only two classes are D and E. @ is a
congruence. Since @ # @ = ¢, ¥ is not simple.

For a simple algebra U any right zero of &) is necessarily a
constant mapping (unless &®l) is the one element group). See §4.

COROLLARY. If U is a simple unary algebra, them E(AN) consists
of automorphisms and constant mappings.
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G. Gratzer [3] characterized the automorphism group of a simple
unary algebra as a cyclic group of order » where » =1 or p is a
prime number. He also showed that if p == 1, then A = {aa|ac GE)}
for any a < A.

LEMMA 9. If U is simple, |GE)| == 1, and there exists a right
zero in GA), then |A] = 2 and E@Q) = {44; o).

Proof. Let {a} = Ap. Let f be an operation. Then a = (f(a))p =
flap) = f(a). If x€ A, then x = aa for some o € G(). Thus, f(x) =
flaa) = f(@)a = ae = x. Therefore, E(2) = A4 and all equivalence rela-
tions are congruence relations. [G()| = 2 implies [A| = 2. If |4] >
2, then there are more than two equivalence relations on A. Thus
[A] = 2.

LEmMA 10. If U is stmple and |G(Y)| = 1, then |EQ)| < 2.

Proof. Suppose there exist two constant endomorphisms @, ®,.
Let {a,} = A®, and {a,} = A®,. As in the proof of Lemma 3, f(a,) =
a, and f(a,) = a, for any operation f. If |A| were two, then every
operation would be the identity function and |G®)| = 2. Thus, [A] >
2. Set z =y(@) iff ® =y or z, y<{a, a,}. Since every operation re-
stricted to {a,, a,} is the identity function, @ is a congruence. Since
[A] > 2,0 5 ¢. Since @ # w, U is not simple.

THEOREM 10. Let & = <8S; > be a semigroup with identity. &
is isomorphic to the endomorphism semigroup of a simple unary
algebra (i.e., (&, €, is representable by a unary algebra) if and only
if & is one of the semigroups listed below:

(i) the group of order »,p =1 or p is a pPrime;

(ii) the two element semi-lattice;

(iii) @ four element semigroup isomorphic to {A*; o> where [A] =2.
Moreover, if (&, €,> 1s representable by a unary algebra and |S| =+
1, then (&,€,> is representable using a wunary algebra with one
operation.

Proof. It follows from the corollary to Lemma 8 and Lemmas 9
and 10 that the endomorphism semigroup of a simple unary algebra
is one of those listed in (i) — (iii).

To complete the proof, we will represent (&, €, for each & listed
in (i) — (iii).

In case © is the one element group, let A be a two element set.
Set A = (4; A*). Clearly, % has the required properties.

In case & is (A% o) where |A| = 2, Let % = (A; F') where f is
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the identity map. Obviously, 2 has the required properties.

In case © is the two element semi-lattice, let A = {a, b} with a =
b. Set f(a) = f(b) =10, and set A = (4; f>. Since |A] =2, is
simple. The endomorphisms are exactly the identity map o and
where = f. Since Goqr = 400 = 4 = roqr, the endomorphism semi-
group is the two element semi-lattice.

In case & is the group of order p where p is a prime, set A =
{0, ..., p—1}. Let f(x)=2+ 1 (mod p), and set A =<{A;f>. Since p
is a prime it is easy to check that 2 is simple. For x € A define the
mapping @, by y®, = y + x. Clearly, x— @, is an isomorphism from
the cyclic group of order p onto E(20).
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THE REDUCING IDEAL IS A RADICAL

T. W. PALMER

For any *-algebra % the reducing ideal % of U is the
intersection of the kernels of all the *-representations of .
Although the reducing ideal has been called the *-radical, and
obviously satisfies (W/Ax)z = {0}, it has not previously been
shown to satisfy another of the fundamental properties of
an abstract radical except in the case of hermitian Banach
*.algebras where it equals the Jacobson radical. In this paper
we prove two extension theorems for *-representations. The
more important one states that any essential *-represen-
tation of a *-ideal of a U*-algebra (a fortiori, of a Banach
*-.algebra) has a unique extension fo a *-representation of
the whole algebra. These theorems show in particular that
Mp)r = Ur if U is either a commutative *-algebra or a U*-
algebra. The somewhat stronger statements which are actu-
ally proved, together with previously known properties of the
reducing ideal, show that the reducing ideal defines a radical
subcategory of each of the following three semi-abelian
categories:

(1) Commutative *-algebras and *homomorphisms.

(2) Banach *-algebras and continuous *-homomorphisms.

(3) Banach *-algebras and contractive *-homomorphisms.

The concept of the reducing ideal was introduced by Gelfand and
Naimark in their classic paper [2, p. 463]. It has subsequently
been studied by Kelley and Vaught [5, p. 51] and the present author
[7, p. 63] and [8, p. 930]. The concept is discussed in [10, pp. 210,
226] and [6, p. 259]. In [11, 1479] Yood gave a definition of the
*.radical which agrees with our definition for Banach *-algebras but
differs for certain other types of *-algebras.

Our main extension theorem (3.1, below) was previously known for
B*-algebras [1, Proposition 2.10.4]. It has a number of applications
besides the one discussed here. For example it immediately implies
the conclusion of [4, Theorem 23] with hypotheses weaker than those
of [4, Theorem 22].

In §1 we give necessary background information. The case of
commutative *-algebras is congidered in §2 and of U*-algebras in § 3.
The category theory results are described in §4 where we use the
terminology of M. Gray [3] for the general theory of radicals.

In general we follow the terminology of Rickart’s book [10].
Further details and related results will be found in the author’s
forthcoming monograph [9].
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1. Definitions and preliminary results. We review some basic
definitions and results for the convenience of the reader and in order
to fix notation. Throughout this paper all algebras and linear spaces
will have the complex field C as scalar field unless the real field is
explicitly specified. No other scalar field is considered. The complex
conjugate of x e C will be denoted by \*.

An involution on an algebra ¥ is a conjugate linear, anti-multi-
plicative, involutive map of 2 onto itself. A *-algebra is an algebra
together with a fixed involution' which will always be denoted by (*).
A subset of a *-algebra is called a *-subset iff it closed under the
involution. A map between *-algebras is called a *-map iff it preserves
their involutions (i.e. ®(a*) = ®(@)*). A *-representation T of a *-
algebra is a *-homomorphism (i.e. an algebra homomorphism which is
also a *-map) into the’*-algebra [$,] of all bounded linear operators
on some Hilbert space $,. The meaning of each more specific term
with a *-prefix (e.g. *-subalgebra, *-isomorphism) follows from these
definitions. In particular a Banach *-algebra is simply a *-algebra with
a norm relative to which it is a Banach algebra. No relationship
between the involution and norm is postulated.

We review briefly the standard Gelfand-Naimark construction of
*_representations from positive linear functionals since later proofs
depend intimately on this material (cf. [2], [6], [9] or [10]). A linear
funetional @ on a *-algebra % is called positive iff

1.1 w(a*a) = 0 Vaec.

For any positive linear functional @ denote the left ideal

1.2) {ae: w(a*a) = 0} = {a e A: w(b*a) = 0, Vbe A}
by %,. Let
(1.3) : A = A/A, .

For each ac ¥ let a® be the image a + 9, of @ in WY*. Then for all
a®, b* e A’

1.4) @, b*) = w(b*a)

is well defined and gives 2“ the structure of a pre-Hilbert space (i.e.
a possibly incomplete inner-product space). The left regular repre-
sentation of 9 on itself induces a *-homomorphism T of 9 into the
*_glgebra of all (not necessarily bounded) linear operators on 2[“ which
have adjoints on 2(°. The positive linear functional w is called admis-
sible iff the range of 7T consists of bounded operators so that 7
induces a *-representation T of 2% on the Hilbert space completion
Ae™ of Ae.
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An admissible positive linear functional w is called representable
iff there is some *-representation T and some topologically cyclic vector
€, for T such that

(1.5) w(a) = (T2, x) Va € A.

The set of representable positive linear functionals on a *-algera A
will be denoted by R(2). For each nonzero @ in R(¥)

(1.6) || = sup {w(@)*/w(@*a): a € A ~ A}

is finite. For the zero linear functional, which always belongs to
R(@Ql), we set |0] = 0. For each wec R®) there is a unique vector x,
in 2“" such that

@.7 Tex, = a® Va € 2.

[9, Theorem 1.4.8]. This vector is a topologically cyclic vector for
T* which also satisfies

(1.8) %, | = || and w(a) = (Tyx,, ©,) Va € 2.
For a *-algebra 2 let
(1.9) R@) ={weRQ): |w| =1},

A linear functional @ on 2 is called a state iff w e R() and |w| = 1.
A linear functional we R() is called pure iff ® = w, + w, with
®,, w, € R(Y) implies that w, and w, are (nonnegative real) multiples
of w. Let P(®l) denote the set of pure states of 9. Then P®) U {0}
is the set of extreme points of the convex set R,(%).

If % is a Banach *-algebra it is well known that R, (%) is compact
in the A-topology. Thus R,() is the closed convex hull of P) U {0}
by the Krein-Milman theorem. If 2 is an arbitrary *-algebra (e.g.
{complex polynomials} with conjugation of coefficients as the involution)
then R,(N) need not be compact.

LEmMA 1.1. If Uis any *-algebra, R,(N) is the closed convex hull
of P U {0}.

Proof. For any we R, () let
S, = {@eRQ): || T || < || T*| for all ac}.

A slight adaptation of a well known proof [10, p. 222] shows that &, is
compact and convex [9, Proposition 1.5.6]. Similarly one can adapt
another well known proof [10, p. 225] to show that the set of extreme
points of &, is {0} U (&, N PR)) [9, Proposition 1.6.6]. Thus &, =
co ({0} U &, N PA))). Therefore
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R, = UweRl(l)@w = Uwele) co ({0} U P@D)
Sco({0u PR S R() .

LEMMA 1.2. Let U be a *-algebra and let € R(N). The following
are equivalent.

(a) o is pure.

(b) T is topologically irreducible.

(¢) The set (T*) of operators in [A*"] which commute with Ty
for each ac W is the set of complex multiples of the identity.

Proof. [10, p. 211 and 223], [9, Theorems 1.6.1 and 1.6.5].

DEFINITION 1.3. For any *-algebra U the reducing ideal of 2 is
denoted by 2, and defined by

A, = N {Ker (T): T is a *-representation of 2A}.

If ¥ is a *-ideal of a *-algebra U then I is a two-sided ideal and
A/Y is a *-algebra in an obvious sense.

ProprosITION 1.4. Let N be a *-algebra. Then the reducing ideal
A, of A is a *-ideal which equals:

N {Ker (T): T is a topologically irreducible *-representation of A}
= N {Ker (T°): w € RA)} = N {Ker (T*): w € PRV}
=N{&:we R} = N{8: we PR}
={aeWw@ =0,voe RN} = {acA: w(a) =, Vo e PA)} .

Furthermore (W/Wz)z = {0}, If WA is a Banach *-algebra then W, is
closed so that /A, is a Banach *-algebra.

Proof. Use Lemma 1.1 to adapt the proof of [10, Theorem 4.4.10].
For details and further results see [9, Theorem 1.7.2 and 1.7.5].

Lemma 1.1 and this proposition do not seem to have been noted
previously in this degree of generality. However they were essentially
known.

We now turn to the theory of U*-algebras. For additional in-
formation see [7], [8], or [9].

If % is a *-algebra without an identity let %' denote the *-algebra
with identity which has C@P U as underlying linear space and in
which the multiplication and involution are defined by WP a)(t P b) =
MDD (Ab+ pa+ ab) and WD a)* = A Pa* for all \, £eC and all
a,beW. We regard U as embedded in ' by the map a - 0P a. If
A already has an identity let ' = A. In either case we write A + a
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for A1 + @ where 1 is the identity of 2. Then, for instance, the
spectrum of an element in 2 is the same with relation to % or .
Furthermore the Jacobson radical of 2 and U’ agree and the reducing
ideal of ¥ and ' agree.

DEFINITION 1.5. A *-algebra U is called a U*-algebra iff % is
contained in the linear span of the set A} of unitary elements in .
If % is a U*-algebra and a2 then

(@) = inf{i Nita = i“ £ju; where ne N, n;€C, and u; e%{},} .

LEMMA 1.6. Let U be a U*-algebra. Then vy, 1s an algebra
pseudo-norm, (i.e. vy @) = |N|vy(@), vu(a + b)) Zve(a) + vy(b), ve(ab) =
Ve(@)vy(b) for all a, bea).

Proof. Obvious.

For any *-algebra U let
(1.10) W = {veWA: v¥o = vw* = v + v¥}

be the set of quasi-unitary elements in 2. For any subset & of U
let &Y be the linear span of &N Ay

LEMMA 1.7. Let U be a *-algebra. Then Y is a *-subalgebra of
A which is a U*-algebra. Furthermore Y contains every *-subalgedbra
of A which is a U*-algebra. In particular A is a U*-algebra iff
A=W, In this case

vo(a) = inf{z i@ = S5, 0 = SIN; where n e Ny \; € C and v; € 914[,} .
J=1 Jj=1 J=1

Finally if X is a one- or two-sided ideal in A then I is a *-ideal in

L.

Proof. Straightforward or see [8] or [9].

LevMmA 1.8, Let A be a U*-algebra and let B be a *-algebra.
Let p: A — B be a *-homomorphism. Then &) is a U*-algebra and
Yoo, (P(@)) < vy(a) for all aeN. Furthermore if B is the algebra of
all (not necessarily bounded) linear operators with adjoints on a pre-
Hilbert space, them @) is contained in the set of bounded operators
and ||p(a) || < vy(@) for all acA.

Proof. This follows directly from Lemma 1.7 or see [7], [8] or
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[9].

By slight abuse of language we call a *-homomorphism into the
type of *-algebra described in the last sentence of Lemma 1.8 a
*-representation on a pre-Hilbert space. When the range of such a
map consists of bounded operators we call it a normed *-representa-
tion on a pre-Hilbert space. (Of course any *-representation of any
*.algebra (by definition, on a Hilbert space) is automatically normed

[10, p. 205] or [9, Corollary 1.2.4].)

COROLLARY 1.9. Ewvery *-representation of a U*-algebra on a
pre-Hilbert space is mormed. Every positive linear fumctional on &
U*-algebra is admissible. A positive linear functional on a U*-algebra
A is representable iff it is the restriction of some positive limear

functional on A

Proof. For the last sentence see [10, p. 218] or [9, Theorem 1.4.8].

DEFINITION 1.10. Let 2 be a *-algebra. For any ac ¥ let
Yu(@) = sup{|| T, ||: T is a *-representation of 2 on a Hilbert space} .

It is not hard to show [9, Theorem 2.1.2] that v4(a) = sup{|| T, |[:
T is a topologically irreducible *-representation of U on a Hilbert
space} = sup {w(a*a)'*: w € R, () = sup {w(a*a)': w € PQ)}. In a per-
fectly general *-algebra 7v,(a) = - is possible. However if 7, is finite
valued then it is the largest algebra pseudonorm on 2 which satisfies
the B*-condition: vy(a*a) = vy(a)? for all @ € A. We call v, the Gelfand-
Naimark pseudo-norm on 2. Note that U, = {a € UA: 74(a) = 0}.

COROLLARY 1.11. If % is a U*-algebra then
Vu(@) = vy(a)

Sor all aeXA.
Proof. Obvious from Lemma 1.8.

THEOREM 1.12. Let % be a Banach *-algebra. Then U is a U*-
algebra and vy, = y,.

Proof. [7, Theorem 4] or [9, Theorem 3.1.12].

2. Commutative *-algebras. We are now in a position to treat
this case easily. Several of our results are essentially known but are
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usually stated in less generality.

THEOREM 2.1. Let % be a commutative *-algebra. Then PQ) s
the set of *-homomorphisms of U onto C.

Proof. Suppose w is a pure state. Then (T’ = CI by Lemma
1.2 where I is the identity operator in [¥“7]. Since U is com-
mutative Ty & (Ty)’. Since @ #0,T°+# 0 so T¢ = CI. Let Ty =
@(a)I for all aeA. Then @ is a *-homomorphism of ¥ onto C and
o) = (T¢x,, z,) = (P@2.,, ®,) = P@) || = ¢() for all aeA. Thus
®w = @ is a *-homomorphism of U onto C.

Conversely suppose @ is a *-homomorphism of ¥ onto C. Then
o(a*a) = w(@*)w(@) = |w(a) [* for all ac so that w is a state. The
map a® — w(a) for all a e is a linear isometry of 2 onto C. Thus
Ae = A~ is linearly isometric to C so that T« == 0 is irreducible.
Therefore @ is a pure state by Lemma 1.2.

COROLLARY 2.2. Let 9 be a commutative *-algebra. For each
acW let a: PA) — C be defined by d(w) = w(a) for all w e P(A). Let
P carry the weakest topology which makes each & continuous. Let
C.(P)) be the set of continuous but mot necessarily bounded complex
valued functions on P(N). Then P) is Tychonoff space and

(2.1) (7): A — C.(PQN))

18 a *-homomorphism with kernel .
Proof. Immediate from Theorem 2.1 and Proposition 1.4.

THEOREM 2.3. Let U be a commutative *-algebra. Let B be «a
*~ideal of W and let I be a *-ideal of B. For each w e P(Y) there is
an @€ P) such that @ is the restriction of ®.

Proof. Theorem 2.1 shows that w is a *-homomorphism of J&
onto C. Let ecl satisfy w(e) = 1. We may assume e = e¢* since w
is a *-map. For any ac ¥, ea B so e’a €J. Define &(a) = w(e’a) for
all acW. Then ® is clearly linear and if a, be 9 then ®(ad) =
w(e’a) = w(e)w(ae’d) = w(fae’d) = w(ea)w(e’h) = v(e)@(b), and &(a*) =
w(ea*b) = w(e’a)* = @(a)*. Thus @ is a *-homomorphism of 2 onto C
and thus by Theorem 2.1 ®e PQR). If aeJ then @(a) = w(a) =
we)’w(@) = w(a). Thus & satisfies the theorem.

COROLLARY 2.4. Let N be a commutative *-algebra. Let F be a
*-ideal of Uy (e.g9. a *~ideal of A included in Ay). Then Jp=. In
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particular (A, = Ws.

Proof. If I+ I then there is some nonzero pure state on
by Proposition 1.4. Thus Theorem 2.8 shows that there is a pure
state on 2l which does not vanish on . This contradicts Proposition
1.4,

3. U*-algebras. Although our primary interest is in Banach
*-algebras it seems difficult to give the following proof in that setting
without using the (more general) structure of U*-algebras.

THEOREM 3.1. Let U be a U*-algebras. Let & be a *-ideal of
A. Let T be a *-representation of I. Then there is a *-representa-
tion T of A on [D,] which extends T. If T is essential then T is
unique, and the set of topologically cyclic vectors for T equals the set of
topologically cyclic vectors for T. Thus when T is essential it is
topologically cyclic or topologically irreducible iff T has the corres-
ponding property.

Proof. If T is not essential it is the direct sum of a zero sub-
*.representation T° on £, and an essential sub-*-representation 7" on
.. We can extend 7T° as a zero *-representation 7° U — [D,]. Thus
if we can extend T" to T%: A —[9,] then T° P T" extends 7. There-
fore we need only consider the case of essential *-representations.

Suppose T is essential and let X be the subset of 9, T.9, =
(Tw:be, v P,). Then % is dense in §,. Let T:A— [H,] by any
*_representation which extends 7. Let ae and xze€X. Then oz =
T,y for be¥ and y€ ©,. Thus

Tax - TaTby = TaTby = Taby = Tuby .

Since T is normed (Corollary 1.9) and X is dense this shows that there
is at most one extension T: 9 — [D,] of T.

Suppose z is a topologically cyclic vector for 7. Let X = Tyz.
Then X is dense again. For ac? and xzecX define T = T,z
where © = T,z with b We must first show that this is well
defined. Suppose x = T,z with de & also. Let a = >3, N\, v, where
MeC, v, €Wy, and 30N, =0. Then T,z — Tz = D0 Nu(T, 102 —
T, —4?). However for each n

NT, -2 — Ty ag®|* = I T, -r—o-a? I?
= (To—aycwloy—vy sty sy + To—ayo-0)?2, #)
= [ T—sz|f=0.

Thus T,,2 = T,z and T'x is well defined for each xeX. For ael
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and v = TzecX, Tix = T,z = T,Ty2 = T,x. It is easy to check that T
is a *-representation of 2 on the pre-Hilbert space ¥. Corollary 1.9
shows that 7" is normed and hence can be extended (in the sense of
extensions of *-representations) to a unique *-representation T: 9l —
[©,] which extends T:J—[9,]. Clearly z is a topologically cyeclic
vector for T since Tyz 2 T,z. This concludes the proof of the theorem
when T is topologically cyclic.

Suppose T is essential but not necessarily topologically cyclic.
Then T = @.., T* is the internal direct sum of a family {T*: «a e A}
of topologically cyclic sub-*-representations on T-invariant subspaces
{.:xe A}. For each we A we have shown how to construct a *-
representation 7% 9 — [9,] which extends 7% §— [9.]. The direct
sum @ues To: A — [$;] is defined since 74 < v, by Corollary 1.11. It
extends T: 3 —[9,]. We have already shown that only one such
extension is possible. Thus any essential *-representation of J has
a unique extension to 2.

Suppose z is a topologically cyclic vector for T and T is essential
then T,T2 = T,z for all ac and be so that T,z is a closed
T-invariant subspace of §, containing z by [10, p. 206] or [9, 1.2.10].
The topological eyeclicity of z for T shows that Tz~ = §, so that 2
is a topologically cyclic vector for T.

When T is essential we have shown that the set of topologically
cyclic vectors for T equals the set of topologically cyclic vectors
for T. Since a *-representation is topologically cyclic iff its set of
topologically cyclic vectors is nonempty and is topologically irreducible
iff every nonzero vector is topologically ecyclic this establishes the
last sentence of the theorem.

COROLLARY 3.2. If % is a U*-algebra and ¥ is a *-ideal of A
wmcluded in Ay then JFp = . In particular W)z = .

Proof. If Jp # & there is a nonzero *-representation T of .
Then Theorem 8.1 shows that there is a *-representation 7 of 2 which
does not vanish on & < ,. This contradicts the definition of %.

COROLLARY 3.3. If A 1s a U*-algebra and ¥ s any *-ideal of
AR then Jp = J. In particular (Wp)V)e = (W) )? = Q).

Proof. The last sentence of Lemma 1.7 and Corollary 3.2 together
show that (W)Y, = (Wz)”. Thus these sets clearly equal (((2z)Y)z)".
Thus this corollary follows from Corollary 3.2 applied to (2;)? in place
of .

COROLLARY 3.4. If U 4is a Banach *-algebra and I is a *-ideal
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of Uy then Jp = J. In particular Uz)z = As.

Proof. Theorem 1.12 and Proposition 1.4 together show that U
and A, are U*-algebras so that Ay = (Ar)". Thus this corollary follows
from Corollary 3.3.

4. Remarks on categorical consequences. In this section we
wish to indicate the consequences of our results in the language of
categories. In reference [3] we find a strong notion of radical sub-
category which we will use. In fact what is called a radical in [3]
is sometimes called a hereditary radical (cf. p. 125 of N. J. Divinsky,
Rings and Radicals, University of Toronto Press, 1965). From one
viewpoint our results may be considered as a quite different example
of this theory.

We will show first that each of the three categories listed in the
introduction is both semi-abelian and co-semi-abelian. The trivial
*.glgebra {0} is a zero-object in each of these categories and also in
each of the other categories which we will consider. We examine
the categorically defined kernels, cokernels, images, and co-images in
these categories.

In all three of the categories listed in the introduction the kernel
of f ¢ Hom (2, B) is simply (the subobject represented by the injection
into U of) the set theoretic kernel Ker (f) of f.

Consider the following categories.

(4) U*-algebras and *-homomorphisms.

(6) Banach *-algebras and *-homomorphisms.

Since the image of any U*-algebra is a U*-algebra it is easy to see
that the kernel of feHom (I, B) in category (4) is (the subobject
represented by the injection into % of) (ker (f))” where again Ker (f)
is the set theoretic kernel of f. In category (5) morphisms do not
always have kernels, since there is not in general any maximal sub-
object of Ker (f) on which a Banach *-algebra norm can be defined.
Notice that when such a maximal subobject does exist it must be
included in (Ker (f))".

In the category

(6) *-algebras and *-homomorphisms
the set theoretic kernel “is” the categorical kernel.

In categories (1), (4) and (6) the cokernel of feHom (U, B) is
represented by

B — B/(*-ideal generated by f()) .

In categories (2) and (3) the cokernel of fe Hom (%, ) is represented
by

B — (B/(closed *-ideal generated by f())) .
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Morphisms in category (5) do not always have cokernels, since there
is not always a smallest *-ideal containing f() such that the quotient
may be embedded in a Banach *-algebra.

In categories (1), (2), (3), (4), (6) the image of feHom (U, B) is
represented by the map

A/Ker (f) — B

induced by f. Morphisms in category (5) do not always have images.
The co-image of f€ Hom (U, B) in categories (1), (2), (3), (4), and
(6) is represented by the natural morphism

A — A/Ker (f) .

Morphisms in category (5) do not always have co-images.

DEFINITION 4.1. A category with a zero object is called semi-
abelian if:

(a) Every morphism may be factored into a representative of
its co-image followed by a representative of its image, and

(b) Every morphism has a cokernel.
A category with a zero object is called co-semi-abelian iff it satisfies
(a) and

(¢) Every morphism has a kernel.

ProprosiTION 4.2. Categories (1), (2), (), (4), and (6) are each
both semi-abelian and co-semi-abelian.

Proof. This follows from the remarks above.

DEFINITION 4.3. Let & be a semi-abelian category. A radical
subcategory of & is a full subcategory .&Z such that

(a) If Ae A2 fecHom (A, B) and 7 Hom (F, B) represents the
image of f then e ..

(b) If Ae.Z feHom (A, B) and ke Hom (K, A) represents the
kernel of f then e ..

(¢) For each e & there is a unique subobject 2., or A which
satisfies

(¢,) U is a kernel.

(c,) A, is represented by a monomorphism with an object of
“# as domain.

(e;) A, includes any subobject of 2 which is a kernel and is
also represented by a monomorphism with an object of &£ as domain.

(d) If weHom (U, B) is a representative of the cokernel of a
representative v € Hom (9, A) of A, then the subobject B is the
zero-subobject of B.
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THEOREM 4.4. In each of the categories (1), (2), and (3) the full
subcategory defined by the class of objects W such that A = A, is a
radical subcategory.

Proof. Proposition 1.4 and Corollary 2.4 and 3.4, together with
the identification of the kernels, cokernels, images and co-images in
these categories, establish this result.

This theorem justifies the term *-radical as a name for the
reducing ideal in these three categories.

In the semi-abelian category (4) of U*-algebras we do not know
whether the reducing ideal is always a U*-algebra, i.e.

4.1) Up = WUp)” -

In fact we do not know whether every closed *-ideal is always a
U*-algebra. If 2, is always a U*-algebra then Theorem 4.4 is true
for category (4) also. Otherwise one might consider the full sub-
category <# defined by the class of objects 20 such that 2 = (2p)°.
This subcategory satisfies (a), (b), and (¢) of Definition 4.3 with
A, = Y. However it will not satisfy (d) unless

(4.2) (/@A) ") )" = {0} .

It is possible that condition (4.2) is true for all U*-algebras. If it
is not true for all U*-algebras perhaps there is a full subcategory
of category (4) in which either condition (4.1) or (4.2) holds. This
subcategory might have a radical subcategory associated with the
reducing ideal. Notice that categories (2) and (38) are nonfull sub-
categories of category (4) in which (4.1) holds.

It seems unlikely that the semi-abelian category (6) has a radical
subcategory defined by the reducing ideal. However a counterexample
is probably quite weird. (Note added in proof: I have found a
counterexample which is not particularly weird.)
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QUASI PROJECTIVES IN ABELIAN
AND
MODULE CATEGORIES

K. M. RANGASWAMY AND N. VANAJA

If R is a ring without zero divisors then it is shown
that any torsion-free quasi-projective left R-module A is
projective provided A is finitely generated or A4 is “big”. It
is proved that the universal existence of quasi-projective
covers in an abelian category with enough projectives always
implies that of the projective covers. Quasi-projective
modules over Dedekind domains are described and as a
biproduct we obtain an infinite family of quasi-projective
modules @ such that no direct sum of infinite number of
carbon copies of @ is quasi projective. Perfect rings are
characterised by means of quasi-projectives. Finally the
notion of weak quasi-projectives is introduced and weak
quasi-projective modules over a Dedekind domain are investi-
gated.

1. Introduction. An object A in a category .o is called quasi-

projective [14] if given an epimorphism ALB and a morphism
g: A B, there is h: A — A making the following diagram

A

7|

P

-

v

4—71.p
commutative. This paper starts with the investigation of the quasi-
projectives in an abelian category. Utilising a few basic lemmas, it
is shown that the universal existence of the quasi-projective covers
in an abelian category . implies that of the projective covers,
provided .o possesses enough projectives and this answers affirma-
tively a question of Faith [4] in a general form. Next we consider
quasi-projectives in the category of modules. It turns out that “big”
torsion-free quasi-projectives over rings without zero divisors are
always projective. Artin semi-simple rings are characterised as those
rings over which quasi-projectives and projectives coincide. In §5,
quasi-projectives over a Dedekind domain R are investigated: A quasi-
projective R-module is either torsion or torsion-free. A torsion R-
module is quasi-projective if and only if it is quasi-injective but not
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injective. If R is a complete discrete valuation ring, then the torsion-
free quasi-projective R-modules are just the free R-modules and the
torsion-free modules of finite rank. Suppose R is a Dedekind domain
which is not a complete discrete valuation ring and o is the number
of distinct prime ideals of R. If o < 2%, then all the torsion-free
R-quasi-projectives are projective. If o > 2%, then a torsion-free
quasi-projective E-module A is projective if either (i) rank A <Y, or
(ii) rank A > 0. In the case when W, < rank A < g, A is torsion-
less, Y.-projective and contains a free summand F' having the same
rank as A. As a biproduct we at once get an infinite family of
quasi-projective modules A such that no direct sum of infinite num-
ber of copies of A is quasi-projective. In §6, Perfect rings are
characterised as those rings R such that R-quasi-projectivity survives
under direct limits. A weakened form of quasi-projectivity — called
weak quasi-projectivity — is considered in the last section and weak
quasi-projectives over a Dedekind domain are completely characterised.

2. Preliminaries. All the rings that we consider are associative
and are assumed to possess an identity and all the modules unitary
left modules. A sub-module S of an R-module M is called fully in-
variant if S is stable under every R-endomorphism of M. S is called
a small submodule, if S+ T = M implies T = M for any submodule
T of M. A projective module P is called a projective cover of M if
there is an epimorphism P-— M whose kernel is small. A module
M over an integral domain is called reduced if 0 is the only divisible
submodule of M. By the rank of a torsion-free module M over a
Dedekind domain R we shall mean the cardinality of a maximal R-
independent subset of M. An R-module M is called quasi-injective

if for any exact sequence 0—»Sl+M, the induced sequence
Hom (M, M) —— Hom(S, M) —> 0

is exact, where i*(f) = ¢ o f for all f in Homz(M, M). For the basic
results in category theory, modules and abelian groups, the reader
is referred to [5], [6], [10] and [11].

3. Quasi-projectivity in abelian categories. In this section,
we examine the properties of quasi-projective objects in an abelian
category. The main result shows that the universal existence of
quasi-projective covers in an abelian category .o~ implies that of
projective covers, provided .97 possesses enough projectives.

NoTe. In conformity with our notation in the subsequent sec-
tions, a composite fo g of two morphisms is obtained by applying f
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first and then g¢.

LemmA 3.1 [14]. In an abelian category, any retract of a quasi-
projective 1s quasi-projective.

The following lemma gives a condition under which an object
becomes projective.

LEMMA 3.2. An object A in an abelian category is projective if
and only if there exists an epimorphism P--» A with P projective
and A @ P is quasi-projective.

Proof. We prove only the “if” part. Let f: P— A be the given

epimorphism, A5 AEBP——» =1, and P—»A EBP—» =1,. By
the quasi- progectlwty of A P, there eXlStS g A@QP—AEGP such

that AQPLH A=A PL apPl.PL A, Then
ly=d=dged of) =(@ogeJ)f.

Thus A is a retract of P and hence projective.
Dualizing 3.2, we obtain

LEMMA 3.2'. An object A is an abelian category is injective if
and only if there is o monomorphism A— I with I injective and
A DI is quasi-injective.

Next we examine the universal existence of quasi-projective covers.

DEeFINITION 3.3. (i) An epimorphism f in a category is called
a minimal epimorphism if, whenever ¢ o f is an epimorphism, ¢ it-
self is an epimorphism.

(ii) A— X is called a projective (quasi-projective) cover in a
category, if A is projective (quasi-projective) and f is a minimal
epimorphism.

(iii) A category .o is called perfect (quasi-perfect) if every ob-
jeet in .7 possesses a projective (quasi-projective) cover.

(iv) A category is said to possess enough projectives, if, to
every object A, there is an epimorphism P-— A with P projective.

REMARK. (i) For an axiomatic treatment of minimal epimor-
phisms see [1]. Observe that in the ecategory of R-modules, an
epimorphism f: A— B is minimal if and only if Ker f is small in
A.
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(ii) The notion of a perfect category has been considered in [2],
[3].

(iii) Our definition of a quasi-projective cover is slightly different
from the one defined in [14] for modules. However, it is easy to see
that for the category of modules over a ring R, the universal exist-
ence of quasi-projective covers according to the new definition is
equivalent to the universal existence of quasi-projective covers ac-
cording to the definition given in [14].

It is clear that a perfect abelian category is quasi-perfect.
Conversely, is a quasi-perfect abelian category perfect? This is the
category-theoretical formulation of a question raised by C. Faith [4]".
The following theorem answers this:

THEOREM 3.4. An abelian category .o is perfect if and only if
it 18 quasi-perfect and possesses emough projectives.

Proof. IF part: Let Ac.or and PL A an epimorphism with
P projective. Let ¢g: Q@ —A@G P be a quasi-projective cover of
A@P P. Consider the following commutative diagram

,I;II

Q" g
; ]
| l
o
0 A agepr—2"p 0

where the square is a pull-back and
A agr2toa=-1, P aprip=1,.
By Lemma 2.61 of [5],

0 0" g9 ,p 0

is an exact sequence which splits since P is projective. Let f: P— Q'
be such that fogoj’ = 1,. Since g is epic and the square is a pull-
back, ¢’ is also epic. We claim ¢’ is minimal. Let A': C— @ be
such that #'og¢’ is epic. et A = (W'-7") @D f. Consider the following
commutative diagram

1 While this paper was being written we found out that this question has been

recently answered independently by A. Koehler [12], K. R. Fuller, D. A. Hill and J. Golan
for the category of R-modules.
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0 C CHP———P——0
| |
W h 1p
| |
0 Q Q P 0
, | |
g g 1p
R
0 A—"sa@P—"p 0

where the top row is split exact with the obvious maps. By the 5-
lemma, %o g is epic and since g is minimal, % is epic. Since

C—C@lP— P—0

is exact, again by Lemma 2.61 of [5], the left top square is a pull-
back. Since % is epie, A’ is also epic. Thus ¢’ is minimal epic.
Since P is projective and u: P— A, there exists v: P— @ such that
vog = u. By the minimality of ¢’, v is an epimorphism. Then the
quasi-projectivity of Q@ @ P and the Lemma 3.2 imply that @ is pro-
jective. Thus ¢': @ — A is a projective cover of A and we conclude
that the category is perfect.

REMARK 1. Theorem 3.4 is best possible in the sense that it
fails to be true if .o~ is not an abelian category. To see this, let
.57 be the category of all the abelian groups and .27 the full sub-
category of .o/ consisting of all the cyclic groups. Then .o is not
abelian. .97 has enough projectives and is clearly quasi-perfect (every
object in .97 is quasi-projective). But .o~ is not perfect since the
prime cyclic group Z(p) possesses no projective cover in .7

REMARK 2. A quasi-perfect abelian category need not possess
enough projectives. The category .5, of all finite abelian p-groups
is one such. The quasi-projectives in &, are the direct sums of
isomorphic cyclic p-groups [7]. &, is abelian and is readily seen to
be quasi-perfect. But it possesses no non-trivial projectives.

4. Quasi-projectives in the category of modules. In this sec-
tion we indicate some of the simple properties of quasi-projective
modules over a ring. We also investigate when a quasi-projective
module over a ring R without zero-divisors becomes projective. It
turns out in a surprisingly simple way that the “big” torsion-free
quasi-projectives over such R are projective. Some of the preliminary
lemmas in this section hold in any abelian category but, for the sake
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of convenience, we will consider only the module case. Lemmas 4.3
and 4.4 occur in [7], but are proved here for the same of completeness.

LEmMA 4.1. [14]. If A is a quasi-projective R-module and S 1is
fully invariant in A, then A/S is quasi-projective.

COROLLARY. Let I be a two sided ideal of a ring B. Then R/I
18 quasi-projective as an R-module.

The converse of Lemma 4.1 is not always true. It holds, however,
under some restriction on S, as indicated below.

LEMMA 4.2. Let S be a small submodule of a quasi-projective
module A. Then A/S is quasi-projective if and only if S is fully in-
vartant wn A.

To prove this, replace the word, “projective” in the proof of
proposition 2.2 of [14] by “quasi-projective”.

The following lemma gives a condition when a submodule of a
quasi-projective module becomes a summand.

LEMMA 4.3. Let S be a submodule of a quasi-projective module
A. Then S is a summand if and only if A/S is isomorphic to a
summand of A.

Proof. Let A=B&C and f: B— A/S be an isomorphism.
Define g: A— A/S by g| B=f and ¢g|C =0”. By the quasi-projectivity
of A, g lifts to an endomorphism % of A such that 4o p = g, where
p: A— A/S is the natural map. Set p’ = f~'oh. Since p'op = 1,
the sequence 0 — S — A — A/S — 0 splits and thus S is a summand

of A.
Dualising 4.3, we obtain a corresponding statement for quasi-

injectives.

LEmMMA 4.3, Let S be a submodule of a quasi-injective module A.
Then S will be a summand if and only if S is isomorphic to «a
summand of A.

REMARK. Lemma 3.2 and 3.2’ can also be easily deduced from
4.3 and 4.3’ respectively.

LEMMA 4.4. Let A be a quasi-projective module. Then the exact

2 g | B denotes the restriction of the map g to B.
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sequence 0 — T-»S—f» A — 0 splits, whenever S is a submodule of A.

Proof. Let g: A— A/T be an epimorphism such that ¢ |S = f.
Let h: A— A/T be monic with ImAa = S/T. Then there exists an
endomorphism %’ of A satisfying h'og = k. Since Im#’ =S, it is

readily seen that %’ is a split map of the sequence 0— T —S LA—»O.
Hence the Lemma.
Dualising 3.4, we obtain an analogous property of quasi-injectives.

LemMA 4.4. If A is quasi-injective, then the exact sequence
045X Y0 splits whenever X is a quotient of A.

As an easy application of Lemma 4.4 we show that big torison-
free quasi-projectives over an integral domain are projective.

THEOREM 4.5. Let R be a ring without zero divisors. Then any
torsiton-free quasi-projective R-module containing an R-independent
subset of cardinality exceeding the cardinality of R is projective.

We may assume, without loss in generality, that R is infinite
(since otherwise R becomes a field). Let A be a quasi-projective
torsion-free R-module and S a maximal R-independent subset with
| S|z | R|. Let F be the (free) submodule generated by S. Then
[A| =S|+ |R|=1S] and so A can be obtained as an epimorphic
image of F. Since F is free, A is projective by Lemma 4.4.

REMARK. (i) From the proof of 4.5 it is clear that, if R has
no zero divisors, then a torsion-free quasi-projective R-module A is
projective exactly when €D, A is quasi-projective for every cardinal
M.

(ii) K. H. Fuller and D. A. Hill (Notices, Amer. Math. Soc., 16
(1969) 961) show that if A is finitely generated quasi-projective, then
@P.. A is quasi-projective for any m. An immediate deduction from
(1) above: If R has no zero divisors, then a finitely generated torsion-
free quasi-projective R-module is projective.

COROLLARY 4.6. A quasi-projective module over a ring without
zero divisors is projective if and ownly if it is torsion-free and possesses
a projective cover.

We need only to prove the “if” part. Let A be torsion-free
quasi-projective and A = P/S, P projective and S small. By Lemma
4.2, S is fully invariant in P. If m denotes the cardinality of R,
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then @, 4 = (.. P)/(®..S) is quasi-projective, since @, S is fully
invariant in @, P. The projectivity of A then follows from Thorem
4.5.

REMARK. One can deduce that over a ring without zero divisors
a quasi-projective module with a projective cover is either torsion or
torsion-free. For, suppose 4, P and S are as in the preceeding proof
and A contains a torsion-free element a == 0. If m > W« |R|: |4/
then @, 4 is quasi-projective, has cardinality m and contains a free
submodule F' of rank m. By Lemma 4.4, @@, A and hence A is pro-
jective (and torsion-free).

The following theorem characterises Artin Semisimple rings by
means of quasi-projectives.

THEOREM 4.7. The following properties are equivalent for any
ring R:

(i) R is Artin Semi-simple.

(ii) The R-modules with a projective cover are precisely the
quasi-projectives.

(iii) Ewvery quasi-projective R-module is projective.

Proof. Trivially (i) implies (ii).

Assume (ii). Let @ be quasi-projective. By assumption @ pos-
sesses a projective cover P. Then P Q will have a projective
cover and hence is quasi-projective by hypothesis. Lemma 3.2 then
implies that @ is projective.

Assume (iii). Since any simple R-module is quasi-projective, it
becomes projective by assumption. Then all the maximal left ideals
of R are direct summands of the left R-module R and since R has
1, we conclude that R is Artinian Semi-simple. This completes the
proof.

REMARK 1. Observe that if every R-module is quasi-projective
then, by Lemma 3.2, R satisfles the condition (iii} above and hence
R is Artinian Semi-simple.

REMARK 2. Johnson and Wong [9] showed that the quasi-injective
modules over any ring R are exactly the fully invariant submodules
of injective R-modules. A natural question is whether this can be
dualised to quasi-projectives. Precisely, must every quasi-projective
R-module A be of the form P/S with P projective and S fully in-
variant in P? Jans and Wu [14] answered this in the affirmative under
the assumption that A has a projective cover. In the general case,
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the answer turns out to be in the negative. To see this, consider
M = @ (Z/pZ), where Z is the ring of integers, ¢ is a Z-module
direct sum and p runs over the set of all primes in Z. Clearly M
is a quasi-projective Z-module [7]. But M cannot be written as P/S,
where P is a projective (hence free) abelian group and S fully in-
variant in P, since the only fully invariant subgroups of a free
abelian group F' are of the form nF,n =1,2, ---.

REMARK 3. In the statement of the Theorem 4.7(ii), if we
replace “precisely” by “necessarily”, we obtain a characterisation of
Jacobson semi-simple rings: A ring R is Jacobson semi-simple if and
only if the R-modules possessing projective covers are mnecessarily
quasi-projective. To see this, assume the “if” part. Then, by
Lemma 4.2, the small submodules of any projective R-module P are
fully invariant in P. In particular, let P= R B R, with R, = R
and let J;, = J, the Jacobson radical of R, for 4=1,2. Now J,
is small in R, and hence in P. But then J, would be fully in-
variant in P, an impossibility since J, can be mapped onto J, by an
endomorphism of P. Thus J, =0 and R is Jacobson Semi-simple.
The converse follows on noting that if R is Jacobson Semi-simple,
then 0 is the only small submodule of any projective R-module.

5. Quasi-projectives over Dedekind domains. In this section
we propose to describe the quasi-projective modules over an arbitrary
Dedekind domain R. First, observe that if A is any quasi-projective

R-module, then any exact sequence 0-- S Lal A/S — 0 yields the
following two exact sequences.

0 —— Hom (A4, S) —— Hom, (4, A) —— Hom (A, A/S) —— 0
0 — Ext}, (4, S) —— Ext}, (4, )~ Ext, (A4, A/S) — 0 .

We first consider the torsion free quasi-projective modules. To
avoid the trivial situations, the integral domains that we consider are
not fields, unless explicitly stated.

LemmA 5.1. Let R be a Dedekind domain. Then the quotient
field K of R is a quasi-projective R-module if and only if R is a
complete discrete valuation ring.

Proof. Suppose K is quasi-projective. Given any f e Hom,(K/R,
K/R), there exists a f’e Hom,(K, K) such that f'oj = jof where J
is the natural map from K onto K/R. Let f” = f’|R. Since Rf' &
R, f” is given by a multiplication by an element of B. It is readily
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seen that the association f+ f”' gives an isomorphism of Hom(K/R,
K/R) onto R. Now the exact sequence 0 — R — K — K/R — 0 yields
an exact sequence

Hom(K/R, K) = 0 — Hom(K/R, K/R) — Ext4(K/R, R)
—— ExtW(K/R, K) = 0

(the first term is zero since K/R is torsion and K is torsion-free).
Thus R = Homg(K/R, K/R) = ExtL(K/R, R) and the Corollary 7.9 of
[13] implies that R is a complete discrete valuation ring.

Conversely, suppose R is a complete discrete valuation ring.
Then any R-submodule S of K is isomorphic to B or K and hence,
by Theorem 7.9 of [13], Exti(K,S) =0. K is then clearly quasi-
projective.

We shall first describe the torsion-free quasi-projectives over
Dedekind domains which are not complete discrete valuation rings.

LEMMA 5.2. Suppose R is a Dedekind domain which is not a
complete discrete wvaluation ring. Then any torsion-free quasi-
projective R-module A is torsionless.

Proof. Let 0+ xecA and S the pure submodule generated by
2. Since R is not a complete discrete valuation ring, A (and there-
fore S) is reduced, by Lemma 3.1. Thus S # PS for some prime
ideal P of R. Then S/PS, being bounded and pure, is a summand
of A/PS (Theorem 5 [11]). A nonzero cyclic summand of S/PS will
be isomorphic to R/P and can be written as Ry/Py, for some y < S.
Let g: S/PS-— Ry/Py be a nonzero map. Consider the following
diagram

A

yd

s
///
«
A—l  aPy——0

fleg

where f': A — S/PS is obtained via the projection A/PS — S/PS and
f is the natural map. By the quasi-projectivity of A4, there exists
h: A— A making the diagram commutative. Now A(hof)= A(f'o9) &
Ry/Py, so that Ah = Ry. Thus h: A— Ry = R and xh # 0 since k&
does not vanish on the rank 1 submodule S. It follows that A is
torsionless.
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COROLLARY 5.3. Let R be a Dedekind domain which is not a
complete discrete valuation ring. Then any torsion-free R-module A
is W,-projective. Hence any torsion-free R-module of atmost countable
rank is projective.

Proof. Let S be a submodule of A of rank1. By Lemma 5.2,
A is torsionless so that for each a = 0 in S, there exists f: A— R
such that af = 0. Since S has rank 1 and im f is torsion-free, f|S
is mono. As R is hereditary, S is projective. By finite induction,
it is clear that any submodule of A of finite rank is projective. Then
a well-known step-wise argument (see for example Lemma 8.3.1 [13])
yields that any submodule of countable rank of A is projective.

In the following o denotes cardinality of the set of all distinct
prime ideals of E.

PROPOSITION 5.4. Let R be a Dedekind domain. Then any
torston-free quasi-projective of rank m = oYX, is projective.

Proof. Let A be a torsion-free R-module of rank m = o¥, and
K be the quotient field of R. It is easy to see that R(P~) is count-
ably generated. Now K/R is @, R(P~), where P runs over the set
of distinect non-zero prime ideals of R and hence K has a generating
set of cardinality o¥,. If D is an injective hull of 4, then D=, K
has a generating set of cardinality m. It is then readily seen that
A itself is generated by m elements. Let F be a free submodule
of A of rank m (for example F' may be the submodule generated by
a maximal R-independent subset of 4). A can be got as an epi-
morphic image of F and hence by Lemma 4.4, A is a direct summand
of F' and hence projective.

Combining 5.3 and 5.4, we get the following.

THEOREM 5.5. Let R be a Dedekind domain which is not a com-
plete discrete valuation ring and o < W,. Then a torsion-free R-
module is quasi-projective if and only if it 1s projective.

ReEMARK. If we assume the continuum hypothesis and use 5.3
and 5.4, then we can sharpen 5.5 to the following: Let R be a
Dedekind domain wich is not a complete discrete valuation ring and
o < 2%, Then any torsion-free quasi-projective R-module is projective.

Next we consider the case when o > 2%,

PrOPOSITION 5.6. Let R be a Dedekind domain and A be a
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torsion-free quasi-projective R-module of infinite rank m. Then A
contains a free summand of rank m.

Proof. Let P be any non-zero prime ideal of R. R(P>) is a
countably generated injective R-module. If Q = @, R(P~), then, as
R is Noetherian, @ is an injective R-module. Clearly Q has a gener-
ating set. of cardinality m. Let F' be the free-submodule generated by
a maximal R-independent subset of A. Then @ can be obtained as
a quotient of F, Q = F/S for some submodule S. Consider the fol-
lowing diagram,

A

n/ d lf
S AlS
/ jg
v
A——T A8 = FIS® TS
where g: A/S— F/S is a projection of A/S onto the injective summand
F/S and f is the natural map. By the quasi-projectivity of A, there
exists h: A— A such that hof = fog. It is clear that Ah & F and
since R is hereditary Ah is projective. As F/S is a direct sum of
m copies of R(P~), it is clear that the rank of Ah = m. Thus A =
F’' P K, where K is the kernel of & and F’ is a projective module of
infinite rank m and hence is free [11].
Combining 5.3, 5.4 and 5.6 we get,

THEOREM 5.7. Let R be a Dedekind domain with o > 2%, Then
any torsion-free quasi-projective R-module A 18 projective if either
(i) rank A<, or (ii) rank A=0. In the case when W, < rank A< o,
A s torsionless, W,-projective and contains a free summand F having
the same rank as A.

The following theorem characterises torsion-free quasi-projectives
over a complete discrete valuation ring.

THEOREM 5.8. Suppose R is a complete discrete valuation ring.
Then the torsion-free quasi-projective R-modules are just the free R-
modules and the torsion-free R-modules of finite rank.

Proof. By Kaplansky [10], any torsion-free R-module of finite
rank is of the form (@5, K;) @ (Br., R;) where each R, = R and
each K, = K, the quotient field of R. Thus if A is any finite rank
torsion-free R-module and S is any submodule, then both are direct
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sums of finite number of copies of K and R, so that
Exti(4, S) = @, Exti(X, R),
where r is finite. By Lemma 5.1, K is quasi-projective so that
Exti(K, R) = 0.

Thus ExtL(4, S) = 0, whence Hom,(A4, A) 7 Hom (A4, A/S)— 0 is exact
for every submodule S of A, where f* is induced by the natural
map f: A-— A/S. The quasi-projectivity of A then follows. On the
other hand if A is a torsion-free quasi-projective R-module of infinite
rank, then by Proposition 5.4, A is projective and hence free.

COROLLARY 5.9. If A is quasi-projective, then a direct sum @ A
of copies of A mneed nmot be quasi-projective.

ExampLE. Suppose A is any torsion-free module of finite rank
over a complete discrete valuation ring R such that A is not pro-
jective (for example A = K, the quotient field of R). Then any finite
direct sum of copies A is quasi-projective but, by 5.8, no direct sum
of infinite number of copies of A can be quasi-projective.

We shall now describe the torsion quasi-projectives over R.

THEOREM 5.10. A torsion module A over a Dedekind domain R
is quasi-projective if and only if each P-primary component Ap is a
direct sum copies of the same cyclic module R/P* for some fized
positive integer k depending on P.

Proof. Since a P-primary module over K can be viewed as a
module over the principal ideal domain R,, and quasi-projectivity sur-
vives under this transition, we may assume that R itself is a principal
ideal domain. Our proof would be sketchy since it is similar to
the one given in [7]. Now R(P~) is not quasi-projective since
otherwise, by Lemma 4.3, every submodule of R(P*) would be a sum-
mand. Thus a torsion quasi-projective R-module A is necessarily
reduced. Again, by Lemma 4.3, A cannct contain a summand of the
form (R/P*) (R/(P*)) with k, > k,, since there is an epimorphism
R/(P*) — R/(P*) whose kernel is not a summand. Thus the basic
submodules B, (see [6]) of each P-primary component A, are
bounded and since the A, are reduced, each A, coincides with B,
which is clearly a direct sum of isomorphic cyclic modules. The
“only if” part follows.

Conversely, if A is a direct sum @, R/(P*) of isomorphic cyclic
modules, then A = F/P*F, where F is free, say, F = @, E. Since
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P*F' is fully invariant in F, A is quasi-projective, by 4.1.

COROLLARY 5.11. A torsion module A over a Dedekind domain
R is quasi-projective if and only if A 1s quasi-injective but not in-
Jective.

Proof. By Johnson and Wong [9], the quasi-injectives are pre-
cisely the fully invariant submodules of injective modules. The corol-
lary then follows on noting that P-primary injective R-modules are
direct sums of copies of R(P~) and their proper fully invariant sub-
modules are direct sums of isomorphic cyclic P-primary modules.

The following theorem concludes our investigation of quasi-pro-
jectives over Dedekind domains.

THEOREM 5.12. A quasi-projective module over a Dedekind domain
18 either torsiom or torsion-free.

Proof. Suppose A 1is a quasi-projective R-module with its
maximal torsion submodule A, % 0. Since R(P~) is not quasi-pro-
jective for any prime ideal P, A, is reduced and thus A has torsion
cyclic summands [11]. Let A = (R/P*)@ B. Now if R is not a
complete discrete valuation ring, B/B, is torsion-free quasi-projective
and hence is torsionless (5.2) so that B has a projective summand I
of rank 1. If R is a complete discrete valuation ring, then as in the
proof of 5.10, one can then show that B, = B, is a bounded direct sum
of isomorphic cyclic modules, where P is the unique nonzero prime
ideal of R. Hence B = B, B/B,, so B/B; is a torsion-free quasi-pro-
jective R-module and hence contains a summand isomorphic to R or
K, the quotient field of R (5.8). Thus, in either case, A has a sum-
mand of the form (R/P*) D C, where C = K, the quotient field of R
or C=1, an ideal of R. Choose a submodule S of C such that S= R
or S = IP* according as C = K or C = I. Then there exists a non-
zero morphism g: R/P* — C/S. Consider the following diagram.

(R/PF) D C

<’[g'
(R/PY) @ C—L— (R/PY) & (C/S)

where f' = <(1) 2), f being the natural map and ¢ = (8 g>,

where ¢ is any nonzero homomorphism R/P*— C/S. This ¢’ cannot be
lifted to an endomorphism & of (R/P*) @ C satisfying ho f =g, a
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contradiction. We thus conclude that A is either torsion or torsion-
free.

6. Perfect rings. In this section perfect rings are characterised
by means of quasi-projective R-modules.

THEOREM 6.1. Let R be any ring. Then the following properties
are equivalent.

(i) R s left perfect.

(i) A direct limit of quasi-projective left R-modules is quasi-
projective.

(iii) A direct limit of finitely generated quasi-projectives over R
18 quasi-projective.

(iv) Any flat left R-module is quasi-projective.”

Proof. Let @ = lim @Q;, 1€ I where I is a directed set and the @,’s
are quasi-projective E-modules. Toeach i ¢ I, there exists, by hypothesis,

an exact sequence 0 — K, = P, R Q;— 0 where P, is projective and

K; is small in P,. Now {P;};.; and {K;};c, can be made into directed

systems in a natural way so that we get a directed system of exact

sequences. Let K =1lim K; and P = lim P,. Suppose for each t¢T
—_— —_—

a;: P,— P and G K;— K are the natural maps associated with
the direct limits. Since the direct limit commutes with exact se-

quences, 0 — K 2pl Q@ — 0 is exact. We have the following com-
mutative diagram:

Ui vi

| |
yal Qg j'
0 K—" _.p LN 0.

We claim that Ku is fully invariant in P. Let fe End.(P) and ke K.
As R is perfect, P is a direct sum of cyclic projective R-modules
[12]. Let P’ be a finitely generated summand of P containg (k)u

and let P P’ be the natural projection. As (P")f is finitely gener-
ated, we can choose a jelI and a k;c K; such that (P)a; D (P)f
and (k;)B; = k. Consider the following diagram:

3 In a private communication Dr. J. Golan has indicated that he has also proved
the equivalence of (iv) and (i).
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P.

h oo
/ l]gf
/

Py ———— (Pya;

,

where h exists by the projectivity of P;. As (K,)u; is fully invariant
in P; (by 4.2), (k)u;he (K;)u;. Now

(Byuof = (kyuogof(as g | P’ = 1p) = (kj)Bsoucgef = (kj)uoa;ogof
= (kuoheoa; € (Kjujoa; = (Kj)Bou & (K)u .

Thus (K)u is fully invariant in P whence @ = P/(K)u is quasi-pro-
jective.

Clearly (ii) = (iii) and, since a flat module is a direct limit of
finitely generated projectives, (iii) implies (iv).

Assume (iv). Let A be flat and P projective such that A= P/S.
Since A@ P is flat, it is quasi-projective, by hypothesis. Then
Lemma 3.2 implies that A is projective. Thus a direct limit of pro-
jective left R-modules is projective and so R is left perfect, by
theorem P of [2]. This proves (i).

REmMark. If R is left perfect and A is a quasi-projective lelf R-
module, then a direect sum of any number of carbon copies of 4 is
again quasi-projective. This property, however, does not characterize
the perfect rings. Indeed, the investigations made in § 5 show that
if R is a countable Dedekind domain which is not a complete discrete
valuation ring and A is a quasi-projective R-module, then @, A is
quasi-projective for any cardinal number m.

7. Generalization. In this section, we consider a weakened
form of quasi-projectivity called w. quasi-projectives. The w. quasi-
projective abelian groups were considered in [8]. We give a descrip-
tion of w. quasi-projectives over a Dedekind domain. It is also
shown that w. quasi-perfect abelian categories with enough pro-
jectives are perfect.

DEFINITION. An object A in a category .o is called weak quasi-
projective (for short, w. quasi-projective) if for any epimorphism
f: A— B and any g: A/B— A/B, there is a ¢g: A — A making the
following diagram
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A—T L uB

commutative.

It is clear that any quasi-projective is weak quasi-projective.
But the converse is not true. The abelian group Z(P~) is w. quasi-
projective, eventhough it is not a quasi-projective Z-module.

We start with the following lemma which gives a criterion for
quasi-projectivity. The proof is straight forward and hence is omit-
ted.

LEMMA 7.1. An R-module A is quasi-projective if and only if
AP A is weak quasi-projective.

REMARK. It is clear from 7.1 that, unlike the quasi-projective
case, if A is w.quasi-projective then 4 @ A need not be w.quasi-
projective.

The next lemma can be obtained by modifying the arguments
of 3.2.

LeEmMMA 7.2. [8]. If A B is w.quasi-projective and there is
an epimorphism f: A — B, then B will be isomorphic to a summand
of A.

One can define a weak quasi-perfect category in the obvious
manner. Using Lemma 7.1 and proceeding exactly as in the proof of
Theorem 3.4, we obtain.

THEOREM 7.3. A weak quasi-perfect abelian category with enough
projectives is perfect.

If we suitably modify the preceding investigation of the quasi-
projectives over a Dedekind domain and make use of Lemma 7.2 we
can obtain the following theorem whose proof is omitted.

THEOREM 7.4. Let R be a Dedekind domain.
(i) A torsion R-module A is weak quasi-projetive if and only if
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each P-primary component Ap is either quasi-projective or Ap = R(P~).

(i) If the number o of prime ideals of R is < 2% then the
torston-free weak quasi-projectives are just the (torsion-free) quasi-
projectives. If a > 2%, then a torsionfree weak quasi-projective R-
module A is projective if either A has rank < W, or (i) rank A>o.
If W, <rank A <o, A is W,-projective and contains a free summand
F whose rank is equal to rank A.

(iii) A properly mived R-module A 1is weak quasi-projective if
and only if A= B@C where B is reduced torsion-free quasi-projective
of finite rank and C is an injective submodule of K/R, where K 1is
the quotient field of R.

The authors are indebted to the referee for pointing out a few
inaccuracies and for offering many suggestions for improvement.
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ON THE UNIVALENCE OF SOME
ANALYTIC FUNCTIONS

G. M. SHAH
Let
) =z+ 3, wmet
k=n+1
and

be analytic and satisfy

(a) Re (f(2)/[21f(2) + A1 =2 g@] >0
or
(b) | f@/af()+ 1 —Dg]—1]<1

for [z <1,0=2<1.

We propose to determine the values of R such that f(z) is
univalent and starlike for |[2| < B under the assumption
(i) Re(g(z)/z) > 0, or (ii) Re(2g'(2)/9(z)) > a, 0 = a < 1.

We also consider the case when n =1 and Re(g(z)/z) > 1/2
and show that under condition (a) f(z) is univalent and
starlike for |z | < (1 —2)/(8 + ).

2. LEMMA 1. If p() =1+ b,2" + b,..2"™ + -+« is analytic and
satisfies Re(p(®) > a, 0 S a < 1, for |z]| <1, then

(1) 2@ =1+ Ca — Dzru@]/[L + z"u)], for|z|<1,

where uw(z) 1s analytic and |w(z) | £1 for |z] < 1.

Proof. Let
(2) Fi =[pkr —al/l —a) =1+ ¢,z2" + 2"+ oos
F(2) is analytic and Re (F'(z)) > 0 for [z] < 1 and hence
(3) hz) = [1L — FRIL + F®)] = d,z" + d,s 2" + +o0
is analytic and |A(z) | < 1 for |z| < 1. Thus, by Schwarz’s lemma
(4) h(z) = 2"u(?) ,

where u(z) is analytic and |u(2) | <1 for |z|< 1. Now equations (2),
(3) and (4) prove (1).

LEMMA 2. Under the hypothesis of Lemma 1 we have for |z| <1

239
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|20'()/p(2) | < 2n2"(1 — /{1 — |2 [1 + A — 2a) [2["]}.

Proof. Proceeding as in the proof of Lemma 1, we have in view
of (8) and a result of Goluzin [1] that for [z]| <1
(5) W@ =nlz" 0 —|h@)PH/A -]z .
Using (3), the inequality (5) takes the form
| F'(z) | = 2n|z["" Re (F(2)/(1 — |2 ") .

Hence, in view of (2),

(6) |p'() | < 2n |z [ [Re (p() — a]/(1 — [z ")
or,
(7) |2p'(@)/p(2) | £ 2n 2"l — a/(lpR) D/ — |2 [").

Equation (4) gives
(8) [R2) | < |2 for 2] <1,
and hence, by virtue of (3),
(9) |F(2) | =@+ |20 —[2]) for 2] < 1.
From (2) and (9),

1@ | =]a+ 1 - aF@)|

sa+(1-a)|F@|
=sl+0d-20[z/0—[z]").

The inequality (7), because of the last inequality, reduces to
|20’ &)/ p(@)| = 2n |z[*1 — {1 — [2[)[L + A — 20)[z["]} for [2]<1

and this completes the proof.

We remark that in the case a = 0, the above lemma reduces to
a result of MacGregor [2; Lemma 1] and the inequality (6) with
a =0, n=1, gives another result of MacGregor [2, Lemma 2].

LEMMA 3. Under the hypothesis of Lemma 1 we have for |z|<1
Re(p(®) = [1 + @a — 1) [2["]/L + |z[").

Proof. We have from equation (3), F(2) = [1 — k(2)]/[1 + h(2)]
and also from (8), |h(z)| < |z|* for |2] < 1. Hence the image of
[2]| <70 < r<1) under F(2) lies in the interior of the circle with
the line segment joining the points L —»*)/(1+7") and L +r*)/1—7")
as a diameter. Consequently Re (F(z) = 1 — |z{m/A + |z|") for
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[2]| < 1. The result now follows from the last inequality involving
F'(2) and equation (2).

LEMMA 4. ([6]). If h(@) =1 + €,2" + Cop2"™ + <o+ is analytic
and Re (h(z)) > 0 for |z| < 1, then
B=XrRDI7=A =21 -z =M+ [2]")]
Jor |z < [(1 — N/ + N]Y", where 0 < A < 1.
3. THEOREM 1. Suppose that f(z) = 24+ @y 2" + Qpig?" ™2+ oo o,
and g(@) = 2 + b, 2" + b2"t + -+ are analytic and Re (g(z)/2) >0
Jor |z|<1. If Re(f®R/IMf(2) + (1 —Ng@®@]) >0, 0=rx<1, for

2| <1, then f(2) is univalent and starlike for |z| < R'", where
R={[@Cn+x—nN)"+ 1 -] — 2n + X — aN)}/(1 +N).

Proof. Let

@) = F@/IM@) + 1 —Ng@R] =1+ 2" + Cuuid™™ + -+,
then h(z) is analytic and Re (&(z)) > 0 for |2| < 1. Now
(10) f@ [1 = M@)] =10 - MNh)zp() ,

where p(2) = 9(2)/z2 = 1 + b,1,2" + b,,2"*" 4+ -+ -. Multiplying the loga-
rithmic derivative of both sides of equation (10) by z we have

(11) 2f'())f(@) = 1 + 2p'(?)/p(2) + 2k (D {R([L — N (2)]}

Equation (11) is valid for those z for which 1 —2\Ah(2) =0 and |z|< 1.
Since [h(® | =1L+ |2"/Q—17z]" L —N(@) 0 in particular if
[z] <1 — MN/A + M]¥". Now from equation (11), we have

12/ (@) f@) — 1| = [20()/p@) | + | 2K/ ()[h(2) | |1 — Nh(2) [

and by using Lemma 2 with & = 0 and Lemma 4, this gives

, B 2n |z |" 2nlz|"
|2f'(2)/f(z) — 1] < 1_|zi2n+ @—lzp =@+ [z’

_2njz"[A -z =ML+ (2 + A ~=]2Y]
T —lz[Q -1z —NM+[2[Y]
provided that |z | < [(1 — N)/(1 + M]¥"

The fact that | 2f’(2)/f(2) — 1| <1 implies that Re(zf’(2)/f(z)) >0,
it follows from the inequality (12) that Re (2f"(2)/f(2) > 0 if

l2] <@ = N/A+ V]

(12)

and if
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Glz=@0+N[2z"+@n+ 200+ 2N —1) |z

(13)
+ @ —dn—x—1)z]"+ 1 —-3>0.

Let |z|* = ¢ and consider the cubic polynomial G(f) for 0 < ¢ < 1.
G(t) has at most two positive zeros. Since GO) =@ —») >0,
G[A —N/X + V] = -4l —N/(1+ N <0and GA) = 4 > 0, it
follows that G(t,) = 0 for some ¢, such that 0 < ¢ < (@1 —N)/1 +N)
and G(t) >0 for 0<t<¢ and G@) < 0 for ¢, <t < (1 — N/ + N).
Hence Re (2f'(2)/f(2)) > 0 for those z for which only the inequality
(13) is true. Now the inequality (138) holds if, in particular

A+N[zP"+ @An — 200+ X — 1) 2]
+@un—4dn—N—1]z"+ A -2 >0
or,
(zl"=D[@A+N]zP"+ @n—200 +20) 2"+ A —1] >0
or,
T+N[zf+@En -2+ 2V 2"+ MW —-1)<0.
The last inequality holds if
14 Jz"<{l@n+rx—n)+ A== Cr+N—a)}/T+N.
Since f(2) is univalent and starlike for those z for which

Re (2f"(2)/f(2) > 0,

we have that f(z) is univalent and starlike for |{2z| < RY", where R
is the right side of (14).

If we put » =0 in Theorem 1 we obtain the following result
which, when n = 1, reduces to a result of Ratti [5, Theorem 1].

COROLLARY 1. Suppose that f(2) = 2 + @, 12" + Gy 2" 2o+, and
9(@) = 2 + b,.2"™ + b, 2" + « -+ are analytic and Re (9(2)/2) > 0 for
lz| < 1. If Re(f()/g(®) > 0 for |z| <1 themn f(2) is univalent and
starlike for |z|< [(4n? + 1)¥* — 2n]". :

The functions f(z) = z(1 — 2" +2%* and ¢g(z) = z(L —2")/(1 + 29
satisfy the hypothesis of Corollary 1 and it is easy to see that the
derivative of f(2) vanishes at z = [@n®+ 1)* — 2n]'" and hence
[@n? + 1) — 2n]Y" is in fact the radius of univalence for such func-
tions f(z). This shows that Corollary 1 is sharp and hence Theorem
1 is sharp at least for » = 0.

THEOREM 2. Suppose f() =2+ a,2* + -+, and
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g(z) = 2 + b8+ -
are analytic for 2| <1 and Re (g(2)/z) > 1/2 for |z | < 1. If
Re (f(2)/[Mf(2) + 1 — Mg(R)]) > 0 Jor 2] <1
then f(z) is univalent and starlike for |z| < (L — N)/(B + N).
Proof. Let h(z) = fR)/INfR) + A —NgR] =1+cr+e+ -
Now h(z) is analytic and Re (2(z)) > 0 for |2| < 1 and
(15) F@ L = ME)] =1 = Nhi@Eg@) .

If we let g(z) = 2p(2), then by applying Lemma 1 with a = 1/2 and
n =1 we have that p(z) = [1 + zu(z)]™, where u(z) is analytic and
lu(@) | £1 for |z| < 1. Equation (15) now reduces to

FR) 1 — Ah@)] = @ — Nzh(z)/[]1 + z2u(2)] .

Hence

z2f'(2) _ 1 2u’(2) zh/(2)

f(z) 1+ zu(z) h(z) [1 — AR(2)]
and

2/ (@) 1 -2\ _ [20@)/0E ]

Re(f(z) )2 Re< 1+ 2u(2) ) 1T— )|
Using Lemmas 2 and 4 with n = 1, we get
z2f'(z) 1 -2\ 212
Re< J(z) ) = Re< 1+ zu(ﬁ)> (1— 12—+ |2

for |2 < (1 — N)/A + N).
Hence Re (zf'(2)/f(z)) > 0 if |z] < (1 — N/(1 + ) and
T(lz) Rel(l — #u' (@)L + zu(@] — 2] 2| Re[(L + zu(@) (1 + 2u(@] >0,
where T(jz)) =1 — |2 — M1 -+ |#2])® The last inequality holds if
T(lz]) Re (I + zu@) — T(l2 ) Re [¢*w/(2)(1 + 2u(?)]
4+ 2z Re[l — zu(®))(1 + 2u®)] — 4|2z Re (1 + zuz)) >0,
or if
[41z] — T(zDIRe(l + zu@z) + T(z)) Re [#uw' (@1 + zu(2)]
<z2lz[ @ =[] u@ )

or
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(412 = T(zDIA+[z]lu@)+ T(z)2F 2@ A+ 2][u@)
<2z|@—z[lu@]).

This inequality holds, in view of (5) with » = 1 if

[4lz] = T(zDl+ T(zDlzF T - lu@HL-12H"
<2iz|d—T{z]{u@] .

Two cases arise according as 4|z| — T( z|) is nonnegative or not.

(16)

Case 1. 4]z|—T(z|) =0, i.e. |2z] = [(dN+5)"— N+ 21/ +N).
Since [N +5)" — A+ 2] <@ —n) for 0 =A< 1, it follows, in
view of inequality (16), that Re (z/'(2)/f(2)) > 0 for those z for which
[An+ 5" — AN+ 2))/A+N =z <@ —N/T+ N and

dlz| - T(z)+T(zDl2z @~ [u@HA - [u@) )™
<2lz[@—lz[lu@]) .

The last inequality holds, because of the original value of T'(z[), if

2zl +2(z -1+ M1+ (2D =N]2Q+ [2)/A -]z
<lzPlu@ P =Mz lu@PA+[2D/AQ - [2) —2[zFu@].

Since |u(z) | < 1, the right side of inequality (17)

17

=z u@ =2z lu@ | —M2z1+[z)/L-]z]).
Hence inequality (17) holds, if in particular
18 2fz[+ 2z —1+A1+ [z <[2z[|u@[—2[z]u@].

If welet F(x) =2’z — 22 |2, where 2 = [u(2) |, 0 <2 <1, then
F'(x) is a decreasing function of z for 0 < xz < 1, and hence

Fxy ZFQ) = —|z]} for0=x1.

Hence inequality (18) holds if 2|z + 2|z  — 1+ M1 +[2z])’< —|2}
or |z —D(z/+ 1) +1 L+ ]2z])!<0o0r 3[z]—1+A1+[2)<0
or if [z] <@ —N/B+N. Since L —N/B+N <A —N/A+N),
we have shown that

(19) Re (zf"(2)/f(2)) > 0
for [Un +5)"2 — (M + /A + N Z 2zl <@ —N/E@+N).
Case 2. 4|z|— T(z))<0, ie. |2]|<[@r+5)"— N+ 2)]/(1+N).
We intend to show that Re (2f7(2)/f(2)) > 0 in this case also. Since
f () and g¢(z) satisfy, in particular, the hypothesis of Theorem 1 with
n = 1, it follows from Theorem 1 that
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Re (2f"(@)/f(®) > 0 for [z]| <[(B — )" —2]/Q + ).
It is easy to see that
[N +B)— AN+ 2]=B—-—WrF=2 for0=rA=1
and hence in particular
Re (2f'(®)/f(2) > 0 for [z < [(dN + B)* — (M + 2)]/(L + ) .

In view of the above and (19), it now follows that f(z) is univalent
and starlike for {z| < (1 — M)/ + ) and this completes the proof.

For » =0 the above result reduces to a result of Ratti [5,
Theorem 2] and improves a result of MacGregor [2, Theorem 4] since
Re (g(2)/2) > 1/2 does not necessarily imply that g¢g(z) is convex [7].
The functions f(z) = z(1 — 2)/(1L + 2)* and g(z) = z/(1 + 2) satisfy the
hypothesis of Theorem 2 with A = 0 and f(z) is univalent in no circle
|z] < » with > 1/3 since f’(z) vanishes at z = 1/3. This shows
that Theorem 2 is sharp at least for » = 0.

A function f(z) = 2z + 3,7, a,2* is said to be starlike of order «,
0=<a<l, for |z] <1 if Re(zf'®)/f(r) >« for |z] <1, we now
prove the following result.

THEOREM 3. Let f(2) = 2 + Siins 0:2" and g(2) = 2 + Dion., bp2*
be analytic for |z] <1 and g(z) be starlike of order a, 0 < a < 1,
Jor |z| < 1. If Re(fR/IM(R + A —Ng@]) >0 for |z]| <1, then
f @) is univalent and starlike for

(i) [z <[ —N/A+ N+ 20))7" if a=1/2;
and

(ii) 2] < RV, if a#1/2,
where

R = {[A* + 401 — \)(@a — D]"* — A}[2(1 + V) (@a — 1)]
with A=2n+x+1— @a— 1)1 — ).

Proof. Proceeding as in the proof of Theorem 1 we get

Re (2/7(2)/f(2)) = Re (2¢'(2)/9(2)) — | 2K/ (2)/h(2) | | 1 — Nh(R) [
Applying Lemma 3 (to 2¢'(2)/g(2)) and Lemmas 2 and 4 we get,

(200 Re (zf’(z)> plr e DIzl _ 2n 2|
f(2) L+ |z @ —=fzp) =21+ [2])

provided that |z | < [(1 — M)/ + N)]¥"
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Hence Re (zf’(2)/f(2)) > 0 for those z for which |z | < [1—N)/L+N)]¥"
and the right side of inequality (20) is greater than zero. The latter
holds if

Glzm=0Q0+MNC2x — 1|z ™

(21)
T2n A+ +1— @a— DL =Nzl — 1=N<0.

Let |z|~ =1t and consider the quadratic G() for 0 < ¢ <1. Since
G0) =x —1<0, G[(L — /A +N] =201 — N/A + N) >0, it follows
that G(t) = 0 for some ¢ such that 0 <& < (@1 —N/AL+ N and
Gt) <0 for 0=t<t and G@) >0 for ¢t <t<(@—N/A+N.
Hence f(z) is univalent and starlike for those z for which only the
inequality (21) holds. Now the inequality (21) holds if

lz] <@ —N/A+ N+ 20"
when a = 1/2 and
[2] <{[4A* + 41 — A @Qa — D] — A}/[2(1 + N) (2 — 1)]1/7L

when « # 1/2, where A =2n + X+ 1 — Ca—1)(1 —) and this com-
pletes the proof.

If we put A=0,n=1 and « =0 in the above result then
we see that f() =z + >, a,2* under the modified hypothesis
is univalent and starlike for |z]| <2 — 13, a result obtained by
MacGregor [2, Theorem 3]. On the other hand if x =0 and = =1,
Theorem 3 reduces to a result of Ratti [5, Theorem 3}. The funec-
tions

show that Theorem 3 is sharp at least for A = 0 and arbitrary =,
since the derivative of f(z) vanishes at

c={[n+1—-—a) — (n+1—-a— Q- 22)"/1 — 2a)}"
for «  1/2 and at 2z = —1/2n + 1) when a = 1/2.

4, Let S(R) denote the functions f(2) = 2 + >.5=. @,2" which are
analytic and satisfy |zf'(2)/f() — 1| <1 for |z| < R. Obviously
every member of S(R) is univalent and starlike for |z| < R. We
now prove the following result.

THEOREM 4. Let f(2) = 2 + 0,2 + @, 2" + -0, and g® =
24 b, 2"+ b, 2"+ «o. be analytic and satisfy Re (g()/z) >0 for
2| <1. If [ fRINE+QL-NgR]-1|<1, 01 <1, for [2]<]1,
then f(2) € S(R'™), where R is the smallest positive root of the equa-
tion @ux +Ax—n—1D) R — @Bn+x—200) R+ (@1 -1 =0.
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Proof. Let
(22) R = fE/INR) + L —NgR)] — 1 =c2" + ¢ 2" + -0t

By hypothesis, h(z) is analytic and |k(2) | <1 for |2| < 1 and hence
by a result of Goluzin [1] we have that for |z| <1

(23) K@ | =nlz]"" 10— [hE /D - [2[")
and by Schwarz’s lemma for [z]| < 1
(24) k@ | = [2]".
If we let g(z) = 2p(2), then we have from (22)
FEIL =N =M@)] = 1 = NMNzp@E)[L + h@)] .

Hence,
27 _ 1 '@ zh' (2)
S »(2) [+ A@]L — N — Mr(2)]
and this gives
2@ | < |22 |2l (2) | .
f @ T () [1+ h)[[1 -2 — A0 |

Applying Lemma 2, with a = 0, we get, in view of (23), for [z| <1
{Zf'(Z)_l < 2njel” nlz "1 — | h(@ [
f@ Tl =21+ h@R][|1—-N—N(R) |

_2mlzl w2l (A4 h@))
STz T [2M) - n— @]

by using (24), we have

|zf’(z)_1 < 2n |z nlz
F @) I e 2 N S E A N e D 2 )

valid for |2z | < [ — N)/A]Y". Hence |[2f'(?)/f(®) — 1| < 1 if
[2] < [@— M/

and
2nlz["A—r—=Nz[)+nlz["QA+]2]) <A—-[z)A-1=N[2z]).
The last inequality holds if

(25) G(lzM=N2zPP"+@uv+N—n—1) |z
—@Brn+rx—2nuN)|z"+ @1 -2 >0.

Let |2|*=t and consider the cubic polynomial G(t) for 0 <t < 1.
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G(t) has at most two positive zeros. Since G(0) = (1 — ) >0 and
G — M\ = — (@ — M/A <0, it follows that G(¢) = 0 for some ¢,
such that 0 <#, <1 —»)/xn and G@t) >0 for 0 <¢ <t and G(E) <0
for some values of ¢ between ¢, and (1 — A)/x. Hence

|2f'(®)/f(&) — 1] <1

for those values of z for which only the inequality (25) holds. Now
inequality (25) holds if, in particular

@ex+rx—n—-—Dz"—@Br+rx—-200) 2"+ 1 =7 >0

and this completes the proof.

If we set =0 and % =1 in the above result we have the fol-
lowing.

COROLLARY 2. Suppose f(2) =z + a2 + a,2* + «+« and g{R) =
2+ b2+ b2+ --- are analytic and satisfy Re (g(x)/z) >0 for
2| <1. If [ f@&)/g(R) — 1|<1 for |z| <1, then [2f'(})/f(») — 1] <1
for |z < 1/4(V/17 — 3).

It may be noted that Corollary 2 implies, in particular, that f(2)
is univalent and starlike for |z| < 1/4 (/17 — 3) and hence includes
a result of Ratti [5, Theorem 4]. If we take f(2) = z(1 —2"?*/(1 + 2"
and g(® = z(1 — z/(1 + 2z, it is easy to see that these functions
satisfy the hypothesis of Theorem 4 with » = 0. We see that f'(z)
vanishes at 2z, = [—38n + (9n® + 4n + 4)"*]/(2n + 2) and hence

| 20f" @)/ f(2) — 1] =1.

This shows that Theorem 4 is sharp for at least A = 0 and also that
Corollary 2 is sharp.

THEOREM 5. Let f(2) =2 + @, 2"™ + @02+ <+ and g =
2+ by 2+ b, 2"+ oo be analytic for |z| <1 and g(r) be star-
like of order a for |2| <1, 0 a< 1. If

[f@/IMGE) + 1 —NgR]-1<1,0=3<1, for [2]<1,

then f() is univalent and starlike for |z| < RY*, where R 1is the
smallest positive root of the equation

@a — AR — (n + 2a — 1 — V) R?

29 + Q@R —-2—-2a0n+A—n)R+ 1 -7\ =0.

Proof. Proceeding as in the proof of Theorem 4 we have
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@) _ 20'®) zh'(2) )
f@ 9(2) 1+ A@E]L—N—N()]
Hence,
2f'(2) 29'(2) _ | zh/(2) |
Re(f(z)>zRe(g(z)) 1+ 2@]||1—x—Ne(2)]

Since Re (2¢'(2)/g(2)) > a and 29'(2)/9(R) = 1 + ¢,2" + €, 2" + «++, We
have by Lemma 3 and inequalities (23) and (24) that
Re :f'()/f() = [L + @a — 1) [z[/L + |2])
—nlz"/[1 =]z @ —-x=N\z")]
valid for |z | < [(1 — M/\]Y".

Hence Re (2f'(»)/f(z) >0 if |z| <[@ — N)/A]'* and if (in view of
inequality (27))

@7

G(lz|") = @Ca—)n[z["
—nm+20—1~—N|z"
+@a—2—2an+XN—mn)|z
+@—-N>0.

(28)

Let |z]| =1t and consider the cubic polynomial G(t) for 0 <t < 1.
Since G(0) =1 — x>0 and G(A — M/A) = (—n(l — A)/A? <0, it fol-
lows that G(t) =0 for some ¢ such that 0<¢ < (@1 —M)/x and
Git) >0 for 0<t<t and G@E) <0 for some ¢ between f and
(I — 2M)/n. Hence f(2) is starlike and univalent for |z| < RY*, in
view of inequality (28), where R is the smallest positive root of the
equation (26).

The case when A\ = 0 in Theorem 5 is of special interest. In
this case equation (26) becomes

m+ 20 —1DR*— 200 —2—-n)R—-1=0
which gives R =1/3 in case « = 0 and » =1 and
29 R ={C2a—2—n)+[Ra—2—mn)*+ 4(n+2a—1)]"*}/[2(n+2a—1)]
if @ # 0. This proves the following result, which includes a result

of Ratti [5, Theorem 6].

COROLLARY 3. Suppose [f(z) = 2 + @, 2" + @, 2" + «+« and
gR) = 2 + byp2®™ + b, 2" + «oo are analytic for |z2| <1 and g(2)
18 starlike of order a for |2| <1, 0= a<1. If |f(®/glr) —1]<1
for |z| <1 then f(2) is univalent and starlike for

(i) |21<1B8ifa=0and n=1
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(ii) |z| < RY", where R is given by (29) «of a + 0.

It is easy to see that the functions f(z) = 2(1 — 2"/l + z")@-2i»
and g() = z/(1 + z")* @ gatisfy the hypothesis of Corollary 3 and
also that the derivative of f(2) vanishes at z=1/3 if @« = 0 and
n=1, and at z = {[(n + 2 — 20)* + 4(n + 2a — D]** — (0 + 2 — 2a)}'"/
[2(n + 2a — 1)]¥" if & # 0. This shows that Corollary 3 is sharp.
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CRITERIA FOR BANACH SPACES

J. E. VALENTINE AND S. G. WAYMENT

It is well known in euclidean geometry that the quadri-
lateral obtained from an arbitrary quadrilateral by joining
its midpoints is a parallelogram. The purpose of this paper
is to show that a complete metric space with a unique metric
line joining any pair of its distinct points is a Banach space if
and only if it has the above mentioned property.

Let p, q, r, and s be distinct points in a Banach space such that
no three are linear let m,, m,, m,, and m, be the midpoints of the
algebraic segments joining p and ¢, ¢ and »,» and s, and s and p,
respectively. It is well known that m, — m, = m, — m, and m, — m, =
m; — m,. In Euclidean space one usually refers to this result by
saying that the midpoints m,, m,, m,, m, form a parallelogram. If the
Banach space does not have unique segments joining pairs of distinct
points, then the restriction that the {m;} be midpoints of algebraic
segments is easily seen to be necessary. We shall say that the metric
space M satisfies the quadrilateral midpoint postulate provided that
if p, q, r, s are points of M such that no three are linear and if m,,
m,, Mm;, M, are the respective midpoints, then m,m, = m,m, and m,m, =
m,m,. Hereafter we shall assume that M is a complete metric space
with a unique metric line joining any pair of its distinct points and
show that the Quadrilateral Midpoint Postulate characterizes the class
of Banach spaces among such metric spaces.

The technique will be to show that a complete metric space with
a unique metric line joining any pair of its distinet points satisfies
the Quadrilateral Midpoint Postulate if and only if it satisfies the
Young Postulate which may be stated as follows.

The Young Postulate. If p, q, r are points of a metric space M
and ¢ and 7' are the midpoints of » and ¢, and p and », respectively,
then ¢'r" = qr/2.

The result will then follow, for Andalafte and Blumenthal [1] have
shown that a complete metric space with a unique metric line joining
any pair of its distinct points is a Banach space if and only if it
satisfies the Young Postulate.

That the Young Postulate implies the Quadrilateral Midpoint
Postulate is almost immediate. For if a complete metric space with
a metric line joining any pair of its distinet points satisfies the Young
Postulate, then it is a Banach space and consequently satisfies the
Quadrilateral Midpoint Postulate.

251
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Suppose M satisfies the Quadrilateral Midpoint Postulate and o,
q, v, are non-linear points of M with m,, m, the midpoints of » and
g, ¢ and r, respectively.

LEMMA 1. There exists a number k, depending only on p and r,
such that if g, m,, m, are as above, then m,m, = kpr.

Proof. Let s be a point such that no three of p, ¢, r, s are col-
linear, and let m,, m, be the midpoints of the segments joining » and
s, s and p, respectively. Let k = m,m,/pr. Then since M satisfies
the quadrilateral midpoint property, mm, = mym, = kpr. We see im-
mediately that % does not depend on gq.

LemMMA 2. The k in Lemma 1 s 1/2.

Proof. Let {x;} be a sequence of points tending to x on the seg-
ment between p and r with p # x % r and such that for each 7 we
have p, z;, » non-collinear. Let {p;} and {r;} be the sequences such
that p; and r; are the midpoints of the segments determined by p
and x;, » and z;, respectively. Then lim p,z; = 1/2 lim pz; = 1/2 px and
similarly lim r;x; = 1/2 r#. This, along with the triangle inequality
pix; + w7 = per; = kpr, implies k < 1/2. However, the inequality
pr < pp; + pir; + rir = pp; + kpr + rr and the aforementioned limits
imply k£ = 1/2. Hence k£ is 1/2.

THEOREM. A complete metric space with a unique line joining
any two of its distinct points is a normed linear space (Banach Space)
if and only if it satisfies the Quadrilateral Midpoint Postulate.

Proof. We have shown that the Quadrilateral Midpoint Postulate
implies the Young Postulate; that is, if »’ and 7" are midpoints of »
and ¢, and ¢ and 7, respectively, then p»' = (1/2)pr. Thus an ap-
plication of the Andalafte-Blumenthal result [1] completes the proof.
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LINEARLY STRATIFIABLE SPACES
Dedicated to Professor Johm H. Roberts on the occasion of his sixty-fifth birthday

J. E. VAUGHAN

The purpose of this paper is to introduce a new class of
spaces, called linearly stratifiable spaces, which contains the
class of stratifiable spaces and is contained in the class of
hereditarily paracompact spaces. The notion of linearly
stratifiable spaces is related to several of the concepts most
recently studied by the late Professor Hisahiro Tamano, and
also to questions raised by A. H. Stone and E. A. Michael
concerning the normality and paracompactness of certain
product spaces.

The class of linearly stratifiable spaces is composed of special
subclasses called a-stratifiable spaces (where a is an infinite cardinal
number) of which the class of stratifiable spaces is the subeclass cor-
responding to the first infinite cardinal. Many results which hold for
stratifiable spaces can be extended to linearly stratifiable spaces (see
§ 4) because the importance of the “countability” inherent in stratifiable
spaces is often due only to the well-ordering of the natural numbers
and not to their cardinality. One notable exception is that while, as
is known, the subclass of stratifiable spaces is preserved by countable
products, the other subclasses are preserved only by finite products.
In addition, the subclass of a-stratifiable spaces is preserved by box
products provided there are fewer than « factors in the product. An
analogous extension of the concept of a Nagata space is given in §6,
and some examples are given in §7.

Stratifiable spaces (originally called M;-spaces) and Nagata spaces
were introduced in 1961 by J. G. Ceder [6] along with several other
generalizations of metrizability. In 1966 C. J. R. Borges used an
equivalent definition of M,-space to show that Ceder’s M;-spaces had
many important features, and, thinking they deserved a better name,
he called them stratifiable spaces. Since then many authors have
considered this class of spaces, and recently, A. Arhangel’skii [1, pp.
139-142] and Borges [4], [5] have given surveys of results on strat-
ifiable spaces. A further generalization of metrizable spaces, called
perfectly paracompact spaces, was announced in two abstracts [14],
[15] in 1968 by H. Tamano, and he stated two interesting product
theorems for this class of spaces. His definition, however, allows
non-paracompact spaces to be perfectly paracompact (see Example 3.1),
which was not his intention. (In light of this fact and current termi-
nology, it seems better to reserve the term “perfectly paracompact”
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for the class of paracompact spaces in which every closed set is a
countable intersection of open sets. Nevertheless, in this paper we
shall use the term “perfectly paracompact” in the sense in which it
was used by Professor Tamano.) It seems reasonable (see §3) to
suppose that Tamano was interested in a concept similar to linearly
stratifiable spaces. If we substitute the words “linearly stratifiable”
for “perfectly paracompact” in the product theorems given in Tamano’s
abstracts, we get the statements below, which seem to be plausible
conjectures. In fact, the author had considered the first conjecture
before becoming aware of Tamano’s abstracts. The definition of the
box topology can be found in [11, p. 107].

Conjecture 1. The product of two linearly stratifiable spaces is
paracompact.

Congecture 2. Any product of linearly stratifiable spaces with
the box topology is paracompact.

One reason that Tamano was interested in Conjecture 2 is that
it would (if true) provide an affirmative answer to A. H. Stone’s
question [12, p. 54]: Is a product of real lines with the box topology
normal? In this direction, M. E. Rudin [23] has recently proved that,
under the assumption of the continuum hypothesis, the box product
of countably many locally compact, o-compact, metric spaces is
paracompact.

In this paper, we shall show that Conjecture 1 and a form of
Conjecture 2 are true for a-stratifiable spaces. These results are given
in §5, and the definitions of these spaces are given in §2. Most of
these results were announced in [18], [19], and [20]. The fact that
Conjecture 1 holds for the subclass of stratifiable spaces follows from
results of Ceder [3, Thm. 2.2, Thm. 2.4].

2. Definitions and characterizations.

DEFINITION 2.1. An ordinal number « is called an initial ordinal
provided for every ordinal @ < a, there exists an injection from g3 to
a, but there does not exist an injection from a to 8. We assume
that cardinal numbers and initial ordinal numbers are the same. Let
@ stand for the first infinite ordinal.

DEFINITION 2.2. Let (X,.77) be a T.-topological space and let
be an initial ordinal, @« = w. The space (X, 77) is said to be strat-
ifiable over a or limearly stratifiable provided there exists a map
S:a x 9 — 7 (called an a-stratification) which satisfies the follow-
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ing (where we denote S(B, U) by U,).
LS; : U;cUforall < aandall Ue 5.
LS;;: U{U:sp<a}l=Uforall Uec 7.
LS;;;: If Uc W, then U,c W, for all g < a.
LS;,: If vy<pB<a, then U,c U, for all Ue 7.

DEFINITION 2.3. A T,-space X is called a-stratifiable provided «
is the smallest initial ordinal for which X is stratifiable over a. A
space which is stratifiable over w is called stratifiable, and the map
S is called a stratification.

REMARK 2.4. In the case of a stratifiable space, our definition
above agrees with that of Borges [3, p. 1] because (as he noted) if
S is a stratification which satisfies LS;, LS;;, and LS;;;, then there
is a stratification which satisfies all four conditions LS,—LS,,. Ex-
ample 7.5 shows this is not true in general for a > .

DEFINITION 2.5. A collection P of pairs P = (P, P,) of subsets
of a topological space (X, . 77) is said to be a linearly cushioned col-
lection of pairs with respect to a linear order < provided < is a linear
order on P such that (U{P: P= (P, P)eP'})"Cc U{P,: P=(P,, P,)c P'}
for every subset P’ of P which is majorized (i.e., has an upper bound)
with respect to =.

DEFINITION 2.6. (Ceder) A collection P of pairs is called a pair-
base for (X, 77) provided (1) for each P = (P, P,)e P, P, is open and
(2) for every x in X and every open set W containing #, there exists
P = (P, P)e P such that xe PL,c P,Cc W.

THEOREM 2.7. If (X, 77) is a T-topological space and a an
anfinite initial ordinal, then the following are equivalent.

(i) (X, 97) is stratifiable over a.

(i) (X, .97) has a linearly cushioned pair-base P and « is cofinal
with P.

(iii) There exists a family {g;: B < a} of functions with domain
X and range 7 such that the following hold.

(a) zegs(x) for all p< a.

(b) Forevery FC X, if ye[U{gs(x): x€ F}]~ forall B < a, then
ye k.

() If p< v < a, them gs(®) D g, (x) for all .

Proof. (i) — (ii). Let S:a x 9~ — 7 be an a-stratification for
(X, 97). Give .7~ any well-order and define
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P ={P;u = (U5, U): (B, U)ea x1x T}

where a X ., .7~ denotes the product set @ X .7~ with the lexicographic
order. It is easy to verify that P is a linearly cushioned pair-base
for X.

(ii) — (iii). Let P be a linearly cushioned pair-base for X and
{Ps: B8 < a} a subset of P such that for every P < P there exists < a
such that P < P;. For each x in X and each 8 < a define

9:) = X — [U{P:o¢ P, and P= (P, P) = P}]™.

Clearly (a) and (c) hold. To see that (b) holds note if y¢ F then
there exists Pe P such that ye P,c P,c X — F. Let 8 < a be such
that P = (P, P,) < P,; then P, is a neighborhood of y which misses
gs(x) for all xe F. Thus y¢[U {gs(®): x€ F}]".

(iii) — (i). For each B < a and each open set U define an open
set

Up=X—[U{gs(x):2e X — U}]".

The correspondence S(B, U) = U, is easily seen to satisfy LS,—LS,,;,
and LS, follows from (c). This completes the proof.

For the stratifiable case, Ceder is credited with showing (i) < (ii)
in [3, p. 2, footnote 1], and (i) — (iii) is due to Heath [10].

REMARK 2.8. A dual characterization for linearly stratifiable
spaces can be given by stating Definition 2.2 in terms of closed sets
rather than open sets.

The next characterization justifies the terminology “linearly”
stratifiable.

ProPOSITION 2.9. Let (X, .97) be a T\-space. X is linearly strat-
ifiable if and only if there exists a linearly ordered set A and a map
S: A X 9 — 7 which satisfies LS, —LS;y.

Proof. Let a be the smallest ordinal which is cofinal with A;
then « is regular (i.e., there exists no strictly smaller ordinal which
is cofinal with «) and S’, the restriction of S to any cofinal subset
of A, will satisfy LS,—LS,,.

The proof of this proposition also shows that if X is an a-strat-
ifiable space, then « is a regular initial ordinal number.

The next result, though not a characterization, is useful in ex-
amples.
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ProprosITION 2.10. If (X, 97) s stratifiable over a regular infinite
wnitial ordinal a, then every subset F' of X whose cardinality is strictly
less than « 1s a closed discrete subspace.

Proof. Let P be a linearly cushioned pair-base for X such that
the regular initial ordinal « is cofinal with P. It suffices to show
that F has no accumulation points. If x,€ X then for every v € F' — {,}
there exists P,e P such that xe(P,), and 2, ¢ (P,),. Then {P,:x¢c F'}
must have an upper bound in P, because it is not cofinal. Hence

X = [U{P)rweF — {x}}]”

is a neighborhood of x, which misses F — {x}.

From this proposition it is clear that a space stratifiable over a
regular initial ordinal can not possess any property which requires
any countable set to have an accumulation point unless the space is
stratifiable. For example, if such a space is a k-space or a separable
space it must be stratifiable. We also note that Proposition 2.10 holds
in particular for a-stratifiable spaces.

We now recall some definitions.

DEFINITIONS. 2.11. The character of a point = in a space X is
the smallest cardinal number y(x, X) such that 2 has a fundamental
system of neighborhoods of cardinality y(x, X). The character of the
space X is the cardinal number %X = sup{y(x, X):2ze X}. The
pseudocharacter of x is the smallest cardinal number «+(x, X) such that
o is the intersection of a collection of open sets which has cardinality
oz, X). The pseudocharacter of X is the cardinal number X =
sup {y(z, X): x € X}.

COROLLARY 2.12. If X s a mon-discrete, a-stratifiable space, then
'y'fX Sfa=s XX.

3. Pair-base versus pair of bases. As was mentioned in the
introduction, H. Tamano has defined [14] a class of spaces which seems
to be closely related to linearly stratifiable spaces. His definition is
essentially as follows. Tamano called a space X perfectly paracompact
provided there exist two bases %/, 7" for the topology of X, a map
é¢: 7" — Z such that ¢(7°) is also a base, and a well-order on 7~ such
that for every bounded subcollection 7"* — 7~ we have

(U{V: Ve *h)c U{a(V): Ver*}.

In short, the space has a “pair of bases”, one of which is linearly
cushioned in the other. We shall show below that this concept is
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weaker than the concept of a linearly cushioned “pair-base” as defined
in §2 in that, for regular spaces, the latter notion implies paracom-
pactness (Theorem 4.11 C) while the former does not. From the
abstract [14] it is clear that Tamano was interested in a class of
paracompact spaces, and from [16] we know that he was aware of
the “pair-base” type of definition (he used it to define elastic spaces,
which are paracompact). It seems probable, therefore, that the type
of base Tamano wanted was a linearly cushioned pair-base. By Theorem
2.7 a T,-space having such a base is linearly stratifiable.

ExAMPLE 8.1. A perfectly paracompact space which is not normal.
The desired space is the well-known example of V. Niemytzki. Let
X = {(x, ¥): « and y are real numbers and ¥ = 0}, X, = {(z, y) € X: y = 0},
and X, = X — X,. For each p = (p, »,)€ X, let B(p,r) denote the
set of points of X which lie inside the circle with center p and radius
r > 0. Then {B(p,r):r >0} is taken as a fundamental system of
neighborhoods of points pe X,. For »p = (p,0eX, let Ulp,r) =
B((p, 1), 7) U {p} and let {U(p, r): » > 0} be a fundamental system of
neighborhoods of points pe X,. We now define a base 7" for the
Niemytzki topology on X. Let 7{ = {U(p,r):pcX,,r >0} and 7, =
{B(p, po/n): p = (p,, ) € X, and 1/n < p)} for n=2,8,.... Clearly
7" = Usoy 7, is a base for X. Next, we define a second base Z~ for X.
Let Z, = Z/U{X}, and Zu. = {B(p, 2p,/(2k + 1)): p = (p,, D) € X}
for k=1,2,+--. Set Z = Urse Zu+1- Now let <, be any well-order
on 7, for n = 1, and define a well-order < on 7 as follows. For
V,V'e”r, we say V<V’ iff (1) there exists a natural number =
such that V, V'e #,and V<, V', or 2) Ve #,, V'e 27, and n < m.
We define a map ¢: 7" — % by

Xif Ve 7]

U((p,, 0), ;) if V = B(p, 770:) and % is even

$(V) =
B(», 35_) if V= B<p, %) and 7 = 3 is odd .

It is clear that ¢(7°) is a base since ¢(7") = . Finally, we shall
show that 7° is linearly cushioned in Z/. Let 7°* be a bounded sub-
collection of 7°. We must show that

(U{V: Ve *h)-c U{s(V): Ve7 *}.

If 7°* contains any member of %], the inclusion is trivial. Thus we
assume that 7°* N 2{ = @. Since 7" * is bounded, {n: 7"* N 7, # O}
has a largest element N. For each Ve 7°*, we have that V and ¢(V)
are (essentially) the insides of circles with the same center and the
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circle for ¢(V) has at least twice the radius of the circle for V. The
desired inclusion now follows from the fact that if V is in 7°*, then
V does not reach below the line of height 1/(2N), and does not have
a radius of less than (1/N).

4. Additional results. We shall now give some important results
for linearly stratifiable spaces which easily extend from the analogous
results for stratifiable spaces.

THEOREM 4.1. Let X be stratifiable over «.

A. Ewvery open set in X is a union of a collection & of closed
sets with the cardinality of & less than or equal to «.

B. Ewvery subspace of X is stratifiable over a.

C. X s paracompact (hence hereditarily paracompact).

D. Ewvery closed continuous tmage of X is stratifiable over «.

E. X is completely monotonically normal (see [21] or [22]).

F. X has a network N = U{N,: B8 < a} such that each N, is a
discrete collection in X.

Proof. Clearly (A) and (B) follow from the definition. The proof
of (C) follows from Theorem 1 in [17]. Proofs of (D), (E), and (F)
can be given in a manner similar to the proofs of [3, Thm. 3.1, p. 5],
[22, Prop. A] and [9] respectively.

We conclude this section with two more interesting results.

THEOREM 4.2. A space is stratifiable over a iff it is dominated
by a collection of closed swbsets, each of which is stratifiable over «
[3, Thm. 7.2, p. 13].

THEOREM 4.3. If X and Y are stratifiable over a and A is a
closed subset of X and f: A— Y a continuous function, then XU ;Y
(the adjunction space) is stratifiable over a [3, Thm. 6.2, p. 11].

5. Products. In [6, Theorem 4.5, p. 107] J. Ceder proved that
a countable product of stratifiable spaces is a stratifiable space. In
this section, we shall prove that a finite product of spaces stratifiable
over the same « is again stratifiable over . Example 7.4 shows that
if &« > w then a countable product of spaces stratifiable over a need
not be linearly stratifiable.

It follows from our product theorem (Theorem 5.2A) and Theorem
4.1C that Conjecture 1 is true in the special case that both spaces are
stratifiable over the same initial ordinal. We also prove (Theorem 5.2D)
that certain products (with the box topology [11, p. 107]) of spaces
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stratifiable over the same « is again stratifiable over «. This result
yields a special case in which Conjecture 2 is true.

LEMMA 5.1. Let a be an infinite initial ordinal number, and
let {Azned} be a family of limearly ordered sets such that « has
cardinality strictly greater than that of A, and « is cofinal with A,
for all xed. If A is finite or if « is a regular ordinal, then A =
II{A;: € A} can be well-ordered so that for every majorized HC A we
have Pr,(H) (i.e., the Nth projection) ts majorized in A; for all M€ 4,
and a is cofinal in A. Further, if « is the smallest initial ordinal
cofinal with each A, them « s the smallest initial ordinal cofinal
with A.

Proof. For convenience we assume that a is a subset of each
A,. Let A be ordered as its cardinal number a(4). Define T, , =
fa=()ecAia, <plforall < aand < a(d). Let Ry= N{T,;: <
a(A)} for all < a, and let D, = R; — U{R,:v< a and v < B} for
all g < a. Then {D;: B < a} is a partition of A because if a = (a;) € 4,
then for each a, there exists B8; < a such that a; < 8;. Now {81 <
a(4)} has an upper bound in a because either a(4) is finite, or a is
regular and a(4) < a. Call the smallest upper bound g, then a =
(a;) € Dso Let <; be any well-order on D, and define a well-order
on A as follows. For x and y in A, we say ¢ < y iff either

(1) there exists 8 < a such that # and y arein D; and x <, y, or

(2) there exists 8 < v < a such that xe D; and ye€ D,.

If H is a majorized subset of A, then there exists 8 < a such
that b = (b;) and b, = @ for all Axe 4, and b is an upper bound for H.
Hence g is an upper bound for Pr;,(H) in A, for all x. The remain-
ing assertions follow easily from the definition of <.

THEOREM 5.2. Let a be an initial ordinal number a = . Let
X; be stratifiable over a for each © < w. Then the following hold:

A. II{X;:1 < n} is stratifiable over a for all n < w.

B. If each X; is a-stratifiable, then II{X;:1 < n} is a-stratifiable
for each n < .

C. (Ceder) If each X, is stratifiable, then II{X;:1 < w} s strat-
ifiable.

D. If each X, s stratifiable over the regular initial ordinal o
for all ned and a is strictly larger than the cardinality of A, then
II{X;: x € A} with the box topology ts stratifiable over «.

Proof. By Theorem 2.7, each X; has a linearly cushioned pair-base
P; such that « is cofinal with P;. For each n < w and each @Q =
(P, +++, P") e [I{P:: © < n} define [[, P = {& = (x;): x; € P} for 1 < n},
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and similarly define T[~,P;. Set By = [Ii, P}, By, = [[%~, P, and
B, = {B, = (B, By,): Q€ Il {Pi: © < n}} and order the index set of B,
as in Lemma 5.1 so that « is cofinal with B,. Clearly B, is a pair-
base for [[ {X;:7 < n}, and if we consider (z;) e ] {X;:? < w}, then
B = U{B,:n < w} is a pair-base for []{X;:7 < w}. We now show that
each B, is a linearly cushioned collection of pairs in X = [[{X;:7 < n}.
Suppose H is a majorized subset of J[i, P; and ¢ U{B,: Qc H}.
Let N;= X; — (U{P: P = (P, P,)e Pri(H) and =z;¢ P,})_. Then N, is
an open neighborhood of x; in X, because Pr;(H) is a majorized sub-
set of P;. Finally, [[~., N; is a neighborhood of x in X which misses
U{Bu: Q@€ H}. Thus (U{Byu: Q<€ H}) C U{By: Qe H}, and this com-
pletes the proof of (A). The proof of (B) follows from (A) and Pro-
position 4.1B. To see that (C) holds, assume that each linearly
cushioned pair-base P; of X; has a countable cofinal subset (this is
equivalent to P; being a o-cushioned pair-base). The preceding argu-
ment shows that each B, is linearly cushioned with a countable cofinal
subset, and is, therefore, a o-cushioned collection. Thus B = U{B,:
n < ®} is a o-cushioned pair-base for [[{X;:¢? < w}. The proof of (D)
is similar to the proof of (B) by use of Lemma 5.1.

Example 7.2 shows that if X, and X, are stratifiable over different
«, and «, respectively, then X, x X, need not be linearly stratifiable.

In [13] E. Michael asked several questions concerning product
spaces. In particular, he asked whether or not there is a space X
such that X" (the product of X with itself n times) is hereditarily
paracompact for all finite cardinals =, but X¢ is not normal. We
raise a related question: If X is stratifiable over & > w, is X“ normal?
For such a space X, it would follow from Theorem 5.2A and Theorem
4.1C, that X" is hereditarily paracompact for all finite n. Thus a
negative answer to the preceding question would provide a negative
answer to Michael’s question.

6. «-Nagata spaces. The concept of a Nagata space was intro-
duced by Ceder in [6, p. 109]. In this section we shall extend this
concept and give some basic results. One important difference between
Nagata spaces and the generalization presented here should be men-
tioned. Ceder proved that the Nagata spaces are exactly the first
countable stratifiable spaces [6, Theorem 3.1, p. 109]. The a-Nagata
spaces, however, form a smaller class of spaces than the a-stratifiable
spaces of character &«. The difference is that the a-Nagata spaces have,
for each point, a fundamental system of neighborhoods which is well-
ordered with respect to reverse inclusion (see N,;; below), while an a-
stratifiable space of character « need not have such neighborhood
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systems (see Example 7.3).

DEFINITION 6.1. A T,-space X is called a Nagata space over «
(where « is an initial ordinal and « = ) provided for every « € X there
exist collections of neighborhoods of z, {U,(x): B8 < a} and {S;(x): 8 < a},
such that

N, : for each we X, {Us(x): B8 < a} is a fundamental system of
neighborhoods of =z,

Ny, : for every z, ye X, Si(x) N Ss(y) = @ implies x e Us(y)

N;;: if 8 < v < a then Sy(x) 2 S,(x) for all .

The set of ordered pairs

{{Us(@): B < a}, {Sp(w): B < a}): we X}

is called an a-Nagata structure for X provided for each x in X,
{Us(x): B < a} and {S;(x): B < a} are systems of neighborhoods of =«
which satisfy N;, N;;, and N;;; of 6.1.

DEFINITION 6.2. A T\,-space is called an a-Nagata space provided «
is the smallest initial ordinal for which X has an a-Nagata structure.
A space which is an w-Nagata space is simply called a Nagata space,
and its w-Nagata structure is called a Nagata structure. This last
definition agrees with the one given by Ceder [6, p. 109] because in
Ceder’s definition we may assume without loss of generality that
S,.(@) D8, (x) for all n < @ and z in X.

We now give some characterizations of Nagata spaces over «
which extend the analogous results due to Ceder [6, Theorem 3.1,
p. 109] and Heath [8, Theorem 5, p. 94].

THEOREM 6.3. Let (X, 77) be a Ti-space, and let « be an infinite
wnitial ordinal number. The following are equivalent.

(i) X is a Nagata space over a.

(ii) X s stratifiable over a and for each x in X there exists a
Sundamental system of meighborhoods of x {Wi(x): 8 < a} such that
B < v < a implies Wi(x) D W,(x).

(iii) There exists a family {g,: B < &} of fumctions with domain
X and range 7 such that the following hold:

@) {g9,(®): B < a} is a fundamental system of open neighborhoods
of x for every x in X,

(b) for every meighborhood U of x there exists B < a such that
g:(x) N 9:(y) = @ implies that ye U,

() if B< v < a, them gz(x) D g.(x) for all x in X.

Proof. Let X have an a-Nagata structure
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{{Us(@): B < a}, {Sp(x): B < a}): we X},

and define ¢;(x) to be the interior of Si(z) for all z in X and all
B < a. It is easy to check that (a), (b) and (c) of (iii) hold. This
proves (i) — (iii). To see that (iii) — (ii), we note that each x in X
clearly has the desired fundamental system of neighborhoods. We
need only show that X is stratifiable over «, and to do this we will
show that Theorem 2.7 (iii) holds. Let {g;: 8 < a} be the family of
functions given by hypothesis. Clearly 2.7 (iii) (a) and (c¢) hold. To
see that (b) is also true, assume y ¢ . Then there exists 5 < a such
that g,(y) N gs(x) = @ implies ¢ F. Hence ye[U {gs(x): x ¢ F}]".

The proof that (ii) implies (i) is a slight elaboration of Ceder’s
proof of Theorem 3.1 in [6, p. 109].

COROLLARY 6.4. The closed continuous image X of a Nagata space
over « ts a Nagata space over « vff for each point v e X there evists
a fundamental system of meighborhoods {Ws(x): B < a} such that B <
v < a vmplies Wi(x) D W(x).

LEMMA 6.5. Let « be a regular initial ordinal. If X is a Nagata

space over «, then for every x in X either x is isolated or r(x, X) =
x1(@, X) = a.

Proof. If o« = w the result is clear. If a > w, then the result
follows from Theorem 6.3 (ii) and the observation that the intersec-
tion of fewer than a neighborhoods of a point x will still be a neigh-
borhood of z.

We can now give an analogue to Ceder’s result that the class of
Nagata spaces is the same as the class of first countable stratifiable
spaces.

THEOREM 6.6. A T,-space X is an «a-Nagata space iff it is a-
stratifiable and there exists for each x wn X & fundamental system of
neighborhoods { Wi(x): 8 < a} such that B < v < a implies Wy(x) D W, (x).

Proof. If X is an a-Nagata space, then by Theorem 6.3, we know
X is stratifiable over a and has the desired fundamental system of
neighborhoods. We need only show that X is not stratifiable over v
for w < v < a. This is clear if &« = w, and follows from Lemma 6.5
for &« > @ since a space stratifiable over v has pseudocharacter < 7.
The proof of the other half of the theorem is clear.

One can easily check that every subspace of a space which is
Nagata over « is itself Nagata over «, and that a finite product of
spaces Nagata over « is Nagata over a.
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The reader will probably recall that the well-known extension
theorem of Dugundji [7] was generalized from metric spaces to Nagata
spaces by Ceder [6, Theorem 3.2, p. 110] and from Nagata spaces to
stratifiable spaces by Borges [3, Theorem 4.3, p. 7]. We do not know,
however, if Dugundji’s theorem can be generalized to all a-Nagata
spaces.

7. Examples. In this section we denote the first uncountable
ordinal by Q.

ExAMPLE 7.1. An -Nagata space (hence an Q-stratifiable space)
which is not stratifiable. Let X = [0, 2] and give X the smallest
topology larger than the order topology for which every point is isolated
except 2. Let Z = {V, = (a, 2): a < 2} U {W, = {a}: @ < 2} and order
& so that every V, precedes every W, and a < 8 < 2 implies V, < V,
and W, < W;. Then < is a “linearly closure preserving base” for
X, and {(B, B): Be &#} forms a linearly cushioned pair-base. X is not
stratifiable because the point 2 is not a G,.

ExAMPLE 7.2. A stratifiable space Y and an Q-stratifiable space
X such that X x Y is not linearly stratifiable. Let X be the space
of Example 7.1. Let Y = [0, ] with the order topology. Then Y is
a stratifiable space (in fact, Y is a compact metric space). It is known
that if the point (2, w) is removed from this space, the resulting
subspace is not normal. This can be seen by using the techniques of
Exercise F on page 132 of [11]. Thus X X Y is not hereditarily normal
and by Theorem 4.1.C it is not linearly stratifiable.

ExAMPLE 7.3. An Q-stratifiable space of character 2 which is
not an 2-Nagata space. Let X be the space described in 7.1. Let
Y = X, but give Y a topology stronger than the topology on X as
follows: Let L, be the set of limit ordinals in [0, 2) and define induc-
tively, for each » < w, L, as the set of ordinals which have a member
of L,_, as immediate predecessor. (This idea was used by C. Aull
[2, p. 50] for a different example.) Define Wi(a, ) = U {(a, 2) N L,:
kE=n}U{Q}and %77 = {W(a, n): a < 2 and n < w}. Then %7 is taken
as a fundamental system of neighborhoods of @ and all the other
points in Y are isolated. Note that 2 is a G, in Y. As in 7.1 we
see that Y is stratifiable over 2. (Also, one can easily show that
Y is stratifiable.) By Theorem 5.2 X x Y is stratifiable over 2,
and since X X Y has subspaces which are not stratifiable, we know
X x Y is Q-stratifiable. Clearly, X x Y has character 2, and has
some points which are not isolated, but have pseudocharacter o (i.e.,
Gs;-points). It follows from Lemma 6.5 that X x Y is not 2-Nagata,
and X x Y is not a Nagata space over a for any a = .
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ExXAMPLE 7.4. A countable product of Q-stratifiable spaces need
not be linearly stratifiable. Let X, be the space in 7.1 for each 7 < w.
Since each X; has isolated points, X = [[{X;:7? < w} has convergent
sequences, and also non-stratifiable subspaces. Hence, X is not linearly
stratifiable by Proposition 2.10.

ExAMPLE 7.5. Every regular space (X, o) has a “stratification
map” S:a X 9~ — & which satisfies LS,, LS,; and LS,,; of 2.2. Take
« to be the cardinal number of .7, let 9~ = {T;: 8 < a}, and define

T, it T,c U
s, vy =1

| & otherwise .

It is easy to see that S satisfies LS,, LS,;, LS;;;. Now if this map
S also satisfied LS,,, then X would be paracompact by Theorem 4.1 C.
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ON SPACES OF DISTRIBUTIONS STRONGLY
REGULAR WITH RESPECT TO PARTIAL
DIFFERENTIAL OPERATORS

Z.. ZIELEZNY

A distribution 7 in 2 is said to be strongly regular with
respect to the differential operator P(D), if P*D)T, k=
0,1,---, are of bounded order in any open set 2/ cc Q.
Necessary and sufficient conditions on the polynomials P and @
are established in order that a distribution 7 strongly regular
with respect to P(D) be strongly regular with respect to Q(D).

Let P(D) be a partial differential operator in R” with constant
coeflicients and P*WD), k=1,2,.-., its successive iterations. The
following result is due to L. Hormander ([3], Theorem 3.6 and
Remark on p. 233):

If P(D) is hypoelliptic and T is a distribution such that P*(D)T,
k=1,2 ..., have a bounded order in any relatively compact open
subset of R”, then T is a C=-function.

In other words, the space %, of distributions in R" “strongly
regular with respect to P(D)” is contained in the space & of C*-
functions; in this case &, = &. The concept of strong regularity
with respect to P(D) coincides with that of strong regularity in some
variables (see [6], p. 453), when P(D) is the Laplace operator in those
variables.

Suppose now that given are two arbitrary partial differential
operators P(D) and @Q(D). Then the question arises: Under what
conditions on P and @ is &, &,? In particular, if P(D) is “Q-
hypoelliptie,” i.e. all solutions U< <’ of the equation

PD)U =0

are in &,, must then be &, < &,? The @-hypoelliptic operators were
studied (in a slightly different but equivalent version) and charac-
terized by E. A. Gorin and V. V. Grusin [2].

In this paper we give necessary and sufficient conditions for the
inclusion &,(2) C &,(2), where &,(2) and &,(2) are the spaces of
“strongly regular” distributions on an arbitrary open set 2 C R".
These conditions are, in general, stronger than the Q-hypeollipticity
of P(D). If the inclusion in question holds for every @Q-hypoelliptic
operator P(D), then Q(D) must be hypoelliptic and the problem reduces
to that in Hormander’s theorem stated above.

1. The spaces &.(2) and Cy=(Q).

267
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Let 2 be a nonempty open subset of R*. A distribution T'e &'(Q)
will be called strongly regular with respect to the differential operator
P(D), if to every open set £ having compact closure contained in @
(we express this by writing 2’ < < Q) there exists an integer m = 0
such that PH(D)T, k= 0,1, ..., are all of order <m in &', i.e. the
restrictions of P¥(D)T to @' are all in &2'™(2')'. We denote by &,(Q)
the space of all distributions in @, which are strongly regular with
respect to P(D). We also denote by C»=(2), where #¢ is an integer
=0, the space of all C*functions in £ such that P*(D)D*f, |a| = #,
k=0,1,.--, are continuous functions; here « = (o, --.,,) and
lal=a, + ++- + a,.

Consider now the spaces &»(2) and &,(2) corresponding to the
differential operators P(D) and Q(D) respectively.

THEOREM 1. If Zp(Q) C &o(2), then to any open set & CCQ
there exists an integer = 0 such that the restriction mapping f—
F12 maps Cy=(2) into CH=(2').

Proof. Let 2 be an open set satisfying the assumption Q' < C Q.
We first prove the existence of nonnegative integers v and m such
that

(1) {QUD) 12 feCp=(Q), k=0,1,.--} ™).

Suppose that inclusion (1) does not hold for any v and m. Then
to every v and m there exist a function fe Cu»~(Q) and a k& such that
Q*D)f |2 ¢ =2’(2). Thus we can find strictly increasing sequences
of positive integers v;, m; and k;, and a sequence of functions f; with
the following properties:

(2) fie Cp=(9)

(3) QD) |2 e ™), k=0,1, .-,
(4) Q*(D)f; | 2" is of order m;,
(5) qk; < Viy,,

where ¢ = 1,2, ..., and ¢ is the order of the operator Q(D).
We denote by 2,,7=1,2, ---, open subsets of 2 such that

(6) Q,ccQamd UL =2.

Next we set
a, =1 and a;, = 27 M, 7=2,3, -,

L PYD) is the identity operator, i.e. PY(D)T = P.
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where
M; = sup {| P*(D)fi(@) | + | QUD)fi(w) | + 1}

and the supremum is taken over all xe @, and k£, 1 =0,1, .-, k;_..
Note that Q(D)f;,,1=0,1, ---, k;_,, are continuous functions in 0,
because of (5).

The function

f= galf’b

is defined and continuous in 2, since the f.’s are continuous in 2 and
the series converges there almost uniformly. Moreover, for any k
we have (distributionally)

(7) PHD)f = 3, a:PHD)Ff: -

But each term of the last series is a continuous function in 2, by
(1). Also

a; sup | P*(D)fi(w) | = 27°

whenever & < 7 and § < 4, by the definition of a;. Hence it follows
that the series (7) converges almost uniformly in 2, for any k. Con-
sequently fe Cy=(Q) C &x(Q).

We now show that f is not in &,(2), which is a contradiction
to our hypothesis. We write

oo

g; = iaf and h; = 3 a;f:.
i=1 i=7+1
In view of (3) and (4), the restriction of Q*i(D)g; to £’ is a distribu-
tion of order m;. On the other hand, Q*(D)f;, ¢t =35 + 1,7 + 2, +--,
are continuous functions in £, because of (2) and (5). Furthermore,
by the definition of the a,’s, the series

;72_»1 a;Q"(D)f;
converges almost uniformly in 2, and so Q*/(D)h; is in 2 a continuous
function. Thus

Q(D)f = Q%(D)g; + Q%(D)h;

is in £ a distribution of order m;. Since m; — co, f is not in ZH(2).
This contradiction proves (1).

Consider now the fundamental solution E of the iterated Laplace
equation, i.e.
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4E=0.

For sufficiently large v, E is m times continuously differentiable.
Therefore every distribution 7 on £’ such that 47T e &2'™(2) is, in
fact, a continuous function (see [5], vol. 2, p. 47). We choose p =
2v + v, where v is the integer occurring in (1). Then, if fe C¥=(Q),
it follows that 47fe Cy=(2) whence, in view of (1), QD)4 f |2 =
4QD)f |2 e &z'™(2). Thus, by what we said before, Q*(D)f |2
is a continuous function, for every k =0, 1, ..., i.e. f|Q € C=(2).
The proof is complete.

2. Necessary conditions. We proceed to derive necessary con-
ditions for the inclusion &,(Q) C Z£o(2). In view of Theorem 1 it
suffices to find necessary conditions for the inclusion

(8) {f12: feCp~(Q}cCe=(2) .

We accomplish this by means of the standard argument based on the
closed graph theorem and the Seidenberg-Tarski theorem (see [1]).

Let 2;, 7=1,2, ..+, be open sets satisfying conditions (6). We
define the topology in C%=(2) by means of the semi-norms

v;(f) = sup | PXD)D*f () [,

where the supremum is taken over all xe@;, || < p¢ and k <.
Similarly, if 2}, =1, 2, ..., are open sets satisfying conditions ana-
logous to (6) with 2 replaced by £2’, we define the topology in C$=(2')
by means of the semi-norms

wilf) = sup |Q*D)f (@)} .

Then C{=(2) and C{=(2') become Fréchet spaces. Moreover, the
restriction mapping Cy=(2) — Cy=(2’') is closed and therefore continuous,
by the closed graph theorem. Hence, to every integer [ > 0, there
exists an integer k& > 0 and a constant C > 0 such that

(9) w(f) = Cmax v,(f) ,
for every fe Cy=(£2). Applying condition (9) to the function
flx) = eimv

where { = £ + 99 and &, n<€ R", we obtain the following lemma’.

LEmMMA 1. If the inclusion (8) holds then, for every integer 1 > 0,
we can find an integer k > 0 and constants C, ¢ > 0 such that

2 We assume that D« = D1Dg2 ... D», where Dj = —#(0/0x;).
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(10) 1RO = CA+ [£]9A + [PHO) De'

We denote by N(P, a), V, and W, the sets of all { =& + inpeC”
such that |P%) < a,|7| =< a and |£]| < a, respectively.

LEMMA 2. If condition (10) is satisfied, then Q) is bounded on
every set N(P,a)N Vy,a,b=0.

Proof. Suppose there are a, b = 0 such that Q({) is not bounded
on N(P,a) N V,. Then the function

sty = | Sup Q)|

(P,a) AV Wy
is defined and continuous for sufficiently large ¢, and
11 §(t) —> 0 as t —— oo .
But, for a given ¢, s(¢) is the largest of all s such that the equations
and inequalities

|[PE+mf=ad, =0,

(12) | & . 2 2 |~ 2 2
QE+ P =¢8,[c=,5=20,t=0,

have a solution &,ne R". Applying to (12) the Seidenberg-Tarski
theorem and next a well-known argument (see [4], p. 276, or [6], p.
317) one shows easily that, for sufficiently large ¢, s(f) is an algebraic
function. We now expand s(¢) in a Puiseux series in a neighborhood
of infinity and make use of (11). It follows that

s(t)y >t

for some 2 >0 and all ¢ sufficiently large. On the other hand, s(t)
is assumed for some & = &(¢), » = 7(f), and

W =t.

Choosing in (10) I > ph™ we obtain a contradiction, which proves the
lemma.

THEOREM 2. If &p(2) C Fo(2), then the following equivalent con-
ditions are satisfied:

(I) Q) is bounded on every set N(P, a) N V,.

L) For any a = 0 there are constants C, h > 0 such that

QO "= CA + |7])), for all {e N(P,a) .
(I) For any b = 0 there are constants C', h' > 0 such that

QO M =CA + [PQD, for all LeV,.
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Proof. In view of Theorem 1, Lemma 1 and Lemma 2, we need
only to show that conditions (I)-(I;) are equivalent. Also the implica-
tions (I) = (I,) and (I,) = (I,) are obvious. We prove that (I,) = (I,).

Consider the real polynomial

W, n, 7,8,
=@ = |PE+ ML -1+ (=[PP + (&~ |QE+ P

of 2n + 3 real variables. If & »e R" lie on the surface
(13) W(E, 777 ’I", Sy t) = 0 b4

then { = & + ipe N(P, a). Moreover, by condition (I,), the surface
(18) is contained in a domain defined by an inequality

[s| >@(t],

where @(t) — « as T-— co. Applying now a theorem of Gorin ([1],
Theorem 4.1) we conclude that there exist constants C, > 0 satisfying
condition (I). Thus (I) = (I). The proof of the implication (I,) = (L)
is similar.

3. Sufficient conditions. We now prove that conditions (I,)-(L)
are sufficient for the inclusion under consideration. Our first goal is
to construct a sequence of suitable fundamental solutions for the
operators P*(D), k=1,2,.--. We achieve this by modifying the
construction of a fundamental solution for P(D) given in [2].

In what follows p and ¢ denote the orders of the differential
operators P(D) and Q(D), respectively.

LEmMA 3. Suppose that conditions (1)-(I,) are satisfied. Then
there exist continuous functions F, k=1,2 ..., wn R* with the
following properties:

(a) Forv=p+g+n and any k,

E, =\ — 4)F,
is a fundamental solution for P*(D), i.e.
PYD)E, =06

(b) P(D)F,= Fiy, for j=1,2, -+, k— 1.

(¢) QD)F,, k,1=1,2, .-, are continuous functions in R"\{0}.

(d) For any l there is a k such that Q(D)F, is a continuous
Sfunection in R

Proof. For any & = (&, -+, &,_) € R", consider the subset of
the complex {,-plane
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UE¢) ={eC:|PE,l)|=1lor [N+ &P+ 851},
where » > 2p. There exist constants C, & > 0 such that

(14) [QE, L) I=CA+ [7.M,

for all & e R and {, = &, + ine U(&’). This follows from (I,), when
| P(¢’,£,) | =1 and can be easily verified in the other case.

Let U~(¢’) be the union of all connected components of U(&)
having nonempty intersections with C~ = {{, e C: 5, < 0}. We denote
by L(&') the boundary of C~ U U~ (&').

If {,e L(¢), we have

(15) [PE, L) =15
also there are constants C’, ' > 0 (independent of &’) such that
(16) [QE, L) = C|PE, L) M.
Inequality (16) is implied by (L) and (15), since (¢',¢,) € V,,, when
& e L(&).
For t=1,2, ..., we set
1 PUCEN o
Fi@) = 2m)" Sm—l {SL(G’) N+ &P+ )P dcn}d’ ’

The functions F', are obviously continuous, because of (15). We claim
that they satisfy the conditions (a)-(d).

Conditions (a) and (b) follow from general properties of the Fourier
transforms of distributions.

The verification of condition (c) can be carried out in the same
way as in [2] (see the proof of Lemma 4). We give a brief sketch
of the argument.

Suppose first that, for a given k, F{’ is a function obtained by a
construction as above, where the contour of integration (corresponding
to L(&’)) lies in the complex {;-plane; in particular F\” = F. Then

Ql(D)[Fk—F/(cJ)];j:l’ "',’ﬂ/—l;l: 1’2) cy

are continuous functions in R"; we omit the easy proof of this fact.
Thus condition (¢) will be verified, if we show that Q(D)F’, | =
1,2, .., are continuous for z; =0 (j =1, ++-, ).

Consider, for example, the function F', and let x, < 0. In this
case the contour L(¢') can be replaced by the boundary V—(¢’) of
U-(¢"). By (14), there are positive constants C, and C, such that

77% é —Cl [ Q(é,, Cn) lllh + C2
for all & e R** and {,e V- (¢). Hence, if { = (&¢,,), we have
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Q0| = | Q) I'exp {%.(C, | QEQ) ['* — C)} .
It follows that the integral

Smﬂ {SV—(E’) O+ lg(lg)j'i(z;”f’k(@ an}df'

converges absolutely and coincides with Q'(D)F(x), for every [.

In case z, > 0 we can reason similarly, replacing L(¢’) by a con-
tour V*(¢&’) lying entirely in the half-plane %, = 0.

Condition (d) is a consequence of inequality (16). In fact,

Q'¢, L)
P, Ca)

is bounded for & e R, {, € L(¢'), whenever k = h'l.
Lemma 3 is now established.

THEOREM 3. If conditions (1) — (I,) are satisfied, the &p(2) C Fo(2),
Jor any open set 2 R".

Proof. Assume that Te &£(2) and fix an arbitrary open set
2cc . We have to show that the restrictions of Q(D)T, I =
0,1, -+, to 2 are all in a space 2'™(2).

By Lemma 3, there are fundamental solutions K, for the operators
P¥D), k=1,2, ..., representable according to (a) with the functions
F, satisfying conditions (b) — (d). Let ! be given and let k& be the
integer corresponding to ! in condition (d).

There are open sets 2,5 = 0,1, ---, k + 1, such that

an Qcco,cclQcc.-..cclcca.

Since Te £,(2), the restrictions of PA(D)T,5 = 0,1, .-+, to 2, are all
of order <m, say. For every j=1,2,+--,k + 1, we now choose a
function ;€ &7 (2;_,) such that ® =1 on 2;. Then the distributions

S, =T, S; = 9PD)S;0,§ = 2,8, 4, k+ 1,

are all of order <m, Moreover

(18) S.=T on 2
and
(19) P(D)SJ - Sj+1 = O on Qj+1 y j = 1’ .. .’ k.

Making use of (a) we may write

S, = 3 [P(D)S; — Siud+B; + Speir B
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whence
k
(20 QD)S, = 72;1 [P(D)S; — S;+]*Q (D) E; + S, *Q (D) E,, ;

here * denotes the convolution. By (19), the “values” on £’ of each
convolution

[P(D)S; — S;l+Q' (D) E;

depend on the values of Q'(D)E; outside a neighborhood of the origin
(see [5], Chapter VI, Theorem III). Therefore the restriction to £’
of the sum in (20) is a distribution of order <m, + p + 2v. On the
other hand, the last term in (20) is of order <m, + » + 2v, because
of (a) and (d). Hence the restriction of Q'(D)S;, to 2’ is of order
<m = m, + p + 2v and m, can be chosen the same for all /. Since,
by (18), the restrictions of Q'(D)S, and Q' (D)T to £ coincide, the
theorem is proved.

Combining Theorem 2 with Theorem 3 we obtain the following
corollary.

COROLLARY. FEach of the conditions (1) — (L) is mecessary and
sufficient for the inclusion £p(Q) C £ (Q), where Q is any nonempty
open set.

REMARK. Suppose that
Q0 = PO X G

where P({) is an arbitrary polynomial. Then the operator P(D) is
Q-hypoelliptic (see [2], Theorem 1), but condition (I,) is not satisfied,
unless P(D) (and consequently Q(D)) is hypoelliptic.
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