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GEOMETRIC ASPECTS OF PRIMARY LATTICES

BENNO ARTMANN

The incidence structure derived from a primary lattice with
a homogeneous basis of three n-cycles is a Hjelmslev plane
of level n. A desarguesian Hjelmslev plane H(R) is of level
n if and only if R is completely primary and uniserial of
rank n.

Introduction. The classical correspondence between vector spaces,
projective spaces and complemented modular lattices was extended to
finitely generated modules over completely primary and uniserial rings
and primary lattices by Baer [5], Inaba [7] and, recently, by Jonsson
and Monk [8]. In these extensions, however, an analogue to the
classical projective space is missing. It is shown in the present paper,
that the appropriate concept is that of a Hjelmslev space as defined
by Klingenberg [9], [10] and by Liick [11]. To be correct, this is
only shown for the case of a plane geometry, namely Hjelmslev planes
of level n, corresponding to primary lattices with homogeneous basis
of three m-cycles, and to free modules R®. Also, we have the complete
correspondence only in the desarguesian case. The restriction to this
case is justified, as the author believes, by the fact it is well known
to be typical for higher dimensional spaces in the classical theory.

In the non desarguesian case, there is a coordinatization theory
for Hjelmslev planes of level n given by Drake [6], but this does not
seem to lead to a construction of a lattice from the plane. Every
primary lattice with a homogeneous basis of three n-cycles, however,
leads to a Hjelmslev plane of level n (Theorem 2.13). Planes of level
1 (ordinary projective planes) and of level 2 (uniform Hjelmslev planes)
can be shown to be obtainable from lattices. For uniform planes,
this was done by the author in [2]. A combination of Theorem 2.13
with results of [4] shows that a desarguesian Hjelmslev plane 5#°(<#7)
is of level n if and only if <& is completely primary and uniserial
of rank n.

0. Definitions.

0.1. Let & = (p, ©, I) be an incidence structure consisting of a
set p of points, a set & of lines and an incidence relation I < p x G.
We say that two points p,q of 57 are neighbors, p ~ ¢, if there
are two different lines G, H such that p, ¢ IG, H. Neighborhood for
lines is defined dually. A mapping @: 5% — S#£°* is a morphism of
incidence structures, if it maps points on points, lines on lines and
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16 BENNO ARTMANN

pIG implies pplpG.

An incidence structure 57 is called a projective Hjelmslev plane,
short H-plane, if it satisfies the axioms [9, Def. 0]:

(i) For all points p, ¢ of 5% there exists a line G of 27 such
that p, qIG.

(ii) For all lines G, H of 57 there exists a point p of 2% such
that pIG, H.

(iiil) There exists an ordinary projective plane &° and an epi-
morphism «: H— .27 such that ap = aq is equivalent to p ~ ¢, and
aG = aH is equivalent to G ~ H.

Using (iii}, we see that neighborhood is an equivalence relation and
the factor structure 57/~ = 57 is a projective plane isomorphic to .&°.
We call &7’ the canonical epimorphic image and the projection
@: 2% — 57" the canonical epimorphism of 27, In [9] it is shown that
this set of axioms is equivalent to the ones used in [1] to define H-planes.

0.2. We deal with modular lattices with universal bounds N and
U. The lattice operations are dencted by Vv, A and we make the
convention that A shall bind closer than v/, that is a Vb Ac=aV
(b Ne¢). Lia,b) is the interval of elements x such that a < < b.
We use ¢ b to denote independent join, i.e. to indicate ¢ A b = N.
A cycle ae &7 is an element such that L{N, a) is a chain. A cycle
of dimension % is a k-cycle.

Definition [8, Def. 4.2 and Def. 6.1]: A lattice . is said to be
primary, if:

(1) £~ is modular of finite dimension.

(ii) Every element of .&© is the join of cycles and the meet of
dual cycles.

(ili) Every interval in & that is not a chain contains at least
three atoms.

Furthermore, we make the assumption

(iv) There are three independent %-cycles a,, a,, a; such that U =
a, < a, < a; for the greatest element U of .. This means that &
is of type (0, -+, 0, 3) in the sense of [8, Def. 4.10]. By [8, Lemma
6.4] it follows, that the a, are pairwise perspective. Hence they form
a homogeneous basis of order three of &~ (for a definition of that
concept, see [1, Def 1]). Since the dual .2 of a primary lattice ¥
is again primary [8, Cor. 6.2], and the type of & is equal to the
type of ¥ [8, Cor. 4.11], we may use duality in deriving results
from (i)—(v).

For the rest of this paper, .&¥ will always denote a lattice satis-
fying (i)—(iv), i.e. a primary lattice with a homogeneous basis of
n-cycles a,, a,, a;. For {i, 7, k} = {1, 2, 8} we put A; = a; > a,. Since
the geometric dimension of &~ [8, Def. 5.1] is three, & may be



GEOMETRIC ASPECTS OF PRIMARY LATTICES 17

non-arguesian.

1. The H-plane 57 ().

1.1. Points and lines in <. Let g be the set on n-cycles of
<, and

p = {pe & |there is 7€ {1, 2, 8} sueh that po A, = U}.

Every pep is perspective to some a;, hence is n-cycle. For an n-cycle
q, assume g N A; «# N+#qgN A, Then wehave g A A, N A, = q Na; *
N since ¢ is a cycle, and by the same reason ¢ A A; = N. Therefore
L(g, q \V A;) has dimension n and ¢.0 A; = U. Hence we have p = q.

By duality, we get: The set of dual cycles of & of codimension
n 1s equal to the set

G = {Ge &~| there is ie{l, 2, 8} such that G a, = U}.
We call p the set of points of ¥ and ® the set of lines of .&~.

1.2. Geometric elements. Every Element of & which is the
join of independent points is said to be geometric [8, Def. 5.1]. By
definition, a,, a,, a, and A,, 4,, A, are geometric. From [8, Thm. 5.2]
we derive (F'C) (a) For every be{a, a,, a;, A, A,, A;} and every

xr €% with © A b = N, there exists y = « such that yo b = U.

Since the dual (b) of (a) is true as well, &¥ satisfies the condition
(FC) of [1, p. 77].

Let G be a line of &¥, say G a, = U,and r = G A 4, and s =
G A A;. We claim that r and s are points such that G = s.
Obviously we have a; A(rVv s)=N. Then, a;,Vr=a,v GANA, =
(@; vV G) N A, = A,, so that » and a; are perspective with center a,.
Hence » and s are points. Froma, vV (r vV 8) = A,V 4; = Uand Vv
s < G we get r\V s = G by the indivisibility of complements.

In particular, every line of & is geometric.

Since the independent join of three points is U, and it is easy to
see that the independent join of two points is always a line (by (FC)
and [1, Lemma 8]), points and lines make up all geometric elements
of &~ except for N and U.

1.3. For a line G and a point » < G, the interval L(p, G) is a
chain. Proof: Consider two points », s such that . s = G. For
at least one of them, say », we have r Ap=N. Thenr o p=G
and we have L(p, G) = L(N, r), the assertion.

1.4. Neighbors of p on G. Again let p be a point, G a line and
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» £ G. We use € to denote the covering relation in <. Let N=
2 &2 & +» &2, =p be the chain of elements less than or equal to
v, and let p =y, < -+ <y, = G be the chain of elements between
» and G.

LEMMA. For every t1€{0,1-++, n} there exists a point ¢, = G such
that y, = p\V e, and z2,_, = P A ¢,

Proof. For every 4, p is a maximal cycle contained in y; [8, Cor.
4.7]. By [8, Thm. 4.8] p has a relative complement z; in L(N, y,)
and by [8, Lemma 6.4] there exists a cycle ¢; such that y, =» O
2, =p Ve =22, ¢. Since ¢; and p are perspective, ¢; is an n-cycle,
hence a point. Counting the relative dimensions shows » A ¢; = 2,_..

1.5. Let G and H be two lines and p a point such that p <
G N H. By the last lemma, there is a point ¢ < G such that p v
g = G A H. This and the dual statement yield

(S) (a) For points p, ¢ of .2 and a line G with p \V ¢ £ G there
exists a line H such that p\v ¢ =G N H.

(b) For lines G, H of .&¥ and a point p < G A H there exists a
point ¢ such that p v ¢ =G A H.

1.6. In [1, p. 77/78] it was defined: A modular lattice with a
homogeneous basis of order three consisting of cycles is called an H-
lattice, if it satisfies (F'C) and (S). By 1.2 and 1.5, &~ is an H-lattice.
From an H-lattice an incidence structure (p, ®, I) is derived by defining
p and & as in 1.1 and incidence by the ordering of the lattice. Using
Theorem 1 of [1], we can now state:

PROPOSITION. & 4s an H-lattice and the incidence structure
7 = (. F) = 0,8, I) derived from & is a projective H-plane.
Two points p, ¢ of &7 are neighbors in 27 if and only if p N\ ¢ > N,
two lines G, H are neighbors if and only if G v H <U.

More information about 5% will be given in the next section.
2. () is of level n.

DEFINITION 2.1. (cf.[3] and [6]) Let 2 and 7 * be H-planes with
canonical epimorphisms ¢: 57 — 57 and k: 57 * — (27°*)" onto ordinary
projective planes. Let +r: 27— 27 * be an epimorphism and \: (5#*) —
27" an isomorphism. If @ = Ak we say 5 has a refined neighbor pro-
perty defined by : 77— 27 *. We define p = q by 4vp =g and G =
H by 4G = H. Then = is called a refined neighbor relation in 5#.
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We say = is minimal provided the following conditions hold:

(M) Let p, q be points on G and p on H.

(a) If p=q and G ~ H, then ¢ is on H.

(b)y If p~q and G = H, then ¢ is on H.

(¢) There exist distinct points ¢ and b and distinct lines A and
B such that a =b and A = B.

DEFINITION 2.2. The ordinary projective planes make up the
class of projective H-planes of height 1. Suppose 57 is an H-plane
with a minimal neighborhood defined by +: 5% — S7°*, where S#* is
of height n — 1. Then one calls 5~ an H-plane of height n.—It is
suitable to denote an H-plane of height n by 57, and by S#,_, the
plane and by +,_,, Pu_i, My_, the maps which define the minimal neigh-
borhood in 57#,. Proceeding thus we obtain, for every H-plane of
height n, the following commutative diagram

G > Hoqy > >

Vn—1 Vu—2 U1

T

%L/(___%L'_l(__...(_;__%r.
(1

An—1 An—2

We set p, = 4 =+ Yoy, and take g, to be the identity on 57.
We denote by (~ k) the refined neighborhood defined by p: 57, —
oA, in 27,

DEFINITION. 2.3. If 27, is an H-plane of height %, then the H-
planes 57 in the defining sequence of 57, are of height 7. The notion
of (~ k)-neighborhood is defined in 57 asin 57#,. A k-segment in 5%
is the nonempty intersection of a line with a class of (~ k)-neighbor
points. An H-plane 57, of height n is called of level #, if the follow-
ing axiom of reciprocal segments holds in every plane 5% of the
defining sequence of S57:

(RS) (a) For all lines G, H of 57;, the set of common points of
G and H is a k-segment, for some ke{l, 2, ---, i}.

(b) G(~ k)H if and only if the set of common points of G and
H contains an (7 — k)-segment.

REMARK. For the change of (N) [3, p. 175] to (RS), see [4].

2.4. If the cycles a; of &~ are of dimension 1, then S# (%) is
an ordinary projective plane (an H-plane such that two points p, ¢
are neighbors if and only if p = ¢), hence an H-plane of level 1. If
the a; are bicycles, that is of dimension 2, then by 1.5 every point
of 277(#°) has at least one proper neighbor and by [2, Satz 3], 97(.%)
is a uniform H-plane, that is of level 2 [3, p. 179].



20 BENNO ARTMANN

We are going to apply induction to show that S5#°(&°) is of level
n if the o, are n-cycles. We may assume n > 2. First we have to
show that 5#(<°) is of height n.

2.5. Let a; cover b, and B=15b, Vv b, \V b;. Then b, b,, b, form a
homogeneous basis of & * = L(N, B) (cf. [8, Cor. 4.13]). By [8, Cor.
4.4] &F* satisfies (i) and (ii) of Def. 0.2, Moreover, every interval
of &¥* is an interval of &, so * satisfies (iii) as well. Hence
Z* is a primary lattice with the homogeneous basis b,, b,, b, of three
(n — 1)-cycles. Let the derived H-plane be 57 * = 57 (%) = (p*, ©*, I).

Let p be a point of 57 = 2#(<¥) and G be a line of 5. We
define

W S — K
by
op=p A B and +G =G A B.

In the following paragraphs, we will show that « is an epimorphism.
If p <@, then p AB = G A B, so the fact that + preserves in-
cidence is trivial.

2.6. Let p be a point of 57, say po 4; = U, and let B, = b, Vv
b,. Then (p A B) \V B; = B, and + maps p into p*. We want to show
that it is onto. Let »* be a point of 5#* say p* Vv B; = B. Then
p* A A; = N, and by [8, Thm. 5.2], p* is contained in some comple-
ment p of A;. It follows pep and yp = p*.

27. Let G be a line of 57, say G a;=U, and G A, =s
and G A 4, =r as in 1.3. We have b, \V ¥ = b; and b, \V s = b, hence
bV GAB) =(b;vVG NB=DB. Since GABAb; =N, maps &
into &*. Again we have to show that it is onto. Let G* be a line
of 57* and G* = r* .0 s* for two points of S#°*. There exist points
r,s of 57 such that »r AB=7r* and s A\B=s* For G=rVs
we have 4G = G*.

2.8. Since p ~ ¢ in & means » A ¢ > N in &, we have p ~ ¢
in 27 if and only if ¥p ~ g in SF*.

We want to show that the same is true for lines. Assume G ~
Hin 5#. We know that this means G A H > p for some common point
p of G and H. Let © be a cycle <G such that GA H=p 2.
We may assume G == H, hence the dimension of x is at most » — 1.
Therefore x < G A B and ¢ < H A B, and we have
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GANHANB=((p_x)N\B
=pANBV=z
=4p Ve,

and from ¢ > N we deduce G ~ +H.

Now let G~ H in 57, then G A H = p for a unique point p.
There are points 7,8 of £ such that G=pC r and H=p_ s.
From this we derive vp V ¥r V/ +rs < 4rG /4y H, and since +p, 47, s
are three independent (n — 1)-cycles, it follows G ABV HA B= B,
hence G + v H.

Thus we have arrived at: G ~ H in 57 if and only if +G ~ +H
in SF*.

2.9. By 2.5 — 2.8 we know:

S SF — % is an epimorphism and

p ~ q if and only if 4p ~ g,
G ~ H if and only if G ~ H .

Now, for n — 1 >1, we may repeat the procedure and, changing
notation to 5% = 27, o>7* = 27,_, and +» = v,_,, get a sequence

Hop = Fpey 2 0 = T
3”%—1 YVn—2 VI

where the final incidence structure 27 is an ordinary projective plane.
The mapping

My = ey e, S, — pA
is an epimorphisms such that

p~ ¢qin 57 if and only if pp = pq in 57 and

) G~ Hin 5 if and only if G = wH in S7.

Now the canonical epimorphism @,: 57, — 57, is universal with the
property (*), hence we have a unique isomorphism ¢: 57" — 57 such
that p, = 09,. By the same reasoning for 27,_, and v.: S7,_, — 57
we get the following commutative diagram

25—

A

= 7%«—//%1.
n

If we put \,, = 079, we have @, = \,_ P, 1, and v, 57, — 57,
defines a refined neighborhood in 2#,. Clearly, the same is true for
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all w57, — 24 1 <£1<n). Thus we arrive at a commutative
diagram as required in Definition 2.2 We did not yet show that
the refined neighborhood defined by +,_.: 57, — 97,_, is minimal.
Without knowing this, we define g, and (~ 4) as in 2.2,

2.10. In order to prove the axioms (M) and (RS) of Definitions
2.1 and 2.3, it is useful to have an alternative description p(~ 7)q
and G(~ )H in o7 = 57(.<7).

(i) Let N=p, <p, < +++p,,&<p,=p and N=¢ <K -+ <
q. = q be the chains of elements below the points p and q. We have
YuP =9 N B=p,,, hence v, p = +,_,q if and only if p,_, = ¢,_..
Repeating the argument we obtain z,p = p;, which yields p,p = g
if and only if p;, = q..

(ii) Let G, H be lines of £#7(.) and p, r, s be points such that
G=porand H=p s. Let r,s; be defined like p, in (i), and
p=ag L L KL, =G If pG = pH, then

ry=pr = puG = pH
and

8 = s = . H = p,G .
Hence p o r; = 2; < G A H and from Lemma 1.4 we get
(+) There exists a point ¢ such that p,_, = ¢,_; and

Conversely, assume (+). There exists a cycle »;, such that p v ¢ =
- r; = «; and points », s such that », <» <G and r, £ s < H [S,
Thm. 4.8]. From this we derive G = p . r and H=p . s and

PG = p; o = pH.

Letting G =g, € 9.« ++-Kg,=U and H=1 < +++« < h, = U we
may equivalently say

p1G =pHif and only if g, . = h, ;.
Or, using p =9, < ++- <y, = H:
1:G = p,H if and only if ©;, =y, .

2.11. We are now ready to verify that +,_,: 97, — 57,_, defines

a minimal neighborhood in S57,.
(Ma) From p A B=q A B it follows that » and ¢ cover p A q.
Hence p \/ ¢ covers p and ¢q. Now if GV H<U, then G H > p

and since L(p, G) is a chain, we have
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PpPLPVE=SGANH,

hence g < H.

(Mb) Let #; and y; be as in 2.10. By 2.10 (ii) we know 2,_, = ¥Yu_;.
Now if p ~ ¢, then p\VV ¢ < G, hence p \V ¢ < 2,_, = ¥,_, which implies
q = H.

(Mc) Taking 7 =1 in 1.5 we get points with the desired property.
By duality, we have lines G % H such that G\ H is a cocycle of
codimension n — 1, hence +, .G = 4, H.

2.12. The axiom of reciprocal segments. By 2.10 (i) an ¢-segment
is a set of points on a line G such that p, = ¢; for any two points

P, g of the set.
(RSa) Let p < G A H and p;, x; as before. Assume GA H=12,_,.
Then for every point ¢ < H we have that

p A q=p; implies ¢ £ G, and
P A g < p; implies ¢ £ @G, since otherwise G A H > ©,_;.

Hence the set of points incident with both G and H is an i-segment.
(RSb) By 2.10 (i), #:G = ¢, H if and only if G and H have (at least)
an i-segment in common.

THEOREM 2.13. The H-plane S57(%°) derived from a primary
lattice L with a homogeneous basis of three n-cycles is an H-plane of
level n.

Proof. By 2.9, +,_.: 57, — 57,_, defines a refined neighborhood
in &7, which is minimal by 2.11. By 2.12, the axiom (RS) of reciprocal
segments holds in 5#,. Since 5#,_, is derived from a primary lattice
with a homogeneous basis of (» — 1)-cycles, we may assume that 57,_,
is of level n — 1. But then 2%, is of level n.

3. Desarguesian H-planes of level n.

DEFINITION 3.1. [8, Def. 6.6]. A ring .&# (associative with unit)
is said to be complétely primary and uniserial if there is a two-sided
ideal .o~ of <2 such that every left or right ideal of <2 is of the form
% (where .&v° = <#). The rank of such a ring is the smallest
integer k£ such that .o7* = (0).

It is a simple exercise to verify that a completely primary and
uniserial ring is an H-ring in the sense of [9 Def. 9].

DErFINITION 3.2. Let .&Z be a completely primary and uniserial
ring of rank n. The lattice (577 of all submodules of the (<Z-
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left) module <#* is primary [8, Thm. 6.7] and has the homogeneous
basis a, = 21, 0,0), ¢, = (0,1, 0), a, = (0, 0, 1) of n-cycles. Let
SP(P) = 7 (L (#?) be the H-plane derived from <2 (<#%. It is
easy to check that this plane is essentially the same as defined by
Klingenberg [9 Def. 10] via homogeneous coordinates. An H-plane
57 is called desarguesian if there exists an H-ring <# such that
S# is isomorphic to S#(<#), the latter defined as in [9].

THEOREM 3.3. If <& is a completely primary and uniserial ring
of rank n, then the H-plane S#(#) is of level m.

Proof. Theorem 2.13 and Definition 3.2.

3.4. In [4] it is shown: If 5% = 5~ (%) is a desarguesian H-
plane of level n, then .<Z is a completely primary and uniserial ring
of rank n. We combine this with 3.3:

COROLLARY. A desarguesian H-plane 57 (#) is of level n if and
only if # is completely primary and wniserial of rank n.

3.5. Since the lattice &(=#*) defined in 3.2 is arguesian, we
have a correspondence between completely primary and uniserial rings
of rank 7, arguesian primary lattices with a homogeneous basis of
three n-cycles and desarguesian H-plane of level n as in the classical
theory of projective spaces. With the appropriate definitions, it should
be not too hard to verify the analogues correspondences for finite
dimensional H-spaces. The coordinatization theorems relevant for this
can be found in [7] and [8] for lattices and in [10] and [11] for
Hjelmslev spaces.
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