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Let (X, HO be a uniform space in some set theoretical struc-
ture ^S and let *X be the set corresponding to X in an
enlargement * ^ ^ of ^ . In this paper a set of ^-finite
elements of *X is defined and this set is used to define a non-
standard hull of (X, ^ O The main result is that, with some
specific exceptions depending on the existence of measurable
cardinal numbers, this nonstandard hull is the same as the
smallest of the nonstandard hulls defined by Luxemburg.
This result is used in giving a characterization of subsets of
X on which every uniformly continuous, real valued function
is bounded. Also, two examples are given to illustrate the
possible structure of the nonstandard hulls.

The nonstandard hulls defined by Luxemburg [4] are obtained
from sets F of ''finite" elements of *X which may be written in the
form

F = {P\P e *X and *f(p) is finite for all / in ^"}

where j^~ is a set of uniformly continuous, real valued functions on
(X, *&). The concept of finiteness introduced in this paper is entirely
different. An element p of *Xis ^-finite if, for each A in ^/ there
is a sequence qθ9 , qn in *X which satisfies the conditions (i) q0 = p,
(ϋ) qn — *χ for some x in X, and (iii) for each j = 0, , n — 1 the
pairs (qh qj+ι) and (q3 +1, q^) are both in *A.

Our main result is that the set of ^-finite elements of *X is
equal to the set

{p\pe*X and *f(p) is finite for every uniformly continuous,

real valued function / on (X,

if and only if it is impossible to partition X into a measurable cardinal
number of subsets {Xα|αe/} which are "uniformly open" in the sense
that there is an A in ^ such that

xeXa implies {y \ (y, x)eA}(Z Xa

for every a in I. In particular, these two sets of finite elements of
*X are equal whenever the number of topologically connected com-
ponents of (X, ^/) is smaller than every measurable cardinal number.

This result is used in giving a characterization of those subsets
Y of X such that every uniformly continuous, real valued function
on (X, ^ ) is bounded on Y, generalizing a Theorem of Atsuji [2].
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116 C. W. HENSON

Also, two examples are presented which illustrate the possible struc-
ture of the nonstandard hulls defined using the set of ^-finite ele-
ments of *X. These examples are based on ideas due to L. C. Moore,
to whom the author is grateful for many helpful conversations on the
subject of this paper.

1* Throughout this paper ^ denotes a set theoretical structure
and * ^ denotes an enlargement of ^ C (The image of an element
x of ^f under the embedding into *^C is denoted by *#.) Whether
^ and *^/έ are taken to be structures for type theory (as in [4]
and [6]) or to be structures for the ε-language of ordinary set theory
(as in [5] and [7]) is a matter of taste. Most references in this paper
will be to [4], although the concepts and results in [4] can easily be
set in the frameworks of nonstandard analysis described in [5] and
[7].

As is usual, it is assumed here that the set N of positive integers
and the set R of real number are elements of ^/t, and that the
embedding x i • *x is the identity on R (and thus also on N.) The
extensions to *i? of the operations + and on R, as well as of the
ordering < on R, will be denoted by the same symbols. In general
the embedding x i • *x is not the identity on sets in ̂ £. Given an
element A of ^ f it is convenient to introduce the notation *[A] for
the set of standard elements of *A; that is,

*[A] = {*α|αeA}.

In dealing with uniform spaces there are certain useful operations
on subsets of a cartesian product C x C. If A and B are subsets of
C x C, recall that AoB and A"1 are defined by

AoB = {(a?, z) I for some y, (x, y) e A and (y, z) e B}

A-ι = {(x,y)\(y,x)eA}.

The set An is defined recursively for n 2> 1 by:

A1 = A, An+1 = AnoA .

Also, given an element x of C, the set A(x) is defined by

Λ(x) = {y\(y,x)eA} .

Note that if A, B and C are elements of ^£ then *A and *J3 are
subsets of *C x *C (= *(C x C).) Moreover, the following equalities
hold:

\AoB) = (*AM*B)

•(A-1) = (*AΓ
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*(An) = (*A)%

*(A(x)) = (*A)(*x)

(where xeC and n^l.)
Throughout this paper (X, ^/) denotes a uniform space which is

an element of ^tf?. The set of all uniformly continuous, real valued
functions on (X, ^ ) is denoted by C(X, ^ ) . It is assumed that the
reader is familiar with certain parts of the nonstandard theory of
uniform spaces, as presented in [4] or [5]. In particular, recall that
the monad of the filter <%f (that is, the intersection of the family
*[^/] of subsets of *X x *X) is an equivalence relation on *X. The
equivalence class of p is denoted by μ(p), for each p in *X.

The collection * [^] generates a filter on *X x *X which will be

denoted by ^/. A simple, direct argument can be used to show that

^/ is a uniform structure on *X and that the mapping x ι > *x is
a uniform space embedding of (X, <%S) into (*X, <%s). Alternately, let
έ% be any set of bounded semimetrics on X which defines ^/. (p(x, y)
is a semimetric on X if p is nonnegative, symmetric, satisfies the
triangle inequality and p(x, x) — 0 for any x in X.) For each p in
& a function p may be defined on * I x *X by

p(p, q) = st (*p(p, q)) .

(Here "st" is the standard part operation on finite elements of *iϋ.)
Then p is a semimetric on *X. For each p e έ% and δ > 0 in R, let

Then the collection {A(/O, δ)\pe &, δ > 0} generates ^ so that the

collection {*A(ρ9 δ)\pe&, δ > 0} generates ^ β But

g) ^ S}

and

Therefore ^ is the uniformity on *X defined by the set
of semimetrics on *X.

Let Xo = {^(2>)|pe *X} and let ^ 0 be the quotient uniformity on
Xo induced by ΉS. Denote the quotient mapping from (*X, ^/) onto
(Xo, ^o) by 7Γ. The previous remarks show that (Xo, ^ 0 ) is the non-
standard hull for (X, ^ ) constructed in [4] using any set & of
bounded semimetrics which defines <?/. (See also p. 56 of [5], where
(Xo, ^Ό) is constructed and called TV.)

The definition of ^ makes it clear that μ(p) = μ(q) if and only

if p and q have exactly the same neighborhoods in the
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on *X Thus π is not only uniformly continuous, but also ττ(*A)
(which equals {(μ(p), μ(q))\(p, q) e *A} by definition) is in ^ whenever
A is in ^/. Therefore π is an open mapping. Moreover, any net in
*X which is mapped by π onto a Cauchy net (convergent net) in (Xo, ^ 0 )
is a Cauchy net (convergent net) in (*X, ^ ) . If the ^-topology on
X is Hausdorff, then the map taking x to μ(x) is a uniform space
embedding of (X, as) into (Xo, %

y

Q). (Otherwise it simply identifies
those pairs of points which have exactly the same neighborhoods in
the ^-topology.)

Constructing "nonstandard hulls" of (X, Ήf) in general involves
two distinct steps: (i) the identification of a set F of "finite" elements
of *X, and (ii) the construction of a uniformity on F (and then on
the set {μ{p)\psF} by a quotient operation.) There are many dif-
ferent useful concepts of "finiteness" for elements of *X, each one
motivated by considerations depending on the kind of mathematical
structure which X is assumed to carry. However there seems to be
only one natural way to carry out step (ii)—by putting on F the
uniformity obtained by restriction from ^Λ In that case, the non-
standard hull constructed using F is just the subspace π(F) of

For example, let Sf be any set of semimetrics which defines <?/.
In defining a nonstandard hull using St, Luxemburg [4] takes F to
be the set

{p I *P(P, *α) is finite if x e X and p e £f) .

The uniformity put on F is the one defined by a set {pf\p^S^} of
semimetrics on F, where

P'(P, q) = st (*p(p, q))

for each p in S? and p, q in F. If & is the set {min (p, ϊ)\pe S^}9

then έ% also defines ^ . Moreover, the uniformity defined on F by
the set {p\pz&} is easily seen to be the same as the one defined on
F by {p'\p £ S^}. That is, this uniformity is just the restriction of
& to F.

In this paper an entirely different concept of "finiteness" for ele-
ments of *X is introduced. It is based on the intuitive idea that a
point is "finitely far away" from a set if there is a finite chain of
small steps from the point to (some element of) the set, no matter
how small the steps are required to be. Thus an element of *X is
taken to be finite if it is "finitely far away" from *[X], relative to
the uniform space (*X, ^ ) . (See Definition 1.2)

DEFINITION 1.1. Let (F, T) be any uniform space.
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( i ) If A e T* and x,yeX, then an A-chain from x to y is a
finite sequence x0, , xn in Y which satisfies: x0 = x, xn — y and, for
each i = 0, , n — 1, (xi9 xi+1) e A Π A""1. (The number of steps for
such an A-chain is n.)

(ii) If x,ye Y, then x=Ay if and only if there is an A-chain
from x to y.

(iii) If x, y e Y, then x =Γy if and only if x =Ay for every A
in ^ :

If A is in 5^ then A Π A~ι is symmetric and contains the diagonal
of Γ x Γ, so that = A is an equivalence relation on Y. Therefore == 7,,
is also an equivalence relation on Y. The latter relation can be cal-
culated from any collection & which generates f as a filter on
Γ x F, in the sense that

x = ̂  y < > x = A y for every A e &

Also, observe that if A is in y\ then the equivalence classes under
= ^ are both open and closed in the ^-topology on Y.

Definition 1.1 will be applied to both of the uniform spaces

{X, <%f) and (*X, &). Since * [ ^ ] generates ^ as a filter on *X x *X,

it follows that for each p, q e*X

p =~ q < „ p =*Aq for every A e ^ .

Note that for each Ae'zif,*( = A) is also an equivalence relation
on *X, and in general it will not be the same relation as =*A. Indeed,
p and q are in the same *( = A) equivalence class if there is a *-finite
sequence (hence an internal element of *^?f) q0, * ,gω in *X which
satisfies: qQ = p, qω = q and (qi9 qi+1) e *(A Π A"1) for every i = 0, ,
ω — 1. Such a *-finite sequence may exist without any such finite
sequence existing: in that case p =*Aq would be false.

DEFINITION 1.2. An element p of *X is '%f-finite if, for each
A e ^ , there exists an a; in I which satisfies p =*A *&.

The set of ^-finite elements of *X will be denoted by &n^(*X).

It is clear that if p is ^-finite, then every element of μ(p) is
also ^-finite. In the language of [4], this says that fin^ (*X) is
/^-saturated. Also the condition p e fin,y (*X) is equivalent to a con-
dition on the ultrafilter {Y\YdX and pe*Y} determined by p.
Namely, p is ^-finite if and only if for each A e ^ there exist x e X
and n^l such that p e (*A)%(*#) = *(A%(x)). Therefore, if p is ^ «
finite then each element of the monad of the ultrafilter { 7 | 7 c l
and p 6 * Y) is also ^-finite. In the language of [4] this says that
fin^ {*X) is ^-saturated.
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If p is any semimetric on X which defines a weaker uniformity
than ^ , and ae Xy then the function f(x) = p(x, a) is ^-uniformly
continuous (since \p(x, a) — p(y, a)\ <ί p(x, y).) Thus the sets F of
finite elements of *X considered in [4] are all of the form

F = {p\*f(p) is finite for every / e / }

where j^~ is a set of ^-uniformly continuous, real valued functions
on X. The next result shows that each of these sets has fin^ (*X)
as a subset.

THEOREM 1.3. If feC(X,^) and pefm^X) then *f(p) is
finite.

Proof. Since / is uniformly continuous, there exists i in ^
which satisfies

(xfV)eA >\f(x)-f(y)\^l.

Since p is ^-finite, there is a *A-chain qQ, , qn from p to *#, for
some x in X. Therefore

I *ΛP) - */(*) I ̂  ^ I */(?*) - */(? ί+ i )

It follows that *f(p) must be finite.

THEOREM 1.4. fin^ (*X) is closed in the "^-topology on *X, and
pns* (*X) c fin^(*X).

Proof. For each A in ^ the set

^ *8 for some ίceX}

is a disjoint union of = M equivalence classes, each of which is open
and closed in the ^-topology on *X. It follows that this set is, it-
self, open and closed in that topology. Finally, firx^ (*X) is an inter-
section of such sets, so that it must be a closed set.

That pns^ (*X) is a subset of fin^ (*X) follows immediately, using
the obvious fact that *[X] is a subset of fin^ (*X) and using Theorem
3.15.2 of [4]. (This Theorem implies that pns?/ (*X) is the closure
of *[X] in the ^-topology on *X. The extra assumptions on *^/fί
made in [4] are not needed for this result. See also Theorem 7.5.3
of [5].)

Let it be an uncountable cardinal number which is strictly larger
than the cardinality of some filter basis for ^/. It is well known that
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there must be a set & of bounded semimetrics which defines ^ and
which has cardinality less than fc. Theorem 3.15.1 of [4] implies that
if *^/f is /r-saturated, then (Xθ9 %SQ) is a complete uniform space.
(Theorem 3.15.1 has the added assumption that *^/f is an ultrapower
of κy/ίf, but this is not necessary. It may be removed by noting that
the completeness of (Xo, %SQ) can be proved by considering only Cauchy
nets over index sets of cardinality less than /c, and then using Theo-
rem 1.8.3.)

Therefore when * ̂ f/ is /c-saturated the uniform space (*X, ^/)
is also complete. By Theorem 1.4 this implies that the restriction of
^/ to fin^ (*X) defines a complete uniform space. It should also be
noted that each set of the form {p j *f(p) is finite if / e ^~} is closed
in the ^-topology when j ^ ~ is a subset of C(X, *%f). Therefore each
of the nonstandard hulls of [4] is a complete uniform space when *^f
is /c-saturated, even when jβr may have cardinality Ξ> tc.

2* This section is concerned with the relationship between
fin_^ (*X) and the set

Fo = {p\*f(p) is finite for all fe C(X, %f)} .

As argued in §1, π(F0) is the smallest of the nonstandard hulls of
(X, %f) constructed in [4]. By Theorem 1.3, fin,/ (*X) is a subset of
Fo. In fact, the two sets are equal, except in certain circumstances
depending on the existence of measurable cardinal numbers. (Corollary
2.5) The principal tool in proving this is the following result.

LEMMA 2.1. If A is in ^ and x=Λy for all %,yeX, then
there is a semimetric p on X which satisfies

( i ) the uniformity defined by p contains A and is weaker than
%S, and

(ii) for each p,qe*X,

p = *Λq < > *p(p, q) is finite .

Proof. The proof uses a modification of a construction given in
[3]. Let A be in W and suppose x~Ay holds for all x,yeX. It
may be assumed that A is symmetric (replacing A by i n A~ι if
necessary.) Let Z be the set of all the integers. Select a sequence
{An\neZ} of symmetric sets in ^ as follows: (i) Ao = A, (ii) for
n > 0 define An inductively by

(iii) for n < 0 select An inductively so that



122 C. W. HENSON

(Anf c An+1 .

Then {An\ne Z) is a chain of sets in i7/, and it satisfies

(2.1) {Anf c An+ι for all neZ.

Moreover, since n 7> 0 implies An — {Az)n, it follows that

(2.2) Ό{An\neZ}= U{A*n\n^l}.

The assumption t h a t x=Ay holds for every x,yeX means t h a t
t h e r i g h t side of (2.2) is equal to X x X. Therefore a function g on
X x X may be defined by

(2 if fei/JeA^^
Q\X ΊJ) ̂ ^ i

(0 if feί/)6i for all ^ G Z .

In particular, for ^ ^ 0

flr(», 1/) ̂  2n < > (x, V) e A*n(= An) .

P a s s i n g t h i s t o *^^, i t f o l l o w s t h a t f o r a n y p , q e * X a n d n e N

*g(p,q)^2n< >(p,q)e(*AΓ .

Therefore, if p,qe*X, then

*g(p, q) is finite < > p =*Aq .

The desired semimetric p is then defined from g by

{ n-l

Σ Ufa, »<+i) I Bo, , xn is a sequence

in X, x0 = x and xn = y\ .

(That |0 is nonnegative, symmetric and satisfies p(x, x) = 0 for all a?
in X follows from the fact that the function g has the same properties.
That p satisfies the triangle inequality is equally obvious.) The
fundamental fact about p is the inequality

(2.3) p(x, y) ̂  g(x, y) ̂  2p(x, y)

which holds for all x,yeX. The first inequality follows immediately
from the definition. The second is proved by showing that if x0, , xn

is a sequence in X,

(2.4) g(*o, xj ^ 2-S Ufa, χi+i).

The proof of (2.4) is by induction on n, using (2.1). The details are
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like those in the proof of Theorem 6.7 in [3], and they will be omitted.
Passing the inequality (2.3) to * ^ ^ it follows that *p(p, q) is

finite exactly when *g(x, y) is finite. Therefore, for any p, q e *X

p =*A q «-• *p(p, q) is finite .

It thus remains only to show that p satisfies (i). The definition of
g implies that A = {(%, y)\g(x, y) ^ 1}, and by equation (2.3) it follows
that A contains the set {(x, y)\ρ{x, y) ^ 1/2}. This shows that A is
in the uniformity defined by p. Finally, for each n e Z

An = {(x, y)\g(x, y) ^ 2n} c {(x, y)\p(x, y) ^ 2n} .

This shows that the uniformity defined by p is weaker than W, and
completes the proof.

Throughout the rest of this section let <:ΛΓ denote the set of all
cardinal numbers tc which support ω-complete, free ultrafilters. It is
well known that if ,5f is nonempty, then the smallest member tc0 of
J^Γ is actually measurable. (In fact, every α>-complete ultrafilter on
fcQ is < /c0-complete.) Moreover, in that case the class .Ĵ Γ consists
exactly of the cardinal numbers ^/c0. (There does not seem to be any
accepted term designating the members of ĵ rT Some authors call
them "measurable" but this does not agree with current terminology
in set theory.)

Given a set / in ^/f and an element p of */, let Fϊl(p) denote
the ultrafilter {J\J cz I and p e *J) on I determined by p. (Fil7(p)
will be used for Fil(p) if necessary to avoid confusion.) Recall that
Fil(p) is a free ultrafilter if and only if p is not standard.

LEMMA 2.2. For each p e */, Fil(p) is ω-complete if and only if
*f(p) ^ finite for every real valued function f on I.

Proof. Given any real valued function f on I and n ^ 1, define

An(f) = {x\xel and \f(x)\ ^ n) .

Then {AJf)\n >̂ 1} is a decreasing chain of subsets of I and the
intersection of the chain is empty.

If p e *I and there exists a real valued function f on I such that
*f(p) is infinite, then pe*An(f) for every n ^ 1. That is,

is contained in Fil(p). This shows that Fil(p) is not ω-complete.
Conversely, suppose Fil(p) is not ω-complete. Then there exists
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a decreasing chain {An \ n ^ 1} in Fil(p) whose intersection is empty.
It may be assumed that Aι — I . Thus a real valued function / may
be defined on I by

f(x) = max [n \ x e A J «

Evidently An(f) = An for each n ^ l . The assumption that p e *(An)
for all n^l implies that \*f(p)\ ^ n for all n ^ l That is, *f(p)
is infinite.

Let 3> be the discrete uniformity on X (that is, £ ^ is the prin-
cipal filter on X x X generated by the diagonal set.) Clearly C(X, &)
is the set of all real valued functions on X and finiς(

>:<X) ~ *[X].
Thus Lemma 2.2 says that

fin:2(*X) = {p\*f(p) is finite if feC(X,&)}

if and only if the cardinality of X is not in ST.
The next results describe completely the conditions under which

an element of FQ is not ^/-finite.

THEOREM 2.3. If pe*X is not ^-finite but *f(p) is finite for
every f e C(X, *&), then there exists an element A of ^ lυhich satisfies

Ye Filx(p) —> the number of =A equivalence classes which

intersect Y is in J5$Γ.

Proof. Assume that p e *X is not ^/-finite, and that *f(p) is
finite whenever / e C(X, ^/). There exists a symmetric element A of
^/ such that p =*Λ*χ is false for every xeXo Let {Xa\ael} be a
one-to-one enumeration of the = A equivalence classes, and let a func-
tion c from X to I be defined by

c(x) — a <—* x e Xa .

It will be shown first that *c(p) is not a standard element of * I.
If otherwise, there exists ael which satisfies *α = *c(p), and hence
p e *(Xβ). Let Aa equal A Π (Xα x Xa) and let '?/a be the uniformity
obtained by restricting <%f to Xa. Since Xα is an =Λ equivalence
class, x =AaV holds for every x,yeXa. By Lemma 2.1 there exists
a semimetric p on Xa which satisfies ( i) the uniformity defined by
p on Xa contains Aa and is weaker than ''zL'a, and (ii) for any r, s e

r =*(A(ι)S <——> *p(j', s) is finite .

Since Xa is an =A equivalence class, r =*As is equivalent to r =UA } s,
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for elements r, s of *(Xa) Thus (ii) implies
(ii') for any r , se*(J α ) ,

r =*As * * *ρ(r, s) is finite .

Let xQ be a fixed element of Xa and define a function h on X by

ίθ if x$Ya

\ ρ(x0, x) if xe Xa .

Given δ > 0, there exists an element i?α of ^ which satisfies

(x, y) e Ba > p(x, y)< δ

by (i) above. This implies that Ba contains a set of the form
B Π (Xa x Xa)> where B is in ^ , and it may be assumed that Be: A.
If (x, y) e B, then either x and y are both outside Xα, and h(x) =

= 0, or (a?, 2/) G Ba. In the latter case

I h(x) - h(y) I = I p(xQ9 x) - p(x, y) \ ^ ^(a?, y)< δ .

Therefore, h is an element of C(X, %f). This implies that *h(p) is
finite. However, since p e *(Xa), *h(p) = *^(*^0, 3>). Thus, by (ii')
above, p ΞM*O?O which is a contradiction. This shows that *c(p) is
not a standard element of *ί

Now let Y be any subset of X which satisfies pe*Y, and let
j = c(Y). It must be shown that there exists an ω-complete, free
ultrafilter on J. If not, then the ultrafilter Fil(*e(p)) is not ω-complete.
(It is free since *c(p) is not standard.) In that case, by Lemma 2.2
there exists a real valued function f on J such that *f(*c(p)) is
infinite. Define a function g on X by

JO if φ ) ί J
I/(Φ)) if Φ)eJ.

If (a j J G i , then ^Ξ^T/ and hence c(x) = c(τ/). This implies that #
is in C(X, %r). But *flr(p) = *f(*c(p)), so that *flr(p) is infinite. This
contradiction shows that Fΐlj(*c(p)) is an ω-complete, free ultrafilter
on J, and completes the proof.

THEOREM 2.4. If Y a X and the number of =A equivalence classes
which intersect Y is in J%Γ, for some A in %f, then there exists an
element p of *Y which is not ^-finite but which satisfies: *f(p) is
finite for every f e C(X,

Proof. Given Ae^ and Γ c l a s stated, there is a subset W
of Y which has one element in common with each =A equivalence
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class which intersects Y. Moreover, there exists an ω-complete,
free ultrafilter on W. Since *^f is an enlargement of ^ ^ this
means that there is an element p of * W which is not standard and
such that Fi\w(p) is ω-complete. By Lemma 2.2, *f(p) is finite for
every real valued function / on W, hence for every / in C(X, %S).
It thus suffices to show that p =*Λ*χ is false for every x in X.
Otherwise, there exist a e l and n ^ 1 which satisfy (p, *x)e *Bn,
where β is i n A~K Since p e * W it follows that for some w e W,
(w, x) e Bn. Therefore (p, *w) e (*B)2n. But since p is not standard,
this implies that there exists wr e W such that wf is distinct from
w and {wr, w) e B2n. That is, wf = A w and hence W has two elements
from the same =A equivalence class. This contradiction proves that
p has the desired properties.

COROLLARY 2.5. The equality

fhM*X) = {p\*f(p) is finite for all feC(X, &)}

holds if and only if the number of =A equivalence classes is not in
for every A e *%S.

In cases where the cardinality assumption of Corollary 2.5 holds
(in particular, if there is no ^-complete, free ultrafilter on X) then the
smallest nonstandard hull constructed in [4] is also the subspace
π(fin^(*X)) of (XQ, <%f0). This fact is helpful in determining the ele-
ments of this nonstandard hull, since it is usually easier to show that
μ(p) is an element by showing that p is ^-finite, and to show that
μ(p) is not an element by exhibiting a function / in C(X, %S) such
that */(ί>) is infinite. (See the examples in §4.)

3* Atsuji [2] has given a condition on (X, ^) which is equivalent
to the statement that every function in C(X, %S) is bounded, and
which is closely related to the concepts discussed above. In this
section a nonstandard proof is given of a natural generalization of
Atsuji's Theorem. (The ideas used in proving this Theorem are also
used in §4.)

DEFINITION 3.1. A subset Y of X is finitely chainable in (X
if, for each i e ^ , there exist yl9 , yk in Y and n ^ 1 which satisfy

The uniform space {X, <%f) is finitely chainable [2] if X is finitely
chainable in (X,

THEOREM 3.2. For any subset Y of X, Y is finitely chainable in



THE NONSTANDARD HULLS OF A UNIFORM SPACE 127

(X, <&) if and only if *Y<z Άn^(*X).

Proof. Suppose Y is finitely chainable in (X, <%f). Given
there exist yl9 , yk in Y and n ^ 1 which satisfy

If follows that * Γ c (*A)Λ(*i/1) U U (*A)n(*yk). If A is symmetric,
this implies that each element of *Y is in the same =*A equivalence
class with one of the elements *yl9 , *yk. Therefore * Y is contained
in fin^(*X).

Conversely, suppose Y is not finitely chainable in (X, %S). Thus
there exists a symmetric set A in ^ such that for any w ;> 1 and
Vi, , Vk e y> the union A*^) U U An(yk) does not contain Y". For
each y e Y and % ̂  1 define

S(n, i/) = {x I α? e Y and £ £ A%)} .

The assumptions on Y imply that the collection {S(n, y)} has the finite
intersection property. Since *^ is an enlargement, there exists
p e * Y which satisfies p e *S(n, y) for every ye Y and n*zl.

It will be shown that p is not ^-finite, thus showing that * Y
is not contained in fin^X). Otherwise there exist xeX and n*zl
which satisfy (p, *x) e (*A)n. This implies that there exists y in YD
An{x), and therefore peA2n(y). That is, p$*S(2n,y), which is a
contradiction.

The following result generalizes the theorem due to Atsuji [2]
which states that (X, <&) is finitely chainable if and only if every
function in C(X, ̂ /) is bounded.

THEOREM 3.3. For any subset Y of X, Y is finitely chainable in
(X, ^ ) if and only if every function in C(X, <2S) is bounded on Y.

Proof If Y is finitely chainable in (X, ̂ ) , then by Theorem 3.2
*Γcfin^(*X). For any function / in C(X, ̂ ) , this implies that
* Γ c { p I */(p) is finite} by Theorem 1.3. Therefore the set

{\*f(p)\\pe*Y},

which is internal, has a finite upper bound M in R. But this implies
that / is bounded by M on Y. That is, each member of C(X, ^ ) is
bounded on Y.

Conversely, suppose each function in C(X, ^ ) is bounded on Y.
To show that Y is finitely chainable in (X, ̂ /) it suffices to prove
* Γ c f i n / I ) , by Theorem 3.2. If not, then by Theorem 2.3 there
must exist an element A of ^ such that the number of = A equivalence
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classes which intersect Y is in ST. In particular there are countably
many (distinct) =A equivalence classes Xu , Xn, • ••, each of which
intersects Y. The function / defined on X by

In if xeXn
fix) — \

(0 if x$Xn, all n ^ l

is therefore unbounded on Y. However, / is constant on = A equiva-
lence classes, and thus / is in C(X, ̂ ) . This is a contradiction, and
completes the proof.

REMARK. Theorem 3.2 allows us to say exactly when there is
a single function / in C(X, *%f) which satisfies

fin^(*X) = {p\*f(p) is finite}.

Namely, this equality holds if and only if the sets {x | \f(x) | ^ n} (for
n ^ 1) are all finitely chainable in (X, ̂ /). (The equality holds if
and only if {p\\*f(p)\ ^ n) c fπv(*X) for all n ^ 1 (by Theorem 1.3)
if and only if {α?||/(αθ| ^ n) i s finitely chainable in (X,^) for all
n^l (by Theorem 3.2).)

In particular, if <%f is the uniformity defined by some metric p
on X, then the equality

fin^(*X) = {v\*p{v, *x) is finite}

holds for some (or, equivalently, every) x in X, if and only if

{y\ρ{y,x) ̂  n)

is finitely chainable in (X, ̂ ) for every n ^ 1.

4* Given a metric ^ on X, Robinson [6] says that p and q are
in the same galaxy of *X if *p(p, q) is finite. Generalizing this idea
Luxemburg [4] defines p and g to be in the same galaxy relative to
a set Sf of semimetrics on X if *p(p, q) is finite for every p in ^
The following definition of the "^-galaxies of *X arises naturally from
the considerations which led to Definition 1.2.

DEFINITION 4.1. If p, q e *X, then p and q are in the same ^/-
galaxy if p = ^ ^ .

THEOREM 4.2. 7/ p απd g are iπ the same ^/-galaxy and p is
any semίmetric on X which defines a uniformity weaker than OSS,
then *p{p, q) is finite.

Proof. Since p defines a uniformity weaker than ^f there exists
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4 e ^ which satisfies

(x, y)eA > ρ(x, y) ^ 1 .

Since p and q are in the same ^-galaxy, there is a *A-chain qQ, , qn

from p to q. Using the triangle inequality for *p yields

, 9) ^ Σ

Therefore *iθ(P> q) is finite.

DEFINITION 4.3. A subset Y of X is chain connected in (X,
if x =^y for every x, y e Y. The uniform space (X, ^/) is chain
connected if X is chain connected in (X,

THEOREM 4.4. Lei S^ he the set of all semimetrics which define
weaker uniformities than ^/ and suppose that Y is chain connected
in (X, ^ ) . Then for every p,qe*Y:p and q are in the same <%?-
galaxy if and only if *p(p, q) is finite for every p in £f.

Proof. Let Y and £f be as stated and assume p, q e * Y. The
implication in one direction is contained in Theorem 4.2. Conversely,
suppose that *p(p, q) is finite for all p in £f. To prove that p and
q are in the same ^-galaxy it is necessary to show that p = *Aq for
every symmetric set A in ^ . Given such an A, the fact that Y is
chain connected in (X, ^) means that there is an == A equivalence class
W which contains Y. Let Aw = Af)(W x W) and let ^/w be the re-
striction of ^ to W. As in the proof of Theorem 2.3, an application
of Lemma 2.1 yields a semimetric p on W which satisfies (i) the uni-
formity defined by p on W is weaker than Ww, and (ii) for any r, se
*T7, r =*As if and only if *p(r, s) is finite.

Select w0 in W and let / be the function defined on X by

o M X $ W

if xe W .

Then / is constant on = A equivalence classes so that / is uniformly
continuous as a map from (X, ^ ) to (W, ^V). It follows that the
semimetric pf defined on X by

defines a weaker uniformity on X than ^ . By assumption, this
means that *p'(p,q) = *p(p,q) is finite. Therefore p =*Aq by (ii)
above, completing the proof.

COROLLARY 4.5. // (X, ^ ) is chain connected and S^ is the set
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of all semimetrics which define weaker uniformities on X than %f,
then the ^-galaxies form the same partition of *X as do the galaxies
determined by Sf.

REMARK. AS was noted above, if A is in ^ , then each = A equiva-
lence class is open and closed in the ^-topology on X. Therefore if
X is connected in the ^-topology, then (X, *%s) must be chain con-
nected. Applying the same reasoning to the uniform space (*X, &)
shows that any subset of *X which is connected in the ^-topology
must be entirely contained in one ^-galaxy.

THEOREM 4.6. If (X, ^) is chain connected, then the following
conditions are equivalent:

(i) There is a semimetric p which defines a uniformity weaker
than <%s and which satisfies: p and q are in the same ^-galaxy in
*X if and only if *p(p, q) is finite:

(ii) There is an element Ao of *2S which satisfies:
for each i € ^ there is an n ^ 1 such that AQ a An.

Proof, (i) —>(ii): Let p be as in (i) and define

Ao = {(χ,v)\p(χ,y) ^1}

as that AQ is in ^ . If Ao does not satisfy (ii), then there is an ele-
ment A of ^ such that for no n ^ 1 does A% contain Ao. That is,
for each n ^ 1 there exists a pair xn, yn of elements X which satisfy
P(®»y V») ̂  1 a n ( i (χn, Vn) £ An. Let ω be an infinite member of *iV
Then V(*#ω, *yω) ^ 1, so that by (i) there is a *A-chain q0, * ,qn

from *xω to *yω. That is, (*xω, *yω) is an element of (*A)n = *(A%).
But since o) is not standard, this means that (xk, yk) e An holds for
infinitely many values of k in N. This contradicts the choice of the
pairs (xk9 yk) and proves that A* satisfies (ii).

(ii) —>(i): Assume that Ao satisfies (ii). Then for each A in ^ ,
*AQ c *An (for some n depending on A.) Therefore p =*AQQ implies
p =*Aq, for every p, q e *X and every A G ^ . Thus the = M o equiva-
lence classes and the ^-galaxies are exactly the same. The existence
of the semimetric required in ( i) now follows, using Lemma 2.1 and
the fact that (X, ^ ) is chain connected.

REMARK. Suppose (X, ^ ) is chain connected and ^ is defined by
a metric p0. If {X, C2S) satisfies the conditions in Theorem 4.6, then
there exists a metric pι which defines ^/ and also satisfies: p and q
are in the same ^-galaxy if and only if ^p^p, q) is finite. That is,
^ can be "remetrized" so that the ^-galaxies and the galaxies
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defined by the metric coincide,
in 4.6.i and define

To construct p19 simply choose p as

pL(x, y) = max {p(x, y), min (po(x, y), 1)} .

The following two examples were developed in collaboration with
L. C. Moore, and are based on ideas due to him. In each case the
uniformity ^ is defined by a metric on X. The first example shows
that a ^-finite point need not be in the same ^-galaxy with any
standard point, even when (X, ^f) is complete. The second example
shows that even when the original space (X, Of) is arcwise connected,
the smallest nonstandard hull of (X, ^ ) constructed in [4] need not
even be chain connected (or, what is the same, the uniform space
obtained by restricting ^ to fmf,(*X) need not be chain connected.)

EXAMPLE 1. In this example X is the set of all pairs x = (xl9 x2)
of positive integers, and ^ is the uniformity defined by the metric
p, where

, v) =

j/2

Vl

j/2

Vl

-Mi

Vz

Vl

Vl

if Xί -

if x
λ
 Φ y

1

(The metric p is obtained in the following way: for each x in X let

x be the sequence x = (α0, al9 a2, •)> where

a — ®1 a — X l

and all other αΛ are 0. The distance p(x, y) is then just the lλ norm
of x — y as an element of the linear space of all sequences which
have finite support.)

For an element (p, q) of *X to be ^-finite, it is necessary (by
Lemma 4.2) that *ί>((l, 1), (p, q)) be finite. This implies that pfq and
q/p are finite elements of *.# (or, what is the same, that p/q is finite
but not infinitesimal.) Suppose, conversely, that q/p and p/q are
finite. It will be shown that the element (p, q) of *X is ^-finite.
If either p or q is finite, then the other must be. That is, (p, q) is
in X. Assume therefore that p and q are both in *N ~ N. Given a
standard real number δ > 0, a number r in *ΛΓ may be chosen which
satisfies the inequalities

(4.1) f 4 + A-]
L<f pJ

< 8^ (r +
q2 piq

2
 p

For any k e N, the * ̂ -distance between the elements (p,q + kr) and
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(p, q + kr + r) of *X is equal to

P V q + kr q + kr + r

Pq Λ- kr q + kr + r

which is bounded above by

rp ,

Now choose the smallest s in *JV which satisfies

g + sr 4

The inequalities (4.1), together with the fact that p/q is finite but
not infinitesimal, implies that r/p is finite but not infinitesimal. This
shows that s is actually in N, and the sequence (p,q),(p,p + r), 9

(P, Q + sr) is a 5-chain in *X with a finite number of steps.
Since p/q and r/p are each finite but not infinitesimal, there are

standard integers ra, n such that m/n is within <?/4 of

g + sr

and w/m is within <?/4 of the reciprocal

q + sr
p

It follows that the *<o-distance between {p, q + sr) and (m, %) is less
than δ. This shows that there is a δ-chain from (p, q) to a standard
element of *X, for each standard δ > 0. Therefore (p, g) is ^/-finite,
as claimed.

Given a ^-pre-nearstandard element (p, q) of *X, p/g must be
finite but not infinitesimal, by Theorem 1.4 and the previous argument.
If (p, q) is not standard, then p is infinite. Therefore every standard
element of * X is a * ̂ -distance of at least p/q away from (p, q). But
p/q is not infinitesimal, so this is a contradiction. Therefore pns?/(*X)
is simply the set of all standard elements of *X This shows that
(X, ^ ) is complete and that the ^-topology on X is discrete.

Also, there are elements of fin^(*X) which are not standard (for
example, {ω, ω) is one whenever ω is infinite.) Since the ^-topology is
discrete, each standard element of *X comprises a ^-galaxy by itself.
Thus there are ^-finite points which are not in the same ^-galaxy
with any standard point. In fact it can be shown, by an argument
similar to the one used to characterize fin^(*X), that the set A of non-
standard, ^-finite elements of *X comprises a single ^-galaxy.
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Note that if (O and o)' are distinct elements of *iSΓ, then the *p-
distance between (ω, ω) and (ω'9 ωf) is 2. Thus the image under π
of finf^(*X) in XQ has at least as many elements as *N. Since the
enlargement *^#r can be chosen to make the cardinality of *iV arbi-
trarily large, this shows that the various nonstandard hulls of (X,
constructed in [4] depend on *^/Z as well as on (X,

EXAMPLE 2. In this example X consists of a countable set of
points {an \ n Ξ> 0}, together with certain arcs joining α0 to the other
distinguished points. For each n Ξ> 1 the arcs joining α0 to an form
n subspaces X(n, 1), •••, X(n,ri), each two of which have only the
elements α0 and an in common. Moreover, if l^j^m, l ^ k ^ n
and nΦ m, then X(m, j) and X(n, k) have only the element α0 in com-
mon.

The metric p which defines ^ is given first on the subspaces

-k -

Figure 1.
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X(n, k) and then extended to all of X. For a given 1 <: k <; n, p is
defined on X(n, k) in such a way as to make the subspace X(n, k)
isometric to the subspace of the Euclidean plane pictured in Figure 1.
(This subspace consists of the seven line segments obtained by joining
adjacent pairs of points in the sequence: (0, 0), (0, n), (1/4&, n), (1/4&, —k),
(1 — 1/4&, —k), (1 — 1/4&, n), (1, ri), (1, 0).) In each case the isometry is
assumed to take α0 to (0, 0) and to take an to (1, 0). Therefore there
is a function / from X into R2 whose restriction to a given subspace
X(n, k) yields the assumed isometry.

The metric p is defined on the rest of X x X as follows. Let
x, y e X and suppose p(x, y) is not yet defined. That is, x e X(m, j)
and y e X(n, k), where the pairs (ra, j) and (n, k) are distinct. If
n Φ m, then p(x, y) is defined to be p(x, α0) + p(a0, y). If n — m, then
/θ(a;, y) is defined to be

min {p(x, a0) + ρ(α0, y), p(x, an) + /θ(αn, y)} .

It will be shown first that for every x, y e X and n Ξ> 0

(4.2) /o(a?, y) £ ρ{x, an) + p(an, y) .

If % = 0 or if x and y are both elements of the union X(n, 1) U U
X(n,ri), then (4.2) is obvious. Thus assume x e X(m, j) where mφn.
In that case

(4.3) ρ(x, an) = /O(a?, α0) + /θ(α0, αn) .

If 7/ G X(^, A) for some k, then

0,2/) ^ p(aQ, an) + ^>(aw, i/) .

This inequality, together with (4.3) and (4.2) when n — 0, proves (4.2)
in the present case. By the symmetry of p, it remains only to con-
sider the case when y e X(m, j) for some m Φ n. In that case

P(a>n, V) = P(a>o, dn) + P(a>o, v)

This, together with (4.3), shows that p(x, an) + p(an, y) is bounded
below by p(x, α0) + p(aQ, y). An application of (4.2) when n = 0 com-
pletes the proof.

To prove the triangle inequality in general, let x, y, z e X and
assume zeX{n, k). If neither x nor y is in X(n, k), then

p(x, z) + p(z, y) - ρ(x, b) + p(b, z) + p(z, c) + p(c, y) ,

where b and c are each either α0 or αw. Since 6, c, ^ are all in X(n, k),
ρ(b, c) <£ jθ(δ, «) + p(z, c). This, together with two uses of (4.2), proves
the triangle inequality
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(4.4) ρ(x, y) ^ p{x, z) + p(z, y)

in this case. By the symmetry of p it remains only to consider the
case when x e X(n, k) but y £ X(n, k). Then

ρ(x, z) + ρ(z, y) = ρ{x, z) + ρ(z, b) + p(b, y)

for b — a0 or an. The triangle inequality applied to x, z, b (which are
all elements of X(n, k)) together with one use of (4.2) yields (4.4) in
this case, and completes the proof. Thus p is a metric on X.

In passing to consideration of *X, note that there are subsets
*X(ω, ω') of *X which correspond to the subsets X(n, k) of X. In
particular, for each p in *X there is at least one pair (ω, ωr) which
satisfies 1 <£ ωf ^ ω and p e *X(ω, ω'). Moreover, if p and q are both
elements of *X(ω, ω'), then *ρ(p, q) = *d(*f(p), */(g)), where *d is the
extension of the Euclidean metric to *ίϋ2.

The analysis of fin^(*X) depends on the following fact.

LEMMA. If p is ^/-finite and p e *X{ω, ω'), where ωf e *JV, ω e
*iV— N and ωr ^ ω, then the standard part of the first coordinate of
*f(p) is either 0 or 1.

Proof. Let p, ω and ω' be as stated. Since p is F^-finite, */θ(*α0, p)
must be finite, by Theorem 4.2. Therefore *f(p) is a finite distance
from (0, 0) in *R2, so that the second coordinate of *f(p) must be
finite. If ωf is infinite, this implies that the first coordinate of
*f(p) must be one of the numbers: 0, l/4ωr, 1 — 1/ω', or 1. These
numbers have standard part 0 or 1.

Thus it may be assumed that ω' is finite. Let A be the set of
all q in *X(ω, ω') such that *f(q) has an infinite second coordinate or
has a first coordinate different from 0 or 1. Then if q e A but re
*X~ A, it follows that *ρ(q, r) > l/8ω\ In addition, A has no
standard element (since the only standard element of *X(ω, ω') is *α0.)
Thus there is no l/8ωr-chain from any element of A to any standard
element. This shows that no element of A is ^-finite. Thus, in
this case, *f(p) actually has first coordinate equal to 0 or 1.

Now consider the point *αω, where ω is any infinite element of
*AΓ. For each standard k in N there is a 1/Λ -chain from *αω to *α0

in *X(α>, k) (since the three segments in *f(*X(ω, k)) which lie below
the horizontal axis in *R2 have finite length when k is finite.) There-
fore *αω is ^-finite. However, there cannot be any sequence g0, , qn

of ^"-finite points which satisfy: q0 = *αω, gΛ = *α0 and */θ( ί̂, gi+1) <
1/2 for all ΐ = 0, , n — 1. Otherwise, by the Lemma, there must
exist i, 0 ^ i ^ n — 1, such that the first coordinates of */fe
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*/(?t+i) have standard parts 1 and 0 respectively. But this would
imply *p(qiy qi+1) > 1/2, which is a contradiction.

Thus it has been shown that the uniform space resulting from
restricting ^ to fin^(*X) is not chain connected. The example is
completed by noting that since X is essentially a union of polygonal
paths from α0, the space (X, ^ ) is arcwise connected.

REMARK. The last example shows that restriction of ^ to a ^ -
galaxy need not yield even a chain connected uniform space. In some
cases, however, the ^-galaxies are exactly the connected components
of *X under the ^-topology. For example, let ^ be a uniformity
defined by a metric p "on X which satisfies the following convexity
assumption: for each x, y e X and δ > 0 there exists z e X which satis-
fies

ρ(x, z) - ±-p{x, y)
Δ

P(y, z) - ^-p(x, y)
Δ

<δ

<§.

(This is equivalent to saying that the completion of (X, p) is metri-
cally convex, and it is true, for example, when X is a normed linear
space.)

Passing to *^€; and letting δ be infinitesimal, it follows that for
each p,qe*X there exists r e *X which satisfies

st(*p(p, r)) = st(V(?, r)) = ±st(*p(p, q)) .
Δ

Used repeatedly, this shows that whenever *p(p, q) is finite, p
and q must be in the same ^-galaxy. Moreover, the restriction of
*%/ to any ^-galaxy yields a chain connected space. On such a galaxy
Y the restriction of ^ is defined by the semimetric p defined by
P(P, q) — st(*(p, q))9 as discussed in §1. If *^£ is y^-saturated, then
(F, p) is a complete semimetric space, by the Remark following Theo-
rem 1.4 (and the fact that ^-galaxies are closed in the ^-topology.)
In fact, it has been shown above that (Y, p) is convex. As is well
known, these facts imply that Y is arcwise connected in the ^-topology.
It follows, using the Remark following Corollary 4.5, that the <&-
galaxies are identical to the connected components of *X in the ^»
topology.
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