A PHRAGMÉN-LINDELÖF THEOREM WITH APPLICATIONS TO $M(u, v)$ FUNCTIONS

THOMAS LATIMER KRIEYE, III AND MARVIN ROSENBLUM
A PHRAGMÉN-LINDELOF THEOREM WITH APPLICATIONS TO \(\Lambda (u, v) \) FUNCTIONS

THOMAS L. KRIETE, III AND MARVIN ROSENBLUM

A well-known theorem of Paley and Wiener asserts that if \(f \) is an entire function, its restriction to the real line belongs to the Hilbert space \(\mathcal{F}L^2(\mathbb{R}) \) (where \(\mathcal{F} \) is the Fourier-Plancherel operator) if and only if \(f \) is square integrable on the real axis and satisfies
\[
|f(z)| \leq K e^{\tau |\text{Im}z|}
\]
for some positive \(K \). The "if" part of this result may be viewed as a Phragmén-Lindelöf type theorem. The pair \((e^{i\tau}, e^{i\tau}) \) of inner functions can be associated with the above mentioned Hilbert space in a natural way. By replacing this pair by a more general pair \((u, v) \) of inner functions it is possible to define a space \(\mathcal{M}(u, v) \) of analytic functions similar to the Paley-Wiener space. For a certain class of inner functions (those of "type \(\mathcal{C} \)") it is shown that membership in \(\mathcal{M}(u, v) \) is implied by an inequality analogous to the exponential inequality above.

A second application of our results is to star-invariant subspaces of the Hardy space \(H^2 \). It is well known that if \(u \) is an inner function on the circle and \(f \) is in \(H^2 \), then in order for \(f \) to be in \((uH^2)^\perp \) it is necessary for \(f \) to have a meromorphic pseudocontinuation to \(|z| > 1 \) satisfying
\[
|f(z)|^2 \leq K \frac{1 - |u(z)|^2}{1 - |z|^2}, \quad |z| > 1.
\]

If \(u \) is inner of type \(\mathcal{C} \), it is proved that this necessary condition is also sufficient.

Let \(\Gamma = \{e^{i\theta}: 0 < \theta < 2\pi\} \) be the unit circle and
\[
R = \{x: -\infty < x < \infty\}
\]
the real line considered as point sets in the complex plane \(C \). Let \(D \) and \(D_- \) be the interior and exterior of the unit circle and let \(\Omega \) and \(\Omega_- \) be the open upper and open lower half-planes in \(C \). A function \(\Phi \) is outer on \(D \) or \(\Omega \) if \(\Phi \) is holomorphic on \(D \) or \(\Omega \) and of the form
\[
\Phi(z) = \exp \int_D \frac{e^{it} + z}{e^{it} - z} k_t(e^{it}) \sigma(d\xi), \quad z \in D,
\]
or
\[
\Phi(z) = \exp \frac{1}{\pi i} \int_R \frac{1 + tz}{t - z} k_t(t) dt, \quad z \in \Omega,
\]

175
where k_1, k_2 are real with $k_1 \in L^1(\Gamma)$, $k_2 \in L^1(R)$, and σ is normalized Lebesgue measure on Γ. A function F on D or Ω is in \mathcal{R}^+ if F is holomorphic on D or Ω and if there exists an outer function Φ that is not identically zero and such that ΦF is a bounded holomorphic function on D or Ω. If F is in \mathcal{R}^+ on D or Ω, then $f(e^{i\theta}) = \lim F(re^{i\theta})$ exists for almost all $e^{i\theta} \in \Gamma$, or

$$f(x) = \lim_{y \downarrow 0} F(x + iy)$$

exists for almost all x in R. Such f form the class \mathcal{M}^+ of functions on Γ and R respectively. We shall systematically use capital letters F, G, \cdots for functions in \mathcal{R}^+ and lower case letters f, g, \cdots for the corresponding functions in \mathcal{M}^+.

Every outer function is in \mathcal{R}^+. A function U in \mathcal{R}^+ is inner if $|u| = 1$ a.e.. Every function F in \mathcal{R}^+ has a factorization of the form $F = UG$, where U is inner and G is outer.

Suppose U and V are inner functions, say, on Ω. $\mathcal{M}(u, v, R)$ is the set of functions f on R such that uf and vf^* are in \mathcal{N}^+ on R. (f^* is the complex conjugate of f). $\mathcal{M}(u, v, \Gamma)$ is similarly defined. As shown in [5] one can associate with each f in $\mathcal{M}(u, v, R)$ a unique function F separately meromorphic in Ω and Ω_- such that $UF \in \mathcal{R}^+$, $V\bar{F} \in \mathcal{R}^+$, and

$$f(x) = \lim_{y \downarrow 0} F(x + iy) = \lim_{y \downarrow 0} F(x - iy)$$

for almost all x in R, where $\bar{F}(z) = F^*(z^*)$, $z \in \Omega$. If F is meromorphic in Ω, then an extension of F to a meromorphic function on $\Omega \cup \Omega_-$ satisfying (1) is said to be a meromorphic pseudoccontinuation (relative to R) of F. Similarly, to each f in $\mathcal{M}(u, v, \Gamma)$ one associates a unique F meromorphic in $D \cup D_-$ such that $UF \in \mathcal{R}^+$, $V\bar{F} \in \mathcal{R}^+$, and

$$f(e^{i\theta}) = \lim_{r \downarrow 1} F(re^{i\theta}) = \lim_{r \downarrow 1} F(re^{i\theta})$$

for almost all $e^{i\theta} \in \Gamma$ where $\bar{F}(z) = F^*(z^{*-1})$, $z \in D$. Meromorphic pseudoccontinuation is defined relative to Γ in a manner analogous to the R definition.

Considerations about $\mathcal{M}(u, v, R)$ may be motivated by examining the special case when $U(z) = V(z) = e^{iz}$, $\tau \geq 0$. Then

$$\mathcal{M}(u, v, R) \cap L^\tau(R)$$

is the class of functions that are the restrictions to R of entire functions of exponential type $\leq \tau$ such that $\int_R |F(x)|^2 \, dx < \infty$. Such entire F can be characterized by this integral condition together
with the inequality
\[|F(z)|^2 < K |y|^{-1} \sinh(2\tau y) \]
for all \(z \in \Omega \cup \Omega_\infty \), where \(K > 0 \). The object of this paper is to extend this type of function-theoretic characterization to more general \(\mathcal{A}(u, v) \) classes. The above mentioned application to star-invariant subspaces arises from the fact that \(\mathcal{M}(1, v) \cap L^1(R) = H^2(\Omega) \cap vH^2(\Omega) \), where \(H^2(\Omega) \) is the Hardy space of the upper half-plane. In § 3 and 4 applications are given to factorization problems for nonnegative operator-valued functions and to generalized Paley-Wiener representations.

1. A Phragmén-Lindelöf Theorem. In this section we shall derive a Phragmén-Lindelöf type theorem for certain functions holomorphic on \(D \), and then transcribe the result to obtain a like theorem for functions on \(\Omega \). A rather different Phragmén-Lindelöf type theorem is discussed by Helson in [2, p. 33].

Recall that a Blaschke product \(B \) on \(D \) has a representation
\[B(z) = \prod_{j \in \mathbb{Z}} B_j(z), \quad B_j(z) = \frac{z_j^+ z_j - z}{z_j - z_j^+}, \quad z \in D, \]
where \(\sum_{j \in \mathbb{Z}} (1 - |z_j|) < \infty \). We take \(z_j^+/|z_j| = 1 \) if \(z_j = 0 \). The support \(\text{supp} B \) of \(B \) is the intersection of \(\Gamma \) with the closure of \(\{z_j\}_{j \in \mathbb{Z}} \). A singular inner function \(S \) has a representation
\[S(z) = \exp \left(-\int \frac{e^{it} + z}{e^{it} - z} \mathrm{d}\mu(\xi) \right), \quad z \in D, \]
where \(\mu \) is a positive singular measure on \(\Gamma \). The support \(\text{supp} S \) is the closed support of the measure \(\mu \).

Any inner function \(U \) on \(D \) can be factored in the form \(U = eBS \), where \(e \in \mathbb{C}, |e| = 1, B \) is a Blaschke product and \(S \) is a singular inner function. The support \(\text{supp} U \) of \(U \) is \(\text{supp} B \cup \text{supp} S \).

A closed set \(N \) on \(\Gamma \) is a Carleson set if \(N \) has zero Lebesgue measure and if the complement of \(N \) in \(\Gamma \) is a union of open arcs \(I_j \) of lengths \(\varepsilon_j \) such that \(\sum_{j \in \mathbb{Z}} \varepsilon_j \log \varepsilon_j > -\infty \).

Theorem 1.1. (Carleson [1]). A closed subset \(N \) of \(\Gamma \) is a Carleson set on \(\Gamma \) if and only if there exists an outer function \(G \) on \(D \) that satisfies a Lipschitz condition and such that
\[g(e^{i\theta}) \overset{\text{def}}{=} \lim_{r \to 1} G(re^{i\theta}) \]
vanishes on \(N \).
DEFINITION 1.2. An inner function U on D is of type G_e if
(i) $\text{supp } U$ is a Carleson set, and
(ii) $\sum_{j \in \mathbb{Z}} [\text{dist } (z_j, \text{supp } U)] < \infty$,
where $\{z_j\}_{j \in \mathbb{Z}}$ are the zeros of U in D repeated according to multiplicity.

LEMMA 1.3. Let B be the Blaschke product given by (3) and suppose B is of type G_e. If G is a Lipschitz outer function on D such that $g(e^{i\theta}) = \lim_{r \uparrow 1} G(re^{i\theta})$ vanishes on $\text{supp } B$, then
\begin{equation}
\sum_{j \in \mathbb{Z}} (1 - |z_j|^2) \int |1 - z^*_j e^{i\theta}|^{-1} g(e^{i\theta}) |^2 \sigma(d\theta) < \infty.
\end{equation}

Proof. Since G is Lipschitz there exists $K > 0$ such that $|g(e^{i\theta})| \leq K |e^{i\theta} - \lambda|$ for all $e^{i\theta}$ in Γ and λ in $\text{supp } B$. Thus for λ in $\text{supp } B$,
\begin{equation}
(1 - |z_j|^2) \int |1 - z^*_j e^{i\theta}|^{-1} g(e^{i\theta}) |^2 \sigma(d\theta)
\leq (1 - |z_j|^2) K^2 \int |1 - z^*_j e^{i\theta}|^{-1} (e^{i\theta} - \lambda)^2 |^2 \sigma(d\theta) .
\end{equation}

Applying Parseval’s equality to the Fourier series for the function $(1 - z^*_j e^{i\theta})^{-1} (e^{i\theta} - \lambda)$ shows that this last expression is equal to $K^2 (|z_j - \lambda|^2 + (1 - |z_j|^2)).$

Since $\sum_{j \in \mathbb{Z}} (1 - |z_j|^2) < \infty$ and we are free to let λ vary over $\text{supp } B$ this inequality implies (5).

The following theorem is our Phragmén-Lindelöf result for functions on D.

THEOREM 1.4. Let U be an inner function of type G_e on D. Suppose F is holomorphic in D and there exists $M > 0$ such that
\begin{equation}
|F(z)|^2 \leq M(1 - |z|^2)^{-1} (1 - |U(z)|^2), \quad z \in D .
\end{equation}

Then $F \in \mathcal{H}^+.$

Proof. U has the factorization $U = cBS$, where $|c| = 1$, B is a Blaschke product of type G_e and S is a singular inner function of type G_e. We have
\begin{equation}
(1 - |z|^2)^{-1} (1 - |U(z)|^2)
= (1 - |z|^2)^{-1} (1 - |B(z)|^2) + |B(z)|^2 (1 - |z|^2)^{-1} (1 - |S(z)|^2)
\leq (1 - |z|^2)^{-1} (1 - |B(z)|^2) + (1 - |z|^2)^{-1} (1 - |S(z)|^2), \quad z \in D .
\end{equation}
If B is given by (3), then
\[
1 - |B(z)|^2 = 1 - |B_1(z)|^2 + \sum_{n \in \mathbb{Z}} \left| \prod_{j=1}^{n-1} B_j(z) \right|^2 (1 - |B_n(z)|^2)
\leq \sum_{j \in \mathbb{Z}} (1 - |B_j(z)|^2).
\]

Thus
\[
(8) \quad (1 - |z|^2)^{-1} (1 - |B(z)|^2) \leq \sum_{j \in \mathbb{Z}} (1 - |z_j|^2) |1 - z_j^* z|^{-2}.
\]

If S is given by (4), then
\[
|S(z)|^2 = \exp \left\{ -2 \int_{\mathbb{R}} (1 - |z|^2) \left| e^{it} - z \right|^{-2} \mu(d\xi) \right\}, \quad z \in \mathbb{D}.
\]

Applying the elementary inequality $(1 - e^{-ah})/h) \leq a$ if $a, h \geq 0$, with $h = 1 - |z|^2$ and $a = 2 \int_{\mathbb{R}} |e^{it} - z|^{-2} \mu(d\xi)$ yields
\[
(9) \quad (1 - |z|^2)^{-1} (1 - |S(z)|^2) \leq 2 \int_{\mathbb{R}} |e^{it} - z|^{-2} \mu(d\xi), \quad z \in \mathbb{D}.
\]

Suppose now that (6) holds and let G be a Lipschitz outer function such that $g(e^{i\theta}) = \lim_{r \to 1} G(re^{i\theta})$ vanishes on supp U. We have from (6) — (9) that
\[
|G(z)F(z)|^2 \leq M \sum_{j \in \mathbb{Z}} (1 - |z_j|^2) |1 - z_j^* z|^{-2} |G(z)|^2 + 2M \int_{\mathbb{R}} |e^{it} - z|^{-2} |G(z)|^2 \mu(d\xi), \quad z \in \mathbb{D}.
\]

But for some $K > 0$
\[
|G(z)|^2 \leq K^2 |e^{it} - z|^2 \quad \text{if} \quad e^{it} \in \text{supp } U,
\]
and μ is supported on supp $S \subseteq \text{supp } U$. Thus for all $z \in \mathbb{D}$
\[
|G(z)F(z)|^2 \leq M \sum_{j \in \mathbb{Z}} (1 - |z_j|^2) |1 - z_j^* z|^{-2} |G(z)|^2 + 2MK^2 \mu(I').
\]

It now follows from Lemma 1.3 that
\[
\sup_{0 \leq r < 1} \int_{\mathbb{R}} |G(re^{i\theta})F(re^{i\theta})|^2 \sigma(d\theta) < \infty,
\]
so $GF \in H^\infty$. It is easy to multiply G by an outer function G_1 and obtain G_1GF bounded, and so F is in \mathcal{H}^∞.

We shall next recast Theorem 1.4 for functions holomorphic on Ω. Any inner function U on Ω has a factorization $U = cBV^a$, where $c \in \mathbb{C}$, $|c| = 1$, B is a Blaschke product on Ω, S is a singular function on Ω, and $V^a(z) = e^{iza}$, where $0 \leq a \in \mathbb{R}$. Then supp B is defined to be the set of limit points on $R \cup \{\infty\}$ of the zeros of B,
and supp S is defined to be the support of the singular measure in the representation for S analogous to (4), (Hoffman [3] p.132-133). We define supp V^a to be empty if $a = 0$, and $\{\infty\}$ if $a > 0$. The support supp U of U is supp $B \cup$ supp $S \cup$ supp V^a.

A closed subset N of the extended real line $R \cup \{\infty\}$ is a Carleson set if $N \cap R$ has Lebesgue measure zero, $\infty \in N$, and the complement of N in $R \cup \{\infty\}$ is a union of open intervals $I_j = (a_j, b_j)$, $-\infty \leq a_j < b_j \leq \infty$, $j = 1, 2, \ldots$ such that $\sum_{j>1} \delta_j \log \delta_j > -\infty$, where

$$\delta_j = \frac{b_j - a_j}{(1 + b_j)^{1/2} (1 + a_j)^{1/2}}, \quad j = 1, 2, \ldots$$

We understand in the above that $\infty/\infty = 1$.

Now let $\alpha: \mathbb{D} \to \overline{\mathbb{D}} \cup \{\infty\}$ be the mapping defined by

$$\alpha(z) = i(1 + z)(1 - z)^{-i}$$

if $z \neq 1$ and $\alpha(1) = \infty$, and let β be the inverse of α. Then if $z_i, z_\infty \in \overline{\mathbb{D}}$,

$$|\beta(z_i) - \beta(z_\infty)|^2 = 4 \frac{|z_i - z_\infty|^2}{|z_i + i|^2 |z_\infty + i|^2}.$$

Moreover β maps $(-\infty, \infty]$ onto Γ and N is a Carleson set on $R \cup \{\infty\}$ if and only if $\beta(N) \cup \{1\}$ is a Carleson set on Γ. If U is inner on Ω then $U \circ \alpha$ is inner on D and supp $(U \circ \alpha) = \beta$ (Supp U). Furthermore if $\{z_j\}_{j>1}$ is the sequence of zeros of U, then $\{\beta(z_j)\}_{j>1}$ is the sequence of zeros of $U \circ \alpha$.

Definition 1.5. Let U be an inner function on Ω. U is of type C if supp $U \cup \{\infty\}$ is a Carleson set on $R \cup \{\infty\}$ and

$$\sum_{j \geq 1} \left(\inf_{\lambda \in \text{supp} U} \frac{|z_j - \lambda|^2}{(1 + \lambda^2) (1 + |z_j|^2)} \right) < \infty,$$

where $\{z_j\}_{j>1}$ is the sequence of zeros of U in Ω repeated according to multiplicity.

The following lemma follows from the above discussion.

Lemma 1.6. Let U be inner on Ω. Then U is of type C if and only if $U \circ \alpha$ is of type C on D.

We can now recast Theorem 1.4 for the half-plane.
Theorem 1.7. Let \(F \) be holomorphic in \(\Omega \) and suppose that \(U \) is inner of type \(\mathcal{C} \) in \(\Omega \). Suppose that there exists \(K > 0 \) such that

\[
|F(z)|^2 \leq K(\text{Im } z)^{-1} (1 + |z|^2) (1 - |U(z)|^2) \quad \text{for } z \in \Omega.
\]

Then \(F \in \mathcal{R}^+ \) on \(\Omega \).

Proof. Set \(G = F \circ \alpha \), so \(G \) is meromorphic on \(\mathbb{D} \) and

\[
|G(z)|^2 \leq K [\text{Im } \alpha(z)]^{-1} (1 + |\alpha(z)|^2) (1 - |U(\alpha(z))|^2), \quad z \in \mathbb{D}.
\]

We can replace \(1 + |\alpha(z)|^2 \) by \(i + \alpha(z) \) and the inequality still holds but for a different constant \(K \). Now

\[
\text{Im } \alpha(z) = (1 - |z|^2) |1 - z|^2
\]

and

\[
|i + \alpha(z)|^2 = 4 |1 - z|^2,
\]

so

\[
|G(z)|^2 \leq K' (1 - |z|^2)^{-1} (1 - |U(\alpha(z))|^2), \quad z \in \mathbb{D}.
\]

But by Lemma 1.6 \(U \circ \alpha \) is of type \(\mathcal{C} \), and thus Theorem 1.4 implies that \(G \in \mathcal{R}^+ \) on \(\mathbb{D} \). We then deduce that \(F = G \circ \beta \) is in \(\mathcal{R}^+ \) on \(\Omega \).

2. The classes \(\mathcal{M}^+(u, v, \Gamma) \) and \(\mathcal{A}(u, v, R) \). Suppose \(U \) is inner in \(\mathbb{D} \). Then \(U \) has a meromorphic pseudocontinuation to a function \(U \) on \(\mathbb{D} \) that is given by

\[
U(z) = \begin{cases}
U(z), & z \in \mathbb{D} \\
1/U^*(z^-), & z \in D_-
\end{cases}
\]

If \(\text{supp } U \neq \Gamma \), then \(U \) on \(\mathbb{D} \) has a single valued meromorphic continuation to \(D_- \) that coincides with \(U \) as given by (11). If \(F \) is meromorphic on \(D_- \) then \(\tilde{F}(z) = F^*(z^-) \) defines \(\tilde{F} \) to be meromorphic on \(\mathbb{D} \). Of course \(\tilde{F} \) need not be a pseudocontinuation of \(F \).

Analogous definitions are made for \(\Omega \). Suppose \(U \) is inner on \(\Omega \). Then \(U \) has a meromorphic pseudocontinuation on \(\Omega \) given by

\[
U(z) = \begin{cases}
U(z), & z \in \Omega \\
1/U^*(z^*) & z \in \Omega_-
\end{cases}
\]

If \(F \) is meromorphic on \(\Omega \), then \(\tilde{F}(z) = F^*(z^*) \) defines \(\tilde{F} \) to be meromorphic on \(\Omega_- \).

We say that \(F \) is \(\mathcal{R}_+ \) on \(D \) if \(F \in \mathcal{R}^+ \) on \(D \) and \(F(0) = 0 \). \(\mathcal{R}_+ \) is defined to be the set of all \(f \) such that \(f(e^{i\theta}) = \lim_{r \to 1} F(re^{i\theta}) \) a.e., where \(F \in \mathcal{R}_e^+ \) on \(D \).

Suppose \(U, V \) are inner functions on \(D \). \(\mathcal{A}_0(u, v, \Gamma) \) is the set
of all functions f on Γ such that $uf \in \mathcal{M}_0^+$ and $vf^* \in \mathcal{N}_0^-$. $\mathcal{M}_0(u, v, \Gamma)$ can be characterized as follows: $f \in \mathcal{M}_0(u, v, \Gamma)$ if and only if there exists a function F separately meromorphic in D and D_- and such that

$$f(e^{i\theta}) = \lim_{r \to 1} F(re^{i\theta}) = \lim_{r \to 1} F(re^{i\theta}) \text{ a.e.,}$$

with

$$UF \in \mathcal{R}^+ \text{ on } D \text{ and } V\tilde{F} \in \mathcal{R}^+ \text{ on } D.$$

In case U and V are of type \mathcal{C} we can deduce (14) from an inequality involving F, U and V.

Theorem 2.1. Suppose U and V are of type \mathcal{C}, and F is meromorphic in D and has a meromorphic pseudocontinuation to a function F on $D \cup D_-$. Further suppose there exists $K > 0$ such that

$$|F(z)|^2 \leq K(1 - |z|^2)^{-1} (|U(z)|^2 - |V(z)|^2), \quad |z| \neq 1.$$

Then $f(e^{i\theta}) = \lim_{r \to 1} F(re^{i\theta}) \in \mathcal{M}_0(u, v, \Gamma)$.

Proof. If F satisfies (15) on D then

$$|U(z)F(z)|^2 \leq K(1 - |z|^2)(1 - |U(z)V(z)|^2),$$

so $UF \in \mathcal{R}^+$ by Theorem 1.4.

If F satisfies (15) on D_-, then for all $z \in D$,

$$|V(z)\tilde{F}(z)|^2 \leq K|z|^2(1 - |z|^2)^{-1}(1 - |U(z)V(z)|^2)$$

so $V\tilde{F} \in \mathcal{R}^+$ by 1.4. But we also deduce that $V(0)\tilde{F}(0) = 0$, so $V\tilde{F} \in \mathcal{R}^+$.

It therefore follows from the characterization of $\mathcal{M}_0(u, v, \Gamma)$ given in (13) and (14) that $f \in \mathcal{M}_0(u, v, \Gamma)$.

In case $f \in L^2(\Gamma)$, i.e., in case $\int |f|^2d\sigma < \infty$, we have a stronger result.

Theorem 2.2. Assume that U, V are inner of type \mathcal{C} on D and $f \in L^2(\Gamma)$. Then $f \in \mathcal{M}_0(u, v, \Gamma)$ if and only if there exists a function F satisfying the hypotheses of Theorem 2.1 such

$$f(e^{i\theta}) = \lim_{r \to 1} F(re^{i\theta}) \text{ a.e.}$$

Proof. It follows from Theorem 2.1 that if F satisfies (15) then $f \in \mathcal{M}_0(u, v, \Gamma)$. Conversely, suppose $f \in \mathcal{M}_0(u, v, \Gamma) \cap L^2(\Gamma)$. Then $uf \in \mathcal{N}^+ \cap L^2(\Gamma) = H^2$ and $vf^* \in \mathcal{N}_0^- \cap L^2(\Gamma) \subseteq H^2$ with $\int vf^*d\sigma = 0$.\[\int \]
Thus uf and $v\chi^* f^*$ are in $(uvH^2)^\perp \cap H^2$, where $\chi(e^{i\theta}) = e^{i\theta}$.

Now any $g \in (uvH^2)^\perp \cap H^2$ is the boundary value function of

$$G(z) = \int (1 - ze^{-i\theta})^{-1} (1 - u^*(e^{i\theta})v^*(e^{i\theta})U(z)V(z))g(e^{i\theta})\sigma(d\xi), \ z \in D.$$

But then it follows from the Schwarz inequality that

$$|G(z)|^2 \leq K(1 - |z|^3)^{-1} (1 - |U(z)V(z)|^3), \ z \in D,$$

where $K = \int |g|^3 \sigma$.

By applying (16) to $g = uf$ and $g = v\chi^* f^*$ we obtain

$$|U(z)F(z)|^3 \leq K(1 - |z|^3)^{-1} (1 - |U(z)V(z)|^3), \ z \in D,$$

and

$$|V(z)F(z)|^3 \leq K |z|^3 (1 - |z|^3)^{-1} (1 - |U(z)V(z)|^3), \ z \in D,$$

where $K = \int |f|^3 \sigma$.

It is easily seen that (17) and (18) together is equivalent to (15).

Corollary 2.3. Assume that V is inner of type C on D and $f \in H^2$ on Γ. Then $f \in (vH^2)^\perp$ if and only if there exists a meromorphic function F on $D \cup D_- \ U$ such that

$$f(e^{i\theta}) = \lim_{r \downarrow 1} F(re^{i\theta}) = \lim_{r \uparrow 1} F(re^{i\theta}) \ a.e.,$$

for which there exists $K > 0$ with

$$|F(z)|^3 \leq K (1 - |z|^3)^{-1} (1 - |V(z)|^3), \ z \in D \cup D_-.$$

Proof. Note that $(vH^2)^\perp \cap H^2 = \mathcal{M}_0(1, v, \Gamma)$, and use 2.2.

Corollary 2.4. Assume that U, V are inner of type C on D and $f \in L^2(\Gamma)$. Then $f \in \mathcal{M}(u, v, \Gamma)$ if and only if there exists a function F meromorphic in D with pseudocontinuation F' such that (19) holds and there exists $K > 0$ such that

$$|F(z)|^3 \leq K (1 - |z|^3)^{-1} (|U(z)|^{-2} - |zV(z)|^3), \ z \in D.$$

Proof. Note that $\mathcal{M}(u, v, \Gamma) = \mathcal{M}_0(u, \chi v, \Gamma)$.

The same kind of problem can be considered on Ω with minor modifications in the proofs.

Theorem 2.5. Suppose F is meromorphic on Ω and has a mero-
morphic pseudocontinuation to a function F on $\Omega \cup \Omega_-$. Assume that U and V are inner functions of type \mathfrak{C} on Ω. Further suppose that there exists $K > 0$ such that

$$|F(z)|^2 \leq K(\text{Im } z)^{-1}(1 + |z|^2)(|U(z)|^{-2} - |V(z)|^{-2}), \quad z \in \Omega \cap \Omega_-.$$

Then $f(x) = \lim_{y \to 0} F(x + iy) \in \mathcal{M}(u, v, R)$.

Theorem 2.6. Assume that U, V are inner of type \mathfrak{C} on Ω and $f \in L^1(\mathbb{R})$. Then $f \in \mathcal{M}(u, v, R)$ if and only if there exists a function satisfying the hypotheses of Theorem 2.5 such that

$$f(x) = \lim_{y \to 0} F(x + iy) \text{ a.e.}$$

3. Factorization of nonnegative functions. In this section we shall reformulate an operator factorization theorem of the type set down in [5] in terms of inequalities of the type discussed in § 1 and 2. Throughout \mathscr{H} is a complex separable Hilbert space and $B(\mathscr{H})$ the space of bounded operators on \mathscr{H}. We shall restrict ourselves to considerations involving Ω rather than D in order to simplify the exposition. Following [5] we say that a holomorphic function F on Ω taking values in $B(\mathscr{H})$ is in $\mathcal{S}_\mathfrak{C}$ if there exists a nonzero complex-valued outer function Φ such that ΦF is a bounded holomorphic function on Ω that takes values in $B(\mathscr{H})$. Any F in $\mathcal{S}_\mathfrak{C}$ has strong boundary values a.e., that is, the limit $\lim_{y \to 0} F(x + iy) = f(x)$ exists a.e. in the strong operator topology.

We say that a holomorphic function G in $\mathcal{S}_\mathfrak{C}$ has a meromorphic pseudocontinuation G if G is meromorphic in $\Omega_- \cup \Omega_+$ and the strong limits $\lim_{y \to 0} G(x - iy)$ and $\lim_{y \to 0} G(x + iy)$ exist and are a.e. equal. For such G we define \tilde{G} by $\tilde{G}(z) = G^*(z^*)$, $z \in \Omega \cup \Omega_-$.

Theorem 3.1. Let U be a complex-valued inner function on Ω and F a meromorphic function on Ω taking values in $B(\mathscr{H})$ such that $UF \in \mathcal{S}_\mathfrak{C}$. Then $F(x + iy)$ has strong boundary values $f(x)$ a.e. as $y \downarrow 0$. Assume that $\langle f(x)e, e \rangle \geq 0$ a.e. for each e in \mathscr{H}.

Then F has a factorization $F(x) = \tilde{G}(z)G(z)$, $z \in \Omega$, where G is in $\mathcal{S}_\mathfrak{C}$ and has a meromorphic pseudocontinuation G such that $UG \in \mathcal{S}_\mathfrak{C}$. If there is real interval I such that $f(.)$ is a.e. bounded on I and U is analytically continuable across I, then G is analytically continuable across I.

Proof. This theorem is a summary of results proved in [5].

Theorem 3.2. Theorem 3.1 may be modified as follows:
(i) The hypothesis "UF ∈ R^+(Ω)" may be replaced by the stronger hypothesis "there exists K > 0 such that

\[||F(z)||^2 ≤ K(\text{Im } z)^{-1} (1 + |z|^2) (||U(z)||^{-2} - |U(z)|^2) \]

for all z in Ω".

(ii) If in addition one assumes that \(\int_{-\infty}^{\infty} \langle f(x), c \rangle \, dx < \infty \) for all c in \(\mathbb{C} \), then G can be chosen to in addition satisfy

\[||G(z), c||^2 ≤ K_s(\text{Im } z)^{-1} (1 + |z|^2) (1 - |U(z)|^2), \quad c \in \mathbb{C} \]

for some \(K_s > 0 \) (\(K_s \) depends on \(c \)) and all \(z \in \Omega \cup \Omega_\).\)

Proof. The proof of 1.4 shows that (20) implies that \(UF ∈ R^+(Ω) \).

Assume the hypotheses of (ii). Now \(f = g \ast g \), where \(g(x) \) are the strong boundary values of \(G(x + iy) \) as \(y \downarrow 0 \) and \(y \uparrow 0 \). We have

\[||g(\cdot)c, c||^2 ≤ ||g(\cdot)c||^2 ||c||^2 = \langle f(\cdot)c, c \rangle ||c||^2 \]

for all \(c \) in \(\mathbb{C} \), so \(\langle g(\cdot)c, c \rangle \in L^2(R) \) for all \(c \) in \(\mathbb{C} \). (21) now follows from Theorem 2.6 and the fact that \(\langle g(\cdot)c, c \rangle \in M(1, u, R) \).

As an example suppose \(F(\cdot) \) is an entire function taking values in \(B(\mathbb{C}) \) such that \(\langle F(x), c \rangle \geq 0 \) whenever \(c \in \mathbb{C} \) and \(x \in R \), and there exists \(\tau \geq 0 \) and \(K > 0 \) with

\[||F(z)||^2 ≤ Ky^{-1} (1 + |z|^2) \sinh 2\tau y, \quad z = x + iy \in \Omega. \]

Then \(F \) is factorable, \(F(z) = \tilde{G}(z)G(z) \), where \(G(\cdot) \) is an entire function taking values in \(B(\mathbb{C}) \). This follows from Theorems 3.1 and 3.2 (i) with \(U(z) = e^{iz\tau} \). \(G(\cdot) \) is entire by the last statement in Theorem 3.1. It also is deducible from Theorem 3.6 of [5].

If in addition to above \(F(\cdot) \) satisfies \(\int_{-\infty}^{\infty} \langle F(x), c \rangle \, dx < \infty \), then \(G(\cdot) \) satisfies

\[||G(z)c, c||^2 ≤ K_s y^{-1} (1 + |y|^2) (1 - e^{-\tau y}) \]

for all \(z = x + iy \) with \(y \neq 0 \) and \(c \in \mathbb{C} \). \(K_s \) is a constant depending on \(c \).

4. A Fourier type transform and the Paley-Wiener representation. As before let \(U \) and \(V \) be inner functions in \(\Omega \) and denote the space \(M(u, v, R) \cap L^2(R) \) by \(M^2(u, v, R) \). This space is easily seen to be a Hilbert subspace of \(L^2(R) \). As noted in the introduction \(M^2(e^{iz\tau}, e^{iz\tau}, R) \) is the restriction to the real axis of a classical Paley-Wiener space of entire functions. That

\[M^2(e^{iz\tau}, e^{iz\tau}, R) = \mathcal{F}L^2(-\tau, \tau), \]
THOMAS L. KRIETE, III AND MARVIN ROSENBLUM

(where is the Fourier-Plancherel operator on), is the content of a well known theorem of Paley and Wiener.

In [4] one of the present authors generalized this theorem to give an integral representation for any of the spaces .

In this section we combine this result with Theorem 2.6. First we shall set down some basic facts from [4]. For simplicity we assume that and have no zeros and are normalized so that and are positive. Then has a factorization where is a singular inner function in and . Using the usual representation for singular inner functions we can combine the two factors in the following convenient form:

\[
U(z) = \exp \left(i \int_{\mathbb{R}} \frac{1 + tz}{t - z} \mu(dt) \right)
\]

where is a finite positive measure on the extended real numbers whose restriction to is singular and with . In the integrand, and elsewhere below, we always take \((z\infty)/\infty = z\) for any complex \(z\). has a similar representation with corresponding measure \(\gamma\).

Let \(\tau\) be the total variation of \(\mu\) and suppose that \(a\) is an \(\mathbb{R}^*\)-valued measurable function defined on \([0, \tau]\) such that \(m(a^-(E)) = \mu(E)\) for every subinterval \(E\) of \(\mathbb{R}^*\). For example, we could take \(a(t) = \inf \{x \in \mathbb{R}^* : \mu((-\infty, x]) \geq t\}\). Extend the definition of \(a\) to \([0, \infty)\) by setting \(a(t) = \infty\) if \(t > \tau\). For each \(t \geq 0\) let

\[
U_t(z) = \exp \left(i \int_0^t \frac{1 + za(x)}{a(x) - z} \, dx \right).
\]

It is clear from (22) and a change of variables that \(U_t = U\). Moreover, \(U_t\) is an inner function for each \(t\) and \(U_s\) divides \(U_t\) if \(0 \leq s < t\).

In a like manner one can associate \(\sigma, b: [0, \sigma] \to \mathbb{R}^*\) and \(V_t\) (analogous to \(\tau, a\) and \(U_t\)) with the inner function \(V\). Note that \(V_s = V\). \(U_t\) and \(V_t\) have pseudo-continuations to \(\mathbb{Q}^-\) given by (12). For any \(z\) in \(\mathbb{Q} \cup \mathbb{Q}^-\) let

\[
H^+\!(t) = V_t(z) \frac{b(t) - i}{b(t) - z}
\]

and

\[
H^-\!(t) = U_t(z)^{-1} \frac{a(t) + i}{a(t) - z}, \quad t \geq 0.
\]

Now let \(H^+(\mathbb{Q})\) and \(H^-(\mathbb{Q}^-)\) denote the usual Hardy spaces of functions analytic in \(\mathbb{Q}\) and \(\mathbb{Q}^-\) respectively, which can also be con-
sidered as orthogonal complements of each other in $L^2(\mathbb{R})$. It was shown in [4] that the mappings W_1 and W_2 given by

$$(W_1g)(z) = (2\pi)^{-1/2} \int_0^\infty H_z^+(t)g(t) \, dt, \quad \text{Im } z > 0$$

and

$$(W_2g)(z) = (2\pi)^{-1/2} \int_0^\infty H_z^-(t)g(t) \, dt, \quad \text{Im } z < 0,$$

are isometries from $L^2(0, \infty)$ onto $H^2(\Omega)$ and $H^2(\Omega_-)$ respectively.

Let $E: L^2(-\infty, 0) \to L^2(0, \infty)$ be the operator $(Eg)(t) = g(-t)$. The $W_2E \oplus W_1$ can be considered as a unitary operator from $L^2(-\infty, 0) \oplus L^2(0, \infty) = L^2(\mathbb{R})$ onto $H^2(\Omega_-) \oplus H^2(\Omega) = L^2(\mathbb{R})$. This operator takes $L^2(-s, t)$ onto $\mathcal{H}^2(u, v, R)$ for all $s, t \geq 0$. If μ and γ are supported on the singleton $\{\infty\}$ or, equivalently, if $a(t) = b(t) = \infty$ a.e., then $W_2E \oplus W_1$ is the adjoint of the Fourier-Plancherel operator. Combining this with Theorem 2.6 yields the following result.

Theorem 4.1. Let U and V be inner functions of type \mathbb{C}. Let F be analytic in $\Omega \cup \Omega_-$ and suppose that the two sided boundary function $f(x) = \lim_{y \to 0} F(x + iy)$ exists a.e. and lies in $L^2(\mathbb{R})$. Let $s, t \geq 0$. Then the following are equivalent.

(i) \[|F(z)|^2 \leq K (\text{Im } z)^{-i} (1 + |z|^2) (|U_s(z)|^{-2} - |V_t(z)|^{-2}), \quad z \in \Omega \cup \Omega_- . \]

(ii) There exist a.e. unique functions g_1 in $L^2(0, t)$ and g_2 in $L^2(0, s)$ such that

$F(z) = (2\pi)^{-1/2} \int_0^t H_z^+(x)g_1(x) \, dx$

$+ (2\pi)^{-1/2} \int_s^\infty H_z^-(x)g_2(x) \, dx, \quad \text{Im } z \neq 0 . \]

Moreover, \[||f||_2^2 = ||g_1||_2^2 + ||g_2||_2^2. \]

Added in proof. We refer the reader to the papers.

and,

7. R. G. Douglas, H. S. Shapiro and A. L. Shields, *Cyclic vectors*
and invariant subspaces for the backward shift operator, Ann. Inst. Fourier, Grenoble, 22 (1970), 37–76, for more detailed information on meromorphic continuation and \((uH^2)^{1}\).

REFERENCES

Received June 30, 1971. This research was supported by the National Science Foundation under the grant NSF GP 19852.

UNIVERSITY OF VIRGINIA
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

C. R. HOBBY
University of Washington
Seattle, Washington 98105

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *

AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan
Pacific Journal of Mathematics
Vol. 43, No. 1 March, 1972

Alexander (Smbat) Abian, The use of mitotic ordinals in cardinal arithmetic ... 1
Helen Elizabeth. Adams, Filtrations and valuations on rings 7
Benno Artmann, Geometric aspects of primary lattices 15
Marilyn Breen, Determining a polytope by Radon partitions 27
David S. Browder, Derived algebras in L_1 of a compact group 39
Aiden A. Bruen, Unimbeddable nets of small deficiency 51
Michael Howard Clapp and Raymond Frank Dickman, Unicoherent compactifications ... 55
Heron S. Collins and Robert A. Fontenot, Approximate identities and the strict topology ... 63
R. J. Gazik, Convergence in spaces of subsets 81
Joan Geramita, Automorphisms on cylindrical semigroups 93
Kenneth R. Goodearl, Distributing tensor product over direct product 107
Julien O. Hennefeld, The non-conjugacy of certain algebras of operators .. 111
C. Ward Henson, The nonstandard hulls of a uniform space 115
M. Jeanette Huebener, Complementation in the lattice of regular topologies .. 139
Dennis Lee Johnson, The diophantine problem $Y^2 - X^3 = A$ in a polynomial ring .. 151
Albert Joseph Karam, Strong Lie ideals .. 157
Soon-Kyu Kim, On low dimensional minimal sets 171
Thomas Latimer Kriete, III and Marvin Rosenblum, A Phragmén-Lindelöf theorem with applications to $M(u, v)$ functions 175
William A. Lampe, Notes on related structures of a universal algebra 189
Theodore Windle Palmer, The reducing ideal is a radical 207
Kulumani M. Rangaswamy and N. Vanaja, Quasi projectives in abelian and module categories .. 221
Ghulam M. Shah, On the univalence of some analytic functions 239
Joseph Earl Valentine and Stanley G. Wayment, Criteria for Banach spaces .. 251
Jerry Eugene Vaughan, Linearly stratifiable spaces 253
Zbigniew Zielezny, On spaces of distributions strongly regular with respect to partial differential operators 267