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For any *-algebra % the reducing ideal % of U is the
intersection of the kernels of all the *-representations of .
Although the reducing ideal has been called the *-radical, and
obviously satisfies (W/Ax)z = {0}, it has not previously been
shown to satisfy another of the fundamental properties of
an abstract radical except in the case of hermitian Banach
*.algebras where it equals the Jacobson radical. In this paper
we prove two extension theorems for *-representations. The
more important one states that any essential *-represen-
tation of a *-ideal of a U*-algebra (a fortiori, of a Banach
*-.algebra) has a unique extension fo a *-representation of
the whole algebra. These theorems show in particular that
Mp)r = Ur if U is either a commutative *-algebra or a U*-
algebra. The somewhat stronger statements which are actu-
ally proved, together with previously known properties of the
reducing ideal, show that the reducing ideal defines a radical
subcategory of each of the following three semi-abelian
categories:

(1) Commutative *-algebras and *homomorphisms.

(2) Banach *-algebras and continuous *-homomorphisms.

(3) Banach *-algebras and contractive *-homomorphisms.

The concept of the reducing ideal was introduced by Gelfand and
Naimark in their classic paper [2, p. 463]. It has subsequently
been studied by Kelley and Vaught [5, p. 51] and the present author
[7, p. 63] and [8, p. 930]. The concept is discussed in [10, pp. 210,
226] and [6, p. 259]. In [11, 1479] Yood gave a definition of the
*.radical which agrees with our definition for Banach *-algebras but
differs for certain other types of *-algebras.

Our main extension theorem (3.1, below) was previously known for
B*-algebras [1, Proposition 2.10.4]. It has a number of applications
besides the one discussed here. For example it immediately implies
the conclusion of [4, Theorem 23] with hypotheses weaker than those
of [4, Theorem 22].

In §1 we give necessary background information. The case of
commutative *-algebras is congidered in §2 and of U*-algebras in § 3.
The category theory results are described in §4 where we use the
terminology of M. Gray [3] for the general theory of radicals.

In general we follow the terminology of Rickart’s book [10].
Further details and related results will be found in the author’s
forthcoming monograph [9].
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208 T. W. PALMER

1. Definitions and preliminary results. We review some basic
definitions and results for the convenience of the reader and in order
to fix notation. Throughout this paper all algebras and linear spaces
will have the complex field C as scalar field unless the real field is
explicitly specified. No other scalar field is considered. The complex
conjugate of x e C will be denoted by \*.

An involution on an algebra ¥ is a conjugate linear, anti-multi-
plicative, involutive map of 2 onto itself. A *-algebra is an algebra
together with a fixed involution' which will always be denoted by (*).
A subset of a *-algebra is called a *-subset iff it closed under the
involution. A map between *-algebras is called a *-map iff it preserves
their involutions (i.e. ®(a*) = ®(@)*). A *-representation T of a *-
algebra is a *-homomorphism (i.e. an algebra homomorphism which is
also a *-map) into the’*-algebra [$,] of all bounded linear operators
on some Hilbert space $,. The meaning of each more specific term
with a *-prefix (e.g. *-subalgebra, *-isomorphism) follows from these
definitions. In particular a Banach *-algebra is simply a *-algebra with
a norm relative to which it is a Banach algebra. No relationship
between the involution and norm is postulated.

We review briefly the standard Gelfand-Naimark construction of
*_representations from positive linear functionals since later proofs
depend intimately on this material (cf. [2], [6], [9] or [10]). A linear
funetional @ on a *-algebra % is called positive iff

1.1 w(a*a) = 0 Vaec.

For any positive linear functional @ denote the left ideal

1.2) {ae: w(a*a) = 0} = {a e A: w(b*a) = 0, Vbe A}
by %,. Let
(1.3) : A = A/A, .

For each ac ¥ let a® be the image a + 9, of @ in WY*. Then for all
a®, b* e A’

1.4) @, b*) = w(b*a)

is well defined and gives 2“ the structure of a pre-Hilbert space (i.e.
a possibly incomplete inner-product space). The left regular repre-
sentation of 9 on itself induces a *-homomorphism T of 9 into the
*_glgebra of all (not necessarily bounded) linear operators on 2[“ which
have adjoints on 2(°. The positive linear functional w is called admis-
sible iff the range of 7T consists of bounded operators so that 7
induces a *-representation T of 2% on the Hilbert space completion
Ae™ of Ae.
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An admissible positive linear functional w is called representable
iff there is some *-representation T and some topologically cyclic vector
€, for T such that

(1.5) w(a) = (T2, x) Va € A.

The set of representable positive linear functionals on a *-algera A
will be denoted by R(2). For each nonzero @ in R(¥)

(1.6) || = sup {w(@)*/w(@*a): a € A ~ A}

is finite. For the zero linear functional, which always belongs to
R(@Ql), we set |0] = 0. For each wec R®) there is a unique vector x,
in 2“" such that

@.7 Tex, = a® Va € 2.

[9, Theorem 1.4.8]. This vector is a topologically cyclic vector for
T* which also satisfies

(1.8) %, | = || and w(a) = (Tyx,, ©,) Va € 2.
For a *-algebra 2 let
(1.9) R@) ={weRQ): |w| =1},

A linear functional @ on 2 is called a state iff w e R() and |w| = 1.
A linear functional we R() is called pure iff ® = w, + w, with
®,, w, € R(Y) implies that w, and w, are (nonnegative real) multiples
of w. Let P(®l) denote the set of pure states of 9. Then P®) U {0}
is the set of extreme points of the convex set R,(%).

If % is a Banach *-algebra it is well known that R, (%) is compact
in the A-topology. Thus R,() is the closed convex hull of P) U {0}
by the Krein-Milman theorem. If 2 is an arbitrary *-algebra (e.g.
{complex polynomials} with conjugation of coefficients as the involution)
then R,(N) need not be compact.

LEmMA 1.1. If Uis any *-algebra, R,(N) is the closed convex hull
of P U {0}.

Proof. For any we R, () let
S, = {@eRQ): || T || < || T*| for all ac}.

A slight adaptation of a well known proof [10, p. 222] shows that &, is
compact and convex [9, Proposition 1.5.6]. Similarly one can adapt
another well known proof [10, p. 225] to show that the set of extreme
points of &, is {0} U (&, N PR)) [9, Proposition 1.6.6]. Thus &, =
co ({0} U &, N PA))). Therefore
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R, = UweRl(l)@w = Uwele) co ({0} U P@D)
Sco({0u PR S R() .

LEMMA 1.2. Let U be a *-algebra and let € R(N). The following
are equivalent.

(a) o is pure.

(b) T is topologically irreducible.

(¢) The set (T*) of operators in [A*"] which commute with Ty
for each ac W is the set of complex multiples of the identity.

Proof. [10, p. 211 and 223], [9, Theorems 1.6.1 and 1.6.5].

DEFINITION 1.3. For any *-algebra U the reducing ideal of 2 is
denoted by 2, and defined by

A, = N {Ker (T): T is a *-representation of 2A}.

If ¥ is a *-ideal of a *-algebra U then I is a two-sided ideal and
A/Y is a *-algebra in an obvious sense.

ProprosITION 1.4. Let N be a *-algebra. Then the reducing ideal
A, of A is a *-ideal which equals:

N {Ker (T): T is a topologically irreducible *-representation of A}
= N {Ker (T°): w € RA)} = N {Ker (T*): w € PRV}
=N{&:we R} = N{8: we PR}
={aeWw@ =0,voe RN} = {acA: w(a) =, Vo e PA)} .

Furthermore (W/Wz)z = {0}, If WA is a Banach *-algebra then W, is
closed so that /A, is a Banach *-algebra.

Proof. Use Lemma 1.1 to adapt the proof of [10, Theorem 4.4.10].
For details and further results see [9, Theorem 1.7.2 and 1.7.5].

Lemma 1.1 and this proposition do not seem to have been noted
previously in this degree of generality. However they were essentially
known.

We now turn to the theory of U*-algebras. For additional in-
formation see [7], [8], or [9].

If % is a *-algebra without an identity let %' denote the *-algebra
with identity which has C@P U as underlying linear space and in
which the multiplication and involution are defined by WP a)(t P b) =
MDD (Ab+ pa+ ab) and WD a)* = A Pa* for all \, £eC and all
a,beW. We regard U as embedded in ' by the map a - 0P a. If
A already has an identity let ' = A. In either case we write A + a
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for A1 + @ where 1 is the identity of 2. Then, for instance, the
spectrum of an element in 2 is the same with relation to % or .
Furthermore the Jacobson radical of 2 and U’ agree and the reducing
ideal of ¥ and ' agree.

DEFINITION 1.5. A *-algebra U is called a U*-algebra iff % is
contained in the linear span of the set A} of unitary elements in .
If % is a U*-algebra and a2 then

(@) = inf{i Nita = i“ £ju; where ne N, n;€C, and u; e%{},} .

LEMMA 1.6. Let U be a U*-algebra. Then vy, 1s an algebra
pseudo-norm, (i.e. vy @) = |N|vy(@), vu(a + b)) Zve(a) + vy(b), ve(ab) =
Ve(@)vy(b) for all a, bea).

Proof. Obvious.

For any *-algebra U let
(1.10) W = {veWA: v¥o = vw* = v + v¥}

be the set of quasi-unitary elements in 2. For any subset & of U
let &Y be the linear span of &N Ay

LEMMA 1.7. Let U be a *-algebra. Then Y is a *-subalgebra of
A which is a U*-algebra. Furthermore Y contains every *-subalgedbra
of A which is a U*-algebra. In particular A is a U*-algebra iff
A=W, In this case

vo(a) = inf{z i@ = S5, 0 = SIN; where n e Ny \; € C and v; € 914[,} .
J=1 Jj=1 J=1

Finally if X is a one- or two-sided ideal in A then I is a *-ideal in

L.

Proof. Straightforward or see [8] or [9].

LevMmA 1.8, Let A be a U*-algebra and let B be a *-algebra.
Let p: A — B be a *-homomorphism. Then &) is a U*-algebra and
Yoo, (P(@)) < vy(a) for all aeN. Furthermore if B is the algebra of
all (not necessarily bounded) linear operators with adjoints on a pre-
Hilbert space, them @) is contained in the set of bounded operators
and ||p(a) || < vy(@) for all acA.

Proof. This follows directly from Lemma 1.7 or see [7], [8] or
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[9].

By slight abuse of language we call a *-homomorphism into the
type of *-algebra described in the last sentence of Lemma 1.8 a
*-representation on a pre-Hilbert space. When the range of such a
map consists of bounded operators we call it a normed *-representa-
tion on a pre-Hilbert space. (Of course any *-representation of any
*.algebra (by definition, on a Hilbert space) is automatically normed

[10, p. 205] or [9, Corollary 1.2.4].)

COROLLARY 1.9. Ewvery *-representation of a U*-algebra on a
pre-Hilbert space is mormed. Every positive linear fumctional on &
U*-algebra is admissible. A positive linear functional on a U*-algebra
A is representable iff it is the restriction of some positive limear

functional on A

Proof. For the last sentence see [10, p. 218] or [9, Theorem 1.4.8].

DEFINITION 1.10. Let 2 be a *-algebra. For any ac ¥ let
Yu(@) = sup{|| T, ||: T is a *-representation of 2 on a Hilbert space} .

It is not hard to show [9, Theorem 2.1.2] that v4(a) = sup{|| T, |[:
T is a topologically irreducible *-representation of U on a Hilbert
space} = sup {w(a*a)'*: w € R, () = sup {w(a*a)': w € PQ)}. In a per-
fectly general *-algebra 7v,(a) = - is possible. However if 7, is finite
valued then it is the largest algebra pseudonorm on 2 which satisfies
the B*-condition: vy(a*a) = vy(a)? for all @ € A. We call v, the Gelfand-
Naimark pseudo-norm on 2. Note that U, = {a € UA: 74(a) = 0}.

COROLLARY 1.11. If % is a U*-algebra then
Vu(@) = vy(a)

Sor all aeXA.
Proof. Obvious from Lemma 1.8.

THEOREM 1.12. Let % be a Banach *-algebra. Then U is a U*-
algebra and vy, = y,.

Proof. [7, Theorem 4] or [9, Theorem 3.1.12].

2. Commutative *-algebras. We are now in a position to treat
this case easily. Several of our results are essentially known but are
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usually stated in less generality.

THEOREM 2.1. Let % be a commutative *-algebra. Then PQ) s
the set of *-homomorphisms of U onto C.

Proof. Suppose w is a pure state. Then (T’ = CI by Lemma
1.2 where I is the identity operator in [¥“7]. Since U is com-
mutative Ty & (Ty)’. Since @ #0,T°+# 0 so T¢ = CI. Let Ty =
@(a)I for all aeA. Then @ is a *-homomorphism of ¥ onto C and
o) = (T¢x,, z,) = (P@2.,, ®,) = P@) || = ¢() for all aeA. Thus
®w = @ is a *-homomorphism of U onto C.

Conversely suppose @ is a *-homomorphism of ¥ onto C. Then
o(a*a) = w(@*)w(@) = |w(a) [* for all ac so that w is a state. The
map a® — w(a) for all a e is a linear isometry of 2 onto C. Thus
Ae = A~ is linearly isometric to C so that T« == 0 is irreducible.
Therefore @ is a pure state by Lemma 1.2.

COROLLARY 2.2. Let 9 be a commutative *-algebra. For each
acW let a: PA) — C be defined by d(w) = w(a) for all w e P(A). Let
P carry the weakest topology which makes each & continuous. Let
C.(P)) be the set of continuous but mot necessarily bounded complex
valued functions on P(N). Then P) is Tychonoff space and

(2.1) (7): A — C.(PQN))

18 a *-homomorphism with kernel .
Proof. Immediate from Theorem 2.1 and Proposition 1.4.

THEOREM 2.3. Let U be a commutative *-algebra. Let B be «a
*~ideal of W and let I be a *-ideal of B. For each w e P(Y) there is
an @€ P) such that @ is the restriction of ®.

Proof. Theorem 2.1 shows that w is a *-homomorphism of J&
onto C. Let ecl satisfy w(e) = 1. We may assume e = e¢* since w
is a *-map. For any ac ¥, ea B so e’a €J. Define &(a) = w(e’a) for
all acW. Then ® is clearly linear and if a, be 9 then ®(ad) =
w(e’a) = w(e)w(ae’d) = w(fae’d) = w(ea)w(e’h) = v(e)@(b), and &(a*) =
w(ea*b) = w(e’a)* = @(a)*. Thus @ is a *-homomorphism of 2 onto C
and thus by Theorem 2.1 ®e PQR). If aeJ then @(a) = w(a) =
we)’w(@) = w(a). Thus & satisfies the theorem.

COROLLARY 2.4. Let N be a commutative *-algebra. Let F be a
*-ideal of Uy (e.g9. a *~ideal of A included in Ay). Then Jp=. In
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particular (A, = Ws.

Proof. If I+ I then there is some nonzero pure state on
by Proposition 1.4. Thus Theorem 2.8 shows that there is a pure
state on 2l which does not vanish on . This contradicts Proposition
1.4,

3. U*-algebras. Although our primary interest is in Banach
*-algebras it seems difficult to give the following proof in that setting
without using the (more general) structure of U*-algebras.

THEOREM 3.1. Let U be a U*-algebras. Let & be a *-ideal of
A. Let T be a *-representation of I. Then there is a *-representa-
tion T of A on [D,] which extends T. If T is essential then T is
unique, and the set of topologically cyclic vectors for T equals the set of
topologically cyclic vectors for T. Thus when T is essential it is
topologically cyclic or topologically irreducible iff T has the corres-
ponding property.

Proof. If T is not essential it is the direct sum of a zero sub-
*.representation T° on £, and an essential sub-*-representation 7" on
.. We can extend 7T° as a zero *-representation 7° U — [D,]. Thus
if we can extend T" to T%: A —[9,] then T° P T" extends 7. There-
fore we need only consider the case of essential *-representations.

Suppose T is essential and let X be the subset of 9, T.9, =
(Tw:be, v P,). Then % is dense in §,. Let T:A— [H,] by any
*_representation which extends 7. Let ae and xze€X. Then oz =
T,y for be¥ and y€ ©,. Thus

Tax - TaTby = TaTby = Taby = Tuby .

Since T is normed (Corollary 1.9) and X is dense this shows that there
is at most one extension T: 9 — [D,] of T.

Suppose z is a topologically cyclic vector for 7. Let X = Tyz.
Then X is dense again. For ac? and xzecX define T = T,z
where © = T,z with b We must first show that this is well
defined. Suppose x = T,z with de & also. Let a = >3, N\, v, where
MeC, v, €Wy, and 30N, =0. Then T,z — Tz = D0 Nu(T, 102 —
T, —4?). However for each n

NT, -2 — Ty ag®|* = I T, -r—o-a? I?
= (To—aycwloy—vy sty sy + To—ayo-0)?2, #)
= [ T—sz|f=0.

Thus T,,2 = T,z and T'x is well defined for each xeX. For ael
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and v = TzecX, Tix = T,z = T,Ty2 = T,x. It is easy to check that T
is a *-representation of 2 on the pre-Hilbert space ¥. Corollary 1.9
shows that 7" is normed and hence can be extended (in the sense of
extensions of *-representations) to a unique *-representation T: 9l —
[©,] which extends T:J—[9,]. Clearly z is a topologically cyeclic
vector for T since Tyz 2 T,z. This concludes the proof of the theorem
when T is topologically cyclic.

Suppose T is essential but not necessarily topologically cyclic.
Then T = @.., T* is the internal direct sum of a family {T*: «a e A}
of topologically cyclic sub-*-representations on T-invariant subspaces
{.:xe A}. For each we A we have shown how to construct a *-
representation 7% 9 — [9,] which extends 7% §— [9.]. The direct
sum @ues To: A — [$;] is defined since 74 < v, by Corollary 1.11. It
extends T: 3 —[9,]. We have already shown that only one such
extension is possible. Thus any essential *-representation of J has
a unique extension to 2.

Suppose z is a topologically cyclic vector for T and T is essential
then T,T2 = T,z for all ac and be so that T,z is a closed
T-invariant subspace of §, containing z by [10, p. 206] or [9, 1.2.10].
The topological eyeclicity of z for T shows that Tz~ = §, so that 2
is a topologically cyclic vector for T.

When T is essential we have shown that the set of topologically
cyclic vectors for T equals the set of topologically cyclic vectors
for T. Since a *-representation is topologically cyclic iff its set of
topologically cyclic vectors is nonempty and is topologically irreducible
iff every nonzero vector is topologically ecyclic this establishes the
last sentence of the theorem.

COROLLARY 3.2. If % is a U*-algebra and ¥ is a *-ideal of A
wmcluded in Ay then JFp = . In particular W)z = .

Proof. If Jp # & there is a nonzero *-representation T of .
Then Theorem 8.1 shows that there is a *-representation 7 of 2 which
does not vanish on & < ,. This contradicts the definition of %.

COROLLARY 3.3. If A 1s a U*-algebra and ¥ s any *-ideal of
AR then Jp = J. In particular (Wp)V)e = (W) )? = Q).

Proof. The last sentence of Lemma 1.7 and Corollary 3.2 together
show that (W)Y, = (Wz)”. Thus these sets clearly equal (((2z)Y)z)".
Thus this corollary follows from Corollary 3.2 applied to (2;)? in place
of .

COROLLARY 3.4. If U 4is a Banach *-algebra and I is a *-ideal
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of Uy then Jp = J. In particular Uz)z = As.

Proof. Theorem 1.12 and Proposition 1.4 together show that U
and A, are U*-algebras so that Ay = (Ar)". Thus this corollary follows
from Corollary 3.3.

4. Remarks on categorical consequences. In this section we
wish to indicate the consequences of our results in the language of
categories. In reference [3] we find a strong notion of radical sub-
category which we will use. In fact what is called a radical in [3]
is sometimes called a hereditary radical (cf. p. 125 of N. J. Divinsky,
Rings and Radicals, University of Toronto Press, 1965). From one
viewpoint our results may be considered as a quite different example
of this theory.

We will show first that each of the three categories listed in the
introduction is both semi-abelian and co-semi-abelian. The trivial
*.glgebra {0} is a zero-object in each of these categories and also in
each of the other categories which we will consider. We examine
the categorically defined kernels, cokernels, images, and co-images in
these categories.

In all three of the categories listed in the introduction the kernel
of f ¢ Hom (2, B) is simply (the subobject represented by the injection
into U of) the set theoretic kernel Ker (f) of f.

Consider the following categories.

(4) U*-algebras and *-homomorphisms.

(6) Banach *-algebras and *-homomorphisms.

Since the image of any U*-algebra is a U*-algebra it is easy to see
that the kernel of feHom (I, B) in category (4) is (the subobject
represented by the injection into % of) (ker (f))” where again Ker (f)
is the set theoretic kernel of f. In category (5) morphisms do not
always have kernels, since there is not in general any maximal sub-
object of Ker (f) on which a Banach *-algebra norm can be defined.
Notice that when such a maximal subobject does exist it must be
included in (Ker (f))".

In the category

(6) *-algebras and *-homomorphisms
the set theoretic kernel “is” the categorical kernel.

In categories (1), (4) and (6) the cokernel of feHom (U, B) is
represented by

B — B/(*-ideal generated by f()) .

In categories (2) and (3) the cokernel of fe Hom (%, ) is represented
by

B — (B/(closed *-ideal generated by f())) .
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Morphisms in category (5) do not always have cokernels, since there
is not always a smallest *-ideal containing f() such that the quotient
may be embedded in a Banach *-algebra.

In categories (1), (2), (3), (4), (6) the image of feHom (U, B) is
represented by the map

A/Ker (f) — B

induced by f. Morphisms in category (5) do not always have images.
The co-image of f€ Hom (U, B) in categories (1), (2), (3), (4), and
(6) is represented by the natural morphism

A — A/Ker (f) .

Morphisms in category (5) do not always have co-images.

DEFINITION 4.1. A category with a zero object is called semi-
abelian if:

(a) Every morphism may be factored into a representative of
its co-image followed by a representative of its image, and

(b) Every morphism has a cokernel.
A category with a zero object is called co-semi-abelian iff it satisfies
(a) and

(¢) Every morphism has a kernel.

ProprosiTION 4.2. Categories (1), (2), (), (4), and (6) are each
both semi-abelian and co-semi-abelian.

Proof. This follows from the remarks above.

DEFINITION 4.3. Let & be a semi-abelian category. A radical
subcategory of & is a full subcategory .&Z such that

(a) If Ae A2 fecHom (A, B) and 7 Hom (F, B) represents the
image of f then e ..

(b) If Ae.Z feHom (A, B) and ke Hom (K, A) represents the
kernel of f then e ..

(¢) For each e & there is a unique subobject 2., or A which
satisfies

(¢,) U is a kernel.

(c,) A, is represented by a monomorphism with an object of
“# as domain.

(e;) A, includes any subobject of 2 which is a kernel and is
also represented by a monomorphism with an object of &£ as domain.

(d) If weHom (U, B) is a representative of the cokernel of a
representative v € Hom (9, A) of A, then the subobject B is the
zero-subobject of B.
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THEOREM 4.4. In each of the categories (1), (2), and (3) the full
subcategory defined by the class of objects W such that A = A, is a
radical subcategory.

Proof. Proposition 1.4 and Corollary 2.4 and 3.4, together with
the identification of the kernels, cokernels, images and co-images in
these categories, establish this result.

This theorem justifies the term *-radical as a name for the
reducing ideal in these three categories.

In the semi-abelian category (4) of U*-algebras we do not know
whether the reducing ideal is always a U*-algebra, i.e.

4.1) Up = WUp)” -

In fact we do not know whether every closed *-ideal is always a
U*-algebra. If 2, is always a U*-algebra then Theorem 4.4 is true
for category (4) also. Otherwise one might consider the full sub-
category <# defined by the class of objects 20 such that 2 = (2p)°.
This subcategory satisfies (a), (b), and (¢) of Definition 4.3 with
A, = Y. However it will not satisfy (d) unless

(4.2) (/@A) ") )" = {0} .

It is possible that condition (4.2) is true for all U*-algebras. If it
is not true for all U*-algebras perhaps there is a full subcategory
of category (4) in which either condition (4.1) or (4.2) holds. This
subcategory might have a radical subcategory associated with the
reducing ideal. Notice that categories (2) and (38) are nonfull sub-
categories of category (4) in which (4.1) holds.

It seems unlikely that the semi-abelian category (6) has a radical
subcategory defined by the reducing ideal. However a counterexample
is probably quite weird. (Note added in proof: I have found a
counterexample which is not particularly weird.)
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