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Let

and

g(z) = z + ^ akz
k

be analytic and satisfy

(a) Re (f(z)/[λf(z) + (1 - X) g(z)]) > 0

or

(b) I f(z)l[λf{z) + (1 - X) g{z)} - 1 | < 1

for \z I < 1, 0 ^ λ < 1 .

We propose to determine the values of R such that f(z) is
univalent and starlike for \z\ < R under the assumption
(i) Re(g(z)/z) > 0, or (ii) ΈLe(zg'(z)lg(z)) > a, 0 ^ a < 1.

We also consider the case when n = 1 and Re(#(z)/z) > 1/2
and show that under condition (a) /(#) is univalent and
starlike f or \z \ < (1 - )̂/(3 + X).

2. LEMMA 1. If p(z) = 1 + b^zn + bn+ιz
n+ι + is analytic and

satisfies Ue(p(z)) > a, 0 ^ α: < 1, /or | s < 1, ίAew

( 1 ) p(s) = [1 + {2a - l)zn u(z)]/[l + znu{z)} , / o r | « | < 1 ,

where u(z) is analytic and \u(z) \ ̂  1 for \z\ < 1.

Proof. Let

( 2 ) TO - lp(z) - a]/(l - a ) = l + cnz
n + cn+1z«+ί + .

ί 7 ^) is analytic and Re (F(z)) > 0 for | z \ < 1 and hence

(3) h(z) = [1 - F(2)]/[l + F(2)] = dn»" + d%+ιz^ + ,

is analytic and | Λ(̂ ) | < 1 for | z \ < 1. Thus, by Schwarz's lemma

(4) h(z) = znu(z) ,

where u(z) is analytic and | u(z) | ^ 1 for \z\<l. Now equations (2),

(3) and (4) prove (1).

L E M M A 2 . Under the hypothesis of Lemma 1 w e have for \z\ < 1

239
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I zpr(z)/p(z) I ̂  2nzn(l - a)/{{I - | s |») [1 + (1 - 2a) \ z \n]}.

Proof. Proceeding as in the proof of Lemma 1, we have in view
of (3) and a result of Goluzin [1] that for | z \ < 1

(5) I hf{z) \^n\z Γ 1 (1 - I h(z) | 2)/(1 - | z \2n) .

Using (3), the inequality (5) takes the form

I F'(z) \^2n\z Γ 1 Re (F(z))/(1 - \ z \2n) .

Hence, in view of (2),

(6 ) I p'(z) \^2n\z I - 1 [Re (p(z)) - a]/(l - | z Π

or,

( 7 ) I zpr(z)jp{z) I ̂  2rc| * | (1 - a/(\ p(z) |)/(1 - | z Π .

Equation (4) gives

(8 ) I h(z) \^\z\n

and hence, by virtue of (3),

( 9 ) \F(z)\£d+ I« |")/α — 1*1")

From (2) and (9),

I p(z) I - I a + (1 - a)F(z) \
^ a + (1 - a) I F(z) \
^ [1 + (1 - 2a) \z |1/(1 - I z \n) .

for 1 ,

The inequality (7), because of the last inequality, reduces to

I zp'{z)lp{z) \^2n\z |*(1 - a)/{(I - | z \«) [1 + (1 - 2a) \ z | ]} for | z | < 1

and this completes the proof.
We remark that in the case a = 0, the above lemma reduces to

a result of MacGregor [2; Lemma 1] and the inequality (6) with
a = 0, n — 1, gives another result of MacGregor [2, Lemma 2].

LEMMA 3. Under the hypothesis of Lemma 1 we
z 11/(1 + | z \n).

/or 13 | < 1
Re

Proof. We have from equation (3), F(z) = [1 - Λ(2)]/[l + Λ,(s)]
and also from (8), | h(z) \ ̂  | z \n for |« | < 1. Hence the image of
I z I < r (0 < r < 1) under JP(#) lies in the interior of the circle with
the line segment joining the points (1 — rn)/(l + rn) and (1 + rn)/(l — rn)
as a diameter. Consequently Re (F(z)) ^ (1 — | z \n)/(l + \z\n) for
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z I < 1. The result now follows from the last inequality involving
F(z) and equation (2).

LEMMA 4. ([6]). // h(z) = 1 + cnz
n + cn+ίz

n+ί + . . . is analytic
and Re (h(z)) > 0 for \ z | < 1, then

[1 - λ I h(z) I]"1 ̂  (1 - \z

/or | z | < [(1 - λ)/(l + λ)]1/Λ, wfterβ 0 ^ λ < 1.

3. THEOREM 1. Suppose that f(z) = z + an+1z
n+1 + an+2z

n+2 H ,

and g(z) = z + 6 % + 1 ^ + 1 + bn+2z
n+2 + ••• a r e analytic and Re(g(z)/z)>0

for \z\<l. If Re (f(z)/[Xf(z) + (1 - λ)^(z)]) > 0, 0 ^ λ < 1, /or
| 2 | < 1, £/^w f(z) is univalent and starlike for \z\ < R l f n , where
R = {[(2n + λ - nX)2 + (1 - λ2)]1/2 - (2n + λ - nX)}/(l + λ).

Proof. Let

then h(z) is analytic and Re (h(z)) > 0 for | z \ < 1. Now

(10) /(z) [1 - Xh(z)] - (1 -

where p(z) = ^(z)/z = 1 + δw+i2n + δw+22;%+1 + - . Multiplying the loga-
rithmic derivative of both sides of equation (10) by z we have

(11) zf{z)lf{z) = 1 + zpf(z)/p(z) + zhf(z)/{h(z)[l - \h{z)]} .

Equation (11) is valid for those z for which 1 — Xh(z) Φ 0 and | z \ < 1.
Since | h(z) \ ̂  (1 + | z \n)/(l - \z\n), 1 - λfc(2) ^ 0 in particular if
I z I < [(1 - λ)/(l + λ)] i ; \ Now from equation (11), we have

I zf'{z)lf{z) - 1 I S I zp'(z)/p(z) I + [ zh'(z)/h(z) \\ 1 -

and by using Lemma 2 with a = 0 and Lemma 4, this gives

, / 2w I z I" , 2n\z\*
\ zf(z)/f(z)

z r a -1 s n - λ(i +
z \n [(1 - [ z \n) - λ ( l + [ z \n) + (1 - [ z

) [(1 - \z l ) -

provided that \z\<[(l- λ)/(l + λ)]1/u.
The fact that | zf(z)/f(z) - 11< 1 implies that Re(zf'(z)/f(z)) > 0,

it follows from the inequality (12) that Re (zf'(z)/f(z) > 0 if

I z | < [(1 - λ)/(l + λ)]1^

and if
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G(\ z | ) Ξ (1 + λ) I z Γ + (4m + 2n\ + λ - 1) | z
(lo)

+ (2nX - An - X - 1) | z \n + (1 - λ) > 0 .

Let I z \n — t and consider the cubic polynomial G(t) for 0 ^ t ^ 1.
G(t) has at most two positive zeros. Since G(0) = (1 — λ) > 0,
G[(l - λ)/(l + λ)] = -AXn(l - λ)/(l + λ)2 < 0 and G(l) = AXn > 0, it
follows that G(ίχ) = 0 for some t, such that 0 < t, < (1 - λ)/(l + λ)
and G(t) > 0 for 0 ^ ί < t, and G(ί) < 0 for ^ < t < (1 - λ)/(l + λ).
Hence Re (zf'(z)/f(z)) > 0 for those z for which only the inequality
(13) is true. Now the inequality (13) holds if, in particular

\2n(1 + λ) I z \*n + (4n - 2nX + λ - 1) | z

+ (2nX - in - λ - 1) | z \n + (1 - λ) > 0

or,

(I s | - 1) [(1 + λ) I * I1* + (An - 2nX + 2λ) | z \n + (λ - 1)] > 0

or,

(1 + λ) \z \2n + {An - 2nX + 2λ) \z \n + (λ - 1 ) < 0 .

The last inequality holds if

(14) \z\*< {[(2n + X - nxγ + (1 ~ λ2)]1/2 - (2n + λ - nλ)}/(l + λ) .

Since f(z) is univalent and starlike for those z for which

Re (zf'(z)lf(z)) > 0 ,

we have that f(z) is univalent and starlike for \z\ < Rlln, where R
is the right side of (14).

If we put λ = 0 in Theorem 1 we obtain the following result
which, when n = 1, reduces to a result of Ratti [5, Theorem 1].

COROLLARY 1. Suppose that f(z) = z + an+1z
n+1 + an+2z

n+2' , αraZ
0(2) = z + 6%+1£

%+1 + 6%+2^
+2 + are analytic and Re (g(z)/z) > 0 /or

2 I < 1. / / R e (f(z)/g{z)) > 0 /or | s | < 1 £/̂ w /(s) is univalent and
starlike for \z\< [(An2 + 1)1/2 - 2n]lln.

The functions f(z) = z(l - zn)2/(l + zn)2 and g(z) - z(l - 2;w)/(l + zn)
satisfy the hypothesis of Corollary 1 and it is easy to see that the
derivative of f(z) vanishes at z = [(4w2 + 1)1/2 — 2n]l!n and hence
[(4%2 + 1)1/2 — 2n]lln is in fact the radius of univalence for such func-
tions f(z). This shows that Corollary 1 is sharp and hence Theorem
1 is sharp at least for λ = 0.

THEOREM 2. Suppose f(z) = z + azz
2 + , and
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g(z) = Z + b2Z
2 + •

are analytic for | z | < 1 αm£ Re (g(z)/z) > 1/2 /or | 2 | < 1. 1/

Re (f(z)/[Xf(z) + (1 - λ)ff(2)]) > 0 for \ z

/(2) ΪS unίvalent and starlίke for | 2 | < (1 — λ)/(3 + λ).

Proof. Let Λ(«) = /(«)/[λ/(«) + (1 - λ)#(z)] = 1 + ctz + c2z
2 + .

Now h(z) is analytic and Re (h(z)) > 0 for | z | < 1 and

(15) f(z) [1 - λ/φ)] = (1 - X)h(z)g(z) .

If we let g{z) = zp(z), then by applying Lemma 1 with a — 1/2 and
n = 1 we have that p(2) = [1 + 2%(2)]~ι, where u(z) is analytic and
! u(z) | ^ 1 for I 2 I < 1. Equation (15) now reduces to

Hence

and

f(z) [1 - \h(z)] = (1 -

zf'(z) _ 1 -

zu(z)] .

zh'(z)

h{z) [1 -

Re
f{z) )

> Re
1 +

zh'(z)/h(z)
11 - \h{z)

Using Lemmas 2 and 4 with n = 1, we get

Re (?£M) ^ Re
f{z) J ~ V 1 + zu(z) / (1 - i 2 |2) - λ(l

for I z | < (1 - λ)/(l + λ).

Hence Re (zf'(z)/f(z)) > 0 if | z | < (1 - λ)/(l + λ) and

Γ(| z I) Re [(1 - 2V(2))(1 + zu(z)] - 2 | z | Re[(l > 0 ,

where Γ(| 2 |) = (1 - | z f) - λ(l + | z The last inequality holds if

T{\ z I) Re (1 + zu(z)) - T(\ z \) Re [z2u'(z)(l + zu(z)]

+ 2 I z \ Re [(1 - 2tt(2))(l + zu(z))] - 4 ] z j Re (1 + zu(z)) > 0 ,

or if

[4 I z I - Γ( | z I)] Re (1 + 2

< 2 I z I (1 - I z |21 it(2) |2)

+ Γ(| z |) Re +

or
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I 4 I z I - T{\ z I) I (1 + I z I | u(z) |) + T(\ z |) | z |21 w'(z) | (1 + | Z | | W(Z) |)

< 2 I z I (1 - I z |21 u(z) |2) .

This inequality holds, in view of (5) with n — 1 if

I 4 I z I - Γ(| z I) I + Γ(| z |) | z |2 (1 - | i*(z) |2)(1 - | z I2)"1

( ' < 2 I z I (1 - I z I I M(Z) I) .

Two cases arise according as 4 | z | — T(\ z |) is nonnegative or not.

Case 1. 4 I z I - Γ(| z I) ^ 0, i.e. | z | ^ [(4λ + 5)1/2 - (λ + 2)]/(l + λ).
Since [(4λ + 5)I/2 - (λ + 2)] < (1 - λ) for 0 ^ λ < 1, it follows, in
view of inequality (16), that Re (zf'(z)/f(z)) > 0 for those z for which
[(4λ + 5)1/2 - (λ + 2)]/(l + λ) ^ I z | < (1 - λ)/(l + λ) and

4 I z I - Γ ( | z I) + Γ ( | z I) I z |« (1 - I **(«) | 2)(1 - 1 t φ ) I2)"1

< 2 I z I (1 - I z I I «(z ) I) .

The last inequality holds, because of the original value of T(\z\), if

2 I z I + 2 I z Γ - 1 + λ ( l + I z \Y - λ I z |2(1 + | z |)/(1 - | z |)

< I 2 |21 M(Z) |2 - λ| z |21 tt(z) |2 (1 + I z |)/(1 - | z |) - 2 | z Γ | u{z) | .

Since | u(z) | sΞ 1, t h e r ight side of inequality (17)

^ I z Γ I u(z) |2 - 2 I z |21 u(z) | - λ | z |2 (1 + | z |)/(1 - | z |) .

Hence inequality (17) holds, if in part icular

(18) 2 I z I + 2 I z |2 - 1 + λ ( l + | z |)2 < | z |21 u(z) |2 - 2 | z Γ | w(z) | .

If we let F(x) = x2 \z\2 - 2x\z\\ where a; = | u(z) |, 0 ^ * ^ 1, then
F(x) is a decreasing function of x for 0 ^ x ^ 1, and hence

= -\z\ for 0 < x < 1 .

Hence inequality (18) holds if 2 | z | + 2 | z |2 - 1 + λ(l + | z |)2 < -1 z |2

or (3 I z I - 1)(| z | + 1) + λ(l + | z |)2 < 0 or 3 | z | - 1 + λ(l + | z | ) < 0
or if I z I < (1 - λ)/(3 + λ). Since (1 - λ)/(3 + λ) < (1 - λ)/(l + λ),
we have shown that

(19)
Re (z/'(z)//(z)) > 0

for [(4λ + 5)1'2 - (λ + 2)]/(l + λ) z I < (1 - λ)/(3 + λ) .

Case 2. 4 | z | - Γ(| z | ) < 0, i.e. | z | < [(4λ + 5)I/2 - (λ + 2)]/(l + λ).
We intend to show that Re (zf'(z)/f(z)) > 0 in this case also. Since
f(z) and g{z) satisfy, in particular, the hypothesis of Theorem 1 with
n = 1, it follows from Theorem 1 that
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Re (zf(z)/f(z)) > 0 for | z | < [(5 - λ2)1/2 - 2]/(l + λ) .

It is easy to see that

[(4λ + 5)1/2 - (λ + 2)] ̂  (5 - λ2)1/2 - 2 for 0 ^ λ ^ 1

and hence in particular

Re (zf'(z)/f(z)) > 0 for | z | < [(4λ + 5)1/2 - (λ + 2)]/(l + λ) .

In view of the above and (19), it now follows that f(z) is univalent
and starlike for | z | < (1 — λ)/(3 + λ) and this completes the proof.

For λ = 0 the above result reduces to a result of Ratti [5,
Theorem 2] and improves a result of MacGregor [2, Theorem 4] since
Re (g(z)/z) > 1/2 does not necessarily imply that g(z) is convex [7].
The functions f(z) = z(l — z)/(l + z)2 and g(z) — z/(l + z) satisfy the
hypothesis of Theorem 2 with λ = 0 and f(z) is univalent in no circle

z I < r with r > 1/3 since f'(z) vanishes at z — 1/3. This shows
that Theorem 2 is sharp at least for λ = O

A function f(z) = z + ΣΓ=2 a>kZk is said to be starlike of order a,
0 ^ a < 1, for I 2 I < 1 if Re (zf'(z)/f(z)) > a for | s | < 1, we now
prove the following result.

THEOREM 3. Let f(z) = z + Σ~=*+i bkz
k and g(z) = z + Σ?=«+i ̂ ^

δβ analytic for | 2 | < 1 and g{z) be starlike of order a, 0 ^ a < 1,
/or I s I < 1. // Re (f(z)/[Xf(z) + (1 - λ)flr(«)]) > 0 /or | s | < 1,

is univalent and starlike for

( i ) I z \< [(1 - λ)/(l + λ + 2n)Y!» if a = 1/2

(ϋ) I z\ < Rιln , if a Φ 1/2 ,

where

R = {[A2 + 4(1 - λ2)(2α: - 1)]1/2 - A}/[2(1 + X)(2a - 1)]

with A — 2nJrXJrl — (2a — 1) (1 — λ).

Proof. Proceeding as in the proof of Theorem 1 we get

Re (zf(z)lf(z)) 2: Re (zg'(z)/g(z)) - | zh'(z)\h(z) | ] 1 - Xh(z) I"1 .

Applying Lemma 3 (to zg'(z)/g(z)) and Lemmas 2 and 4 we get,

(20) Re (ZJ^\ >
f{z)J- 1 + I z | (1 - I 2 I2") - λ(l + I z I")2

provided that j z | < [(1 - λ)/(l + λ)]"\
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Hence Re (zf'(z)/f(z)) > 0 for those z for which \z\< [ l -λ)/( l+λ)] 1 / π

and the right side of inequality (20) is greater than zero. The latter
holds if

G{\z\) ( l

+ [2n + λ + 1 - (2a - 1)(1 - λ)] | z \n - (1 - λ ) < 0 .

Let I z \n = t and consider the quadratic G(t) for 0 ^ t ^ 1. Since
G(0) = λ - 1 < 0, G[(l - λ)/(l + λ)] - 2n(l - λ)/(l + λ) > 0, it follows
that G(ίi) = 0 for some tx such that 0 < t, < (1 - λ)/(l + λ) and
G(t) < 0 for 0 ^ t < tt and G(ί) > 0 for tL < t < (1 - λ)/(l + λ).
Hence f(z) is univalent and starlike for those z for which only the
inequality (21) holds. Now the inequality (21) holds if

I z | < [(1 - λ)/(l + λ + 2n)]ιίn

when a — 1/2 and

z I < {[A2 + 4(1 - X2)(2a - 1)]1/2 - A}l[n/[2(1 + λ)(2α - ΐ)Yln

when α: ̂  1/2, where A — 2n + X + 1 — (2a — 1) (1 — λ) and this com-
pletes the proof.

If we put λ — 0, n — 1 and a — 0 in the above result then
we see that f(z) = z + X"= 2 α ^ under the modified hypothesis
is univalent and starlike for | z \ < 2 — T/ 3 , a result obtained by
MacGregor [2, Theorem 3]. On the other hand if λ = 0 and n — 1,
Theorem 3 reduces to a result of Ratti [5, Theorem 3] The func-
tions

j\Z) — z{L — z )i\L ~τ z ) a n a gyz) —

show that Theorem 3 is sharp at least for λ = 0 and arbitrary n,
since the derivative of f(z) vanishes at

z - {[(n + 1 - a) - ((n + 1 - a)2 - (1 - 2a))ι'2]/(l - 2a)Y'n

for α ^ 1/2 and at z = - l/(2w + 1) when α: = 1/2.

4* Let S(E) denote the functions f(z) — z Λ- Σ ί U UkZk which are
analytic and satisfy | zf'(z)/f(z) — 1 [ < 1 for \z\ < R. Obviously
every member of S(R) is univalent and starlike for | z | < R. We
now prove the following result.

THEOREM 4. Let f(z) = z + an+1z
n+1 + α w + 2 ^ + 2 + •••, and g(z) =

« + &%+iZ%+1 + &w+2^+2 + δβ analytic and satisfy Re (g(z)/z) > 0 /or
I s | < 1. / / | f(z)l[Xf(z) + (1 - λ)flr(s)] - 1 | < 1, 0 ^ λ < 1, for | « | < 1,
then f(z)eS(Rlln), where R is the smallest positive root of the equa-
tion (2nX + λ - n - 1) R2 - (Sn + λ - 2nX) R + (1 - λ) = 0.
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Proof. Let

(22) h(z) = f(z)/[Xf(z) + (1 - X)g(z)] - 1 = cx + cn+1z^ +... .

By hypothesis, h(z) is analytic and | h(z) | < 1 for | 2 | < 1 and hence
by a result of Goluzin [1] we have that for | z \ < 1

(23) I h'(z) \£n\z I - 1 (1 - | h(z) | 2 )/(1 - | z \2n)

and by Schwarz's lemma for | z | < 1

(24) I Λ(*) I ̂  I 2 | .

If we let g(z) = zp(z), then we have from (22)

f(z)[ί — X — Xh(z)] = (1 — λ,)2p(2)[l + h(z)] .

Hence,

zfΊz) ., . zpΊz) , zhΊz)
f(z) ~~

and this gives

p(z) ' [1 + h(z)] [1 - λ - Xh(z)]

11 + h(z) 111 - λ -

Applying Lemma 2, with a — 0, we get, in view of (23), for | z \ < 1

i n I2)
1 - (1 - I z \2η 11 + h{z) I 11 - λ - λA(2)

w 1 g r (l + j h(z) 1)

by using (24), we have

f{z)
n\z\n

1- z \2n ( 1 - \z\n)(l-X-X\z \n)

valid for \z\< [(1 - λ)/λ]1/w. Hence | zf'(z)/f{z) - 1 1 < 1 if

\z \< [(1 -

and

2^ 1 z \n(l - λ ~ λ | ^ | % ) + ^ |

The last inequality holds if

(25) G(\ z \n) == λ I z

- (3n + λ - 2πλ) I z \n + (1 - λ) > 0 .

Let I z \n = t and consider the cubic polynomial G(t) for 0 fj t ^ 1.

(l + I z \n) < (1 - I z \2n)(l - X - X \ z \n) .

+ X - n ~ 1) | z Γ
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G(t) has at most two positive zeros. Since G(0) = (1 — λ) > 0 and
G((l - λ)/λ) = - (n(l - λ)/λ2 < 0, it follows that G(t,) = 0 for some tx

such that 0 < tx < (1 - λ)/λ and G(t) > 0 for 0 ^ t < ίx and G(t) < 0
for some values of t between tx and (1 — λ)/λ. Hence

I zf'(z)lf(z) - 11< 1

for those values of z for which only the inequality (25) holds. Now
inequality (25) holds if, in particular

(2nX + λ - n - 1) | z Γ - (Sn + λ - 2nλ) |3 |% + (1 - λ) > 0

and this completes the proof.
If we set λ = 0 and n — 1 in the above result we have the fol-

lowing.

COROLLARY 2. Suppose f(z) = z + a2z
2 + α32

3 + and #(#) =
z + 62£

2 + δ32
3 + . are analytic and satisfy Re (g(z)/z) > 0 /or

I z \< 1. 7/ ]/(z)Mz) - 11< 1 for \z | < 1, ίΛβn | zf(z)/f(z) - 11< 1
/or I 2 | < 1/4(1/17 - 3).

It may be noted that Corollary 2 implies, in particular, that f(z)
is univalent and starlike for \z\ < 1/4 (i/Ϊ7 — 3) and hence includes
a result of Ratti [5, Theorem 4]. If we take f(z) = z(l-zn)2/(l + zn)
and g(z) = z(l — £%)/(l + zn)> it is easy to see that these functions
satisfy the hypothesis of Theorem 4 with λ = 0. We see that f'(z)
vanishes at z0 = [-3w + (9n2 + 4n + 4)1/2]/(2u + 2) and hence

This shows that Theorem 4 is sharp for at least λ = 0 and also that
Corollary 2 is sharp.

THEOREM 5. Let f(z) = z + an+1z
n+1 + α%+2z

w+2 + . . and g{z) =
2 + δw+1£

%+1 + &W+22
W+2 + be analytic for | 2 | < 1 and g(z) be star-

like of order a for | z \ < 1, 0 ^ a < 1. 1/

I f(z)/[Xf{z) + ( 1 - λ)flr(s)] - K l , 0 ^ λ < l , / o r | s | < 1 ,

^Λen /(^) is univalent and starlike for \ z \ < i21/w, where R is the
smallest positive root of the equation

(2a - ΐ)XR* - (n + 2a - 1 - λ)i22

(26)
+ (2a - 2 - 2αλ + λ ~ n)R + (1 - λ) = 0 .

Proof. Proceeding as in the proof of Theorem 4 we have
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zf'jz) _ zg'jz) mz)
f(z) 9(z) [1 + h(z)] [1 - λ - Xh(z)) '

Hence,

f(z) ) - \ g(z) J \l + h(z)\\l~X- Xh(z) I

Since Re (zg'(z)/g(z)) > a and zgr(z)\g(z) = 1 + cnz
n + cn+iz

n+1 + , we
have by Lemma 3 and inequalities (23) and (24) that

Re (zf'(z)/f(z)) ^ [1 + (2a - 1) | z | ]/(1 + | z \n)
{ ~n\z | /[(1 - \z I*) (1 - λ - λ I z m

v a l i d for \z\< [(1 - X)/X]lίn .

Hence Re (zf'(z)/f(z)) > 0 if | z | < [(1 - λ)/λ]^ and if (in view of
inequality (27))

G(| z \n) = (2a - ) λ I z Γ

- (n + 2a - 1 - λ) I z \2n

(28)
+ (2α - 2 - 2αλ + λ - n) \ z \n

+ (1 - λ) > 0 .

Let \z\ ~ t and consider the cubic polynomial G(t) for 0 ^ ί ^ 1.
Since G(0) = 1 - λ > 0 and G((l - λ)/λ) = ( - ^ ( 1 - λ))/λ2 < 0, it fol-
lows that G(tL) = 0 for some tt such that 0 < tx < (1 — λ)/λ and
G(t) > 0 for 0 ^ ί < tγ and G(ί) < 0 for some t between t, and
(1 — λ)/λ. Hence f(z) is starlike and univalent for \z\ < Rlln, in
view of inequality (28), where R is the smallest positive root of the
equation (26).

The case when λ = 0 in Theorem 5 is of special interest. In
this case equation (26) becomes

(n + 2a - ΐ)R2 - (2a - 2 ~ n)R - 1 = 0

which gives R = 1/3 in case a = 0 and n = 1 and

(29) i2 - {(2a-2-n) + [(2a-2-n)2

if a Φ 0. This proves the following result, which includes a result
of Ratti [5, Theorem 6]

COROLLARY 3. Suppose f(z) = z + an+1z
n+1 + an+2z

n+2 + and

g(z) = 2 + 6 % + 1 ^ + 1 + δ% + 22
% + 2 + are analytic for \z\ <1 and g(z)

is starlike of order a for \ z J < 1, 0 ?S a < 1. / / | f(z)jg(z) — 1 | < 1

/ o r I s I < 1 £&e% /(«) is univalent and starlike for

( i ) I z I < 1/3 i/ a = 0 awώ ^ = 1
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(ii) \z\< Rlfn, where R is given by (29) if a Φ 0.

It is easy to see that the functions f(z) = z(l - zn)/{l + s») <*-*«>/»
and #(z) = z/(l + s»)<2-2«>/» satisfy the hypothesis of Corollary 3 and
also that the derivative of f(z) vanishes at z — 1/3 if a = 0 and
n = 1, and at 2 = {[(w + 2 - 2α)2 + 4(n + 2α - 1)]1/2 - (w + 2 - 2a)}1'"/
[2(% + 2a - ΐ)]lln if aΦO. This shows that Corollary 3 is sharp.
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