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The purpose of this paper is to introduce a new class of
spaces, called linearly stratifiable spaces, which contains the
class of stratifiable spaces and is contained in the class of
hereditarily paracompact spaces. The notion of linearly
stratifiable spaces is related to several of the concepts most
recently studied by the late Professor Hisahiro Tamano, and
also to questions raised by A. H. Stone and E. A. Michael
concerning the normality and paracompactness of certain
product spaces.

The class of linearly stratifiable spaces is composed of special
subclasses called a-stratifiable spaces (where « is an infinite cardinal
number) of which the class of stratifiable spaces is the subclass cor-
responding to the first infinite cardinal. Many results which hold for
stratifiable spaces can be extended to linearly stratifiable spaces (see
§4) because the importance of the “countability” inherent in stratifiable
spaces is often due only to the well-ordering of the natural numbers
and not to their cardinality. One notable exception is that while, as
is known, the subclass of stratifiable spaces is preserved by countable
products, the other subclasses are preserved only by finite products.
In addition, the subclass of a-stratifiable spaces is preserved by box
products provided there are fewer than « factors in the product. An
analogous extension of the concept of a Nagata space is given in §6,
and some examples are given in §7.

Stratifiable spaces (originally called M,-spaces) and Nagata spaces
were introduced in 1961 by J. G. Ceder [6] along with several other
generalizations of metrizability. In 1966 C. J. R. Borges used an
equivalent definition of M,-space to show that Ceder’s M,-spaces had
many important features, and, thinking they deserved a better name,
he called them stratifiable spaces. Since then many authors have
considered this class of spaces, and recently, A. Arhangel’skii [1, pp.
139-142] and Borges [4], [5] have given surveys of results on strat-
ifiable spaces. A further generalization of metrizable spaces, called
perfectly paracompact spaces, was announced in two abstracts [14],
[15] in 1968 by H. Tamano, and he stated two interesting product
theorems for this class of spaces. His definition, however, allows
non-paracompact spaces to be perfectly paracompact (see Example 3.1),
which was not his intention. (In light of this fact and current termi-
nology, it seems better to reserve the term “perfectly paracompact”
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for the class of paracompact spaces in which every closed set is a
countable intersection of open sets. Nevertheless, in this paper we
shall use the term “perfectly paracompact” in the sense in which it
was used by Professor Tamano.) It seems reasonable (see §3) to
suppose that Tamano was interested in a concept similar to linearly
stratifiable spaces. If we substitute the words “linearly stratifiable”
for “perfectly paracompact” in the product theorems given in Tamano’s
abstracts, we get the statements below, which seem to be plausible
conjectures. In fact, the author had considered the first conjecture
before becoming aware of Tamano’s abstracts. The definition of the
box topology can be found in [11, p. 107].

Congecture 1. The product of two linearly stratifiable spaces is
paracompact.

Conjecture 2. Any product of linearly stratifiable spaces with
the box topology is paracompact.

One reason that Tamano was interested in Conjecture 2 is that
it would (if true) provide an affirmative answer to A. H. Stone’s
question [12, p. 54}: Is a product of real lines with the box topology
normal? In this direction, M. E. Rudin [23] has recently proved that,
under the assumption of the continuum hypothesis, the box product
of countably many locally compact, o-compact, metric spaces is
paracompact.

In this paper, we shall show that Conjecture 1 and a form of
Conjecture 2 are true for a-stratifiable spaces. These results are given
in §5, and the definitions of these spaces are given in §2. Most of
these results were announced in [18], [19], and [20]. The fact that
Conjecture 1 holds for the subclass of stratifiable spaces follows from
results of Ceder {3, Thm. 2.2, Thm. 2.4].

2. Definitions and characterizations.

DEFINITION 2.1. An ordinal number « is called an inttial ordinal
provided for every ordinal B < a, there exists an injection from g3 to
«, but there does not exist an injection from a to 8. We assume
that cardinal numbers and initial ordinal numbers are the same. Let
w stand for the first infinite ordinal.

DEFINITION 2.2. Let (X,.97) be a T.-topological space and let «
be an initial ordinal, &« = w. The space (X, .7") is said to be strat-
ifiable over a or linearly stratifiable provided there exists a map
S:a x 9 — 7 (called an a-stratification) which satisfies the follow-
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ing (where we denote S(g, U) by U,).
LS; : U,cUforall < aandall Ue 7.
LS;;: U{Usp<al=Uforall Uec 7.
LS;;;: If Uc W, then U,c W; for all g < a.
LS : Ifvy<pB<a then U, c U, for all Ue 7.

DEFINITION 2.3. A T,-space X is called a-stratifiable provided «
is the smallest initial ordinal for which X is stratifiable over a. A
space which is stratifiable over w is called stratifiable, and the map
S is called a stratification.

REMARK 2.4. In the case of a stratifiable space, our definition
above agrees with that of Borges [3, p. 1] because (as he noted) if
S is a stratification which satisfies LS,, LS;;, and LS;;;, then there
is a stratification which satisfies all four conditions LS,—LS,,. Ex-
ample 7.5 shows this is not true in general for a > ®.

DEFINITION 2.5. A collection P of pairs P = (P, P,) of subsets
of a topological space (X,.77) is said to be a linearly cushioned col-
lection of pairs with respect to a linear order < provided < is a linear
order on P such that (U{P: P=(P, P)eP'}))y " cU{P:P=(P,P)eP’}
for every subset P’ of P which is majorized (i.e., has an upper bound)
with respect to <.

DEFINITION 2.6. (Ceder) A collection P of pairs is called a pair-
base for (X, 77) provided (1) for each P = (P, P,) € P, P, is open and
(2) for every x in X and every open set W containing #x, there exists
P = (P, P)e P such that xe P,.C P,C W.

THEOREM 2.7. If (X, 7)) is a T,-topological space and a an
wnfinite initial ordinal, them the following are equivalent.

(1) (X, 97) is stratifiable over «.

(i1) (X, .7) has a linearly cushioned pair-base P and « is cofinal
with P.

(iil) There exists a family {9, B < a} of functions with domain
X and range . such that the following hold.

(a) zegy,x) for all B < a.

(b) Forevery FC X, if ye[U{gs(x): xe F}]~ forall 8 < a, then
ye k.

(¢) If B< v < a, then g:(x) D g, (x) for all x.

Proof. (i) — (ii). Let S:a x .9~ — 7 be an a-stratification for
(X, .97). Give .7~ any well-order and define
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P ={P;u = (Us, U): (B, U)ea x1x T}

where a X .. .7~ denotes the product set @ X .~ with the lexicographic
order. It is easy to verify that P is a linearly cushioned pair-base
for X.

(iiy — (iii). Let P be a linearly cushioned pair-base for X and
{Ps: B < a} a subset of P such that for every Pe P there exists S < «
such that P < P,. For each z in X and each g < a define

9:(@) = X — [U{P:weP, and P= (P, P) = P}]™.

Clearly (a) and (c) hold. To see that (b) holds note if y¢F then
there exists Pe P such that ye P,c P,C X — F. Let 8 < a be such
that P = (P, P,) £ P,; then P, is a neighborhood of y which misses
gs(x) for all xe F. Thus y¢[U {gs(x): z€ F}]".

(iiiy — (i). For each B < a and each open set U define an open
set

U= X —[U{gs(x): o X = U}|".

The correspondence S(8, U) = U, is easily seen to satisfy LS,—LS,;;,
and LS, follows from (c). This completes the proof.

For the stratifiable case, Ceder is credited with showing (i) — (ii)
in [3, p. 2, footnote 1], and (i) «— (iii) is due to Heath [10].

REMARK 2.8. A dual characterization for linearly stratifiable
spaces can be given by stating Definition 2.2 in terms of closed sets
rather than open sets.

The next characterization justifies the terminology “linearly”
stratifiable.

ProPOSITION 2.9. Let (X, .77) be a Ti-space. X is linearly strat-
ifiable if and only if there exists a linearly ordered set A and a map
S: A X 9 — 9 which satisfies LS;—LS,,.

Proof. Let a be the smallest ordinal which is cofinal with A4;
then « is regular (i.e., there exists no strictly smaller ordinal which
is cofinal with «) and S’, the restriction of S to any cofinal subset
of A, will satisfy LS,—LS,,.

The proof of this proposition also shows that if X is an a-strat-
ifiable space, then « is a regular initial ordinal number.

The next result, though not a characterization, is useful in ex-
amples.
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ProposiTiON 2.10. If (X, 97) is stratifiable over a regular infinite
initial ordinal «, then every subset F of X whose cardinality is strictly
less than « is a closed discrete subspace.

Proof. Let P be a linearly cushioned pair-base for X such that
the regular initial ordinal « is cofinal with P. It suffices to show
that F has no accumulation points. If x,€ X then for every x € F/ — {x,}
there exists P,e P such that xe (P,), and z,¢(P,),. Then {P,:xcF'}
must have an upper bound in P, because it is not cofinal. Hence

X - [U{(P):aeF — {x}}]”

is a neighborhood of z, which misses F — {x}.

From this proposition it is clear that a space stratifiable over a
regular initial ordinal can not possess any property which requires
any countable set to have an accumulation point unless the space is
stratifiable. For example, if such a space is a k-space or a separable
space it must be stratifiable. We also note that Proposition 2.10 holds
in particular for a-stratifiable spaces.

We now recall some definitions.

DEFINITIONS. 2.11. The character of a point x in a space X is
the smallest cardinal number y(x, X) such that z has a fundamental
system of neighborhoods of cardinality y(x, X). The character of the
space X is the ecardinal number xX = sup{)(x, X):2z<c X}. The
pseudocharacter of x is the smallest cardinal number +(x, X) such that
x is the intersection of a collection of open sets which has cardinality
oz, X). The opseudocharacter of X is the cardinal number X =
sup {v(z, X): x € X}.

COROLLARY 2.12. If X is a non-discrete, a-stratifiable space, then
X Za =y X

3. Pair-base versus pair of bases. As was mentioned in the
introduction, H. Tamano has defined [14] a class of spaces which seems
to be closely related to linearly stratifiable spaces. His definition is
essentially as follows. Tamano called a space X perfectly paracompact
provided there exist two bases %/, 7" for the topology of X, a map
¢: 7" — 7 such that ¢(77) is also a base, and a well-order on 7" such
that for every bounded subcollection 7" * — 7° we have

(U{V:Ver*h-c U{g(V): Ver*}.

In short, the space has a “pair of bases”, one of which is linearly
cushioned in the other. We shall show below that this concept is
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weaker than the concept of a linearly cushioned “pair-base” as defined
in §2 in that, for regular spaces, the latter notion implies paracom-
pactness (Theorem 4.11 C) while the former does not. From the
abstract [14] it is clear that Tamano was interested in a class of
paracompact spaces, and from [16] we know that he was aware of
the “pair-base” type of definition (he used it to define elastic spaces,
which are paracompact). It seems probable, therefore, that the type
of base Tamano wanted was a linearly cushioned pair-base. By Theorem
2.7 a T,-space having such a base is linearly stratifiable.

ExAMPLE 8.1. A perfectly paracompact space which is not normal.
The desired space is the well-known example of V. Niemytzki. Let
X = {(x, y): « and y are real numbers and y = 0}, X, = {(x, y) e X1y = 0},
and X, = X — X,. For each » = (p, »,)€ X, let B(p,r) denote the
set of points of X which lie inside the circle with center p and radius
> 0. Then {B(p,r):r >0} is taken as a fundamental system of
neighborhoods of points pe X,. For p = (p,0¢eX, let Ulp,r) =
B((p,, r), r) U {p} and let {U(p, r): r > 0} be a fundamental system of
neighborhoods of points pe X,. We now define a base 7 for the
Niemytzki topology on X. Let #{ = {U(p,r):pecX,,r>0}and ¥, =
{B(p, p./n):p = (p,p.)€X, and 1/n < p,} for n=2,8, --.. Clearly
7 = Uszo: %, is a base for X. Next, we define a second base 7 for X.
Let z, = Z7U{X}, and Zu., = {B(D, 2p,/(2k + 1)): p = (D, P:) € Xp}
for k=1,2,.-+. Set & = Uise Zorir Now let <, be any well-order
on 7, for n = 1, and define a well-order < on 7 as follows. For
V,V'e7, we say V< V' iff (1) there exists a natural number =
suchthat V, V'e Z,and V<, V',or (2 Ve #,, V'e 7, and n < m.
We define a map ¢: 7" — Z by

X if Ve 7

U((p,, 0), p,) if V= B(p, L2 and = i
o(V) = ((p, 0), p,) 1 (p n)an n i1s even

B(p, %) if V= B(p, %) and 7 = 3 is odd .

It is clear that ¢(?°) is a base since ¢(7") = %’. Finally, we shall
show that 7" is linearly cushioned in %/. Let 7°* be a bounded sub-
collection of 7°. We must show that

(U{V: Ve *Hhc U{s(V): VeT *}.

If 7°* contains any member of ¢/, the inclusion is trivial. Thus we
assume that 7°* N #{ = @. Since 7" * is bounded, {n: 7"* N 7, * @}
has a largest element N. For each Ve 7 °*, we have that V and ¢(V)
are (essentially) the insides of circles with the same center and the
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circle for ¢(V) has at least twice the radius of the circle for V. The
desired inclusion now follows from the fact that if V is in 7°*, then
V does not reach below the line of height 1/(2N), and does not have
a radius of less than (1/N)%

4. Additional results. We shall now give some important results
for linearly stratifiable spaces which easily extend from the analogous
results for stratifiable spaces.

THEOREM 4.1. Let X be stratifiable over a.

A. Every open set in X is a unton of a collection & of closed
sets with the cardinality of & less than or equal to a.
Every subspace of X is stratifiable over a.
X 1is paracompact (hence hereditarily paracompact).
Every closed continuous image of X is stratifiable over a.
X is completely monotonically normal (see [21] or [22]).
X has a network N = U{N;: 8 < a} such that each N; is a
discrete collection in X.

W EH DO

Proof. Clearly (A) and (B) follow from the definition. The proof
of (C) follows from Theorem 1 in [17]. Proofs of (D), (E), and (F)
can be given in a manner similar to the proofs of [3, Thm. 3.1, p. 5],
[22, Prop. A] and [9] respectively.

We conclude this section with two more interesting results.

THEOREM 4.2. A space is stratifiable over a iff it is dominated

by a collection of closed subsets, each of which is stratifiable over a
[3, Thm. 7.2, p. 13].

THEOREM 4.3. If X and Y are stratifiable over a and A is a
closed subset of X and f: A— Y a continuous function, then X U;Y
(the adjunction space) is stratifiable over a [3, Thm. 6.2, p. 11].

5. Products. In [6, Theorem 4.5, p. 107] J. Ceder proved that
a countable product of stratifiable spaces is a stratifiable space. In
this section, we shall prove that a finite product of spaces stratifiable
over the same « is again stratifiable over . Example 7.4 shows that
if @ > ® then a countable product of spaces stratifiable over a need
not be linearly stratifiable.

It follows from our product theorem (Theorem 5.2A) and Theorem
4.1C that Conjecture 1 is true in the special case that both spaces are
stratifiable over the same initial ordinal. We also prove (Theorem 5.2D)
that certain products (with the box topology [11, p. 107]) of spaces
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stratifiable over the same « is again stratifiable over a. This result
yields a special case in which Conjecture 2 is true.

LEMMA 5.1. Let a be an infinite initial ordinal number, and
let {Ai:ned) be a family of limearly ordered sets such that a has
cardinality strictly greater than that of A, and « is cofinal with A,
Jor all xed. If A is finite or if « 1s a regular ordinal, then A =
IH{A;: ne A} can be well-ordered so that for every majorized HC A we
have Pr,(H) (i.e., the Ath projection) is majorized in A,; for all ne 4,
and « is cofinal in A. Further, if « is the smallest initial ordinal
cofinal with each A,, them « is the smallest initial ordinal cofinal
with A.

Proof. For convenience we assume that « is a subset of each
A;. Let A be ordered as its cardinal number a(4). Define T, ; =
fo =(a)ecdra, LB forall < aand < a(d). Let By= N{T. . <
a(d)} for all < a, and let D, = R; — U{R,:v <« and v < B} for
all 8 < a. Then {D;: 8 < a} is a partition of A because if a = (a,) € 4,
then for each a, there exists B8; < a such that a; < 8,. Now {B: 1<
a(4)} has an upper bound in a because either a(4) is finite, or « is
regular and a(4) < a. Call the smallest upper bound g, then a =
(@) € Ds. Let <; be any well-order on D, and define a well-order
on A as follows. For z and v in 4, we say « < ¢ iff either

(1) there exists 8 < a such that « and y arein D;and ¢ <, y, or

(2) there exists 8 < v < a such that xe D; and y€ D,.

If H is a majorized subset of A, then there exists 8 < a such
that b = (b;) and b, = B for all xe 4, and b is an upper bound for H.
Hence g is an upper bound for Pr,(H) in A, for all . The remain-
ing assertions follow easily from the definition of <.

THEOREM 5.2. Let « be an initial ordinal number a = w. Let
X; be stratifiable over a for each 1 < w. Then the following hold:

A. IH{X;:1 < n} is stratifiable over a for all n < .

B. If each X; is a-stratifiable, then I{X;:1 £ n} is a-stratifiable
for each n < w.

C. (Ceder) If each X; is stratifiable, then II{X;: 1 < @} s strat-
ifiadble.

D. If each X, is stratifiable over the regular initial ordinal o
for all ned and a is strictly larger than the cardinality of A, then
II{X,;: » € A} with the box topology is stratifiable over «.

Proof. By Theorem 2.7, each X has a linearly cushioned pair-base
P; such that a is cofinal with P;. For each # < w and each Q=
(P, «++, P e [I{P:: 7 < n} define [[, P = {& = (x;): x;€ P} for 1 < n},
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and similarly define T[~,P;. Set By = [l Pi, By, = [[~, P}, and
B, = {B, = (By, By): Qe I {P:: © < n}} and order the index set of B,
as in Lemma 5.1 so that « is cofinal with B,. Clearly B, is a pair-
base for J] {X;:7 < n}, and if we consider (#;) e[ {X::7 < w}, then
B = U|{B,:n < w} is a pair-base for [[{X;: 7 < w}. We now show that
each B, is a linearly cushioned collection of pairs in X = [[{X::7 < n}.
Suppose H is a majorized subset of J[%, P; and z¢ U{By: Q@ H}.
Let N;= X, — (U{P: P= (P, P)e Pr,(H) and %;¢ P,})~. Then N; is
an open neighborhood of x; in X, because Pr;(H) is a majorized sub-
set of P;. Finally, [[~, N; is a neighborhood of % in X which misses
U{Byu: Qe H}. Thus (U{Byu:Qc H})"C U {Bg: Q€ H}, and this com-
pletes the proof of (A). The proof of (B) follows from (A) and Pro-
position 4.1B. To see that (C) holds, assume that each linearly
cushioned pair-base P; of X; has a countable cofinal subset (this is
equivalent to P; being a o-cushioned pair-base). The preceding argu-
ment shows that each B, is linearly cushioned with a countable cofinal
subset, and is, therefore, a o-cushioned collection. Thus B = U{B,:
# < @} is a o-cushioned pair-base for [[{X;:7 < w}. The proof of (D)
is similar to the proof of (B) by use of Lemma 5.1.

Example 7.2 shows that if X, and X; are stratifiable over different
«, and «, respectively, then X, x X, need not be linearly stratifiable.

In [13] E. Michael asked several questions concerning product
spaces. In particular, he asked whether or not there is a space X
such that X" (the product of X with itself n times) is hereditarily
paracompact for all finite cardinals #», but X< is not normal. We
raise a related question: If X is stratifiable over & > w, is X normal?
For such a space X, it would follow from Theorem 5.2A and Theorem
4.1C, that X* is hereditarily paracompact for all finite n. Thus a
negative answer to the preceding question would provide a negative
answer to Michael’s question.

6. «-Nagata spaces. The concept of a Nagata space was intro-
duced by Ceder in [6, p. 109]. In this section we shall extend this
concept and give some basic results. One important difference between
Nagata spaces and the generalization presented here should be men-
tioned. Ceder proved that the Nagata spaces are exactly the first
countable stratifiable spaces [6, Theorem 3.1, p. 109]. The a-Nagata
spaces, however, form a smaller class of spaces than the a-stratifiable
spaces of character «. The difference is that the w-Nagata spaces have,
for each point, a fundamental system of neighborhoods which is well-
ordered with respect to reverse inclusion (see N;;; below), while an a-
stratifiable space of character « need not have such neighborhood
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systems (see Example 7.3).

DEFINITION 6.1. A T.-space X is called a Nagata space over a
(where « is an initial ordinal and « = ) provided for every x € X there
exist collections of neighborhoods of «, { Us(x): 8 < a} and {S,(x): 8 < a},
such that

N; : for each ze X, {Us(x): 8 < a} is a fundamental system of
neighborhoods of =z,

N,;: for every x,ye X, Ss(x) N Ss(y) + @ implies = e Us(y)

N;;;: if 8 < v < a then S,(x) D S,(x) for all x.

The set of ordered pairs

{{Us(@): B < a}, {Sp(w): B < a}): we X}

is called an a-Nagata structure for X provided for each z in X,
{Us(x): B < a} and {S;(x): B < a} are systems of neighborhoods of z
which satisfy N,, N;;,, and N, of 6.1.

DEFINITION 6.2. A T.-space is called an a-Nagata space provided «
is the smallest initial ordinal for which X has an a-Nagata structure.
A space which is an w-Nagata space is simply called a Nagata space,
and its w-Nagata structure is called a Nagata structure. This last
definition agrees with the one given by Ceder [6, p. 109] because in
Ceder’s definition we may assume without loss of generality that
S,.(@) D 8S,..(x) for all n < w and x in X.

We now give some characterizations of Nagata spaces over «
which extend the analogous results due to Ceder [6, Theorem 3.1,
p. 109] and Heath [8, Theorem 5, p. 94].

THEOREM 6.3. Let (X, 77) be a T\-space, and let ¢ be an infinite
wnitial ordinal number. The following are equivalent.

(i) X ts a Nagata space over «.

(ii) X s stratifiable over o and for each x in X there exists a
Sundamental system of meighborhoods of x {Wi(x): 8 < a} such that
B < v < a implies Wi(x) D W,(x).

(iii) There exists a family {g:,: B < a} of functions with domain
X and range 7 such that the following hold:

@) {g,(x): B < a} s a fundamental system of open metghborhoods
of x for every x in X,

(b) for every meighborhood U of x there exists B < a such that
g:(x) N 9:(y) = @ implies that ye U,

() if B< ¥ < a, then gs(x) D g, (x) for all x in X.

Proof. Let X have an a-Nagata structure
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{({Us(@): B < a}, {Sp(w): 8 < a}): we X},

and define ¢ (x) to be the interior of Si(z) for all # in X and all
B < «. It is easy to check that (a), (b) and (¢) of (iii) hold. This
proves (i) — (iii). To see that (iii) — (ii), we note that each z in X
clearly has the desired fundamental system of neighborhoods. We
need only show that X is stratifiable over «, and to do this we will
show that Theorem 2.7 (iii) holds. Let {g;: 8 < a} be the family of
functions given by hypothesis. Clearly 2.7 (iii) (a) and (¢) hold. To
see that (b) is also true, assume y ¢ F. Then there exists 5 < a such
that g:;(¥) N g:(x) = @ implies x¢ F. Hence ye[U {gs(x): x ¢ F}].

The proof that (ii) implies (i) is a slight elaboration of Ceder’s
proof of Theorem 3.1 in [6, p. 109].

COROLLARY 6.4. The closed continuous image X of a Nagata space
over a is a Nagata space over o vff for each point v e X there exists
a fundamental system of neighborhoods {Wi(x): B < a} such that B <
v < a implies We(x) D W (x).

LEMMA 6.5. Let @ be a regular initial ordinal. If X 1s a Nagato

space over «, them for every x in X either x ts isolated or (x, X) =
1@, X) = a.

Proof. If ¢ = @ the result is clear. If o > ®, then the result
follows from Theorem 6.3 (ii) and the observation that the intersec-
tion of fewer than « neighborhoods of a point x will still be a neigh-
borhood of z.

We can now give an analogue to Ceder’s result that the class of
Nagata spaces is the same as the class of first countable stratifiable
spaces.

THEOREM 6.6. A T.-space X is an «-Nagate space iff it is «-
stratifiable and there exists for each x in X a fundamental system of
neighborhoods { We(x): B << a} such that g < v < a implies Wi(x) D W, ().

Proof. If X is an a-Nagata space, then by Theorem 6.3, we know
X is stratifiable over a and has the desired fundamental system of
neighborhoods. We need only show that X is not stratifiable over v
for w < v < a. This is clear if ¢« = w, and follows from Lemma 6.5
for &« > @ since a space stratifiable over v has pseudocharacter < 7.
The proof of the other half of the theorem is clear.

One can easily check that every subspace of a space which is
Nagata over « is itself Nagata over «, and that a finite product of
spaces Nagata over « is Nagata over a.
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The reader will probably recall that the well-known extension
theorem of Dugundji [7] was generalized from metric spaces to Nagata
spaces by Ceder [6, Theorem 3.2, p. 110] and from Nagata spaces to
stratifiable spaces by Borges [3, Theorem 4.3, p. 7]. We do not know,
however, if Dugundji’s theorem can be generalized to all a-Nagata
spaces.

7. Examples. In this section we denote the first uncountable
ordinal by Q.

ExaMPLE 7.1. An 2-Nagata space (hence an Q-stratifiable space)
which is not stratifiable. Let X = [0, 2] and give X the smallest
topology larger than the order topology for which every point is isolated
except 2. Let <&Z = {V, = (a, D): a < 2} U{W, = {a}: @ < 2} and order
&Z 8o that every V, precedes every W, and a < 8 < 2 implies V, < V,
and W,< W,. Then <& is a “linearly closure preserving base” for
X, and {(B, B): Be &} forms a linearly cushioned pair-base. X is not
stratifiable because the point £ is not a G;.

ExAMPLE 7.2. A stratifiable space Y and an Q2-stratifiable space
X such that X x Y is not linearly stratifiable. Let X be the space
of Example 7.1. Let Y = [0, w] with the order topology. Then Y is
a stratifiable space (in fact, Y is a compact metric space). It is known
that if the point (2, w) is removed from this space, the resulting
subspace is not normal. This can be seen by using the techniques of

Exercise F on page 132 of [11]. Thus X x Y is not hereditarily normal
and by Theorem 4.1.C it is not linearly stratifiable.

EXAMPLE 7.3. An Q-stratifiable space of character Q which is
not an 2-Nagata space. Let X be the space described in 7.1. Let
Y = X, but give Y a topology stronger than the topology on X as
follows: Let L, be the set of limit ordinals in [0, 2) and define induec-
tively, for each » < w, L, as the set of ordinals which have a member
of L, ., as immediate predecessor. (This idea was used by C. Aull
[2, p. 50] for a different example.) Define W(a, ») = U {(a, 2) N L,:
E=n}U{Qand 27 = {W(a, n): a < 2 and n < w}. Then 97  is taken
as a fundamental system of neighborhoods of 2 and all the other
points in Y are isolated. Note that 2 is a G; in Y. As in 7.1 we
see that Y is stratifiable over £2. (Also, one can easily show that
Y is stratifiable.) By Theorem 5.2 X x Y is stratifiable over 2,
and since X X Y has subspaces which are not stratifiable, we know
X x Y is Q-stratifiable. Clearly, X x Y has character 2, and has
some points which are not isolated, but have pseudocharacter ® (i.e.,
Gs;-points). It follows from Lemma 6.5 that X x Y is not 2-Nagata,
and X x Y is not a Nagata space over « for any a = w.
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ExaMPLE 7.4. A countable product of 2-stratifiable spaces need
not be linearly stratifiable. Let X be the space in 7.1 for each 7 < w.
Since each X, has isolated points, X = [[{X;:¢ < w} has convergent
sequences, and also non-stratifiable subspaces. Hence, X is not linearly
stratifiable by Proposition 2.10.

ExAMPLE 7.5. Every regular space (X, o) has a “stratification
map”’ S: @ X & — 7 which satisfies LS,, LSU and LS,,;; of 2.2. Take
« to be the cardinal number of .7, let & = {T:: 8 < «}, and define
(T, if T,cU
SB, U) = -
® U | & otherwise .

It is easy to see that S satisfies LS,, LS,;, LS;;. Now if this map
S also satisfied LS,,, then X would be paracompact by Theorem 4.1 C.
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