Vol. 43, No. 2, 1972

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Vol. 324: 1  2
Vol. 323: 1  2
Vol. 322: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The Hasse-Witt-matrix of special projective varieties

Leonhard Miller

Vol. 43 (1972), No. 2, 443–455
Abstract

The Hasse-Witt-matrix of a projective hypersurface defined over a perfect field k of characteristic p is studied using an explicit description of the Cartier-operator. We get the following applications. If L is a linear variety of dimension n + 1 and X a generic hypersurface of degree d, which divides p1, then the Frobenius-operator on Hn(X L;𝒪LY ) is invertible.

Mathematical Subject Classification 2000
Primary: 14G99
Milestones
Received: 28 June 1971
Published: 1 November 1972
Authors
Leonhard Miller