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Let f(x) be a recursive function and let Ds(X) denote
the Nerode canonical extension of f to the isols. Let A and
Y be particular isols such that D;(A) = Y. The main results
in the paper deal with the following problem: if one of the
isols A and Y is regressive, what regressive property if any
will the other isol have. It is shown that if A is a regressive
isol then Y will be also. Also, it is possible for Y to be a
regressive isol while A is not. In this event there exist re-
gressive isols B with D«{(B) =Y and B <, A. Extensions of
these results for recursive functions of more than one variable
are discussed in the last section of the paper.

1. Introduction. We will assume that the reader is familiar
with the primary definitions and results of the papers listed as re-
ferences. We will cite some particular definitions and results that
have a special role in the paper. FE will denote the set of nonnegative
integers, 4 the collection of isols, A4* the collection of isolic integers,
and 4, the collection of regressive isols. If f is a partial function
from a subset of F into E then 6f will denote its domain. If f: E"—
E is a recursive function then D, will denote the canonical extension
of f to the isols. Two sets « and g will be separated, written «|g,
if there exist disjoint r.e. supersets of « and 8. j(x, ¥) will denote
the familiar recursive pairing function defined by,

Jj@,y) =+ 12+ @ +y+ 1,

and %k and ! the associated functions with the property j(k(x), l(x)) =
x. [p,] will be the canonical enumeration for the collection of all
finite subsets of FE, [6]. Associated with this enumeration is the
recursive function r(x) having the property »(z) = card p,. We will
use a >, to stand for union among sets (and also a¢ + for a union of
two sets).

2. Recursive functions of one variable. Let f: E— E be a
recursive function. If f is a combinatorial function then its extension
D; will map 4 into 4, and if f is an increasing function then D,
will map 4, into 4,. Each combinatorial function of one variable
will be increasing, but not conversely. The condition needed for D,
to map 4, into 4, is that f be an eventually increasing function, [1].

THEOREM 1. Let f: E— E be a recursive function and A and Y be
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isols such that D;(A) = Y. If A is a regressive isol then Y will be
regressive also.

Proof. Assume A is a regressive isol. Let

g(0) =0,
gn +1) = f(n) + g(n) .

Then g will be an increasing and recursive function. Hence its can-
onical extension D, will map 4, into 4. Since

gn + 1) = f(n) + g(n) ,

it follows from the Nerode metatheorem for such identities (combining
[12, Theorem 10.1] and the representation of the canonical extension
of a recursive function [11, 4]), that

(1) Dy(A + 1) = Ds(4) + Dy(4) .

Because A is a regressive isol and g is increasing and recursive, each
of the isols A + 1, D,(A + 1) and D,(4) will also be regressive. In
addition, Y = D;(A) is an isol and from (1) it then follows

(2) Y<D,A+1) and DA + D ed,.

In view of a result due to Dekker [4, P8 (a)], (2) implies that Y will
be a regressive isol.

REMARK. If f is a recursive function of one variable then although
its canonical extension may not map every isol onto an isol, its value
may be an isol for some. In addition, it may also occur that the
value of D,(A4) will be a regressive isol for an isol A which is non-
regressive. An example of such a recursive function will be given
in the following section. We want to show next that if this possibility
does occur, then there will be a regressive isol B such that D(B) =
D (4). The following lemma essentially gives this result, once the
connection is made between the canonical extensions of recursive
functions and recursive combinatorial functions.

LEMMA. Let f, g: E— E be recursive combinatorial functions and
A and Y be isols which satisfy the identity,

(1) D;(A) = Y + D,(4) .

If Y is a regressive isol, then there will also exist a regressive isol B
with,

(2) DAB) =Y + D,B) .



ON SOLUTIONS IN THE REGRESSIVE ISOLS 285

Proof. Assume that Y is a regressive isol, and consider separately
the following three cases.

Case 1. A is finite. Then A will be regressive and we may set
B = A.

Case 2. A is infinite and Y is finite. Let Y = pe E. Set
h(x) = p + g(x), for xe E .

Then %~ will be a recursive combinatorial function, since the function
¢ is recursive and combinatorial. By a theorem of Myhill and Nerode
[11, Theorem 7], we also obtain,

(3) D.(4) = Y + D,(4) .
Combining (1) and (3) implies
(4) D;(A) = D,(4) ,

and since A is an infinite isol, it follows from (4) and a theorem due to
Myhill [8], that there will be infinitely many numbers n that satisfy

(5) f(n) = h(n) .

Let m be the smallest number that satisfies (5), and let B = m. Then
B will be a regressive solution to (2), since

D;(m) = f(m)
= h(m)
= D,(m)
=p+ Dg(m)
=Y+ D,(m) .

Case 3. Both A4 and Y are infinite isols. Let ®, and ®, be the
normal combinatorial operators, and let [¢;] and [d;] be the sequences
of combinatorial coefficients that are associated with the functions f
and g respectively. Let o€ A and 7€ Y. Then a and » will each
be infinite and isolated sets, and also n will be regressive. We will
assume that

(6) nla and 77|P,(@) ,

for otherwise an easy modification may be made in the proof. Based
on their respective definitions, each of the functions ¢; and d; will be
recursive, and also
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¢f(a) = (‘7(99, y) lpx g 24 and Y < cr(m)) ’
¢g(6() = (j(x’ y) lloa: g (24 a'nd Y < dr(x)) .

From (1) and (6) it follows also,
(7) Pra) =7 + Py(e) -

Let p be a partial recursive function that establishes (7), i.e., p will
be defined on @,(«), will be one-to-one, and will map

(8) P Ps(Q) =7 + Py(a) ,

one-to-one and onto.
Let y, be a regressive function that ranges over the set 7.

Our first aim is to define two particular sequences of subsets of
a and of 7 respectively, whose corresponding terms will share the
property appearing in (8). With each number » we will associate two
sets «, a subset of a, and 7, a subset of . These sets are meant
to be the collections of those members of & and 7 respectively, that
we can effectively find if we start with the value of y, and use only
the regressive property of the function y,, the separability property
in (6), and the recursive and partial recursive properties that appear
in (8). Note that the inverse function p™ of p will be well-defined
and partial recursive. The particular definition for these sets is as
follows; for n € E, the members of a, and 7, are determined by re-
peated applications of the six rules below,

(1) Y€

(ii) if y,emn, then (y, -+, ¥) & Y

(ii) if y,e7n, and p7(y,) = J(=, w), then p, & «,,

(iv) ifa, -, @€, 0, = (@, =+, ap), ¥ < ¢, DI (@, ¥) €7 and pj(x,
Y) = Ynm, then y, €7,

(v) ifa, -, qpea, 0, = (@, -, a),y <c and pj@, y) = ju,
v), then p, € a,,

(vi) ifa, -, qr€a,, 0, = (a, -+, ), ¥y < d, and p~'9(2, y) = j(u,
v), then p, € «,.

Note that each of the sets 7, will be non-empty, in view of (i). It
may occur that some of the sets «, are empty, however this will be
true for at most only finitely many of the «,. It is easy to see upon
a moments reflection that from the value of the number ¥, one can
effectively enumerate all of the members in each of the sets «, and
N.. It follows that each of the sets a, and 7, (for any number n)
will be r.e. subsets of @ and 7 respectively. Since a and 7 are each
isolated sets, we see that each of the sets a, and 7, will be finite.
It will be useful to list some of these properties and also some that
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can be arrived at in an easy manner from the six rules above.

(9) Vo)1, = @] and (Vn)@k)[a,.. = O] .
(10) (V’)’L)(Et)[t =N and N = (yo, Y yt)] .
(11 S a, Sa s -+ and i:‘,anga.

(12) BWEN SRS - and 37, = 7).

In addition, note that the six rules (i) — (vi) have been so defined so
have the following property; if one would simply know only the value
of ¥,, then the totality of those members of & and 7 that could be
found by using only the recursive and regressive features present in
(8) would be the two sets «, and 7, respectively. It follows from this
property that, for ne K

13) p: Prex,) — 9, + Py{a,), one-to-one and onto.
For each number n € E, let the
torre number of », = the largest number ¢ with v, =7, .

In view of (i) and the fact that each of the sets 7, is finite, it
follows that there will be infinitely many torre numbers. In addition
it is easy to see that if ¢ is the torre number of %,, then ¢ = n and
N =Nw= Y -+, ¥). Let t, denote the strictly increasing function
that ranges over the set of all torre numbers. Then

(14) s, = Yoy ==, ytx) ’

(15) ntogvtlgvtzg ]

(16) ta: < k é tx+1 = 7714: = 7}ta:+1’ and
an =37,

In addition, by combining the remark prior to (13) with (16) and
the fact that v, is a regressive function, we can also see that y,,
will be a regressive function (of x). This turns out to be a very
useful property. Another fact that is important to note here is pro-
perty A given below; it follows from (13), (16), the definitions of 7,
and its torre number, and the regressive property of y, .

Property A. If we are given the value of v, then we can effec-
tively determine whether k& < ¢, or there is a number z such that ¢, <
k<t,. In the former event we could also find the value of y,
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and in the latter event both of the numbers v, and v, ., could be
found.

Combining (11), (13) and (15) gives,
(18) a, S a, Sa,< -+, and
(19) p:Pile,) —— N, + Pola,)
one-to-one and onto, for each number x. Since ®; and @, are combi-
natorial operaors, the inclusions appearing in (18) also imply that
Prla,) S Prlay,.)

and

¢g(atx) e @g(azxﬂ) .
Therefore, in view of (15) and (19), we obtain for each number z € E,

. (Prlae,,) — Prlas,)
20 x+1 z
( ) - (77%“ - 77%) + (C/Dg(atﬁ—l) - (¢g(at$)) ’

one-to-one and onto.

We now begin to design a regressive set B whose recursive equi-
valence type will have the desired properties of the lemma. First
with each number y,, a particular finite set 8, will be associated. Let
the functions w, and e, be defined by

w, = cardinality of «,,,
€, = Wy

Cpr1 = Wypy — Wy .

Since y,, is a regressive function and since from the value of y, we
can determine the complete set «,, (refer to the remarks appearing
before (13)), we see that from the value of y, alone, each of the
numbers w, and e, can be computed. Hence each of the mappings
Y, — w, and y, — e, will have a partial recursive extension; in the
notation of [4] these properties are denoted respectively by

(21) Y, =*w, and y, <*e,.

We will assume here that e, = 1 (otherwise the proof would need to
be slightly changed). Then, by (18), it will also follow that ¢, =1
for each number n. For nec E, let

(22) 5n:[.7(ytn, T)I’l":o, 1:"'5 en—]-]'

Then [6,] will be a sequence of mutually disjoint nonempty sets. From
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(21) and (22), we see that by knowing the value of Y., we can effec-
tively find all the members of the set §,; this property will be denoted
by writing

(23) ytn§*5 .
For ne E set
(29 Bn=0,+ 0, + +++ + 0, .

Then, in view of (23) and the regressiveness of v, , it is possible to
effectively find all the elements of 3, from the value of %, . We will
denote this property by

(25) Y, =% Ba

In addition, note that

(26) BERES RS - and

27) card 3, = card «,, for every ve E .
Let

g=3p8.=35,.

We will assume here that the sets 7 and ®,(B) are separated (otherwise
an easy change in the proof would be made), i.e.,

(28) 7|P(B) -

Let B=Req 8. The remainder of the discussion now is toward showing
that B will satisfy the desired requirements of the lemma, i.e., that
B is a regressive isol and that B satisfies (2). Observe that by (28),

N+ PB)eY + Dy(B) .
Hence in order to complete the proof, it suffices to show that

(29) B is a regressive and isolated set, and
(30) P8 =7+ P(B) -

For (29): Note that g will be an infinite set, since ¢, = 1 for
each number n. Also, it is easy to see that if B contains an infinite
r.e. subset, then the set (v, ¥, -+-) would also then include an
infinite r.e. subset. But then the set 7 would contain an infinite r.e.
subset, yet we know that this cannot be true since it is an isolated set.
And therefore we may conclude that g will be an isolated set. We
know that the function y, is regressive. If we combine this fact
with (23) and the definition of B, then it is easy to see that g will
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be a regressive set, and in particular that a regressive enumeration of
its members will be
j(yto! O)’ M) j(ytg € — 1)7 j(ytly 0)’ ct j(ytla € — 1) 3 "% .
For (30): Recall that

oo

(31) B=23,8, where B, =0,+ +++ +0,.

0

Because ¢, and @, are combinatorial operators, it follows from (26)
and (31) that,

(32) PAB) S PB) S ++- and 2,(8) = S 2,(8.) ,

(33) Pu) S ) S -+ and 2,(8) = S 24(8.) »

and also, in view of (19) and (27), that for ne E,

(34) card P4(B,) = cardy, + card ®,(8.,) -
Combining (15), (32), (33) and (34) gives

(35) card @4(8,) = card 7,, + card ®,(3,), and

card (@f(,gkﬂ) - @f(lgk)) = card (77tk+1 - ’7t,,)

36
(36) + card (Py(Brs1) — Po(Be)) -

Now we can define a partial function,

q: PHB) —— 1 + P(B) »

based on the previous two equations. Let
q: PrBo) —*— Ney + ?g(Bo) ’
q: (P(Br+1) — @f(ﬂk)) TR (77%“ - 77:;) + ((pg(IBkH) - q’g(Bk)) ’

where we write —x— to mean that the related mapping is to be
order preserving. From (35) and (36) it follows that the mapping ¢
is well-defined, and from (12), (32) and (33) that ¢ will map ®+(B)
onto 7 + @,(B) in a one-to-one manner. To verify (30), it suffices to
prove that ¢ will have a one-to-one partial recursive extension. Be-
cause the sets @,8) and 7 + ®,B) are isolated, it follows from a
theorem due to Dekker [4, Proposition 9(b)], that ¢ will have a one-
to-one partial recursive extension, if both ¢ and ¢ have partial
recursive extensions. It suffices therefore to verify this latter property,
and this will be our approach here. We will consider first the mapp-

ing q.
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Let we®(B). We now describe a procedure whereby, with the
possible exception of finitely many such w, one can effectively compute
the value of ¢(w). From w first find the particular numbers z and
% with

(37) w = ](x, ’M), (O:c o= B and u < Criz) »

Note that if p, is nonempty then each of its members can also be
found. Moreover, since ®, is a normal combinatorial operator, it
follows that for all but possibly finitely many w e ®,(g) the corre-
sponding finite set p, appearing in (37) will be nonempty. From now
on let us assume that p, is nonempty. Members of o, will be of
the form j(y,,, v), and for each such member we can find the corre-
sponding values of y, and ». In addition, the values of ¢, and k
can also be determined, by using the regressive properties of y, and
Y.,- Let k* denote the largest value of k such that j(y,,, v) € 0., for
some number v. Then, it is easy to show that

W E PHB,) , if k* =0, and
WE PHBr) — Pr(Br)y If B = 1.

We know, by (25), that from the value of y,, we can effectively find
all the members of the set B,.. In addition, note that if £* = 1 then
also the members of the set 8., can be found, for we may regress
down from y,,, to y,,. , and apply (25). In a similar manner, in view
of (14), it follows that from the value of y,, we can find all the
members in the set

77% ’ if k* = 0, and
77tk* - Y]tk*__li if k* z 1 .
Finally, by combining these properties with the fact that the normal

operators ¢, and @, are each recursive, it can be seen that the
members in each of the sets below can be effectively determined,

PABy) and 7, + P,(Bo)s if k* =0 and,
ClDf(lgk*) - (pf(Bkﬂ_l) and
(Y]tk* - 7}%*——1) + (q)g(ﬁk*) - QDg(Bk*ml)), lf k/ 2 1 .

It follows directly from this property and the definition of ¢, that
the value of ¢(w) can now be computed. Therefore, there will be a
procedure that is effective and which will enable one to compute g(w)
for all but a possible finite number of we ®,(8). It is readily seen that
this feature implies that the mapping ¢ will have a partial recursive
extension.



292 JOSEPH BARBACK

An approach very similar to the previous one can be employed to
show that the mapping ¢! will also have a partial recursive. For
this reason we will omit the main details for doing this, and will
only mention the two essentially new observatians that we would
have been required to make. The first is that given any number
w e + P,(B) one can effectively determine whether we” or we @, (5).
This property follows from the separability of the sets » and #,B)
given in (28). The other observation is that if we7, then one can
effectively find the particular numbers s, £*, t,. and y,,, that are related
to w in the following way, w = ¥, and

W E Ny, ,if k*=0,
WE (N, — Ny )s i ¥ =1

This particular property follows from (14), (16), Property A and the
regressive properties of the functions y, and y, . The importance of
the second property lies in the fact that it means that from the value
of any we?, one can effectively find y,,,, and therefore also deter-
mine the appropriate sets,

B., and 7, ,if k*=0,
Beys Beyois Vere and 7, if B* = 1.

It is then with these two observations that a similar approach, as
with ¢, will lead to showing that ¢ will have a partial recursive
extension.
In view of the remarks made up to this point, we see that the
mapping
@ Pr(B) —— 7 + Py(B)

will have a one-to-one partial recursive extension. This verifies (30)
and complets the proof of the lemma.

THEOREM 2. Let f: E— E be a recursive function and A and
Y be isols such that

(1) D,A) =Y.

If Y is a regressive isol, thewn there will also exist regressive isols B
such that,

DiB) = Y.

Proof. Let us assume that Y is a regressive isol. Let f* and
f~ be the positive and negative recursive and combinatorial functions
that are associated with f (refer to [11]). Then for every number
xe K, f(x) = f(x) — f(x), and also
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Dy(A) = D; + (A) — Dy — (4) .
Therefore, by (1), it also follows that
D;+ (A =Y+ D;,— (4.

If we now apply the previous lemma to this equation, we see that
there will be a regressive isol B such that

D;+ (B =Y+ D;— (B,

and from this identity it also follows that D(B) = Y.

REMARK. Theorem 2 is our principal result and it is easy to
observe that it follows almost directly from the lemma. It turns out
that, as a consequence of the manner in which the lemma was proved,
a slightly stronger form of both the lemma and the theorem can be
established. We would like to state without a proof the particular
form that is related to the theorem. It involves the Nerode canonical
extension of the familiar binary relation < (among numbers) to the
isols. The extension procedure is introduced in [12], and for the
relation < its extension will be denoted by =<,. It can be shown
that the regressive isol B constructed in the proof of the lemma (in
each of the cases considered there) is related to the isol A by B =<,
A. Based on this fact one can obtain the following result.

THEOREM A. Let f: E— E be a recursive function and A and
Y be isols such that DA) = Y. If Y is a regressive isol, then there
will exist regressive isols B such that B <, A and D/ B) = Y.

3. An example. It is possible that the canonical extension of a
recursive function may map an isol that is nonregressive onto an isol
that is infinite and regressive. We would like to give an example
of such a function. First some definitions are needed.

If « and B are two sets of numbers, then & <* 8 will mean that
either « is a finite set and card « < card B, or else both « and g
are infinite sets and there is a partial recursive function p such that,
o = 0p, p(@) = B and p is one-to-one on a. If A and B are two isols
then 4 <* B will mean that there are sets @< A and g€ B such that
a <* B. Let min (a, by denote the familiar recursive function minimum
(a, b), and let D,,;, denote its canonical extension to A°. min (a, b) is
not an almost combinatorial function, and therefore its canonical
extension will not map 4* into 4. On the otherhand, it is proved in
[3] that D, will map 4% into 4,. In addition, by combining results
in [3] and [4], one obtains for A, Be€ /g,
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Dyin(A, B)=A— A<*B.

Concerning isols and regressive isols the following property due to
Dekker [4] is also needed; if S and T are any isols, then

(%) S<Tand Ted,—=Sed,.

In the result below we will construct the kind of example that was
described earlier. We note that the functions j(z, ¥), k(x) and I(x) that
appear in its proof refer to those particular recursive functions in-
troduced in §1.

THEOREM 3. There is a recursive function h(x) and an isol C
such that D,(C) e 4y and yet C ¢ Ay,

Proof. Define
h(x) = min (k(x), l(x)) .
Then & will be a recursive function, and for a, be K
hi(a, b) = min (a, b) .
Therefore also,
D,Dy(U, V) = Duin (U, V), for U, Ved.
Select A, Be A, such that
(1) A<*B and A+ B¢dy;

the existence of such a pair of regressive isols is proved in [2]. Then
it follows

D,Di(A, By = Dpin (A, B) = A,
and in addition, if we let C = D;(A, B), then also
(2) D,(C) = Ae ;.

The function j(x, y) is recursive and combinatorial, and therefore its
canonical extension will map 4* into 4. In particular, we see that

(3) C=DiA, Bed.
Let us now verify
(4) C=D;A, Bedy=—=A+ Bed,.

First consider the implications,
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D;(A, B)e A = 2D;(A, B) € g
—2A+ (A+ B(A+ B+ 1)ed,
= A + Bed,.

The first two implications are clear. The last one follows from (x)
and the property,

A+B=<24+(A+ B(A+B+1).

Together they imply (4). In view of (1), (3) and (4) we obtain Ce
A — Ay, and if we combine this property with (2) the desired result
follows directly.

N. B. The fact that the familiar j function is combinatorial we
first learned from some unpublished notes of Erik Ellentuck. Once
this property is pointed out it is easy to show, and we will leave it
for the reader.

4. Recursive functions of several variables. We would like to
describe some of the results that can be obtained for recursive func-
tions of more than one variable that are similar to those given in §2.
First let us note some features that distinguish the one and more
than one variable cases. We know that for a recursive combinatorial
function of one variable, its canonical extension will map regressive
isols onto regressive isols. On the otherhand, even for recursive
combinatorial functions of two variables, it need not be true that
their canonical extension will map pairs of regressive isols onto re-
gressive isols. For example, Dekker showed in [4] that it is possible
for both the sum and the product of two regressive isols to be an
isol that is non-regressive. The characterization of those recursive
functions of two variables whose canonical extensions will map re-
gressive isols to regressive isols was given by Mathew Hassett in
[9]. The following is a special case of a theorem also due to Hassett

[8].

THEOREM B. (Hassett) Let f: E"— E be a recursive and com-
binatorial function. Let A, ---, A, be n regressive isols whose sum
A, 4 «oo + A, is also regressive. Then the value of DA, ---, A,)
will be a regressive isol.

Note that when # = 1 in Theorem B one obtains the earlier result
mentioned about recursive combinatorial functions of one variable.
Based upon the procedure for representing the canonical extension of
a recursive function (in terms of the canonical extensions of recursive
combinatorial functions)and applying Theorem B, analogues of Theorems
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1 and 2 can be obtained for functions of more than one variable. We
conclude the paper with statements of these two theorems.

THEOREM C. Let f: E"— E be a recursive function and A, «--,
A, and Y be isols with Ds(A,, -+, A,) = Y. If the sum A, + «++ +
A, is regressive, then the isol Y will also be regressive.

THEOREM D. Let f: E*"— FE be a recursive function and A,, «--,
A, and Y be isols with Ds(A,, -+-A,) =Y. If Y is regressive, then there
will be regressive isols B, +++, B, such that the sum B, + .-+ + B,
will be regressive and also DB, ---, B,) = Y.
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