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A set of linear operators from one topological vector
space to another is said to be collectively compact (resp.
semi-compact) if and only if the union of images of a neigh-
bourhood of zero (respectively every bounded set) is relatively
compact. In this paper sufficient conditions for a set of
operators to be collectively compact or semi-compact are
obtained. It is proved that if 7, — T asymptotically, where
X is quasi-complete and T, are W-compact then {T,— T}
is collectively compact. The final section deals with collec-
tively weakly compact sets. It is proved that in a reflexive
locally convex space a family of continuous endomorphisms
is collectively weakly compact if and only if

* = (K* Ef— E%}

is collectively compact.

The concept of collectively compact sets of linear operators on
normed linear spaces was introduced by Anselone and Moore [3].
This concept was studied in greater detail by Anselone and Palmer
[1, 2]. Some of the results in these papers were extended to more
general spaces in [4]. In this paper some further generalizations
are obtained.

2. Let X and Y be topological vector spaces and & [X, Y],
the set of continuous linear operators on X to Y. The underlying
scalar field will be assumed to be the field of complex numbers,
unless otherwise stated.

DEFINITION 2.1. A subset 2" < & [X, Y] is said to be collec-
tively compact (respectively, weakly compact, totally bounded) if and
only if there exists a neighbourhood V of zero in X such that
2V ={Ka: Ke 5%, xe V} is relatively compact (respectively weakly
compact, totally bounded) in Y.

REMARK. It is obvious that .27 collectively compact = .27 col-
lectively weakly compact. However, if Y is a Montel space, the
reverse implication is also true.
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ProPOSITION 2.1. Let 22 . £ |X, Y] be collectively compact and
Y, a quasi-complete locally convex space. Then the following state-
ments hold.

(@) The convex hull of 27 s collectively compact.

(b) The balanced hull of .27 s collectively compact.

(¢) The absolutely convex hull of 2% s collectively compact.

(d) The closure of .2 in the pointwise topology, and therefore in
AF X, YT is collectively compact.

() The set S5 MK, K, € 2% SV 1IN ] =Z0,0>0, N<Z oo} 48
collectively compact, the convergence of the series being in 4 [X, Y].

Proof. (a) Let (.2 Dbe the convex hull of 9 As .2 is col-
lectively compact, there exists a neighbourhood V of zero in X such
that .2V is relatively compact in Y. Now,

CoNVl(ZVICZZ V),

where bar denotes the closure. Since %"V is compact and Y is
quasi-complete, [( % V) is compact [9, 20.6(3)]. It follows that .5~
is collectively compact. The proofs of (b)—(e) are similar to those

in [1].

PrOPOSITION 2.2. Let X, Y and Z be topological wvector spaces
and . Cc LIX, Y|, #cCcx|Z X, #~CF|Y, Z] then:

(a) .2 collectively compact and _Z equicontinuous= 2% 7
collectively compact.

(b) .2 collectively compact and _14~ relatively compact in the
FIX, Y] = 4727 is collectively compact.

Proof. (a) Since .7~ 1is collectively compact, there exists a
neighbourhood V' of zero in X such that .27V is relatively compact
in Y. Further, by the equicontinuity of _~, there exists a neigh-
bourhood W of zero in Z such that 2 W< V. Hence

(o YWV

From this the assertion follows.
(b) See [4], Prop.2.3 (b).

COROLLARY. If v c ¥ [X, Y] s collectively compact and
A C F|Z, X] is bounded where Z is barreled and X locally convez,
then =5 _# s collectively compact.

* &2 [X, Y] with the topology of uniform convergence on bounded sets of X.
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Proof. For, if Z is barreled and X is locally convex then
A < 417, X] is bounded if and only if it is equicontinuous.

It is proved in [1] that a compact set of compact operators on a
Banach space is collectively compact. We shall prove a similar but
slightly weaker result for topological vector spaces. For this, we
introduce the following definitions.

DEFINITION 2.2. A linear operator Ke & [X, Y], where X and
Y are topological vector spaces, is said to be semi-compact if it maps
every bounded subset of X into a relatively compact subset of Y.

It is obvious that a compact operator is semi-compact. The con-
verse is also true if X is a quasinormed space.

DEeFINITION 2.3. A set of linear operators .27 C ¥ [X, Y] is
said to be collectively semi-compact, if and only if, for every bounded
set BC X, .27 B is relatively compact in Y.

It is clear that a collectively compact set of operators is collec-
tively semi-compact and the propositions proved so far, for collec-
tively compact sets, are also true for collectively semi-compact
operators if X is bornological and Y locally convex, because, a semi-
compact operator is bounded on bounded sets and therefore continu-
ous if the domain space is bornological.

We prove the following

LEMMA 2.1. Let & be an equicontinuous family of operators
on a compact set .27 imto a topolological wvector space Y. Let & be
compact with respect to the topology of pointwise convergence. Then
the set 7 (o) ={f(K): fe s ,Ke.2r} is compact.

Proof. # is equicontinuous, therefore, f(K) is jointly continu-
ous, in the sense, that the map (¥ x %) —Y defined by
(f, K) — fK is continuous relative to the product topology [8, 8.14].
Now & x .2¢ is compact, hence & 27, the continuous image of
F X .27 is compact.

The following proposition generalizes the theorem 3.6 in [4].

ProrosiTION 2.3. Let X, Y be locally convexr spaces, X borno-
logic. Let .27 be a set of semi-compact operators, compact 1in
FIX, Y. Then .2 1s collectively semi-compact.

Proof. Define a map f,: < [X,Y]—Y by f.(K)= Kz for
Ke ¥ [X, Y] and each x ¢ B, a bounded set in X. Consider the set
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F = {f.: e B}, We prove that & is equicontinuous. Let V be
a neighbourhood of zero in Y. Then the set W= {K: KBc V} is a
neighbourhood of zero in <[X, Y]. Now,

F W= {fuAK): foeF, Ke W}
= {Kx: Ke W, x< B}
=WB)cV.

This proves the equicontinuity of .&#. Now, the closure . # in the
pointwise topology is also equicontinuous. Also, # K< &% K = KB
which is compact by hypothesis on .9 Hence & K is relatively
compact in Y, for each Ke 2 From this follows the compactness
of & [8,§8, Problem H]. From Lemma 2.1 we deduce that & & 9%~
is compact. But "B = .2 < & .5 Hence . B is relatively
compact. This implies that .7 is collectively semi-compact.

COROLLARY. If Y 14is complete, then every totally bounded set
2 of semi-compact operators in 5 [X, Y] is collectively semi-
compact.

Proof. In this case & [X, Y] is complete. Hence % is com-
pact. By the proposition %% is collectively semi-compact. Then so
is .o7°

PRroOPOSITION 2.4. Suppose X, Y are locally convex spaces. Let Y
be reflexive. Then every set .27 of semi-compact operators bounded
in 5 [X, Y] is collectively weakly semi-compact.

Proof. Since .2¥" is bounded in <5 [X, Y], 2B is bounded for
every bounded set BC X. Since Y is reflexive, every closed bounded
set is weakly compact. [10, Th. 36.5]. The conclusion follows.

3. Convergence properties of collectively compact sequences of
operators.

ProrosiTION 3.1. Let X and Y be topological wector spaces, Y
sequentially complete. Let T, T,€ < [X, Y] for all n. Then:

@ T,—T in #H[X, Y] of and only of T,— T in pointwise
topology and {T, — T} s totally bounded in 45X, Y.

(b) If, in addition, X is bormologic and Y locally convex, then
T,—T in A[X, Y] and each T, — T semi-compact={T, — T} is
collectively semi-compact.
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Proof. (a) It is evident that 7T,— T in 5[X,Y] T,—T
pointwise and {T, — T} is relatively compact, and hence, totally
bounded.

For the reverse implication assume that 7, — T-» 0 in &4 [X, Y.
This implies that for a given neighbourhood V of zero in Y, and
bounded set B in X, there exists a sequence n; such that (T,,—T)(B)
¢ V, for each 1 =1,2 -.-. Since {T, — T} is totally bounded,
there exists a Cauchy subsequence {Tn” — T} which must converge
in &5[X, Y] by completeness of Y. Because T, — T — 0 pointwise,
it follows that T, — T—0 in £ [X, YI. Therefore (Tnij — T)(B)
c V, 7> N, a positive integer. This is a contradiction.

(b) This follows from the fact that a totally bounded set of
semi-compact operators is collectively semi-compact if Y is a complete
locally convex space and X is bornologic (Cor. Prop. 2.3).

REMARKS. If T,— T pointwise and X is of second category, the
Banach-Steinhaus theorem implies that the {T,} is equicontinuous,
and hence, the pointwise convergence is uniform on the compact sets
of X. On the other hand, as proved in (a) above, {T,— T} totally
bounded and 7, — T pointwise imply convergence in ¢4 [X, Y], i.e.
uniform convergence on bounded sets. This leads to the following
propositions.

ProrosITION 3.2. Suppose T, — T pointwise on X, where X 1is
bornologic and of second category. Suppose > < ¥ [X, X] 4s col-
lectively semi-compact. Then (T, — T) K—0 in &# [X, X] uniformly
for Ke 27

ProposiTioON 8.3. Let T, — T pointwise and .25 C ¥ [X, X] be
totally bounded im the pointwise topology. Suppose X 1is complete
and of second category. Then T,K-— TK pointwise uniformly for
Ke o7

Proofs. Similar to Propositions 3.1 and 3.2 in [2].

4, Asymptotic convergence and collectively compact sequences
of operators.

The concept of convergence of operator sequences in the uniform
operator topology in the normed spaces, is generalized in the follow-
ing manner in [5].

DEFINITION 4.1 A linear operator K on a topological vector space
E into itself is said to be the asymptotic limit of a sequence K, of
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linear operators, if and only if, there exists a neighbourhood V of
zero in E, a sequence «, of scalars-— 0 as n — < and a bounded set
BC E such that (K — K,) Vca, B, for n =1,2,---. This mode of
convergence will be denoted by K, K, and K will be called the V-
asymptotic limit of K,.

DEFINITION 4.2. A linear operator K on E to itself is said to be
V-totally bounded if and only if V is a neighbourhood of zero and
KV is totally bounded in E.

DEFINITION 4.3. If K is the V-asymptotic limit of K, and if
each K, is V-totally bounded, K is said to be asymptotically V-total-
ly bounded.

ProrosiTioN 4.1. If K is asymptotically V-totally bounded, then
K is V-totally bounded.

Proof. [5,4.2-1].

PROPOSITION 4.2. Let T, T,e ¥ |X, X] and let T be the V-
asymptotic limit of T, where each T, is W-totally bounded. Then
{T, — T} is collectively totally bounded.

Proof. T,—» T and each T, W-totally bounded implies T is W-
totally bounded (Prop4.1.). Now, T, T = there exists a sequence
a, of scalars — 0 as n — oo, a bounded set BC X such that

(T, — Th(Wycea,B for all n .

Let V be any neighbourhood of zero. Choose a balanced neigh-
bourhood V., of zero such that V,+ V., V. Since B is bounded,
BcaV, for some scalar «. Therefore, (T, — T)(W)ca,aV,. We
can choose N such that |aw, | < 1 for » > N. Hence (T,—T) (W) V,
for n > N. It follows that

U(T. — DW= U (T, — T)(W) + V..

As (T; — T)(W) is totally bounded for each %, so is their finite
union. Hence, Y (T, — TY(W)cUL, (x; + V) for some M, a
positive integer, and ;€ E. Hence,

U - DU+ 7).

This proves the proposition.



COLLECTIVELY COMPACT AND SEMI-COMPACT SETS 323

COROLLARY 1. Let T, T,e ¥ [X, X] where X is quasi-complete.
Suppose T, is W-compact i.e. T, (W) is relatively compact for some
netghbourhood W of zero in X. If T, T, then {T, — T} is col-
lectively compact.

Proof. T, T and each T, W-compact= T is W-compact be-
cause X is quasi-complete [5,4.2-1 Cor. 3]. From the above pro-
position it follows that U.(T, — T)(W) is totally bounded. Hence,
the closure U,(T, — T)(W) is bounded and closed and, therefore,
complete by the quasi-completeness of X. Thus, U.(T, — T)(W) is
totally bounded and complete, and therefore compact.

COROLLARY 2. If T,-» T on a neighbourhood W of zero in X, and
each T, is W-totally bounded, then {T, — T} is collectively compact
of X is a Montel space.

Proof. From the Proposition 4.2 it follows that {7, — T} is col-
lectively W-totally bounded, and, therefore W-collectively compact,
as X is a Montel space.

ProposITION 4.3. Let T, T, where T, Te ¥ [X,X]. If
. [X, X] s collectively compact, then (T, — T) K0 wuni-
formly on 257

Proof. Since .2 is collectively compact, there exists a neigh-
bourhood A of zero in X such that 97 A is compact in X, and hence
bounded. Now, T, T = there exists a neighbourhood W of zero
in X, bounded set B C X, and a sequence «, of scalars — 0 such that
(T, — TY(W)c a, B for all n. As .2 A is bounded, .Zs"AcCrW for
some scalar ». Hence, (T, — T)(o7A)c (T, — TYrW)c (ra, B), for
all n. Since «, and B are independed of ;5 (T, — T)K - 0, uni-
formly on 977

5. Collectively compact sets in weak topology. In this section
we consider the inter-relation between a collectively compact set of
operators and its dual family.

PROPOSITION 5.1. Let E be a locally convex topological wector
space and 2 a family of continuous endomorphisms, uniformly
bounded on a neighbourhood V of zero in K. Let 97 * be the family
of dual operators. Then 5 * considered as the set of mappings
(K*: EFX — EZX} is collectively compact, where E; is the strong dual
and EX the w*-dual of K.
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Proof. By hypothesis, %"V = B is a bounded set in E. Con-
sider neighbourhood W of zero in E} defined by

W={r: reEr, Sup (< )< 1

_ {f: feBz, Sup |<x,K*f>l<1}.

K*e o+
It then follows that

feW—|<&, K*f>| <1 for all zc V, and K*e o *
= K*feV°, the polar of V in E, for all K*e.o™*
_— W Ve .

Now, by the Banach-Alaoglu theorem {8, Th. 17.4}, V° is w*-
compact in E*. Hence .2 *W is relatively compact in E}%. This
completes the proof.

PROPOSITION 5.2. Let E be a semi-reflexive locally convex space
and 27, a family of continuous endomorphisms on K. If 57 1s
uniformly bounded on a meighbourhood V of zero im E, then 27
considered as a family of operators from (E})¥—(E}):. is collectively
compact.

Proof. From Proposition 5.1 it follows that the family .2%* of
operators from E} — Ej is collectively compact. Therefore, there
exists a neighbourhood W of zero in E} such that B = 2%*W is
relatively compact in E} and, hence, bounded in w*-topology. From
semi-reflexivity and from the fact, that a weakly bounded set is also
bounded in the initial topology [8, Th. 17.5], it follows that B is
bounded in E. From Proposition 5.1, it follows that

is collectively compact. Also .2% = .27 ** by the continuity of each
Ke 2. Hence the result.

COROLLARY. Let K be a continuwous linear endomorphism on E,
a locally convex space. Suppose K is bounded on a meighbourhood of
zero in E. If E is reflexive, then K is weakly compact.

PROPOSITION 5.3. Let E be a locally convex, reflexive space, and
2 a family of continuous endomorphisms on E. Let 57°* be the
corresponding dual family of endomorphisms on E*. Then .57 1is
collectively weakly compact if and only if S°* as the family of
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operators {K*: E} — E}L} is collectively compact.

Proof. Suppose .2 * is collectively compact as the family of
operators {K*: E}— E}}. Then there exists a neighbourhood W of
zero in EJ, such that .o"*(W) is relatively w*-compact. This im-
plies, since E is reflexive and, therefore barreled, that o7 *(W) is
equicontinuous, [10, Th.33.2]. Hence, there exists a neighbourhood
V of zero in E, such that .27 *(W)c V°, the polar of V. [10, Prop.
32.7]. Therefore,

[<K*w,2>| <1,
for all xe V, K*e Z*, we W=— 2 (V)C W° .

From the reflexivity of EF and the Banach-Alaoglu theorem, .27 (V)
is relatively w-compact. This proves that .27 is collectively weakly
compact.

The converse follows from Proposition 5.1.

COROLLARY. Let K be a continuous endomorphism on a reflexive
locally convex space E. Then K is weakly compact if and only if
K*: B — EX 1is compact.

This is a partial generalization of the Theorem 2.13.7 in [7].
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