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Let 7Y denote the compact group which is the Cartesian
product of j copies of the circle where j is a positive integer
or wo. If 1 <p =< co let L?(T7) denote the space of complex
valued measurable functions which are integrable with respect
to Haar measure on 7Y. If j is finite we shall write n instead
of j. The subspaces H?(T™") of L?(T"), i.e. the Hardy spaces
of T», have many well-known properties. A family of sub-
spaces H?(T«) of the L?(T«) is defined and they are shown
to have many of the same properties as the H?(T"*). However
a major difference between H?(T<«) and H?(T") is observed.
If 1< p< o then H?(T") is complemented in L?(T"), but
H?(T<) is uncomplemented in L?(T) for 1 < p < « unless
p=2.

Special properties of homogeneous functions in H* (7). Let j
be a positive integer or w. If j is finite we shall write » in place
of 7. We shall let T" denote the compact group which is the Car-
tesian product of # circles, and T the compact group which is the
Cartesian product of countably many circles. The dual of T* is the
direct sum of % copies of the integers, and the dual of T¢ is the
direct sum of countably many copies of the integers. If ge T", then
we write

g = (zly zz; ) zn)

where each z; is a complex number of unit modulus. If ge T¢ it has
a similar representation, but we must take a countable family, i.e.

g = (zly zz; 23, "') hd

By abuse of notation if ¢ < n < -, we let z; denote that ge T or
g T which has the following representation:

g:(ly °t Ty 1)ziy 15 "')

where z; occurs in the ith place. We shall write m, for the normalized
Haar measure on T" and m for the normalized Haar measure on T°.

The dual of T" can be written as >, Z, and if x€ >, Z then
we write

r = (xly Ly * 2y .’,U,,,,)
where each z; is an integer. The dual of T¢ can be written as >, Z,
and if xe 32,7, then we write
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T = (xu x25 x3; .")

where each x; is an integer, and for any particular z, only finitely
many %; are nonzero.
We define 4, <> 7, Z and AC >\7.. Z by

A, ={x:2;, = 0 for all 7}
A = {z:2;, =0 for all 4} .

We need the following definitions to define H?(TY). Although the
definitions could be stated in terms of 7Y it is easier to state them
in the context of arbitrary compact abelian groups.

DEFINITION 1.1. Suppose G is a compact abelian group with dual
group I'. If 1 < p < = let L?(G) denote the space of complex valued
measurable functions which are p™ power integrable with respect to
Haar measure on G. If E is a subset of I", f will be called an E-
Function if fe LNG) and f(v) =0 if vye I’ ~ E, where f(7) is the
Fourier transform of f evaluated at 7.

DEFINITION 1.2. Suppose 1 < p < o then L%(G) = {f:fe L (G)
and f is an E-function}.

DEFINITION 1.3.

HY(T) = L3, (T")
H*(T*) = L5(T°) .

The properties of H?(T") are discussed in [7]. These spaces are
related to analytic functions in several complex variables which are
defined on the interior of the n-polydisc in C”, and are subject to
certain growth conditions near the distinguished boundary 7T". If
j = w, there is no analogue of the interior of the n-polydisc. However
we still have many of the nice properties of H?(T™).

It is possible to imbed H?(T") in H?(T*) in a natural way. We
have the following homomorphisms

T, T — Vi
(zl’ z2y ** .7 zn; zn-H ° ') B (zly z27 e zn)
and 7, induces an isometry I,.
I, : H(T") — H*(T")

f b—> form, .

(1)

DEFINITION 1.4. Suppose fe H(T™ and s is a positive integer or
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0. Then the s homogeneous component of f = ,P,f), where ,P,(f)
is defined by its Fourier transform

F@y if S, =s

P.(F)) =
n AN = | 0 otherwise

That is if f has Fourier series
flg) ~ >, a.(g, @) 5
then ,P,(f) has the following Fourier series:

L(f)(g) ~ ZAL a.(g, ©) .

Zz;=3

T
Then ,P,(f) is a trigonometric polynomial since ,P,(f) has finite support.

DEFINITION 1.5. Suppose fe HY(T“) and f = ,P,(f) for some s.
Then we say f is homogeneous of degree s. The previous definition
is motivated by the following fact: If )\ is a complex number of unit
modulus and we write » to mean the point (A, A, A, «++, N) of T, then

fOng) = Nf(g) for all ge T

if f is homogeneous of degree s. Clearly if f is homogeneous of
degree s its Fourier transform has finite support, so f is a trigonom-
etric polynomial and hence fe H?(T*) for 1 < p < . It is easy to
show that ,P, is a bounded linear operator from H'(T™) into H?(T")
for each p. However it is not obvious that we can define an operator
P, on H(T*) which is analogous to ,P, on H'(T") because the sum
that should define P/(f) for fe H'(T*) is not necessarily finite. The
following lemma helps show that P, can be defined as a bounded linear
operator from H'(T*) into H*(T*).

LEMMA 1.6. Suppose s is a positive integer or 0, and 1 < p < oo,
Then there exists a projection P, on H?(T") with ||P,|| = 1 satisfying:

fl@) if Su; =s
0 otherwise

Pofl) = { } , feHNT") .

That is of f has Fourier series
f(g) ngfiax(g’ x) b

then P,f) has the following Fourier series:

P(£)(e) ~ 3 alg, ®) -

Lz;=s
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Proof. Consider the following subgroup H of >, Z:
H = {x:xeiz and Sz, = 0} .

But (32, Z)/H is a quotient group of 3, Z and hence its dual which
we shall call D, is a compact subgroup of T“. Let m, be normalized
Haar measure on D. Since Dc 7% we can calculate the Fourier
coefficients of m, with respect to >, Z. It is easy to calculate that

Mp(x) = xxz(x) for all ze i Z,

where y.,(z) is the characteristic function of the set H. If sis a
positive integer or 0, choose a y,€ >, Z so that 32, (y.); = s; then
for the measure ,(g)dm,(g)
1 if Jz—y,)=0
T n .
Ysmp(x) = Mp(® — y,) = ie. 3(®); =s
0 otherwise
Evidently for all s

[,12:(0) dmaf)| = 1,

so if fe H?(T*) we can consider fx(y.dm,) where = denotes the usual
convolution of a measure on T* with a function which is in H?(T*),
hence in L'(T*®). We have the following inequalities:

(2) L+ (ydmp) |, = Hprgglys(g)de(g)i = LA -

If we calculate the Fourier transform of f*(y.dmp)

T — PO T

F(y.dmy)(x) = fl)(y.dmp)(x) = Py(f)(x) .
Since fx(y,dm,) and P,f) have the same Fourier transform they are
the same element of H?(7°¢), and so from equation (2)

[P lp = [[f+@dmp) [, = £l

and this completes the proof.

DerFiNITION 1.7. If fe H?(T*), then the s homogeneous component
of f is Py(f).

If f= P,(f) for some s, we say f is homogeneous of degree s.
This definition is justified by the fact that if f is a homogeneous
trigonometric polynomial of degree s on T, then we have

(3) SfOng) =N f(g) for all geT*
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whenever ) is a complex number of unit modulus and on the left we
write A to mean (A, A, +-¢).

Suppose that f is a homogeneous function and that fe H(TY),
where j is a positive integer or w. If jis finite, then f is necessarily
a trigonometric polynomial and the following lemma and theorem are
obvious. However if j = w, f isn’t necessarily a trigonometric poly-
nomial, and the following lemma and theorem require proof.

LEmMA 1.8. Suppose fe H(T®) and that f is homogeneous of
degree s. Then equation (3) is satisfied for almost all ge T* and
almost all \.

Proof. If f is a trigonometric polynomial there is nothing to
prove. Otherwise by using an approximate identity we can find a
sequence {f,}o-, of homogeneous polynomials all of degree s such that

limf, = f

n—oo

in the norm of H'(T*). There exists a subsequence of {f,}7, say
{f.,}5- such that

lim £,,(0) = £(0) a.e.

where a.e. means for almost all ge T with respect to Haar measure
on T°. T x T is the product of the measure spaces 7° and T, and
so T¢ x T is a measure space with the product measure.

Let

W = {(g, M) e T* x T such that f(\g) = Nf(g)} .

Then W is measurable and we wish to show that the measure of W
is 1. Now consider any fixed v e T; we have

lim £,,(9) = £(9)
}_ijg Fa;(0M9) = fF(N9)
except for a null set of g. But for each j
Fu;(Ng) = NFai(9)
Fing) = ljargfnj(kg) = }113 N (9) = Nf(g)
except for a null set of g. So m(W) = 1, which finishes the proof.

The next theorem is an application of a theorem about 4(p) sets.
We digress for a moment to define A(p) set.
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DerFiNITION 1.9. Let G be a compact abelian group with dual
group I'. If p > 1and EcC I’ we say E is a A(p) set if LL(G) = L%(G).

DerFINITION 1.10. If A is a subset of I" and n is a positive integer
we define A" = {ze 2 =a, +a + +-- + a,, wherea, € 4,1 < i < n}.

THEOREM 1.11. Suppose G is a compact abelian group with torsion-
free dual group I'. If E is an independent set in I', then E° is a
A(p) set for all p < ~ and all positive integers s.

Proof. See [3, p.28, Theorem 4].

THEOREM 1.12. Suppose fe H(T*) and that f is a homogeneous
Junction of degree s where s 1s a positive integer or 0. Then fe H*(T*)
for 1< p < oo

Proof. Let E = {z;}2.,. Then E is independent as a set in >,2, Z
and so E° is a A(p) set for all p < =, by Theorem 1.11. But since
fe H(T*) and f is homogeneous of degree s, f is an E*-function. By
applying Theorem 1.11 we obtain that fe H*(T®) for all p < <, and
this completes the proof.

COROLLARY 1.13. Suppose fe H(T®) and that f is a finite sum
of homogeneous functions; then fe H*(T*) for 1 < p < oo,

Proof. By assumption f is a finite sum of homogeneous functions
S0 we may write

F=35P) .

Since fe H(T*) each P,(f)e H(T*) for 0 < s £ k. By Theorem 1.12
each p,(f)e H?(T*) for 1 < p < <o, 80 f is a finite sum of functions in
H?(T*) hence fe H*(T*).

Theorem 1.12 is really a theorem about H'(7*) rather than L'(T°).
In that context Theorem 1.12 is false. In fact Theorem 1.12 is false
even for L'(T? and hence for L(T°).

If j is a positive integer or -, we define homogeneity for arbitrary
functions in L'(7TY) as follows: If fe L'(TY), we say f is homogeneous
of degree s if

F@) =0 if ve 3 Z and S, s .

To show that Theorem 1.12 can’t be extended to L'(T®, we shall
construct for every p > 1 and for every positive integer N, a homo-
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geneous polynomial f of degree 0 on T* such that

Il =1
I fll, = N .

For given p > 1, find a trigonometric polynomial b defined on T such
that

o]l =1
1oll, = N

where b(z)) has Fourier series
bz) = 3 itk -
Define the polynomial f by
f(zy, 2,) = Z‘o aRizr .
We wish to compute the norm of f in LYT* and in L*(T%):
1£ 1= | 17 ) [ dm@)dm, e

i

t
S o)

dm,(z,)dm,(z,)

dme)dma(z) = | 1bldmi(e) = | 1dm@) =1

The crucial equality in equation (4) is justified by the translation
invariance of dm,(z)). By a similar computation we have

Wl = lbll, = N

and this provides the desired counterexample.

2. A convergence theorem for H?(T*). By the M. Riesz theorem
on conjugate functions [8], if 1 < p < « and fe H?(T), then

f=lmSaz, a =470

n—oa s=0

in the norm of H?(T). In our terminology this can be written

£ =1m3 P -
The next theorem gives an analogous result for H?(T“). The proof
uses a theorem about ordered groups so we digress for a moment to
define the relevant terms.
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Suppose I'" is a discrete abelian group and P is a subset of I"
with the following properties:

1. If v,e P and v, P then 7, + v,€ P.

If — P denotes the set whose elements are the inverses of the
elements of P then we have

2. PN(—P)={0}

3. PU(—P)=T.
Under these conditions P induces an order in I" as follows: For 7,
and v, elements of I', say v, = 7, if v, — v,€ P. It is easy to check
that this is a linear order. A given group may have many different
orders corresponding to different choices of P with the three properties
above.

DEFINITION 2.1. Suppose G is a compact abelian group whose dual
group I is ordered. Let f be a trigonometric polynomial on G with
Fourier series

flg) ~ 721. a(g,7) .
Define @(f) by
D(f)(9) ~ TZ; a9, ) .

We shall need the following generalization of the M. Riesz theorem
on conjugate functions. It is due to Bochner [1].

THEOREM 2.2. Suppose 1 < p < . Then there exists a constant
A,, independent of G or the particular order im I’ such that if f is
a trigonometric polynomial on G, then

PNl = Apll flip

THEOREM 2.3. Let 1 < p < oo. Then if fe H*(T*)

lim 33 P.(f) = f

in the norm of H?(T*).
Proof. Fix p. Define Y, by
Y.(f) = 3PS if fe HAT?) .
Clearly trigonometric polynomials are dense in H?(T*) and

lim Y,(f) = f

n—00



SOME H» SPACES WHICH ARE UNCOMPLEMENTED IN L» 335

whenever f is a trigonometric polynomial. It remains to show that
the family {Y,}7-, is uniformly bounded on trigonometric polynomials,
i.e.

1 YNl = KISl

f a trigonometric polynomial where K is a positive constant independent
of n and f. Then by a standard argument in functional analysis, the
proof is complete. I shall show that the norm of Y, is majorized by 4,,
where A, is the constant of Theorem 2.2.

Our first task is to induce an order in >, Z so that we can apply
Theorem 2.2. First choose a family {dj}=, of real numbers which
satisfies the following properties:

1. d,=-1, -1<d; < —n/(n + 1) for ¢ # 1.

2. The set {d;} is independent in the group sense as a subset of
the reals.

We define a homomorphism from 3.2, Z into the reals by

ﬁ:i‘,——>R

& — >, da; .

7 is clearly a homomorphism; since the d; are linearly independent,
it has a trivial kernel, i.e. if 7(x) = 0 then & = 0. Define

P:{x:wegZand ﬂ(x);()}.

Then P satisfies the necessary properties to induce an order in >, Z.
If f(g) is an arbitrary trigonometric polynomial on 7 define a trigo-
nometric polynomial f(g) as follows:

fi(g) = z7"(9)f(9) -
Let f(9) = Za,(g, ) . Then
fig) = 27 ™9)f(g) = Za(g, —mz)(g, ) = Za,(9, v — nz)
and

$(f) = 3o,z — ).

T(z—nzi) =

If 7(x — nz,) = 0, then
0= (e — n2) = w(x) + 7(—n2) = 7(@) — nw(z) = 7(®) + n

and n(x) = —n. But 7(x) = Ydx;, and by using property 1 of {d.} it
is clear that m(x) = —» if and only if Xz, <n. So ¢(f) = Ja.(9, x — nz,).
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Then it is easy to compute that Xz, < n

20(F) = 3 PAf) = Yol) -
By Theorem 2.2 we have that
N2l = ALl Al -

So we have

YNl = 210D, = 1| 2f1]l, = Al il
= Ap||zl_nf|lp = Ap”f”p ’

so the norm of Y, is less than or equal to A, and the proof is complete.

3. The complementation problem. The next theorem shows
that H?(T”) is uncomplemented as a subspace of L*(T%) if p = 2.
This is in contrast to H?(T™) which is complemented in L?(T™) except
when p =1 or p = . Although other examples of uncomplemented
subspaces of an L? space are known, H?(T*) has the advantage of
being defined in a concrete way.

DEFINITION 3.1. Let G be a compact abelian group. If fe LYG)
let f,, denote the g,-translate of f where

Jo(9) = f(90 + 9) -

LEMMA 3.2. Let G be a compact abelian group with dual group
I'. Suppose 1 < p < oo and that T is a bounded projection from
L*(G) onto L%(G). Then a linear operator @ can be defined by

Q) = | [TG)dme) L@,
where the integral is the Bochmner integral.

@ is the natural projection from L*(G) onto L%(G), i.e., if fe L*(G)
then Q(f) is defined by its Fourier transform as follows:

f(x) rel }

0 otherwise

G((w) = {

Proof. The proof for the case G=T,I'=2Z, E=Z*,p=11is
given [4, page 154]. The proof in the general case is analogous.

THEOREM 3.3. Suppose p # 2, then H?(T*) is uncomplemented as
subspace of L*(T*).
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Proof. If p=1 or p = oo, there is really nothing to prove.
There is a theorem in [4, pp. 154-155] which proves that H'(T) is
uncomplemented in L'(T), and that H=(T) is uncomplemented in L=(T).
Then since H*(T) and L*(T) can be isometrically embedded into H:(T®)
and Li(T®) respectively for 7 = 1, co, the theorem is proved for p = 1
or p = co. In any case the argument which follows is valid for » = 1,
and with slight modifications for p = oo.

Let S be the natural projection from L?(7T“) into H?(T*) which
is defined on trigonometric polynomials by

S: L°(T*) — H*(T*)
;o= S8
where
flx) ifzcd
0 otherwise

S(H@) =

We wish to show that S can’t be extended to a bounded operator
defined on all of L?(T“). To do this it is sufficient to find trigono-
metric polynomials f, on T such that

(5) fall, =1
(6) 1S(F) 1l = (1 + &" where &>0.

By [8, p. 295, Ex.2] we can find a trigonometric polynomial % defined
on T so that

We) = 3% gt b, =1
and if
hoe) = S} aizt
Je=0
then we have

el =1 + ¢

where ¢ is some positive number which depends upon_ p. Consider
the trigonometric polynomial » defined on 7% by

(2, %) = h(z)N(2,) = (kzz,%_n aszxki akz§> .

=—n

Define ». by

r(z, 2) = @k (@) = (3 aet)(3 at) -
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Then it is easy to compute that

frll, = lIR]l; =1
el = (TR ]1:)" = (L + €)* .
We define trigonometric polynomials on 7T by
fi=L{)  f= L)
where I, and I, were defined in equation (1). It is easy to check that

S(f) = Lk S(fo) = L(ry)

and since I, and I, are isometries we have

Al = 1L [, = 1 R]l, = 1

IS = 1 Tuh) [, = [Thell, =1 + ¢
Ifells = [ L)l = [lrll, = 1

ISl = 1 L(r)l, = llrell, = L+ €)*.

By a similar argument we can construct trigonometric polynomials
fs, fo, +++ and hence f, for any n and f, will satisfy equations (5) and
(6). This shows that the natural projection from L*(T°) into H?(T*)
isn’t bounded. To finish the proof we must show there is no bounded
projection of any kind from L?(T*) into H?(T*) which is the identity
when restricted to H?(T°).

Suppose there exists S a linear transformation from L?(T°) into
H?(T*) which is the identity when restricted to H?(T“). Define a
linear operator @ by

Q) = | 51 dm)

where the integral is the Bochner integral. Then @ is a bounded
linear operator from L?(T*) into H?(T*) and by Lemma 3.2 we have
that @ = S, where S is the natural projection from L?(T®) into H?(T*).
But we know that S isn’t a bounded projection and this provides the
contradiction which finishes the proof.

We wish to thank Professor Henry Helson for his aid and encour-
agement in writing our thesis. We would also like to thank Professor
Alessandro Figa-Talamanaca for many helpful discussions.
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