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A closed two-sided ideal ^f in a von Neumann algebra
is defined to be a central ideal if ^ A%Pi is in ^ for

every set {Pi} of orthogonal projections in the center %* of J ^
and every bounded subset {A*} of KJ2'. Central ideals are
characterized in terms of the existence of continuous fields
and their form is completely determined.

If ^ is a central ideal of Jzf and A e J ^ then Ao e %*
is said to be in the essential central spectrum of A if Ao — A
is not invertible in Sϊf modulo the smallest closed ideal con-
taining ^ and ζ for every maximal ideal ζ of %*. It is shown
that the essential central spectrum is a nonvoid, strongly
closed subset of %? and that it satisfies many of the relations
of the essential spectrum of operators on Hubert space. Let
j y ~ be the space of all bounded ^-module homomorphisms
of J ^ into -S". The essential central numerical range of i e

with respect to ^ is defined to be Sέ^(A)={φ(A) \ φe
~, II Φ II ^ 1, 0(1) = IV, Φ(^) = (0)}. Here P ^ is the or-

thogonal complement of the largest central projection in *Jζ"
The essential central numerical range is shown to be a weakly
closed, bounded, ^-convex subset of %£. It possesses many
of the properties of the essential numerical range but in a
form more suited to the fact that A is in Ssf rather than a
bounded operator. It is shown that if Sf is properly infinite
and ^ is the ideal of finite elements (resp. the strong radical) of
J ^ then «-%S(A) is the intersection of JΓ with the weak (resp.
uniform) closure of the convex hull of {UAU~ι\ U unitary in

In a final section, we give some applications of these facts. We
extend a result of J. G. Stampfli [19] to show that the range of a
derivation on a von Neumann algebra is never uniformly dense. We
also prove a theorem on self-ad joint commutators using a calculation
of M. David [5]

2. Central ideals* Let J^f be a von Neumann algebra with
center %r. For any subset ^ of j / let {&) denote the set of all
projections of έ%f. Throughout this paper all ideals will be assumed
to be closed two-sided ideals. An ideal ^ in jzf is said to be a
central ideal or a ^-ideal if given a norm bounded set {A^ie 1} of
elements of ^ and a corresponding set {P{ \ i e 1} of mutually orthogo-
nal projections in ^ , then the sum Σ AtPif which exists in the strong
topology, is also in ̂  (Similar definitions were used by I. Kaplansky
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[22, §1] and M. Goldman [13; §4] in the theory of AWr*-modules;
however, here there is no canonical inner product.) Any ideal ^ in

is contained in a smallest central ideal < ^ > given by <^Ό =
i\ie I}\{Ai\ie 1} is a bounded subset of ^ and {P^iel} is a

mutually orthogonal subset of {%) of sum 1} ([19], remarks preceding
corollary to (a5) implies (al)). If ^ a central ideal in s*f and if A
is an element of Szf, then it is clear that there is an element P in
(X) such that APe^ and AQίJ^ for every Q in {%T) with
0 < Q ^ 1 — P. The following definition is now possible.

DEFINITION 2.1. Let jzf be a von Neumann algebra and let J^ be
a central ideal of Szf. Then P^ will denote the orthogonal comple-
ment of the largest central projection in ^. We notice that QP^ e
KJ^ for a central projection Q implies QP^ — 0.

We now describe central ideals with regard to finite element

PROPOSITION 2.2. Let s*f be a semi-finite von Neumann algebra
with center ^Γ, let ^ be a central ideal of Jϊf, and let jzfP be the
weak closure of ^ where Pe(^Γ). Then *J^ contains every finite
projection of s>f majorized by P.

Proof. Let F be a finite projection of j%? majorized by P. Let
Q be an element of {%) such that FQe^~ and FRZJ^ for
every R in (̂ Γ) with 0 < R ^ 1 — Q (preliminary remarks). We
note that Qr = 1 — Q ^ P. We obtain a contradiction by assuming
that Q' Φ 0. Since the weak closure of ^ is szfP and since linear
combinations of projections are dense in ^ there is a projection E
in J? with EQf Φ 0. There is an R in (JTQ') such that ER < FR
and F(Q' - R)< E{Q' - R). Either ER Φ 0 or E{Q' - R) Φ 0. Now
if ί?i2 Φ 0, there is nonzero S in ( ^ i ϋ ) and projections Eίf •••,£'„ in

j ^ such that ES = E,~ E2~ --- ~ En and FS ~ΣAEi< Ex. This

means that iΛS is in ^f. This is contrary to the choice of Q, so we
must assume that E{Q' — R) φ 0. But this also implies that F{Q' — R)
is in cJ^ So we must conclude that Q' = 0. Hence, we have shown
that every finite projection majorized by P is in ^

COROLLARY 2.3. An ideal in a finite von Neumann algebra is
a central ideal if and only if it is weakly closed.

Proof. If the ideal ^ in the finite von Neumann algebra
is weakly closed, then there is a central projection P in jzf such that

[9, I, 3, Theorem 2, Corollary 2]. Obviously the ideal
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is a central ideal of
Conversely, let ^ be a central ideal of s*f. Let P be the central

projection of s^f such that the weak closure of ^ is SzfP. Then
*J^ contains every finite projection majorized by P; in particular, it
contains P itself. So ^ — SsfP and ^ is weakly closed.

We now describe central ideals for an arbitrary von Neumann
algebra *$%f with center ^Γ. Let P be a projection in JΓ and let E
be a properly infinite projection in s%f majorized by P. (By conven-
tion we assume that 0 is a properly infinite projection in a finite
algebra ^Γ.) Let (^fp(E)) be the set of all projections in Szf given
by p (̂JST)) = {Fe (j*f) \F S P and QE < QF for some Q e {&) implies
QE = 0}. Let ^p(E) be the ideal generated by {J^P{E)).

We shall use the following lemma of F. B. Wright [32; §2].

LEMMA. Suppose & is a set of projections on a von Neumann
algebra Stf that satisfies the following properties:

(1) if Ee (jy), Fe^ and E <F, then Ee0>\ and
(2) if E and F are in &, then the least upper bound lub {E, F)

of E and F is in &.
Then the set of projections of the ideal generated by & is exactly &.

THEOREM 2.4. Let j ^ be a von Neumann algebra with center %.
In order for the ideal <J^ in Ssf to be a central ideal, it is a necessary
and sufficient condition that there exist a projection P in ^ and a
properly infinite projection E majorized by P with

REMARK. The sufficiency is an adaptation of the proof we gave
for a special case in an earlier paper [18, Proposition 2.1].

Proof. Let E be a properly infinite projection majorized by the
central projection P. We show that ^P{E) = ^ is a central ideal.
Let Pi and P2 be orthogonal central projections of sum 1 such that
jzfPι is a finite algebra and SsfP2 is a properly infinite. It is suffi-
cient to show that ^ P * is a central ideal in StfPi (i — 1, 2). How-
ever, we have that ^P{ is generated by p ^ P J = {Fe {APZ) \F S PPi9

EQP, < FQ for some Q in {STPi) implies EP{Q = 0}. Now setting
Eι = EPi9 we obtain a properly infinite projection in JzfPi so that
<J^Pi — ̂ 'PP. (Ei). Hence, there is no loss of generality in assuming
that j y is either finite or properly infinite.

Let j y be finite. Then E = 0 and pS(0)) - {Fe (A) \F^ P}.
Hence J^ = stfP and so ^ is a central ideal.

Now assume that s^ is properly infinite. There is no loss of
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generality in the assumption that P = 1. We show that ^ satisfies
properties (1) and (2) of the lemma of F. B. Wright. By the defini-
tion of (^) is clear that it satisfies property (1). Now let Ex and
E2 be in p ^ ) . Since lub {El9 E2} - E,<E2 [21, Theorem 5.4], we have
that lub {Eu E2} — Ex is in {^) by (1). So there is no loss of gener-
ality in the assumption that Eί and E2 are orthogonal. There
is Q 6 (%T) such that QE, < QE2 and (1 - Q)E2 < (1 - Q)E,. Since
Q(E, + E2) G {^) and (1 - Q)(EL + E2) e (J^) implies that Eλ + E2e
(<J^), there is no loss of generality in the assumption that Ex < E2.
There is a Q e (5Γ) such that QE2 is finite and (1 — Q)E2 is properly
infinite. Hence, we may assume that either E2 is finite or properly
infinite. If E2 is finite, then Et is finite since EL < E2 and so EL + E2

is finite. [9, III, 2]. If Q is a central projection with Q£r<Q(Ef

1+£r

2),
then QE is finite and so QE = 0. So we are left with the situation
that Ei < E2y EXE2 = 0, and E2 is properly infinite. Because E2 is
properly infinite, there are projections Fu F2 satisfying the relations:
F, ~ F2 ~E2, F,F2 = 0, and F, + F2 = JS?2. [9; III, 8, Corollary 2].
We have that E, + E2 ~ E, + F2 < F2 + F2 = E2. By property (1) of
the lemma, we conclude that Et + E2 e MH Hence {^) satisfies
properties (1) and (2) of the lemma and this means that the set of
projections of the ideal ^ generated by (^) is precisely {^). Now
we show ^ is a central ideal. Let {Ai\iel} be a bounded set in
^ and let {Qi\iel} be an orthogonal subset of (̂ Γ) of sum 1. For
every ε > 0 and every iel there is a projection Ft in (J?) such that
|| Ai - AtFi\\ ̂  ε. Then Σ F&i = JF7 is in (^"). Indeed, if EQ < FQ
for some Q in (JT), then #(QίQ) -< F(QiQ) = F^Q) for every iel.
Thus (£rQ)Qί = 0 for every i e I and EQ = Σ (^Q)0* = 0. This means
that Fe(^). However, we have that

^ lub II A, - AtFtW ̂  ε .

Since (Σ AiQi)F is in ^ and since ^ " is uniformly closed, we have
that Σ AiQi 6 ̂ ί This proves that ^ is a central ideal.

We now show that every central ideal ^ is of the form ^yP(E).
Given a nonzero P e {%) it is sufficient to prove that there is a pro-
perly infinite projection E in Ssf, a nonzero Q in (^Γ), and an Re(^)
with R^Q^P such that ^R{ER)Q = *J*Q. Indeed, suppose we
have verified this statement. Let {P^iel} be a maximal set of
mutually orthogonal nonzero central projections such that for each
Pi there is a properly infinite projection Eί9 and a Q̂  e (JΓ) majorized
by P< such that ^.{EQ^P, = ^ P , . By the maximality of {PJ, we
conclude that Σ Pi = l Setting ^ = Σ^ίO< (r^sp. Q = Σ Qi) we
obtain a properly infinite (resp. central) projection i? majorized by Q
such that ^Q{E) — J?. In fact, since J^q(E) and ^ are generated by
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their respective projections, it is sufficient to show that (<J%(E)) =
But we may verify immediately that {Jf~Q{E))Pi == (^.(EtQi)), and so
we have that Fe (*J%(E)) if and only if FP, e (^.(E^)) = {J^Pi) for
every P< since <J%{E) is a central ideal by the first part of this theorem.
However, the ideal ^ is also a central ideal and thus F e {J^{E)) if
and only if Fe(^). So it is sufficient to verify the required state-
ment. We do this in the next paragraph.

Let P be a nonzero element in {%)• Since we are looking for a
nonzero central projection Q majorized by P, we may assume at the
outset that P = 1 and that either jzf is finite or j y is properly in-
finite. If J ^ is finite there is a Q in (%T) with J? = jfQ (corollary
2.3). Then we verify immediately that J? = *J%(0). Hence, we may
assume that s?f is properly infinite. Suppose that there is a pro-
jection P Φ 1 in {/£) such that AP = A for every A in Jf. Then
we have that ^Λ(0)(l - P) = 0 = J^{1 - P). So we may assume that
^ is weakly dense in s/. Now suppose that P y Φ 1. Then the
nonzero central projection Q — 1 — P^ is in ^X This means ^Q —
jzfQ = ^ξ(O). Hence, we may pass to the case that P, = 1. By
making a further reduction if necessary, we may assume that 1 is
the sum of an infinite set {Ei\iel} of orthogonal, equivalent, σ-finite
projections [9, III, 1, Lemma 1]. Let S^(I) be the family of all subsets
s of J such that there is a nonzero projection Ps in ^Γ with

for every nonzero Q e (3fPs). The family S^{I) is nonvoid since Ie
<9*{I) with Pj = 1. There is an sQ e 6^(1) such that Card sQ ^ Card s
for every seS^(I). We may assume that PSQ = 1. Let ^{E^ie s0} =
E; we notice that ί7 is a properly infinite projection of central support
1. We show that J\{E) = J^{E) is equal to ^A First we prove
that {Jf) c {^(E)). Let F e ( J ' ) If EP < FP for some Pe(^),
then by choice of s0 we have that EP = 0. So Fe(^(E)) by defini-
tion and hence {<J^) c (^(E)). To show the converse relation
(Jf(E)) c (Jf) we consider two cases: (i) Card s0 is finite, and
(ii) Card sQ is infinite. For case (i) we have that E is a σ-finite
projection of central support 1. Then we have that {Jf{E)) is
exactly the set of finite projections of ,jy [9; III, 8, Corollary 5].
But by our preliminary reduction J?r is weakly dense in s>f and
therefore contains all finite projections of .$/ (Proposition 2.2). So
{J^{E))(Z{,^). Now we consider case (ii). Let Fe(^(E)). Since
J^ is a central ideal, there is a P e (%) such that PFe J^ and
QF<t^ for every nonzero Q in (^Γ(l — P)). We obtain a contradic-
tion by assuming 1 — P Φ 0. Because J^ contains all finite projec-
tions (Proposition 2.2), we have that F(l — P) is properly infinite
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with central support 1 — P. We may find a nonzero projection Q in
(JΓ(1 — P)) such that FQ is the sum of a set {F^ies} of orthogonal,
equivalent, properly infinite <7-finite projections [9; III, 1, Lemma 7].
We have that Fι ~ E3Q for every ies and j esQ. [9; III, 8, Corollary
5J Since Σ Wι Ii e s} = FQ <EQ = Σ {#<QIί e s0}, and since Card s0 is
infinite, we have that Card s ^ Card s0 [9; III, 1, Lemma 6]. If Card sQ^
Card s, we would have a contradiction in that EQ •< î Q and EQ Φ 0.
Thus Cards Φ Cards0. But if s' is a subset of £f{I) with Cards'-
Cards, then Σ {EM e s'}Q' - FQ' for every Q' in (3TQ) and so
Σ f ^ K e s ' J Q ' g ^ for every nonzero Q' in (JTQ). This contradicts
the choice of s0. Hence, 1 — P = 0 and F G ( ^ ) . So in case (ii) we
have (^(E)) c (^^). Therefore, we have completed the crucial step,
and so there is an Ee {Ssf) and a Q e {%) with ^ ^

Now let JE be a properly infinite projection majorized by the central
projection P in the von Neumann algebra j&l Let Q be the central
projection of j y such that jzfQ is equal to the weak closure of
^P(E) = J^ Then it is clear that J%(EQ) = J ί We say a representa-
tion ^p(E) for a central ideal ^ is in canonical form if szfP is the
weak closure of

PROPOSITION 2.5. Lei ^P{E) and <J%(F) be two central ideals of
a von Neumann algebra Szf that are represented in canonical form.
Then ^P(E) = J?Q{F) if and only ifP=Q and E ~ F.

Proof. If P = Q and E ~ F, then it is clear that ^~P{E) =
Now let J?p{E) = *J%{F) = <J?~. Since jzfP = weak closure

we have that P = Q. Now let R be the largest central projec-
tion majorized by P such that RE — ϋ?F. Suppose R' = P — R Φ 0.
There is a central projection R" majorized by R! such that R"E <
R"F and (R - R")F < {Rr - R")E. If R" Φ 0, then SR"F < SR'Έ
for some central projection S implies that SR"F — 0. Otherwise, we
would have that SR"E — SR"F and so R would not be the largest
central projection with RE — RF. This means that R"E e ^\ Hence
R"E = 0 and so J^R" = jzfR". This means that FR" = 0 and con-
sequently that ER" — FR". This is a contradiction. A similar con-
tradiction arises if R' — R" Φ 0. So we must have that R — P, i.e.,
E~F.

REMARK 2.6. In the sequel we assume all representations of
central ideals are in canonical form.

COROLLARY 2.7. Let szf be a von Neumann algebra and let ^
be a central ideal of Szf given by ^ = <Jp{E) in canonical form.
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Then in order that P> — 1, a necessary and sufficient condition is
that P be the central support of E.

Proof. If the central support of E is Q, then from the definition
of uJ*p(E) = ̂  it is clear that P — Qe^Λ This means that P ; Φ 1
if P - Q Φ 0. Conversely, if 1 - P^ Φ 0, then (1 - P^)E = 0. But
(1 — PJ) <̂  P and thus E cannot have central support P.

Let j y be a von Neumann algebra with center ^Γ. Let Z be
the spectrum of ^Γ. Let CC(Z) be the set of order-continuous func-
tions of Z into the set of cardinal numbers. J. Tomiyama [30]
showed that there is a dimension function D of stf into CG(Z) such
that D{E) ̂  D{F) if and only if E < F. W. Wils [31] described the
range of D in CG(Z) as being a certain subset A of functions in CC(Z).
Although it is not important in the sequel, one may see that the set
of projections of a central ideal J^P{E) satisfies a certain dimension
relation relative to P and E. We therefore feel justified in introducing
a name for the following relation.

DEFINITION 2.8. Let Jf be a central ideal in a von Neumann
algebra j^< Let P be a central projection and let £ be a properly
infinite projection majorized by P with J^ — J^P{E). A projection F
in j y is said to have dimension greater than that of Jf if F has
central support Py and if F > EP^ (in symbols, dim F > d i m ^ ) .

The following proposition characterizes the projections whose di-
mension is greater than the dimension of ^y.

PROPOSITION 2.9. Let j y 6e α w^ Neumann algebra and let
be a central ideal of .S>/. Then a projection F of ,s>/ has dimension
greater than that of J?7 if and only if F has central support P^ and
FQ e J^ for some central projection Q implies FQ — 0.

Proof. Let T be the center of Jf. Let E e (j^) and let P e
so that KJ^P(E) represents J^ in canonical form. First let F e {jy)
with central support P^ such that QF e Jf for some Q e {%*) implies
QF = 0. There is an R e (βtr) such that RE < RF and such that
RΈ < R'F for R e (Z(l - R)) implies R = 0. Then FP(1 - R) e
*yp{E) by definition and so FP(1 — R) = 0. Thus we obtain that
FPR = FP. So EP^ = EPP^ < FP ^ F, i.e. dim F > dim jr.

Conversely, let dim F > dim J^. Then by definition we have that
F has central support P^. Let Qe(^f) and let QF^Jf. We have
that EPy<F implies that EQPj,ej^ (lemma of F. B. Wright).
Since EQPy < EQP^, we have that EQP^ = 0 and thus QPP^
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By definition of P^ we find that QPP^ = 0. Also ^ ( 1 - P) = (0)
and so QF = QPF + Q(l - P)F - 0.

Now we can give some examples.

EXAMPLE 2.10. In a factor algebra, every ideal is a central ideal.

EXAMPLE 2.11, In a semi-finite algebra j ^ , the ideal ^ generated
by all finite projections of Szf is a central ideal. If J ^ is finite,
then w^ = j ^ ; if j y is properly infinite, then ^ = ^Ί(E), where £"
is a properly infinite projection of central support 1 for which there
is a set {PJ of mutually orthogonal central projections of sum 1 such
that EPi is σ-finite for every P4 [8; III, 1, Lemma 7]

EXAMPLE 2.12. If s>f is a properly infinite von Neumann algebra,
then the strong radical ^ (i.e. the intersection of all maximal ideals)
is a central ideal with ^

3* The essential central spectrum* Let Suf be a von Neumann
algebra with center ^Γ. If ^ is an ideal in J ^ let j ^ ( ^ ) denote
the algebra j ^ reduced modulo ^ and let A ( ^ ) denote the image
of an element A under the canonical homomorphism of s%f int
The algebra j ^ ( ^ ) is a C*-algebra under the norm
gib {|| A + B\\ IBe ^}. If ζ is an element in the spectrum Z of ^ let
[ζ] denote the smallest ideal in Szf containing ζ. For simplicity we let
j^([ζ]) and A{[ζ\) be denoted by the symbols jy(ζ) and A(ζ), respec-
tively. Then J. Glimm [12; Lemma 10] has shown that for fixed A e
j& the map ζ —> || A(ζ) || is continuous on the spectrum Z. For every A
in j ^ a n d ζ i n ^ , the norm ||A(ζ)|| is equal to HA(ζ)|| = glb{||AP|| | P G

and PA(ζ) = 1}. Here PΛ denotes the Gelfand transform of P. If
and ^ are ideals in «j^ then the algebraic sum <J\ + ^f is also an

ideal of *s*f. In the sequel we denote the sum ^ + [ζ] of an ideal ^
and the special ideal [ζ] formed from ζe Zby **F(Q. For an element A
in J^f9 we denote the spectrum of A(<J^(ζ)) in Ssf{^(Q) by SpA(^"(ζ)).

The next lemma is used repeatedly.

LEMMA 3.1. Let j&f he a von Neumann algebra, let %* be the
center of Jzf, let Pe {%), let Z be the spectrum of %, and let ^ be
a central ideal of Jϊf. If A is an element of Sz? such that fA(ζ) =
\\A(^(ζ)) || vanishes for every ζ in the support of P given by supp P =
{ζeZ\PA(ζ) = 1}, then the element AP is in

Proof. For every ζ in supp P and ε > 0 there is a Bζ in ^ such
that ||(A - J%)(ζ)|| < e. Hence there is a Pζ in ( r ) with Pζ

Λ(ζ) = 1
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such that 11(A — Bζ)Pζ\\ < ε. Using the fact that supp Pi s compact,
we may find a set Pl9 •••, Pn of orthogonal projections in %* of sum
P and a corresponding set Blf , Bn in J? such that

IIAP - Σ BΛII = lub ||(Λ - 5«)P<|| < e .

Since J? is closed, the element AP is in

We characterize those ideals ^ for which ζ —> ||^4(^^(ζ))|| is con-
tinuous on Z for every A in

THEOREM 3.2. Lei j ^ 6e α wm Neumann algebra, let %* be the
center of j ^ αraZ Zeί Z be the spectrum of %*. Let *J^ be an ideal
of s^f. In order that fA(ζ) = ||A(^^(ζ))|| be a continuous function on
Z for every A in Ssf, a necessary and sufficient condition is that ^
be a central ideal of S^.

Proof. The sufficiency follows by a proof that is virtually the
same as the one we gave in the corollary of (a5) implies (al) of [19].

Conversely, let fA be continuous on Z for every A in J%?. We
show that Ssf is a central ideal. If {Ai\iel} is a bounded subset
of ^ and if {P{ | i e 1} is an orthogonal set in (^) of sum 1, then
we prove that A = Σ ^ P * is in J ^ Indeed, the set Ui{ζeZ\ P£ (ζ) = 1}
is a dense set of Z on which fA{ζ) vanishes since fΛ(ζ) = \\Ai{^(ζ)) \\ —
0 whenever Pf(ζ) = 1. By the continuity of fA, we see that/^ vanishes
on Z. Hence, the element A is in ^ by Lemma 3.1.

REMARK 3.3. If ^ is the strong radical of a properly infinite
von Neumann algebra, then ^ ( ζ ) = ̂  + [ζ] is the unique maximal
ideal which contains ζ [24 and 15, Proposition 2.3].

Now we prove the main result of this section. It is convenient
to separate the following lemma.

LEMMA 3.4. Let % be a commutative von Neumann algebra and
let Xl9 •••, Xn be closed sets which cover the spectrum Zof ^Γ. Then
there are orthogonal projections Rι<f , Rn in (JΓ) of sum 1 such that
{ζ e Z\Rm = l}czXi for l^i^n.

Proof. Let {Pi \ i e 1} be a maximal set of nonzero mutually or-
thogonal projections such that for each ie I there is an i(j) with
1 ^ ί(j) ^ n so that Yi = {ζ e Z\P£(ζ) = 1} c Xi{j). We obtain a con-
tradiction if P - 1 - Σ Pi * 0. Indeed, the set Y = {ζ e Z\PA(ζ) = 1}
is nonvoid and is covered by the closed sets Y Π Xίy , YΠ Xn. By
the Baire category theorem one of the set Yf)Xm has a nonvoid
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interior in Y. This means that there is nonzero projection Q in 3ί
such that {ζ G Z\ QΛ(ζ) = 1} c YΓΊ Xm* This contradicts the maximality
of {Pi}. We must have that Σ Pi = l The remainder of the proof
consists in adding the projections P{. Let J, = {i el\ F< c X̂  } for
1 ^ i ^ ft and let j?y = Σ {Pi \i e I, - U {I* 10 £ k ^ i - 1}} for l^j^n.
Here Jo = 0 . Then it is clear that i2lf i?2, , Rn satisfy the require-
ments of the lemma.

THEOREM 3.5 Let j^f be a von Neumann algebra with center %Ί
let ^ be a central ideal of Jzf, and let A be an element of Szf. Let
Xo be a closed subset of the complex plane C such that the intersection
S(ζ) of Xo with the spectrum (resp. left-spectrum, right-spectrum, the
intersection of the left-spectrum and the right-spectrum) of A{<JΓ(Q)
is nonvoid for every ζ in the spectrum Z of %*. Then there is an
element Ao in the center of JY such that A£(ζ) e S(ζ) for every ζ in Z.

Proof. We first prove that there exists Ao in %" such that A£(ζ)
is in the intersection S(ζ) of Xo with the spectrum SpA(^(ζ)) of
A(*f(ζ)) for every ζ in Z. Since SpA(^(ζ)) is contained in SpA,
there is no loss of generality in assuming Xoa Sp (A). We prove the
theorem by an approximation argument that involves decomposing
the space Z.

For every compact set X in the complex plane, let X(Z) = {ζ €
Z\Xf] S(ζ) Φ 0}. We show that X(Z) is closed in C. Let {ζj be a
net in X(Z) converging to ζ. Let a{ e S(ζ<) Π X] by passing to a
subnet, we may assume that {αj converges to ae XΠ Xo* Arguing
by contradiction we show that a e Sp A{^{Q). If a
then there is a 5 e Stf with

\\(B(a- A ) -

\\((a~A)B~l)(^(a))\\ = 0.

By Theorem 3.2, we see that there is a ζ* and a{ such that

and || ((α, - 4 ) 5 - 1)(^^(Q) | | < 1. This means that a,
and this is contrary to assumption. So α e X{Z) and X{Z) is closed.

We now begin the approximation argument by decomposing Z
into subsets on which we shall approximate Ao. Suppose we have,
for every m less than or equal to the natural number n, constructed
sets of integers Im = {1, 2, , pm} such that for every s in I1 x x
Im = I(m) there is a compact subset X{s) of C of diameter ^ 2~m and
a P(s) in (%*) which satisfies the following properties:
(1) For s e I(m), U {X(s; j) \j e Im+ί} = X(s) whenever 1 ^ m < n and
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( 2 ) Supp P(s) = {ζ G Z\ P(β)Λ(ζ) = 1} c X(s)(Z) for every s e I(m) (1 g
m ^ %); and
( 3 ) for s e I(m), {P(s; j) \j e Im+ι) is a set of orthogonal projections of
sum P(s) whenever 1 < m < n and {P(j) \j e 1(1)} is a set of orthogonal
projections of sum 1.
We shall construct a set J n + 1 = {1, •• ,pw+i}> compact sets Z(s)(se
I O + 1) = Ii x x I«+i) of diameter g 2~(%+1) in the complex plane,
and projections P(s)(s e I(n + 1)) in %: which satisfy (1), (2), (3).
Indeed, let {Γ^i G Iw+1} be compact sets of diameter <; 2~(n+1) which
cover Xo. Let X(s, j) = X(s) Π Y, for s G I ( » and j e In+ι. Then
{X(s)\se I(m), m — 1, 2, , ^ + 1} satisfies property (1). Now let s
be fixed in I(n); we have that U {X(s; j)(Z)\j e In+1} = X(s)(Z). Since
supp P(s) is contained in X(s)(Z), the sets X(s; i)(Z) Γ) suppP(s)(i e JΛ+1)
form a closed cover of suppP(s). By the Lemma 3.4, there are or-
thogonal central projections P(s; j) (j G Jn + 1) of sum P(s) such that

for every j e In+1. Thus P(s)(sel(n + 1)) satisfies (2) and (3).
We continue by induction to construct I(ri), compact sets X(s)

(s G I{n)) of diameter <Ξ 2~w, and central projections P(s) (s G I(n)) satis-
fying (1), (2), and (3) for every n = 1, 2, . We notice that if X(s)
is void then P(s) = 0.

We now construct the approximating elements. Let n = 1, 2,
be fixed. If s G J(w), let a(s) e X(s) if X(s) is non-void, and α(s) = 0
if X(s) is void. Let An = Σ Ms)P0) I s G I(W)}. Then An is an element
in the center of Ssf.

We show that {An} is a Cauchy sequence. Indeed, we have that

\\An - AΛ+1 | | - lubflKA, - An+1)P(s)\\ \sel(n + 1)}

since Σ (P(s) \s e I(n + 1)} = Σ {P(s) Is G I(n)} = = 1 . However, if
s G I(% + 1) is of the form s — (V; j) with s' G I(^) and i G J W + 1 , then

n - An+1)P(s)\\ - ||(α(s') - α(S))P(s)|| <£ 2 -

since α(s) e X(s') whenever P(s) ^ 0. Hence, we obtain that

\\An A%+1 | | ^ 2

for every n = 1, 2, and so {A%} is a Cauchy sequence in ^Γ.
We show that the limit Ao of {An} satisfies the requirements of

the Theorem 3.5. Let ζ be an arbitrary point in Z. Given ε > 0 we
show that there is aeS(Q such that |ΛΛ(C) — a\ <* e. Since S(ζ) is
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closed and since ε > 0 is arbitrary, this will mean that A0

Λ(ζ)eS(ζ).
Let m be a natural number with 2~w+2 < ε. Then | ΛΛ(Q - A£(ζ) | S
\\A0 - Am\\ < 2~1s. There is an sel(m) such that P(s)Λ(ζ) = 1 since
Σ {P(s) I s e I(m)} = 1. By property (2), we have that ζ is in X(s)(Z).
So there is an element a in X(s) such that α e S(ζ). However we have
that A£(ζ) = α(s)eX(s), and so \a(s) — a\ < 2"m since the diameter
of X(s) is less than 2~m. Now we obtain that |A0

Λ(ζ) — a\ ^ ε, and
by the preceding remarks that A£(ζ) eS(ζ) This completes the proof
for the case of Xo Π Sp Ap^(ζ)) Φ 0 .

We may prove the existence of an element Ao in 3f such that
(Ao — A)(^{Q) is not left (resp. right, left nor right) invertible
in jy(w^(ζ)) and A0

Λ(ζ) e Xo by the same proof we just gave for
an invertible element by using the additional fact that, for any ele-
ment B in a Banach algebra & with identity, the set of all complex
a such that a — B is not left (resp. right, left nor right) invertible
is a non-void compact set ([26; 1.5.4 and 1.4.6]; also cf. [11; Theo-
rem 3.1]).

The following definition is now meaningful.

DEFINITION 3.6. Let j y be a von Neumann algebra, let %? be the
center of Sxf and let Z be the spectrum of ^ . Then the essential
central spectrum %? — Sp^ A of an element A in Jzf with respect
to the central ideal ^ is the set of all Ao in 3f such that Ao(ζ) e
SpA(w^(ζ)) for every ζ e Z . The left-essential (resp. right-essential)
central spectral %£ — Sp!̂ A (resp. %* — Sp!>A) of A with respect to
^ is defined in a similar manner. The intersection 3£ — Sp^A =
( ^ - Sp!>A) Π {%* — Sp;>A) is called the two-sided essential central
spectrum of A with respect to

REMARK 3.7. All sets defined in Definition 3.6 are non-void (Theo-
rem 3.5).

REMARK 3.8. For every Ao e %* — Sp^ A, we have that A0(l —
PJ) = 0. Since (%* - Sp̂ -A) U ( ^ - SpS A) c ^ - Sp^A, the projec-
tion 1 — P^ annihilates the other essential central spectrums.

We note that these definitions correspond to the usual ones if Ssf
is the algebra of all bounded operators on a Hubert space and J? is
the ideal of compact operators.

PROPOSITION 3.9. Let s*f be a von Neumann algebra. Then the
essential (resp. left-, right-essential) central spectrum of an element
A in Ssf with respect to a central ideal ^ is closed in the strong
operator topology.
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Proof. Let {AJ be a net in the essential central spectrum of A
with respect to ^ which converges strongly to Ao in the center 3?
of jy. There is a net {Pn} of mutually orthogonal central projections
of sum 1 such that for each Pn there is a sequence {Ai(n)} in Uί{AJ
with lim Aiin)Pn = AQPn (uniformly) [28; Corollary 13.1]. Since Afw(ζ) e
Sp A(^~(ζ)) for every ζ in the spectrum iΓof %* and since Sp A(^(Q)
is closed, we have that A0

Λ(ζ) e Sp A(^~(ζ)) for every ζ in the dense
subset X = U.{ζeZ|Pί(ζ) - 1} of Z [7]. Let {Q be a net in X
which converges to ζ in Z. If A0

A(ζ) g Sp A(^(ζ)), then there is a J5
in j ^ with

||(J5(A0 - A) - l)(w^(C))|| - ||((Λ - A)B - l ) (^(ζ)) | | = 0 .

This means that there is a ζ* with

II (B(A0 -A)- l)(^(ζ,)) || < 1 and \\(A0 - A)B -

and thus that A0

Λ(Q is not in S p A ( ^ (£,-)). Hence, we must have
that AΛ(ζ) is in Sp Ap^(ζ)) for every ζ in the closure Z of X. This
proves that %* — Sp^A is strongly closed.

The statements concerning the left- and right-essential central
spectra are proved in an analogous fashion.

For future reference we note some simple facts in the following
proposition.

PROPOSITION 3.10. Let s$f be a von Neumann algebra with center
%* on the Hubert space H, let ^ be a central ideal in jzf, let P1

and P2 be orthogonal projections of sum 1 in %Γ, and let A be an ele-
ment of J^f. Let s^fi be the von Neumann algebra SsfPi with center
%Ί — %Pι on the Hilbert space PiH, let J?\ be the central ideal ^Pi
in J^i, and let Ai be the element APi in j ^ for i — 1, 2. Then
%- - Sp^A - {B, + B2\Bi e %\ - Sp^A*, i = 1, 2}.

REMARK. A similar statement holds for the left- and right-
essential central spectrums.

Proof. This follows from the fact that the spectrum of ^i is
{ζPtlζeZ, Pf(ζ) = 1}, where Z is the spectrum of T, and thus that
[ζPJ in jfPi is equal [ζ]P,.

We now restrict our attention to self-adjoint elements. We note
that the essential central spectrum of a self-adjoint element consists
of self-adjoint elements.

PROPOSITION 3.11. Let j%r be a von Neumann algebra, let %* be
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the center of Ssf, and let A be a self-adjoint element of s%f. Then
there are elements Cu and C% in the essential central spectrum % —
Sp̂ r A of A with respect to the central ideal J^ such that Ct ^ C ̂  Cu

for every C in %? — Sp^ A.

Proof. The set %" — Sp^ A is a monotonely increasing net in
%*. Indeed, if C and C are in %T - Sp^ A, then there is a Pe {%T)
such that lub {C, C"} = PC + (1 - P)C. Since PC + (1 - P)C is in
3? — Sp^ A (by 3.10), the set 3? — Sp^ A is monotonely increasing.
Then the least upper bound Cu of %* — Sp^ A is the strong limit of
elements in 3? — Sp^ A and so Cu is in the essential central spectrum
of A with respect to *J^ (Proposition 3.8).

In an analogous manner, we may show that % — Sp ̂  A is mono-
tonely decreasing and thus we may find a greatest lower bound Cx

for T - Sp^ A in T - Sp^ A.

PROPOSITION 3.12. Let s^ be a von Neumann algebra with center
%Ί let ^ be a central ideal of Saf, and let Abe a self-adjoint element
of s*f. Let Cu and Ct be the least upper bound and the greatest lower
bound of the essential central spectrum of A with respect to ^ respec-
tively. Then C£(ζ) = lub Sp A(^(ζ)) and Cf(ζ) = glbSp A{J^(ζ)) for
every ζ in the spectrum Z of %*.

Proof. Since Cί(ζ) 6 Sp A(^(ζ)) for every ζ e Z, we have that
C£(ζ) ^aζ = lubSp A{J?{Q), for every ζeZ. Conversely, we obtain
a contradiction if we assume that aζ — C« (ζ) = 2ε > 0 for some ζ e Z.
Indeed, let E be the spectral projection of A — Cu corresponding to
the interval [ε, + °°). Because (A — Cu)(l — E) ̂  ε(l — E), we have
that E(^(ζ)) Φ 0. Hence, there is a P e ( ^ ) such that PA(ζ) = 1
and # ( ^ ( 0 ) ^ 0 for all C in suppP= {ζ'eZ|PΛ(ζ') - 1} (Theorem
3.2). Since εE^(A-Cu)E, we have that Sp ( A - C J p ^ ζ ' ) ) n [ε, + oo)^
0 for all ζ' G supp P. Reducing to the algebra jzfP with center ^P,
we see that S(ζ') = Sp(Λ - Cu)P((^P)(ζf)) Π [e, +oo) i s non-void for
every ζ' in the spectrum X of ^ P . Because J^P is a central ideal
in j^fP, we may find a ΰ ί n J such that (PP)Λ(ζ') e S(ζ') for every
ζ ' e l (Theorem 3.5). If D is an arbitrary element in %*-Sp^(A-CJ,
then PB + (1 - P)Z) = 5 ' is in JT - Sp^ (A - Cu) (Proposition 3.10),
and consequently, the element B" = J5' + Cu is in ^ — Sp^ A. But
we have that B"P + Cu(l - P) is in % - Sp^ A (Proposition 3.10)
and that B"P + Cu(l - P) ̂  Cu + εP. This contradicts the definition
of Cu. Thus we must have that C£(ζ) = lub Sp A(^(ζ)) for every
ζeZ.

A similar proof holds for Cu
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The following proposition shows that if Ao is in the essential
central spectrum of A with respect to ^ then AQ — A is small on a
large subspace with respect to

PROPOSITION 3.13. Let s^ be a von Neumann algebra, let ^ be
a central ideal of Ssf, let A be a self-adjoint element of Ssf, let Ao be
an element of the essential central spectrum of A with respect to ^
and let ε>0. If F is the spectral projection of Ao — A corresponding
to the interval [ —ε, ε], then FPe^ for some central projection P
implies Pe^ (i.e. P ^ 1 - PJ).

Proof. Let P be a central projection with PFe^Λ We show
We may assume that P Φ 0. Let ζ be a point in the spectrum

of the center of sf such that PA(ζ) — 1. We have that

(Ao - A)(jr(Q) = (Ao -

If (1 - F){J?(Q) Φ 0, then (Ao - A){^{Q) is invertible in
Since this is not possible, we have that l(^"(ζ)) = 0. This means
that P e ^ ( ζ ) . Since ζ with the property PΛ(ζ) = 1 is arbitrary in
the last relation, we have that Pe^ by Lemma 3.1.

We now characterize the essential central spectrum of a self-
adjoint element in terms of the canonical form of a central ideal (cf.
Remark 2.6ff. and Definition 2.8).

PROPOSITION 3.14. Let j y be a von Neumann algebra with no finite
type I direct summand, let ^ be a central ideal of Sf, and let A be
a self-adjoint element in Szf. An element Ao is in the essential central
spectrum of A with respect to <J^ if and only if there is an orthogonal
sequence {En} of projections in j y of dimension greater than dim ^
such that AEn(^) = EnA{^) and ||(A0 - A)En{Jr)\\ ^ rΓ1 for every
n = 1, 2, and Ao = AQP^.

Proof. Let Ao be in the essential central spectrum of A with
respect to *y\ There is no loss of generality in the assumption that
Py - 1 and that Ao = 0. [9; III, 5, Problem 7]. Let Fn be the
spectral projection of A corresponding to the interval [ — n~\ n~ι] for
n = 1, 2, •••; then we have that {Fn} is a monotonely decreasing
sequence of projections such that dimFu > d i m ^ (Propositions 3.13
and 2.9).

Let ^ be represented in the form J^ = ̂ S{E) (2.4-2.6). Now
let {Pi} be a maximal set of mutually orthogonal central projections
such that for each i there is a natural number j(i) with (Fk — Fk+1)Pi e

whenever k^j(i). This means that AFjWPieιJ*' since



362 H. HALPERN

\\AFj{i)Pi(^)\\ = \\A

for arbitrary k ^ j(i). Hence, setting F = Σ FHi)Pi and P = Σ ;̂>
we obtain a projection F of central support P such that AF e ^ and
J57P -< F (Proposition 2.9). Since s$f has no finite type I direct sum-
mands, we may find a sequence {G'n} of orthogonal projections of
sum FP such that the central support of Gr

n is P and such that EP <
G'n. Indeed, there is a central projection R majorized by P such that
FR is properly infinite and F(P — R) is finite. In the first instance
FR is the sum of a sequence of mutually orthogonal projections each
equivalent to FR [9; III, 8, Corollary 2]. In the second instance, we
have that E{P — R) = 0. Indeed, E is a properly infinite projection
and E(P - R) is finite since E(P - R) < F(P - R). Now F(P - R)
may be written as the sum of a sequence of orthogonal projections
of central support P — R [9; III, 1, Theorem 1, Corollary 3].

Now, for every nonzero central projection Q majorized by P' =
1 — P and for every n — 1, 2, , there is a nonzero central projec-
tion Q' with Qr tί Q and a natural number m ^ n such that (Fm —
Fm+ι)Qr has central support Q' and EQf < (Fm - Fm+ι)Qf (Proposition
2.9). By induction we may find sets {Gnί\ieln} (1 g n < oo) of pro-
jections with the following properties:
(1) if Qni denotes the central support of Gni, then EQni < GniQni

(ieln;n = 1,2, •••);
(2) {Qni\ίe In) is a mutually orthogonal set of sum F ;
(3) for each ieln there is a natural number s = s(ϊ) ^ n with Gni =
(Fs - Fs+1)Qni; and
(4) iί i e Im, j e In, and QmiQnj Φ 0 then s(ί) < s(i) whenever m < n.
Here Jw is a countable indexing set with Im Π In Φ 0 for m Φ n.
Indeed, at the (n + 1) — st stage of the induction we work in algebras
of the form SsfQu. Qnin(ij e Iό) and then sum the appropriate pieces
together by summing over those pieces corresponding to the same
s(i). Setting G" = X {Gnί \i e In}, we obtain sequence of mutually
orthogonal projections of central support Pr such that EPr < G'n P',
AGZ = G' A, and \\AG':\\ S n~ι for every n = 1, 2, . . . . Setting En =
G'n + G" for n = 1, 2, •••, we obtain a sequence {ϋy of mutually
orthogonal projections of central support 1 such that

E < En, AE%{^) - EnA{^) , and

for every w.

Conversely, let {En} be a sequence of (not necessarily orthogonal)
projections which satisfy the conditions of the proposition for the central
element A*. Suppose there is a B in s*f with B(A0 — A){*J^{ζ)) =
1 Φ 0 for some ζ in the spectrum of the center. Then we have
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that

= \\B(A0 - A)En{^{ζ))\\ £ nrι\\B\\ ,

for every n = 1, 2, implies 112^(^(0) || = 0 for all sufficiently large
n. However, this means that \\En(*J^(ζ'))\\ = 0 for all ζ' in a neigh-
borhood of ζ since ζ'—• ||ϋ7»(w^(ζ'))ll is a continuous function of the
spectrum of the center into {0, 1} (Theorem 3.2). So there is a pro-
jection P in the center with PΛ(ζ) = 1 such that EnPe^ (Lemma
3.1). But this contradicts the hypothesis that d i m ^ > d i m ^ (Pro-
position 2.9). Consequently, the element Ao is in the essential spec-
trum of A with respect to

COROLLARY 3.15. Let jzf be a von Neumann algebra with no
finite type I direct summands and let ^ be a central ideal of Stf.
Then the essential central spectrum with respect to *J^ of a self-adjoint
element A contains Ao if and only if there is a sequence {En} of
mutually orthogonal projections of dimension greater than
such that ||(Ao — A)En\\ ^ n~ι for every n = 1, 2, and Ao =

Proof. There is no loss of generality in the assumption that Ao = 0
since every element in the essential central spectrum of A is self-
adjoint. Then there are orthogonal projections {Fn} such that dimFn>
d i m ^ A F . p H - FnA{Jf) and \\AFn{J^)\\ < (2n)"1 for every n =
1,2, ••• (Proposition 3.14). For every n there is a Bne^ with
\\AFn - BnFn\\ < {2n)~ι. There is a projection Gn e JF such that Gn ^
Fn and \\BnFn{l -Gn)\\^ {2n)~\ Let En = Fn - Gn. If Q is a central

projection with QEn e ̂  then QFn e *J^ and QP r = 0 and so dim En >
d i m ^ (Proposition 2.9.). But we have that

| |AS. | | ^ ||(A - Bn)En\\ + | | £ ^ | | ^ n"1 .

Thus {En} is the required sequence.
The converse is derived from Proposition 3.14 since

\\B\\ for every Be Ssf.

COROLLARY 3.16. Let s^f be a von Neumann algebra with no
finite type I direct summand and let ^y be a central ideal in jyi If
the left-essential (resp. right-essential) central spectrum of an element
A in sf contains Ao, then there is a sequence {En} of orthogonal pro-
jections in s$f such thai dim En > d i m ^ " and ||(A0 — A)En\\ ^ n~ι

(resp. ||(A0 — A)*£^n|| ^ n~ι) for every n — 1, 2, .

Proof. Since the essential central spectrum of (Ao — A)*(A0 — A)
contains 0, the Corollary 3.15 can be applied.
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REMARK 3.17. If j y is a finite type I algebra, ^ is a central
ideal, 4 e j ^ and Ao in the essential central spectrum of A with
respect to ^ then D. Deckard and C. Pearcy [6] showed that there
is an abelian projection E of central support P , in Ssf with (Ao — A)E~
0.

4* The essential central range* Let Szf be a von Neumann
algebra with center ^Γ. Then s^ may be considered as a module
over JΓ. Let J^~ be the ^"-module of all bounded module homomor-
phisms of Ssf into 3f and let jy~+ be the set of all elements of j ^ ~
which map j ^ + into ^" + . For a central ideal ^ of J ^ let Ea{^)^
{φesϊf~+\φ(^r) = (0) and 0(P^) = P^}. Here P^ is the orthogonal
complement of the largest central projection in ^X We notice that
EJ^) is the set of all states (i.e. elements φ of s$f~+ with (̂1) = 1}
of j ^ ~ which vanish on ^ whenever P^ = 1, or equivalently, if
i ^ = ^yP{E) (Remark 2.6), whenever the central support of E is equal
to P (Corollary 2.7). In particular, the set Ea{^) is equal to the
set of all states which vanish on J? whenever ^ is the ideal gen-
erated by the set of all finite projections or J? is the strong radical
of a properly infinite von Neumann algebra (Examples 2.11 and 2.12).
It is clear that EJ^) is compact in the topology of pointwise con-
vergence on s/ where is %? taken with the weak topology, i.e., in
the σw(j%f~, j^)-topology of j ^ ~ . If {φι \ i e 1} is any subset of Ea{^}
and {Pi\ie 1} is a set of orthogonal central projections of sum 1, then
Φ(A) = Σ P%Φ%{A) defines an element φ in Ea{^). Furthermore, we
see that Ea{^) is central-convex in the sense that Cφγ + (1 — C)φ2 is
in Ea(J^) for every φL and φ2 in Ea{^) and C in T with 0 ^ C £ 1.

DEFINITION 4.1. Lei j y δe α ^o^ Neumann algebra, let <J^~ be
a central ideal of Szf, and let A be an element of j%f. The set Sί^{A) =
{φ(A)\φe Ea(^)} will be called the essential central range of A with
respect to ^ We notice that JΓ>(A) is a central-convex, weakly com-
pact (and consequently uniformly closed) subset of the sphere in the
center of J%f of radius \\A\\ about the origin.

PROPOSITION 4.2. Let j^f be a von Neumann algebra, let ^ be
a central ideal of Szf, and let A be an element of Ssf. Then for every
ζ in the spectrum of the center of J^, the set J?y(A)(ζ) - {BA(ζ)\Be

is a compact set of complex numbers.

Proof. Since Sfy(A)(ζ) is bounded, it is sufficient to show that
(A)(ζ) is closed. If a is the limit of a sequence {φn(A)A(ζ)} where

φn e Ea{jF) for every n = 1, 2, , we show that a 6 J£>(A)(ζ). There
is no loss of generality in assuming that a — 0. We may assume
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that |^(A) Λ (ζ) | < rr1 for every n = 1, 2, •••• There is a sequence
{Pft} of central projections with \\φn(A)Pn\\ ^ n~\ and P*(ζ) = 1 for
every n = 1, 2, •••. Let Qo = gib {Pi ••• P J w = 1, 2, •••} and let Q,=
Pi(l - Pa), Q2 = PiP,(l - P3), then {Q, | i = 0, 1, 2, } is a sequence
of orthogonal central projections of sum Px. The homomorphism

+ QO0 + Σ {Q<Λ|i = 1, 2, •}

is an element of EJ^) and so

Ao = lim t .(A) = (1 - PdΦάA) + Σ {QiΦi(A)\i = 1, 2, ..}

is in Sέ^(A). Since (1 - PX)A(C) = 0 and Qf (ζ) - 0 for all i ^ 1,
either Q0

Λ(ζ) - 1 or Σ {Qi\i ^ ™}Λ(C) = 1 for all n = 1, 2, . . . In
either case A0

Λ(ζ) = 0 since | | Σ {Q*\i = 0, n, n+ 1, }A0|| ^ w"1. This
means that Oe

We need the following lemma. Its proof is a simple reworking
of [19; proof of corollary to (a5) implies (al)].

Lemma 4.3. Let s^f be a von Neumann algebra, let ^ be a
central ideal of Ssf, and let E be a projection in jtf. There is posi-
tive module homomorphism of the module <szf into its center which
vanishes on ^ and satisfies the relation φ(l) — φ(E) = 1 — Q where
Q is the largest central projection of Szf such that EQ

THEOREM 4.4. Let s$f be a von Neumann algebra. The essential
central range of a self-adjoint element A of j y with respect to a
central ideal ^ is the smallest central-convex subset of J^f which
contains the essential central spectrum of A with respect to <J^

Proof. Let %" be the center of J ^ let ζ be in the spectrum of
^Γ, and let φ be an element of Ea{^). Let φζ be the bounded linear
functional on j ^ defined by φz(B) = Φ(B)A(Q for all Bej^. If
Bl9 •••, Bn are in j y and Cl9 •••(?» are in ζ, then

^c(Σ Bid) = Σ CHQΦdBi) = o .

This proves that φζ vanishes on a dense subset of [ζ] and so vanishes
on [ζ]. Hence φc vanishes on <J*~(ζ). Now let d = gib ^ — Sp^ A
and Cu = lub & - Sp^A. We have that Cf (ζ) £ A{J^{ζ)) ^ Cί(ζ)
in j ^ ( ^ ( ζ ) ) . (Proposition 3.12). This means that

for all ζ with P* (ζ) = 1. Consequently, we have that Cz = CXP^ ^
φ(A) ^ CUP^ = Cu. So we may find a C in J with 0 ^ C ^ 1 such
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that CCi + (1 — C)CU = φ(A). Hence, the smallest central convex set
containing % — Sp^A contains ^S(A).

Conversely, to show the opposite relation we simply must show
that Ct and Cu are in J£>(A). We work with Cu. Given ε > 0, there
is a projection E in Stf such that E commutes with A, \\(CU — A)E\\ <
ε, and if EP is in ^ for a central projection P then P is in ^
(Proposition 3.13). There is a φ in Ea{^) such that φ(E) = P^
(Lemma 4.3). From the Cauchy-Schwarz inequality for elements of
A~+, we obtain

\\Φ(A)-cu\\ =
\\φ((A - CU)E)\\ + \\φ((A - Cu)(l - E))\\

^ ε + \\A-Cu\\\\φ(l-E)\\ = ε.

Because J>Γ>(A) is uniformly closed and because ε > 0 is arbitrary,
we have that Cue J%C(A). By a similar argument Cz e Sί^-(A).

COROLLARY 4.5. Let s$f be a von Neumann algebra. The essen-
tial central range of an element A in s$f with respect to a central
ideal ^ is equal to a set {Ao} if and only if A0P^ = Ao and A — Aoe

Proof. First let the essential central range 3Γ,\A) of A be
equal to A*. Then φ(A) = Ao for every φ e Ea{^). Hence φ(A + A*) =
Ao + At for every φe Ea{^). This means that the essential central
spectrum of A + A* — (AQ + Ao*) with respect to the ideal ^ is equal
to {0} (Theorem 4.4). Hence A + A* - (Ao + A^e^ (Proposition
3.12 and Lemma 3.1). Similarly we find that (A - A*) - (Ao - At) e ^.
Consequently, we have that A — Aoe ^y.

The converse is obvious.

The following remarks lead to a characterization of the essential
central range. This reduces to the known characterization of the
essential numerical range of the algebra of all bounded operators on
a separable Hubert space [11; 5.1]. Let j y be a von Neumann algebra
on the Hubert space H and let %? be the center of szf. Let E be
an abelian projection with central support P in the commutant JΓ' of
%: [cf. 9; I, §7]. For every Aej^, there is a unique τE(A) in
with EAE — τE(A)E. Then A —> τE(A) defines an element in
with τE{l) — P. For every projection P in 3? let VP{s*f) = {τE e

\E is an abelian projection in %*' of central support P}; for every
j^f let WP{A) = uniform closure {φ(A)\φe VP(J^)}.
We now need a version of the Toeplitz-Hausdorff Theorem.

LEMMA 4.6. Let s%f be a von Neumann algebra. Then, for
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every Ae<W and central projection P, the set {φ(A)\φe VP{Ssf)} is
central-convex.

Proof. There is no loss of generality in the assumption that
P — 1. Let E1 and E2 be maximal abelian projections (i.e. abelian
projections with central support 1) in the commutant %*' of the center
^ o f j / and let Ce %* with 0 ^ C ^ 1. Setting E = luh{Elf E2},
we obtain a projection E such that the reduced algebra %^ is the
product of homogeneous algebras of type In where n <£ 2. Indeed, we
have that lub [Eu E2} — Ex < Ex and so lub {Eu E2} — Eι is abelian.
So there is no loss of generality in the assumption that j ^ = %'t is
homogeneous of degree 2 since the degee 1 case requires no further
proof. Now we may write φ(B) = CτEl{B) + (1 - C)τE2(B) as φ{B) =
AiTFl(B) + A2τF2(B) where Flf F2 are orthogonal maximal abelian projec-
tions of sum 1 and Al9 A2 are elements in ^Γ+ with A1 + A2 — 1 [14;
§4]. So we may assume that Eγ and E2 are orthogonal of sum 1. Let
zi = τE. (i = 1, 2). Since it is sufficient to find a maximal abelian pro-
jection E with τE{A — τ2(A)) = Cτ^A — τ^A)), we may assume that T2(A) =
O Now there is a sequence {Pn} of orthogonal projections in %? such
that τ1(A)Pn is invertible in %TPn and ^ ( ^ ( 1 - Σ P ») = ° Because
the sum of abelian projections with orthogonal central supports is
again abelian, there is no loss of generality in the assumption that

The rest of this lemma is the classical Toeplitz-Hausdorff theorem.
Let U be a partial isometry of Szf with ί7* U = 2^ and ?7Z7* = E2

and let A = E1 + AJJ+ A2U*, where Alf A2 e %. There is a unitary
operator Fin JT with F| Ax - A* | = Ax - A*. Let Γ = y*A, + VA2.
There i s a ΰ e J with -1 ^ D ^1 such that

Dψ2T= C

[6]. Now, by direct calculation, we find that

E = D2E, + VD(l - D2YI2U+ V*D(1 - D2)1/2C7* + (1 - D2)E2

is a projection in j%f of central support 1 that vanishes on the range
of (1 — C2)U2Eι — VCE2. So E must be a maximal abelian projection.
Finally, by another calculation, we obtain that EAE = CE.

Let J ^ be a von Neumann algebra with center ^Γ. Let sf be
considered as a ^Γ-module and let S?f ~ be the ^Γ-module of all cr-weakly
continuous module homomorphisms of Ssf into ^Γ. Let Ĵ C1" = J^"~+ Π J^L
be the set of all normal (i.e. positive σ-weakly continuous) module
homomorphisms of j ^ into %*.

Now we can extend Lemma 4.6.
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LEMMA 4.7. Let sf be a von Neumann algebra, let P be a central
projection of Jzf, and let A e Szf\ then

WP(A) = {φ(A) I φ e J ^ + , φ(l) = P) .

Proof. First let φ e J^fj with ^(1) = P. We show that φ(A) e
WP(A). There is a monotonely decreasing sequence {An} of positive
elements in the center %" of J ^ and a sequence {En} of orthogonal
abelian projections in the commutant %'f of JΓ with central supports
{Pn} respectively such that lim An = 0 (uniformly), ΣAn = P (strongly),
En+1 < En, supp Pi = supp Ai (n = 1, 2, . . . ) , and φ{B) = Σ*AnτEn(B)
(strongly) for all S e J / ([16; Theorem 2] and [14; §4]). There is a
mutually orthogonal set {QJ in {%?) of sum P such that

limm Σ {A& \l^n^m} = PQt

uniformly (cf. [14, Theorem 4.1]). For each Qi we may therefore find
an mi with IIS^H ^ ε, where 5< = Σ {An\n ^ mj and where ε > 0
is a preassigned constant. Now there are abelian projections Fk(l ^
k ^ mi = m) of central support PQi such that ^ Q i ̂  Ffc. Since
supp Pfc = supp A£, we have that φt = Σ {-4*̂ 4 | l ^ & ^ m — 1} + -B»r̂ m

is equal to Σ {AhQiZEk\l ^ k ^ m - 1} + B{cFm. Since Σ {AkQi\l £
k ^ m — 1} + .B ζh = PQί, there is an abelian projection Gι in %' of
central support PQ^ such that τG.(A) — Φi(A) (Lemma 4.6). Notice
that

Now Σ Gι — G is an abelian projection of central support P and

\\φ{A) - τG{A)\\ ^ lublK^A) - τ^AjDQ.W ^ 2ε||A|| .

So ^(A) G WP(A) since ε > 0 is arbitrary and WP(A) is closed.
The converse relation is obvious since τE is a normal module

homomorphism.

PROPOSITION 4.8. Let Szf be a von Neumann algebra. Then the
essential central range of an element A in s^f with respect to the
central ideal ^ is equal to Π {WV(A + B)\Be^}. Here P = P^.

Proof. Let φeEa{J^). Let Q be the central projection in
such that s^fQ is a discrete algebra and s$f(l — Q) is a continuous
algebra. There is a net {φr

n} (resp. {ĉ }) of elements of {j%fQ)t (resp.
(J^(l - Q))ί) with ^ (Q) = P^Q (resp. ^ ( 1 - Q) = P^(l - Q)) such
that lim^CBQ) - (̂JSQ) (resp. lim^(B(l-Q)) = φ{B{l-Q))) uniformly
for every Bej^f. This follows from Theorem 5.4 (resp. Theorem 5.1)
of [17]. Then setting φnm{B) = Φ'n(BQ) + φZ(B(l - Q», we obtain a
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net {φnm} in JxC+ with φnm(ΐ) = P^ for all m, n and lim φnm{B) = φ(B)
(uniformly) for all Bes*r. Let Be^ and let ε > 0; then there is
a φmn with \\φwn(B))\\ ^ s and ||^W(A) - ψ(A)\\ ̂  ε since 0(5) = 0.
Since ε > 0 is arbitrary and since WP(A + B) is closed, we have that
Φ(A) e WP(A + i?) by Lemma 4.7. Since Be^ is arbitrary 0(A) e
n{T7P(A + # ) | £ G ^ } . SO J ^ S ( A ) C n {WP(A + £ ) | 5 e ^ } .

We now prove that the opposite inclusion relation is true. First
let A be self-ad joint. We show that 0 e Π {WP(A + B)\B = B* e J^}
implies that Oe J>&(A). Let ^Γ be the center of s^f and let Cu =
lub ^Γ — Sp^A. Suppose there is an a > 0 and a nonzero pro-
jection Q in % with Q ^ P and CUQ ^ -2αQ. We have that
(Cu - A){J^{ζ)) :> 0 for every ζ in the spectrum of %T (Proposition
3.12). If /+ (resp. —/_) is the function that is identity on the real
interval [0, oo) (resp. (—°o,0]) and 0 on the complement, we have
that f-(Cu — A) is a self-adjoint element in ^ (Lemma 3.1). How-
ever, by hypothesis there is an abelian projection E in %*' of central
support P with \\τE{f_(Cu — A) - A)\\ ^ a. On the other hand, we
have that

QτE(f-(Cu - A) - A) - QτE(f+(Cu -A)- Cu) ^ 2aQ .

This is a contradiction. Hence, we find that CuP^0. Since 1 — Pe ^
we have that Cu(l-P) = 0 and so Cu ^ 0 (cf. Remark 3.8). Similarly,
we obtain d = gib %: - Sp^ (A) ^ 0 and finally that 0 e J£S-(A) (Theo-
rem 4.4).

Now let A be an arbitrary element of s^ with 0 e Π {WP{A +
B)\Be^}. Let ^ - {|B| = (B*B)ll2\Be J3C(A)}. We note that ^
is a monotonely decreasing net in ^Γ+. Indeed, let I? and C be in

There is a central projection Q with Q|J5| + (1 - Q) \C\ =
\C\}. But the set ^C-(A) is central-convex and so JΪO(A)

contains D = QB + (1 - Q)C. Thus, we have that \D\ = Q\B\ +
(1 — Q)\C\ is in Sf. Thus ^ has a greatest lower bound 5 0 in ^ ' + .
We show JB0 = 0 by arguing by contradiction. Suppose there is a
point ζ in the spectrum Z of %* with J50

Λ(ζ) > 0. Then we may assume
that 50

Λ(Q = gib{CΛ(ζ) \Ce^} since #0

Λ(ζ) - gib{CΛ(ζ) | C e &>) holds on
a dense open set of Z [7]. There is a Ce J^>(A) such that |CΛ(ζ) | =
2?0

Λ(ζ) (Proposition 4.2). Then we may find a unitary Z7 in % such
that Ϊ 7 C = | C | . We have that Oe Π {WP(UA + B)\Be ^} since
U(WP(A + C7*5)) - TΓp(Z7A + B) and that £ 0 = glb{|5| \Be S
since jr,(UA) = USty{A). Furthermore, we have that \C\ e 3
Hence, there is no loss in generality in assuming that there i s a Ce
J£>(A) with CΛ(ζ) - £0

Λ(Q. Now let A, = (A + A*)/2 and A2 = (A -
A*)/2i. We show that 0 e Π { TΓp(Ay + S) \B = 5* e ^^} (1 ^ i ^ 2).
In fact, given ε > 0 and B = B* e <J^, there is an abelian projection i?
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with central support P in the commutant of % such that \\τE(A+B) | | ^
ε. Hence, we have that

\\τE(A + A* + 25)|| - \\τE(A + B) + τE{A + B)*\\ ̂  2ε .

Similarly, we may find an abelian projection F of central support P
such that \\τF(A — A* + 2iB) || ̂  2ε. Now by the preceding paragraph
we conclude that 0 e JϊS (As) (1 ̂  j ^ 2). Let φ be an element of Ssf~+

with 0(1) — P, 0(w*O = 0> and Φ(A^ = 0. However, every element of
the form aφ(A) + (1 - α)C (0 <: a ^ 1) is in ^t (A) and so there is
at least one a with 0 ̂  <* ̂  1 such that

\aφ(A)A(ζ) + (1 - α:)CΛ(ζ)| < CΛ(ζ) = B£(ζ) .

Indeed φ(A)A(ζ) is pure imaginary. This contradicts the choice of Bo.
Hence, we must have that Oe

PROPOSITION 4.9. Let j y he a von Neumann algebra', then Ao is
in the essential central range of Ae s^ with respect to the central
ideal J 2 " if A0P^ — Ao and if, given ε > 0, there is a projection E
with dimJ57>dim^^ such that \\E(A0 — A)E\\ S ε. Conversely, if
A G j y is self-adjoint and if Ao is in the essential central range of
A with respect to ̂  then there is a projection E in s*f with dim E >
d i m ^ such that \\E(A0 - A)E\\ £ ε.

Proof. The first statement follows from Lemma 4.3 and Propo-
sition 2.9 since the essential central range Sty{A) of A with respect
to ^ is uniformly closed.

Now let A be self-ad joint and let Aoe J^>(i). There is no loss
of generality in assuming at the outset that AQ — 0 and that P^• — 1.
Let ^ have the canonical form *J^ = ̂ p(F) (Remark 2.6). Let
ε > 0 be given. Let Cz = gib JT-Sp^A and let Cu = lub T - S p ^ A
where % is the center of J ^ Since Oe ̂ ty{A), we have that Ct ^
0 ^ Cu (Theorem 4.4).

Now let R be the largest central projection such that s/R is of
type I and *J^R = 0. Consequently, if G is a finite type I projection
majorized by 1 — R, then G e ̂ {1 — R) (Proposition 2.2). By Proposi-
tion 3.10 we may assume that either iί = l o r l — iϊ = l .

First suppose theat R = 1. We may assume that j y is equal the
commutant of its center [9; I, 8, Theorem 1]. Then there are abelian
projections Eγ and E2 of central support 1 in jzf such that

Hr̂ CA) - C,|| + Ilr^/A) - C.|| ̂  e .

(Theorem 4.4 and Proposition 4.8). There is a C in %* with 0 ̂  C £ 1
such that CCi + (1 — C)CU = 0, and there is an abelian projection E
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of central support 1 in j / such that τE(A) = CτEl(A) + (1 — C)τE2(A)
(Lemma 4.6). Thus, we obtain

\\EAE\\ ^ \\C\\ \\τEl{A) - d\\ + | |1 - C\\ \\τEi(A) - Cu\\ ̂  ε .

So we may assume that 1 — R = 1. Because the closure of every
open subset of the spectrum Z of % is open, we may find a sequence
{Pn I n = 0,1, 2, } of mutually orthogonal central projections of sum 1
such that

CιPn SL -n~1Pn < 0 < n~ιPn ^ CuPn

for n = 1, 2, , and Ct Cu Po = 0. We shall find projections En of
central support Pn such that FPn < En and \\EnAEn\\ ^ 4ε. Then we
shall have that E=^En has central support 1, F< E, and \\EAE\\ =

A ^ P J I ^4ε (cf. [9, III, §1]). Now, we have that ^ =

Λ = ̂ ppn(EPn) is a representation of the central ideal ^ of

% in canonical form. Since CxCnP^ = 0, there is a Pό in (^Po) with
PO'CZ + (Po - P0')Ctt = 0 (Lemma 3.4). Thus, we see that 0e^P0 -
Sp^0(APJ (Proposition 3.10) and so we may find the projection EQ

(Proposition 3.13). By reducing to an algebra S^Pn, we may assume
that Ct^ -a<0 < a ^ Cu (Proposition 3.10).

It is sufficient to show that every nonzero Q e {%") majorizes a
nonzero Re (%') such that there is a Ge (jy) of central support R
with FR < G and || GAG \\ ^ 4ε. Then the usual maximality argument
for the projections R may be employed to find the projection En. By
making yet another reduction to a direct summand of jy, we may
assume, without loss of generality, that there are natural numbers
m, n, and p such that

limp"1 + Cz|| ̂  v~ι ^ ε and \\np~1 - Cu\\ ̂  ε .

We now find n (resp. m) orthogonal projections Fι of dimension
greater than d i m ^ such that \\{Cι - A)Fi\\^ε (resp. \\(CU - A)Fi\\ g
ε). We normally would apply Proposition 3.14, however it is necessary
for the combined set of m + n projections to be orthogonal and so
the following additional argument is required. Let Aγ and A2 be ele-
ments of j^f+ such that A1 — A2 = A and AλA2 = 0. For every ζ e
Z, we have that -Cf(ζ) = | |A 2 (^(ζ)) | | and C£(ζ) = | |Λ(^(Q)II (Pro-
position 3.12). Let G1 and G2 be the domain projections of A1 and A2,
respectively. For definiteness, let G = Gλ. If Q is a central projec-
tion with GQ e ^ then Q — 0; otherwise, there is a ζ e ̂  with
G(w^(ζ)) = GQ(w^(ζ)) = 0 and consequently with 11^(^(0)11 = 0.
This implies that dim (? > dim ̂ Γ So there is a projection G' with
F ~ G' ^ G. We now restrict j ^ to the subspace of the Hubert
space determined by G to obtain the von Neumann algebra
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(cf. [9; I, § 2]). The set GJ?G = J^ is easily seen to be a
central ideal of s$fG since the center of s^G is ^G = %~G [9; III, 5,
Problem 7]. We have that Aλes>fG. Since the spectrum of %G is
the set X— {ζG\ζeZ}, we have that the smallest ideal [ζG] of
which contains ζG is G[ζ]G. We may now easily show that

[CGDII - infill A + B + C|| \Be^G, Ce [ζG]}

is equal to || Λ p ^ ζ ) ) || for every ζeZ. This means that CUG =
lub ^ — Sp^G Ai (Proposition 3.12). Therefore, we may find a set
Fu F2, , i77™ of mutually orthogonal projections in J%fG of dimension
greater than dim<J% such that

= FiA^e) and \\{CUG - A ^

for every i = 1, 2, •••, m (Proposition 3.14). Indeed, the algebra
has no finite type I direct summands. Thus, we may find orthogonal
projections Fl9 F2, •••, Fm majorized in szf by G — Gγ such that

F~G' < Fi9 AF^) = F,A{^) , and || (Cu - A)Fi{^) || ^ ε

for every i = 1, 2, •••, m. Likewise, we may find orthogonal projec-
tions Fm+1, -- ,Fm+n majorized by G2 such that F < Fi9 AF^J?) =
F , A ^ ) , and \\(d - A)Fi{^) \\ ^ ε for every ΐ = m + 1, , m + n.
Since Gx and G2 are orthogonal, the projections Fί, ' ,Fm+n are
mutually orthogonal. There are partial isometries 17̂ (1 ̂  i, i ^ m+π)
of j y which satisfy the following properties:

(1) Ui3-Ukι = δu Ukj (δ - Kronecker delta);
( 2 ) UiS= Ufc and
(3 ) Ua is a projection with ί7 — Z7« •< ί7^ for all i, j , k, I.

The element Er = (m + ̂ )~1 Σ Uϊi is a projection in Stf with E'~F,
i.e. dim _E" > dim ̂  Here, indeed, a calculation using (m + ri) x
(m + ̂ ) complex matrices suffices. Furthermore, using the fact that

for every i, we have that

||(m + nΓ Σ * (Σ {C^H(A - Cu)Ujk\k ^ m)

+ Σ {Uki(A - Q UjkIfc > m})pΠ ||

^ 2ε .

Now there is a ΰ e j ^ with \\EΆEf - E'BEf\\ ^ 3ε. In the ideal
Jf, we may find a spectral projection E" for E'B*BE' majorized by
E' so that ||5£"(1 - E") \\ ^ ε. If Q(E' - E") e JF for some Qe {%*),
then QEf e <J^ and consequently Q = 0. This means that



ESSENTIAL CENTRAL SPECTRUM AND RANGE FOR ELEMENTS 373

dim {E'-E")

(Proposition 2.9). Setting E = E' — E", we obtain the relation

\\EAE\\ S \\E{A - B)E\\ + \\EBE\\ g 4ε .

REMARK 4.10. If j y is the algebra of all bounded operators on
a separable Hubert space H and ^ is the ideal of completely con-
tinuous operators, then Fillmore, Stampfli, and Williams [11, Theorem
5.1, Corollary] have obtained Proposition 4.8 without the added restric-
tion that A is self-ad joint. The theorem of Fillmore, et al., depends
on properties of Hilbert-Schmidt operators on separable H; however,
it is likely that the restriction can also be removed here.

Let s^ be a von Neumann algebra. Let U(s^) be the group of
unitary operators of s$? and let g7 be the set of positive real-valued
functions / of finite support such that Σ{f(U)\Ue U{Jϊf)} = 1. For
each / e g 7 and 4 in ^ let f A = Σ*{f(U)U*AU\Ue U(J^)} and
let 3iT\A) be the uniform closure of {f-A\fe&}. If 5 G . 3 T ' ( A ) ,

then J Γ ' ( J ? ) c j r ' ( 4 ) . Then the intersection ST{A) of ST'(A) with
the center is a nonvoid closed convex subset of the center ([8]; cf. also
[9; III, §5]). Furthermore the set SΓ'(A) (resp. J3T(A)) is central-
convex in the sense that CC, + (1 — C)C2 is in J%T'(A) (resp. *3Γ(A))
for every Cι and C2 in SΓ'(A) (resp. SΓ(A)) and C in the center
with 0 ^ C ^ 1 [19; proof, Lemma 6].

The following forms the basis for our analysis of Sί^(A).

PROPOSITION 4.11. Let j y be a von Neuman algebra and let A be
an element in JV. Let ζ be a point in the spectrum of the center of
Ssf. Then the set J?f(A)(ζ) — {BA(ζ) \Be :yΓ(A)} is a compact subset of
the complex plane.

Proof. Because Sί^(A){ζ) is bounded, it is sufficient to show that
contains an arbitrary limit point a. Due to the fact that

— a)(ζ) = <βΓ(A)(ζ) — a, there is no loss in generality in proving
that 0 e J%Γ(A)(ζ) whenever 0 is a limit point of Sf(A)(ζ). We proceed
to do this. For every n = 1, 2, •••, there is a function fn in the
subset g7 of real-valued functions on the unitary operators of s$? and
a central projection Pn of j ^ with P£(ζ) - 1 and \\{fn A)Pn\\ ^ 2~\
Let {Qi} be the sequence of orthogonal projections defined by Qx =
Px - P,P2, Q2 = P,P2 - P&Ps, , and let BeJΓ'(A). Then let Cn =
B(l - PJ + Σ {(frA)Q{\l ^i^n} + {fn+^A)Q'n (n = l,2, ..). Here
Qf

n = Pi PΛ + 1 is the orthogonal complement of (1 - P,) + Σ {Q |l ^
i ^ n). We notice that Cn e Sf'(A) for every n since 3ίΓ'(A) is central-
convex. However, the sequence {Cn} is Cauchy since \\Cn — Cn + 1 | | ^
max{||(Λ+1.A)Q;+1||, ||(Λ+2 A)Q!;+1||} ̂ 2 — ^ This means that {Cn} con-
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verges to an element C in SΓ'(A). We have that

||C(ζ)|| - lim IICUOH = lim ||((/.+1.A)Q;)(C)|| £ lim sup 2 - = 0

and thus C is in the ideal [ζ]. This means that ^T'(C) c [ζ]. How-
ever, we have that J?Γ'(C) c ST'{A) because CeJ5T'(A). This means
that ST{A) Π [ζ] Φ 0 , or equivalent^, that Oe

THEOREM 4.12. Let s$? be a properly infinite von Neumann
algebra, let ^ be the strong radical of Ssf, and let A be an element
of J ^ Then the set SΓ(A) is equal to the set SΓ^iA) = {φ{A)\φ is a
state of j ^ ~ with φ(^f) = (0)}.

REMARK 4.13. Here notice Ea{^) is the set of all states of
~ which vanish on

Proof. First let A be self-adjoint. We show that every element
C in the essential central spectrum of A with respect to ^ is in
Sf(A). There is no loss of generality in assuming for this that
C = 0. Then for every ε > 0, there is a projection E in j ^ such that

\\AE\\^ε and E~l

(Example 2.12 and Corollary 3.15).
There are orthogonal projections E' and Έ" of sum E such that

E' ~E" ~E [9; III, 8, Corollary 2]. By replacing E by E', we may
assume that || AE\\ ^ ε and E ~ 1 — E ~ 1. Then the element

2~1{{E - (1 - E))A{E - (1 - E)) + A) = EAE + (1 - E)A(1 - E)

is in 3ίΓ'{A). Now let Eu , En be orthogonal projections of sum E
with Ej.~ ••• ~ En ~ E9 and let Uu , ί7w be unitary operators in
j^f so that the domain support of (1 — 23)17* equals £?<. For every
unit vector x in the Hubert space, we have

i ^ n}\\

n~ιUϊι{l - E)A(1 - E)Uix\

E)UiEix\\

This proves that .3Γ'(A) contains an element of norm less than or
equal to ε + n~ι\\A\\. Because ε > 0 and n are arbitrary, the set
J2Γ(A) contains 0. This means that the essential central spectrum
of A with respect to ^f is contained in SΓ(A). Hence, the least
upper bound Cu and the greatest lower bound Ct of the essential
central spectrum are in Jf(A). Since Sty (A) is the smallest central-
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convex set containing Cz and Cu (Theorem 4.4) and since 3f(A) is
central convex, we have that ^j?{A)c<9Γ{A).

Now let A be an arbitrary element of j y and let φe Ea(^J?).
We may assume that φ(A) = 0. We show that 0 is in J%Γ(A)(ζ) =
{BA(ζ)\Be ,9Γ(A)} for every ζ in the spectrum of the center. Since
J3f(A)(ζ) is compact (Proposition 4.11), there is a C in j/ίΓ(A) with
\CA(ζ)\ = g\b{\a\\aeSr(A)(ζ)}. There is no loss of generality in
assuming CΛ(ζ) ^ 0. We obtain a contradiction by assuming CA(ζ) >
0. Indeed, we have that φ(A + A*) = φ{A) + Φ(A)* = 0. By the preceding
paragraph we conclude that 0 e ̂ Γ(2~1(A + A*)) and so there is a
sequence {/„} in the subset g" of functions on the unitary operators
of sxf with lim/% (2~1(A + A*)) = 0. We may also assume that
{fn ({2i)~\A — A*))} converges to a self-adjoint element 5 in the
center [9; III, §5, Problem 2]. Hence, the element iB is in SΓ(A).
However, we must have that BA{ζ) = 0. Indeed, if BA(ζ) Φ 0, then
the distance to the origin of the line segment L in the complex plane
with end-points CΛ(ζ) and iBA(ζ) is less than CΛ(ζ). However, this
contradicts the definition of C since Lc.T(A)(ζ) . So we must have
that CΛ(ζ) = 0, and hence 0e.2T(A)(ζ). The proof is now completed
by a compactness argument. Let ε > 0 be given. For every ζ in
the spectrum of the center, there a Cζ in <3Γ{A) and a central projec-
tion Pζ with Pζ

Λ(ζ) = 1 such that \\CζPζ\\ ^ ε. Due to the compact-
ness of the spectrum of the center, we may find CΊ, , Cn in SΓ{A)
and orthogonal central projections Pu , Pn of sum 1 such that

However, 3Γ{A) is central-convex and so X CiPi e SΓ(A). Since ε > 0
is arbitrary and since <5Γ(Ssf) is closed, we have that 0eJ5Γ(A).
This completes the first part of the proof.

Conversely, let C G . J ^ ( A ) . There is no loss of generality in
assuming C = 0. We find φ in Ea{^) with φ(A) = 0: Let ^0 be a
state of j ^ ~ that vanishes on J? (Lemma 4.3). Let {/„} be a
sequence of functions in g7 such that lim/% A = 0. Let φn be the
state of ESJ") given by ^n(S) - φo(fn B) for every ΰ in J ^ Due
to the compactness of the state space of jy~ in the <τπ/(j^~, s>f)~
topology, there is a subnet {φn.} of {φn} and a state ^ of j ^ ~ such
that {^Wi(5)} converges weakly to ό{B) for every B in j ^ Clearly,
the state φ vanishes on ^ . However, for every x and y in the
Hubert space, we have that

\(φ{A)x, y)\ = l i m j \ ( φ n . ( A ) x , y)\ < l i m s u p \\φQ\\ | | / n . A | | | | α ; | | \\y\\ - 0 .

This proves that φ(A) = 0, and so Oe JT>(A).

COROLLARY 4.14. Let j y δe α properly infinite von Neumann
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algebra and let A be an element of Jtf. Then the convex subset S
of the center is weakly compact.

Proof. For any central ideal ^ the set J3ty{A) is weakly compact
(Introduction, §4).

Let A be an element in the von Neumann algebra J^f. Define
^{A) to be the intersection of the weak closure of J%Γ'(A) with the
center of J^K Using the tools we developed here, we can extend the
theorem of J Conway [4] from the case of properly infinite factors
to pro perly infinite algebras with arbitrary centers. For this exten-
sion the following lemma is needed.

LEMMA 4.15. Let s%f be a von Neumann algebra on the Hilbert
space H. Let f be a σw(j^f~y s^)-continuous hermitian functional
on Sif~ (i.e. f(φ) is real for every φ in s$f~ which takes hermitian
elements of Szf into hermitian elements of the center). Then there
is an xe H and a self-adjoint A e j y such that f(φ) = (φ(A)x, x) for
every φ e

Proof. There are xl9 , xn, yl9 , yn in H and Al9 , An in
such that f(φ) = Σ (φ(Ai)Xi, y^ for all φ in j ^ ~ [17; §2, Introduction].
For each i there are zi3- (1 ^ j ^ 4) such that

where wXi>y.(B) = (Bxi9 yt) and wz = wz>z on the center of j y [9; I, 4,
Theorem 6 and III, 1, Theorem 4, Corollary]. Then there is an x in
H with wx = Σi,3wzi5 [9; III, 1, Theorem 4, Corollary]. For each ij,
there is a positive element Ci3 in the center with (BdjX, x) — (Bzijy zi5)
for all B in the center (Radon-Nikodym theorem). Thus there is an
element B = Σ MCn - Ci2 + i(Ci3 - Ci4)) in J ^ with f(φ) = (φ(B)x, x)
for every φ in j ^ ~ . If φ*(B) = ^(B*)* for # e j / ~ , then

(Φ(B*)*x, x) = f(φ*) = f(φ)~ = (φ(B)x,

for every φ in jy~ implies that f(φ) = (φ(B*)x, x) = {φ{B)x, x) for every
φ in jy: Hence, f(φ) = (Φ(A)x, x) for every φ in jy~. Here A =
2~1{B + B*).

THEOREM 4.16. Let szf be a properly infinite von Neumann
algebra, and let J^ be the ideal of finite elements of J ^ ; then C^{A) =

for every A in

Proof. One may prove the theorem using the same steps (with
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appropriate modifications) that Conway [4] employed in his proof for
factor algebras. We content ourselves with pointing out the appro-
priate steps. Let c<f be the set of all states of jzf~ such that φ(A) e
C^{A) for all A in jzf. For every Ae s^ and Aoe ^(A), there is a
φe^ such that φ{A) = Ao. This uses the σTF(j^~, j^)-topology in-
stead of the weak *-topology of the dual of j ^ [4; Lemma 5]. The
set C^{A) is equal to {0} for every A e ^ [4; Lemma 6]. Hence,
the set ^ is a subset of Ea{^). But if A is self-adjoint and φe
Ea(^/r)9 then φ(A) e r#{A) since the least upper bound and the greatest
lower bound of the essential central spectrum of A with respect to
*J^ are in C^{A) (argue as in [4; Lemma 4] based on Proposition 3.13)
and since C^{A) is central-convex (use the fact that ,9Γ'{A) is central-
convex). If there is φ0 in Ea{J?) but not in the σw(J&"~, J^)-compact
convex set ^ , then there is a σw(ssf~, jy)-continuous hermitian func-
tional on j ^ ~ which strongly separates φ0 from ^ . However, every
0V(jy~, j^/)-continuous hermitian functional / of jy~ is of the form
f(φ) = (φ(A)x, x) for some fixed self-adjoint A in J^f and some vector
x in the Hubert space. This contradicts the fact that φo(A) e ^(A)
and so that φo(A) = φ(A) for some φe^. Hence, ^ = Ea{J^) and

= i f (A).

COROLLARY 4.17. Let jy be a σ-finite properly infinite von
Neumann algebra; then Sf(A) = C^{A) for every A in

Proof. The ideal generated by the finite elements of s^ is the
strong radical of j^ ί The corollary then follows from Theorems 4.12
and 4.16.

5. Applications. Using the notions of essential central spec-
trum and essential numerical range, we can extend some theorems
on commutators and derivations to arbitrary properly infinite von
Neumann algebras. These theorems are known for the algebra of all
bounded linear operators on a Hubert space, which is generally
assumed to be separable, but the techniques employed there also
suffice here.

A linear map δ of an algebra is said to be a derivation if δ(AB) =
Aδ(B) + δ(A)B for every A and B in the algebra. S. Sakai [27]
proved that every derivation δ of a von Neumann algebra j ^ is inner
in the sense that there is an A in Szf such that δ(B) = AB — BA for
every B in j ^ The next proposition is due to J. G. Stampfli [29]
for the algebra of bounded linear operators on a Hubert space. His
technique suffices here.

PROPOSITION [Stampfli] 5.1. The range of a derivation on a von
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Neumann algebra is not uniformly dense in the algebra.

Proof. Since every von Neumann algebra may be written as a
product of a finite and a properly infinite von Neumann algebra, it
is sufficient to consider these two cases separately. If the algebra is
finite, then the range of the derivation is contained in the set of ele-
ments whose canonical operator-valued trace vanishes. So the range
of a derivation cannot be dense. If the von Neumann algebra s$?
is properly infinite and the derivation δ on Stf is given by δ(B) =
AB — BA, then we construct an operator that is not in the closure of
the range of δ. Let Ao be a central element such that (A — AQ){^f{ζ))
is neither left nor right invertible for all ζ in the spectrum of the
center. Here ^ is the strong radical of Szf (Theorem 3.5). Because
δ(B) = (A - A0)B - B(A — Ao) for all BeSsf, we may assume Ao == 0.
There are sequences {En} and {Fn} of mutually orthogonal projections
in Stf such that JS7W — 1 — Fn, \\AEn\\ ^ <nr\ and \\FnA\\ ^ n~ι for
for every n = 1, 2, (Example 2.12 and Corollary 3.16). Then there
is a partial isometry U in s$f with domain support E — Σ E* and
range support F — Σ ^ s u c h that £72̂  = F{ U. We show that a =
|| Ϊ7 — δ(jB) || Ξ> 1 for every Be *$$?. Indeed, for every n = 1, 2, , we
have that

| fg | | ^ ( C 7 - δ{B))En\\ + | | 2^(5)#JI ^ α + 2n"'\\B\\ .

Hence the open ball of radius 1 about U does not meet the range
of δ.

In [18], we showed that an element A in a properly infinite von
Neumann algebra Szf is a commutator in s/ (i.e. there are elements
B and C with A = BC — CB) provided 0 e SίΓ{A). We can also prove
that 0 e ^Γ(A) provided A = BC - CB and t{B*B - BB*) is a posi-
tive operator in Szf. Now an element A is said to be a self-adjoint
commutator if A = BC - CB with B = 5*. H. Radjavi [25] charac-
terized those self-adjoint elements in the algebra B(H) of all bounded
linear operators on a separable Hubert space H which are self-adjoint
commutators and J. Anderson [1] recently announced that he has
completely characterized self-adjoint commutators in B{H). We prove
a proposition in this direction for properly infinite von Neumann
algebras using a matrix calculation of M. David [5].

PROPOSITION 5.2. Let jzf be a properly infinite von Neumann
algebra and let A be a self-adjoint element in Szf. If 0 is in the
essential central spectrum of A with respect to the strong radical of

then A is a self-adjoint commutator in
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Proof. There is a sequence {En} of orthogonal projections with
En ~ 1 and \\AEn\\ ^ 1/nl for all w = 1, 2, ••• (Lemma 3.16 and
Example 2.12). Thus, \\EmAEn\\ ^ min{1/m!, 1/nl}. Then the matrix
calculation of M. David [5; Theorem 3] is applicable.

Acknowledgement. The author would like to thank Professor
Carl Pearcy for bringing J. G. Stampfli's result [29] to his attention
and for suggesting extending it to von Neumann algebras. He also
wishes to thank Professor Stampfli for a letter in which he outlined
his proof (cf. Introduction §5).

Added in Proof, August 2h, 1972. We have obtained a better
version of Proposition 5.2 by showing that A is a self-ad joint com-
mutator whenever 0 is in the essential central range of A.
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