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A closed two-sided ideal .“ in a von Neumann algebra
7 is defined to be a central ideal if 3, A;P; is in .7 for
every set {P;} of orthogonal projections in the center .2~ of &7
and every bounded subset {A4;} of .”. Central ideals are
characterized in terms of the existence of continuous fields
and their form is completely determined.

If _“ is a central ideal of .7 and Ac.%, then A,¢ &
is said to be in the essential central spectrum of A if 4,— 4
is not invertible in & modulo the smallest closed ideal con-
taining .# and { for every maximal ideal { of 2", It is shown
that the essential central spectrum is a nonvoid, strongly
closed subset of 2" and that it satisfies many of the relations
of the essential spectrum of operators on Hilbert space. Let
7~ be the space of all bounded 2" -module homomorphisms
of . into 2. The essential central numerical range of Ae
7 with respect to . is defined to be ZZ5(A)={s(A)|de
b1 £1,60) =P, ¢(F)=(0)}. Here P_ is the or-
thogonal complement of the largest central projection in %
The essential central numerical range is shown to be a weakly
closed, bounded, 2 -convex subset of 2. It possesses many
of the properties of the essential numerical range but in a
form more suited to the fact that A is in .7 rather than a
bounded operator. It is shown that if .97 is properly infinite
and _“ is the ideal of finite elements (resp. the strong radical) of
7, then .77~ (A) is the intersection of 2" with the weak (resp.
uniform) closure of the convex hull of {UAU-!| U unitary in

SZ)

In a final section, we give some applications of these facts. We
extend a result of J. G. Stampfli [19] to show that the range of a
derivation on a von Neumann algebra is never uniformly dense. We
also prove a theorem on self-adjoint commutators using a calculation
of M. David [5].

2. Central ideals. Let .9 be a von Neumann algebra with
center 2. For any subset <& of .o~ let (<Z’) denote the set of all
projections of <. Throughout this paper all ideals will be assumed
to be closed two-sided ideals. An ideal _# in .o~ is said to be a
central ideal or a % -ideal if given a norm bounded set {4;|ic I} of
elements of _” and a corresponding set {P;|7¢ I} of mutually orthogo-
nal projections in 2, then the sum 3, A;P;, which exists in the strong
topology, is also in . % (Similar definitions were used by I. Kaplansky
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[22,81] and M. Goldman [13;§4] in the theory of AW *-modules;
however, here there is no canonical inner product.) Any ideal _# in
% is contained in a smallest central ideal {_#) given by (_#) =
{3 {A:P;|te I}|{A;]ie I} is a bounded subset of .7 and {P;|te I} is a
mutually orthogonal subset of (27) of sum 1} (J19], remarks preceding
corollary to (ab) implies (al)). If .7 a central ideal in .o and if A
is an element of .7 then it is clear that there is an element P in
(27) such that APe..¥ and AQg¢.” for every @ in (%) with
0< @Q=1-— P. The following definition is now possible.

DEFINITION 2.1. Let .57 be a von Neumann algebra and let _# be
a central ideal of .«/. Then P, will denote the orthogonal comple-
ment of the largest central projection in .~ We notice that QP ¢
. for a central projection @ implies QP . = 0.

We now describe central ideals with regard to finite element

PrOPOSITION 2.2. Let &7 be a semi-finite von Neumann algebra
with center %, let .7 be a central ideal of 7, and let 7P be the
weak closure of % where Pe(%). Then _# contains every finite
projection of 7 majorized by P.

Proof. Let F be a finite projection of .o majorized by P. Let
@ be an element of (2°) such that FQe.” and FR¢.” for
every R in (2°) with 0 < R <1 — @ (preliminary remarks). We
note that @ =1 — @ < P. We obtain a contradiction by assuming
that Q" = 0. Since the weak closure of ..# is .o P and since linear
combinations of projections are dense in ._#, there is a projection FE
in .7 with EQ" # 0. There is an R in (2°Q’) such that FR < FR
and F(Q — R) < E(Q" — R). Either ER = 0or E(Q — R) #+ 0. Now
if ER + 0, there is nonzero S in (2 R) and projections E,, «-+, E, in
% such that ES=E, ~E, ~ -+ ~ K, and FS — >, E; < E,. This
means that F'S is in % This is contrary to the choice of @, so we
must assume that E(Q" — R) = 0. But this also implies that F(Q — R)
is in .4 So we must conclude that @ = 0. Hence, we have shown
that every finite projection majorized by P is in A

COROLLARY 2.3. An tideal in a finite von Neumann algebra is
a central ideal if and only if it is weakly closed.

Proof. If the ideal _# in the finite von Neumann algebra .o~
is weakly closed, then there is a central projection P in .97 such that
= .%P [9, 1, 8, Theorem 2, Corollary 2]. Obviously the ideal
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7 P is a central ideal of .o

Conversely, let .# be a central ideal of .. Let P be the central
projection of .o~ such that the weak closure of ¥ is .&P. Then
.“ contains every finite projection majorized by P; in particular, it
contains P itself. So .7 = .o/P and .# is weakly closed.

We now describe central ideals for an arbitrary von Neumann
algebra .57 with center 2. Let P be a projection in & and let F
be a properly infinite projection in .~ majorized by P. (By conven-
tion we assume that 0 is a properly infinite projection in a finite
algebra 2.) Let (_%(E)) be the set of all projections in .o given
by (Z(E)) = {Fe ()| F < Pand QE < QF for some Q € (2£7) implies
QE = 0}. Let _%(E) be the ideal generated by (_7(F)).

We shall use the following lemma of F. B. Wright [32; §2].

LEMMA. Suppose 7 s a set of projections on a von Neuwmann
algebra 7 that satisfies the following properties:

(1) of Ee(w),Fe” and E< F, then Ec.Z; and

(2) if E and F are in &P, then the least upper bound lub {E, F'}
of E and F is in 7.
Then the set of projections of the ideal generated by 7 is exactly .

THEOREM 2.4. Let .7 be a von Neumann algebra with center %
In order for the ideal 7 in .7 to be a central ideal, it is a necessary
and sufficient condition that there exist a projection P in 2 and a
properly infinite projection K majorized by P with .7 = _%(F).

REMARK. The sufficiency is an adaptation of the proof we gave
for a special case in an earlier paper [18, Proposition 2.1].

Proof. Let E be a properly infinite projection majorized by the
central projection P. We show that 7% (F) = .7 is a central ideal.
Let P, and P, be orthogonal central projections of sum 1 such that
&7 P, is a finite algebra and .o P, is a properly infinite. It is suffi-
cient to show that .7 P, is a central ideal in &P, (: = 1, 2). How-
ever, we have that .7 P, is generated by (7 P,) = {Fe(AP)|F < PP,
EQP; < FQ for some Q in (2 P;) implies EP,Q = 0}. Now setting
E, = EP;,, we obtain a properly infinite projection in .&P; so that
S P, = .7 pp, (E;). Hence, there is no loss of generality in assuming
that .7 is either finite or properly infinite.

Let .o~ be finite. Then E =0 and (_%(0)) = {Fe(4)|F < P}.
Hence . = o P and so _# is a central ideal.

Now assume that .o~ is properly infinite. There is no loss of
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generality in the assumption that P =1. We show that .7 satisfies
properties (1) and (2) of the lemma of F. B. Wright. By the defini-
tion of (_#) is clear that it satisfies property (1). Now let E, and
E, be in (_#). Since lub{E, E,} — E,<E, [21, Theorem 5.4], we have
that lub{F,, E,} — E, isin (_¥) by (1). So there is no loss of gener-
ality in the assumption that E, and E, are orthogonal. There
is Qe (%) such that QE, < QE, and (1 — QE, < (1 — Q)E,. Since
QE, + E)e(#) and (1 — Q)(E, + E,) €(_#) implies that E, + E, ¢
(.#), there is no loss of generality in the assumption that E, < E,.
There is a Q@ € (") such that QF, is finite and (1 — Q)E, is properly
infinite. Hence, we may assume that either FE, is finite or properly
infinite. If E, is finite, then FE, is finite since K, < E, and so K, + E,
is finite. [9, III, 2]. If Q is a central projection with QE<Q(E,+ E,),
then QF is finite and so QE = 0. So we are left with the situation
that E, < E,, E.E, = 0, and E, is properly infinite. Because E, is
properly infinite, there are projections F,, F, satisfying the relations:
F,.~F,~E, FF,=0, and F, + F, = E,. [9; I, 8, Corollary 2].
We have that E, + E, ~ E, + F, < F, + F, = E,. By property (1) of
the lemma, we conclude that E, 4 E,e(.#). Hence (7)) satisfies
properties (1) and (2) of the lemma and this means that the set of
projections of the ideal _# generated by (_#) is precisely (_7). Now
we show _# is a central ideal. Let {4;]i€I} be a bounded set in
& and let {Q;|7e I} be an orthogonal subset of (27) of sum 1. For
every € > 0 and every 7€l there is a projection F;in (_#) such that
NA; — AF;]| <e. Then >, FiQ; = F isin (_¥). Indeed, if EQ < FQ
for some @ in (%°), then E(Q.Q) < F(Q.Q) = F;(Q.,Q) for every tel.
Thus (EQ)Q; = 0 for every i€ I and EQ = >, (EQ)Q; = 0. This means
that F'e(.#). However, we have that

137 4:Q; — X AQ)F|| = lub |4, — AFif|S¢.

Since S A;Q,)F is in _# and since .# is uniformly closed, we have
that 3, A;Q;e .~ This proves that .7 is a central ideal.

We now show that every central ideal .7 is of the form . 7Z(F).
Given a nonzero Pec (%) it is sufficient to prove that there is a pro-
perly infinite projection £ in .7 a nonzero @ in (27), and an Re (%)
with R < Q < P such that _Z(ER)Q = .“Q. Indeed, suppose we
have verified this statement. Let {P;|¢€l} be a maximal set of
mutually orthogonal nonzero central projections such that for each
P, there is a properly infinite projection E;, and a @, € (%) majorized
by P; such that % (EQ)P; = .# P;. By the maximality of {P}, we
conclude that 3, P, = 1. Setting F = > E;Q; (resp. Q@ = >, Q;) we
obtain a properly infinite (resp. central) projection E majorized by @
such that . %(F) = _~ In fact, since .%(F) and _# are generated by
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their respective projections, it is sufficient to show that (_%(E)) = (.#),
But we may verify immediately that (%(E))P; = (-%,(E:Q:)), and so
we have that Fe (4(E)) if and only if FP,; e (4%,(EQ)) = (7 P;) for
every P; since _%(FE) is a central ideal by the first part of this theorem.
However, the ideal .7 is also a central ideal and thus Fe (_%(F)) if
and only if Fe(.#). So it is sufficient to verify the required state-
ment. We do this in the next paragraph.

Let P be a nonzero element in (£7). Since we are looking for a
nonzero central projection @ majorized by P, we may assume at the
outset that P = 1 and that either .o~ is finite or .o~ is properly in-
finite. If .o is finite there is a Q in (2°) with .7 = .&7Q (corollary
2.3). Then we verify immediately that .7 = .#(0). Hence, we may
assume that .o is properly infinite. Suppose that there is a pro-
jection P+ 1 in (2°) such that AP = A for every A in _%4 Then
we have that _%4(0)(1 — P) =0=._7(1 — P). Sowe may assume that
.~ is weakly dense in .oz Now suppose that P, % 1. Then the
nonzero central projection @ =1 — P, is in .~ This means .7 Q =
7@ = #(0). Hence, we may pass to the case that P, = 1. By
making a further reduction if necessary, we may assume that 1 is
the sum of an infinite set {E;|7 € I} of orthogonal, equivalent, o-finite
projections [9, III, 1, Lemma 1]. Let $7(I) be the family of all subsets
s of I such that there is a nonzero projection P, in 2~ with

2 {EiliesjQe S

for every nonzero Q€ (" P,). The family .$°(I) is nonvoid since I €
& (I) with P, = 1. There is an s, € .%”(I) such that Card s, < Card s
for every se.&”(I). We may assume that P, = 1. Let > {E;[tes}=
E; we notice that E is a properly infinite projection of central support
1. We show that A (F)= . (E) is equal to .~ First we prove
that () c (. (E)). Let Fe(.#). If EP < FP for some Pe (%),
then by choice of s, we have that EP = 0. So Fe (7 (&)) by defini-
tion and hence () (#(F)). To show the converse relation
(S (E) () we consider two cases: (i) Cards, is finite, and
(ii) Cards, is infinite. For case (i) we have that FE is a o-finite
projection of central support 1. Then we have that (7 (E)) is
exactly the set of finite projections of .o” [9; III, 8, Corollary 5].
But by our preliminary reduction .. is weakly dense in .o and
therefore contains all finite projections of .o~ (Proposition 2.2). So
((E))c (7). Now we consider case (ii). Let Fe(_7(E)). Since
.7 is a central ideal, there is a Pe(%’) such that PFe.” and
QF ¢ 7 for every nonzero @ in (2°(1 — P)). We obtain a contradic-
tion by assuming 1 — P % 0. Because ..” contains all finite projec-
tions (Proposition 2.2), we have that F( — P) is properly infinite
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with central support 1 — P. We may find a nonzero projection @ in
(2°(1 — P)) such that F'Q is the sum of a set {F’;|7 € s} of orthogonal,
equivalent, properly infinite o-finite projections [9; III, 1, Lemma 7].
We have that F, ~ E;Q for everyi€sand je€s,. [9; I, 8 Corollary
5]. Since >\ {F;lies} = FQ<EQ = >, {E;Q|i€ sy}, and since Card s, is
infinite, we have that Card s < Card s, [9; III, 1, Lemma 6]. If Card s, =
Card s, we would have a contradiction in that £FQ < FQ and EQ == 0.
Thus Card s == Card s, But if ¢’ is a subset of .$”(I) with Card s'=
Cards, then >\ {E;|ies}Q ~ FQ for every @ in (2Q) and so
S {E;|tes'}Q ¢ .~ for every nonzero @ in (2°@). This contradicts
the choice of s,, Hence, 1 — P =0 and Fe(.#). So in case (ii) we
have (7 (E)) c (.#). Therefore, we have completed the crucial step,
and so there is an Ee (%) and a Qe (%) with ¥ = _%(K).

Now let E be a properly infinite projection majorized by the central
projection P in the von Neumann algebra .. Let Q be the central
projection of .& such that .o@Q is equal to the weak closure of
S(B) = A Then it is clear that 7 (EQ) = . We say a representa-
tion _%(FE) for a central ideal .# is in canonical form if .o~ P is the
weak closure of . 7% (F).

PROPOSITION 2.5. Let Z(E) and _A(F') be two central ideals of
a von Neuwmann algebra .7 that are represented im canonical form.
Then A(E) = _Z4(F) if and only of P=Q and E ~ F.

Proof. If P= @ and E ~ F, then it is clear that .4 (E) = . 7Z(F).

Now let A(E) = Z(F) = .4 Since .o P = weak closure .7 =
7@, we have that P = @. Now let R be the largest central projec-
tion majorized by P such that RE ~ RF. Suppose R' = P — R + 0.
There is a central projection R” majorized by R’ such that R"E <
R'F and (R" — RF < (R’ — R")E. If R”" # 0, then SR"F < SR"E
for some central projection S implies that SR”F = 0. Otherwise, we
would have that SR”E ~ SR”F and so R would not be the largest
central projection with RE ~ RF. This means that R"Fe¢.# Hence
R'E = 0 and so . R" = .o R”. This means that FR” = 0 and con-
sequently that ER” ~ FR”. This is a contradiction. A similar con-
tradiction arises if R’ — R” + 0. So we must have that R = P, i.e.,
E~F.

REMARK 2.6. In the sequel we assume all representations of
central ideals are in canonical form.

COROLLARY 2.7. Let .o~ be a von Neumann algebra and let #
be a central ideal of &7 given by F = H%(F) in canonical form.
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Then in order that P, =1, a necessary and sufficient condition is
that P be the central support of E.

Proof. If the central support of K is Q, then from the definition
of 7(E) = _7 it is clear that P — Q€ .4 This means that P, # 1
if P— Q= 0. Conversely, if 1 — P, 0, then (1 — P,)E = 0. But
(1 — P_) = P and thus E cannot have central support P.

Let .o~ be a von Neumann algebra with center 2. Let Z be
the spectrum of 2. Let C.(Z) be the set of order-continuous func-
tions of Z into the set of cardinal numbers. J. Tomiyama [30]
showed that there is a dimension function D of .o/ into C.(Z) such
that D(E) < D(F) if and only if E< F. W. Wils [31] described the
range of D in C,(Z) as being a certain subset 4 of functions in C,(Z).
Although it is not important in the sequel, one may see that the set
of projections of a central ideal . 7%(F) satisfies a certain dimension
relation relative to P and E. We therefore feel justified in introducing
a name for the following relation.

DEFINITION 2.8. Let . be a central ideal in a von Neumann
algebra o0 Let P be a central projection and let E be a properly
infinite projection majorized by P with . = _Z(E). A projection F'
in .07 is said to have dimension greater than that of _# if F has
central support P and if F > EP_, (in symbols, dim F > dim 7).

The following proposition characterizes the projections whose di-
mension is greater than the dimension of .~

ProOPOSITION 2.9. Let .7 be a von Neumann algebra and let 7
be a central ideal of .o Then a projection F of .o has dimension
greater than that of 7 if and only if F has central support P and
FQe 7 for some central projection @ implies FQ = 0.

Proof. Let 2 be the center of % Let Fe (%) and let Pe (%)
so that _7.(F) represents .7 in canonical form. First let Fe (o)
with central support P, such that QF e.” for some Q€ (%2") implies
QF = 0. There is an Re(2) such that RE < RF and such that
R'E < RF for Re(Z1 — R)) implies B =0. Then FP(1— R)c
S(E) by definition and so FP(1 — KE) =0. Thus we obtain that
FPR=FP. So EP, = EPP, < FP<F, ie. dim F > dim _#

Conversely, let dim F > dim.” Then by definition we have that
F has central support P.. Let Qe(%") and let QF c.” We have
that EP, < F implies that EQP.<c.” (lemma of F. B. Wright).
Since EQP, < EQP ., we have that FQP_. = 0 and thus QPP ¢ A
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By definition of P, we find that QPP =0. Also .Z(1 — P) = (0)
and so QF = QPF + Q(1 — P)F = 0.

Now we can give some examples.
ExAMPLE 2.10. In a factor algebra, every ideal is a central ideal.

ExAMPLE 2.11. In a semi-finite algebra .57 the ideal . generated
by all finite projections of .o is a central ideal. If .o is finite,
then 7 = .o if & is properly infinite, then .7 = _#(F), where E
is a properly infinite projection of central support 1 for which there
is a set {P;} of mutually orthogonal central projections of sum 1 such
that EP; is o-finite for every P; [8; III, 1, Lemma T7].

ExampLE 2.12. If .o is a properly infinite von Neumann algebra,
then the strong radical _# (i.e. the intersection of all maximal ideals)
is a central ideal with _# = A (D).

3. The essential central spectrum. Let .9~ be a von Neumann
algebra with center 2. If .7 is an ideal in &7 let .97 (_#) denote
the algebra .97 reduced modulo _# and let A(_#) denote the image
of an element A under the canonical homomorphism of .o~ into .7 (7).
The algebra .7 (.”) is a C*-algebra under the norm [[A(7)]| =
glb{{|]A + B|||Be.#}. Ifisan element in the spectrum Z of 2, let
[C] denote the smallest ideal in .o containing . For simplicity we let
<7 ([€]) and A([C]) be denoted by the symbols .97 ({) and A((), respec-
tively. Then J. Glimm [12; Lemma 10] has shown that for fixed A ¢
57 the map { — || A)|| is continuous on the spectrum Z. For every A
in . and {in Z, the norm ||A({)|| is equal to || A(Q)||=glb {||] AP|| | P<c
(%) and P () = 1}. Here P denotes the Gelfand transform of P. If
% and _# are ideals in .%; then the algebraic sum _Z + . % is also an
ideal of .9 In the sequel we denote the sum.” + [{] of an ideal _#
and the special ideal [(] formed from { € Z by .7 ({). For an element 4
in &7 we denote the spectrum of A(_7({)) in .97 (_~ ({)) by Sp A(_~Z (0)).

The next lemma is used repeatedly.

LEMMA 3.1. Let .&7 be a von Neumann algebra, let 2 be the
center of &7, let Pe (%), let Z be the spectrum of 2, and let 7 be
a central ideal of 7. If A is an element of &7 such that f,(Q) =
HA(AZ Q) || vanishes for every { in the support of P given by supp P =
{LeZ| P L) = 1}, then the element AP is in %

Proof. For every { in supp P and ¢ > 0 thereis a B; in _# such
that ||(A — B;)({)|| <e. Hence there is a P; in (2°) with P/{) =1
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such that [|(A — B,)P;|| < e. Using the fact that supp P is compact,
we may find a set P, ---, P, of orthogonal projections in 2 of sum
P and a corresponding set B,, ---, B, in .# such that

I|AP — > B;P;|| = lub [[(A — B)P;|]| <e.
Since ._# is closed, the element AP is in .~

We characterize those ideals .7 for which { — || A(_7({))]| is con-
tinuous on Z for every A in .o

THEOREM 3.2. Let .o be a von Neumann algebra, let Z be the
center of .7 and let Z be the spectrum of 2. Let % be an ideal
of .7 In order that f,(Q) = [|A(Z (D)]| be a continuous function on
Z for every A in .7 a mecessary and sufficient condition is that 7
be a central ideal of V.

Proof. The sufficiency follows by a proof that is virtually the
same as the one we gave in the corollary of (a5) implies (al) of [19].

Conversely, let f, be continuous on Z for every A in . We
show that .o~ is a central ideal. If {A;]2e I} is a bounded subset
of .# and if {P;|jiel} is an orthogonal set in (%°) of sum 1, then
we prove that A=>) A;P; is in . Indeed, the set U;{{ e Z|P{)=1}
is a dense set of Z on which f,({) vanishes since f,(0) = ||A( 7 Q)| =
0 whenever P?({) = 1. By the continuity of f,, we see that f, vanishes
on Z. Hence, the element A is in .¥ by Lemma 3.1.

REMARK 3.3. If _# is the strong radical of a properly infinite
von Neumann algebra, then _#({) = _# + [{] is the unique maximal
ideal which contains { [24 and 15, Proposition 2.3].

Now we prove the main result of this section. It is convenient
to separate the following lemma.

LEMMA 3.4. Let 2 be a commutative von Neumann algebra and
let X,, +++, X, be closed sets which cover the spectrum Z of 2. Then
there are orthogonal projections R, «-+, R, in (Z7) of sum 1 such that
{eZIRMO =1} X, for 1 <7 < n.

Proof. Let {P;|ieI} be a maximal set of nonzero mutually or-
thogonal projections such that for each ¢eI there is an i(j) with
1 =<4j) =n sothat Y; = {{eZ|P)N{) =1} X;;- We obtain a con-
tradictionif P=1— 3, P, 0. Indeed, theset Y = {{e Z|P*{) = 1}
is nonvoid and is covered by the closed sets YN X,, ---, YN X,. By
the Baire category theorem one of the set YN X, has a nonvoid
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interior in Y. This means that there is nonzero projection @ in 2~
such that {{e Z|Q"({) = 1} YN X,. This contradicts the maximality
of {P;}. We must have that 3, P, = 1. The remainder of the proof
consists in adding the projections P,. Let I; = {tel|Y;cC X;} for
1=<j<nandlet R;= > {Pliel,— U{LI0=k=j—1}}for1=<j=mn.
Here I, = @. Then it is clear that R, R,, »-+, R, satisfy the require-
ments of the lemma.

THEOREM 3.5. Let .57 be a von Neumann algebra with center =,
let 7 be a central ideal of .57, and let A be an element of 7. Let
X, be a closed subset of the complex plane C such that the intersection
S©) of X, with the spectrum (resp. left-spectrum, right-spectrum, the
intersection of the left-spectrum and the right-spectrum) of A(” (0))
is nonvoid for every { im the spectrum Z of 2. Then there is amn
element A, in the center of &7 such that A{Q) € S(C) for every C in Z.

Proof. We first prove that there exists A, in 2" such that Ay ()
is in the intersection S({) of X, with the spectrum Sp A(_7({)) of
A( 7)) for every { in Z. Since Sp A(.#({)) is contained in Sp A4,
there is no loss of generality in assuming X, < Sp (4). We prove the
theorem by an approximation argument that involves decomposing
the space Z.

For every compact set X in the complex plane, let X(Z) = {{e
Z| XN S # @}. We show that X(Z) is closed in C. Let {{;} be a
net in X(Z) converging to {. Let a;eS()N X; by passing to a
subnet, we may assume that {a;} converges to ac XN X,. Arguing
by contradiction we show that aeSp A(L7(Q). If a¢Sp A7),
then there is a Be.o” with

I(Bla — 4) = (7Ol =
i@ — 4)B - (A (@) =0.

By Theorem 3.2, we see that there is a {, and «; such that
[(Bla; — A) — (7 E)) ] <1

and ||((a; — 4)B — 1)(_”({,))]| < 1. This means that «; ¢ Sp A(_7(£,))
and this is contrary to assumption. So a e X(Z) and X(Z) is closed.
We now begin the approximation argument by decomposing Z
into subsets on which we shall approximate A,. Suppose we have,
for every m less than or equal to the natural number %, constructed
sets of integers I,, = {1, 2, +--, p,} such that for every sin I, x -+ X
I, = I(m) there is a compact subset X(s) of C of diameter < 2 ™ and
a P(s) in (2") which satisfies the following properties:
(1) For sel(m), U{X(s;7)|jel, ..} = X(s) whenever 1 < m < n and



ESSENTIAL CENTRAL SPECTRUM AND RANGE FOR ELEMENTS 357

U{X(G) 15 eI)} = X, ;

(2) Supp P(s) = {{e Z|P(s)"() = 1} < X(s)(Z) for every scI(m) (1 <
m = n); and

(8) for seI(m), {P(s;j)|je ...} is a set of orthogonal projections of
sum P(s) whenever 1 < m < n and {P(j)|j € I(1)} is a set of orthogonal
projections of sum 1.

We shall construct a set I,,,=1{1, <+, p...}, compact sets X(s)(se
Imn+1) =1 % «++ x I,,,) of diameter < 2™ in the complex plane,
and projections P(s)(seI(n + 1)) in 2 which satisfy (1), (2), (3).
Indeed, let {Y;|jeI,.} be compact sets of diameter < 2" which
cover X,. Let X(s,7) = X(s)NY; for sel(n) and jel,,,. Then
{X(s)|seI(m),m =1,2 -.. n + 1} satisfies property (1). Now let s
be fixed in I(n); we have that U {X(s; 5)(Z)|jeI,..} = X(s)(Z). Since
supp P(s) is contained in X(s)(Z), the sets X(s; 7)(Z) Nsupp P(s)(j € I,,)
form a closed cover of supp P(s). By the Lemma 3.4, there are or-
thogonal central projections P(s;j) (j€1,.,) of sum P(s) such that

supp P(s; j) < X(s; 3)(Z)

for every jel,.,. Thus P(s)(s€I(n + 1)) satisfies (2) and (3).

We continue by induction to construct I(n), compact sets X(s)
(s € I(n)) of diameter < 27", and central projections P(s) (s € I(n)) satis-
fying (1), (2), and (3) for every n = 1,2, ---. We notice that if X(s)
is void then P(s) = 0.

We now construct the approximating elements. Let n=1,2, --.
be fixed. If seI(n), let a(s) e X(s) if X(s) is non-void, and a(s) = 0
if X(s) is void. Let A, = > {a(s)P(s)|se I(n)}. Then A, is an element
in the center of .o

We show that {4,} is a Cauchy sequence. Indeed, we have that

|4, — Apil = Tub {[| (4, — A, )P(9) ] [se I(n + 1)}

since > {P(s)|seI(n + 1)} = >, {P(s)|se I(n)} = --- = 1. However, if
sel(n + 1) is of the form s = (s’;j) with s’eI(n) and jeI,.,, then

(A, = A ) P) ]| = [[(a(s') — a(s)P(s) ]| = 27"
since a(s) € X(s’) whenever P(s) = 0. Hence, we obtain that
HAn - An+1|| é 2™

for every m = 1,2, -+« and so {4,} is a Cauchy sequence in 2.

We show that the limit A4, of {A,} satisfies the requirements of
the Theorem 3.5. Let { be an arbitrary point in Z. Given ¢ > 0 we
show that there is @e S({) such that |AN{) — a| < e. Since S(©) is
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closed and since ¢ > 0 is arbitrary, this will mean that A$() e S©).
Let m be a natural number with 27™* < e. Then | A}() — Ap ()| <
14, — A,|| < 27%. There is an se I(m) such that P(s)*({) = 1 since
2. {P(s)|seI(m)} = 1. By property (2), we have that { is in X(s)(Z).
So there is an element & in X(s) such that e S({). However we have
that AM() = a(s) € X(s), and so |a(s) — | < 2°™ since the diameter
of X(s) is less than 2™™. Now we obtain that [A{{) — a]| <&, and
by the preceding remarks that A7 () € S(€). This completes the proof
for the case of X, N Sp A(7 (L)) = @.

We may prove the existence of an element A4, in 2 such that
(4, — A)( A () is not left (resp. right, left nor right) invertible
in &7 (7)) and A}{)e X, by the same proof we just gave for
an invertible element by using the additional fact that, for any ele-
ment B in a Banach algebra <# with identity, the set of all complex
a such that « — B is not left (resp. right, left nor right) invertible
is a non-void compact set ([26; 1.5.4 and 1.4.6]; also cf. [11; Theo-
rem 3.1]).

The following definition is now meaningful.

DEFINITION 3.6. Let .o be a von Neumann algebra, let 2 be the
center of .o and let Z be the spectrum of 2. Then the essential
central spectrum 2 — Sp-A of an element A in % with respect
to the central ideal .7 is the set of all 4, in 2 such that A e
Sp A(L”(Q)) for every (e Z. The left-essential (resp. right-essential)
central spectral 2 — Sp°. A (resp. 2 — Spr.A) of A with respect to
.7 is defined in a similar manner. The intersection 2 — Spb A =
(27 — 8SpA)N (2 — Spr.A) is called the two-sided essential central
spectrum of A with respect to A

REMARK 3.7. All sets defined in Definition 3.6 are non-void (Theo-
rem 3.5).

REMARK 3.8. For every A, €% — Sp. 4, we have that A,(1 —
P,) =0. Since (2" — Sp>4)U (2 — Sp,A)C 2 — Sp_-A, the projec-
tion 1 — P_. annihilates the other essential central spectrums.

We note that these definitions correspond to the usual ones if .07
is the algebra of all bounded operators on a Hilbert space and .7 is
the ideal of compact operators.

PROPOSITION 3.9. Let &7 be a von Neumann algebra. Then the
essential (resp. left-, right-essential) central spectrum of an element
A in &7 with respect to a central ideal 7 1s closed in the strong
operator topology.
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Proof. Let {4} be a net in the essential central spectrum of A
with respect to .# which converges strongly to A4, in the center 2~
of .7, There is a net {P,} of mutually orthogonal central projections
of sum 1 such that for each P, there is a sequence {A;.,} in U;{4}
with lim 4;,,P,=A4,P, (uniformly) [28; Corollary 13.1]. Since A%, () €
Sp A(_# ({)) for every { in the spectrum Z of 2" and since Sp A(_# ({))
is closed, we have that A7) e Sp A(_# ({)) for every { in the dense
subset X = U,{{eZ|Pp{) =1} of Z [7]. Let {{;} be a net in X
which converges to { in Z. If A() ¢ Sp A(” (), then there is a B
in .o with

[(B(4y — 4) — IOl = [(4 — AB - 1)) =0.
This means that there is a {; with
[(B(4, — 4) — (7 E)I]I<1 and |[[(4 — AB - 1)(7E)II<1

and thus that A7) is not in Sp A(_#({;)). Hence, we must have
that A$(Q) is in Sp A(_# ({)) for every ( in the closure Z of X. This
proves that 2 — Sp_. A is strongly closed.

The statements concerning the left- and right-essential central
spectra are proved in an analogous fashion.

For future reference we note some simple facts in the following
proposition.

ProposITION 3.10. Let .o be a von Neumann algebra with center
% on the Hilbert space H, let 7 be a central ideal in .57, let P,
and P, be orthogonal projections of sum 1 in 2, and let A be an ele-
ment of . Let .7 be the von Neumann algebra .7 P; with center
2 = Z P; on the Hilbert space P,H, let _7 be the central ideal 7 P;
m %, and let A; be the element AP; in .7 for 1 =1,2. Then
Z —Sp,A={B + B,|B;e 2, —8p . A;,i=1, 2}

REMARK. A similar statement holds for the left- and right-
essential central spectrums.

Proof. This follows from the fact that the spectrum of 27; is
{{P;|Le Z, P)C) = 1}, where Z is the spectrum of %, and thus that
[CP] in o7 P; is equal [{]P..

We now restrict our attention to self-adjoint elements. We note
that the essential central spectrum of a self-adjoint element consists
of self-adjoint elements.

ProrosiTION 3.11. Let .o~ be a von Neumann algebra, let 2 be
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the center of &7, and let A be a self-adjoint element of &7 Then
there are elements C, and C; in the essential central spectrum 2 —
Sp A of A with respect to the central ideal .7 such that C, < C = C,
for every C in % — Sp_ A.

Proof. The set 2 — Sp_ A is a monotonely increasing net in
2. Indeed, if C and C’ are in 2 — Sp_- A, then there is a Pe(%2")
such that lub{C, C"} = PC + (1 — P)C’. Since PC + (1 — P)C’ is in
% — Sp, A (by 3.10), the set 2~ — Sp_ A is monotonely increasing.
Then the least upper bound C, of 2~ — Sp_. A is the strong limit of
elements in 2" — Sp_- 4 and so C, is in the essential central spectrum
of A with respect to . (Proposition 3.8).

In an analogous manner, we may show that 2" — Sp_ A is mono-
tonely decreasing and thus we may find a greatest lower bound C,
for 2" — Sp_ A in & — Sp_ A.

PROPOSITION 8.12. Let .o~ be a von Neumann algebra with center
Z, let .7 be a central ideal of o7 and let A be a self-adjoint element
of 7. Let C, and C,; be the least upper bound and the greatest lower
bound of the essential central spectrum of A with respect to .7 respec-
tively. Then C)() = lub Sp A(7 (L)) and CNC) = glb Sp A(_7 (C)) for
every L in the spectrum Z of #%.

Proof. Since C7({)eSp A(”({)) for every (e Z, we have that
CHL) < a; = lub Sp A(_# ({)), for every { e Z. Conversely, we obtain
a contradiction if we assume that a; — C5(£) = 2¢ > 0 for some (¢ Z.
Indeed, let E be the spectral projection of A — C, corresponding to
the interval [e, + ). Because (A — C,)(1 — E) <e(1 — E), we have
that E(.7({)) -+ 0. Hence, there is a Pec(%") such that P*{) =1
and E(_7 (") # 0 for all ' in supp P = {{’e Z| PM{’) = 1} (Theorem
3.2). Since eE<(A—C,)E, we have that Sp (A—C (7)) N[e, + =)=~
@ for all {’ e supp P. Reducing to the algebra .o/ P with center 2 P,
we see that S({') = Sp (4 — CHP{(~Z P)({{")) N [e, + ) is non-void for
every {’ in the spectrum X of % P. Because .# P is a central ideal
in &P, we may find a B in % such that (BP)*({’) e S({') for every
{’e€ X (Theorem 3.5). If D is an arbitrary element in 2" —Sp_. (4—C,),
then PB+ (1 — PD = B isin 2 — Sp_- (A — C,) (Proposition 3.10),
and consequently, the element B’ = B’ + C, is in 2 — Sp, A. But
we have that B’P+ C,(1 — P) is in 2 — Sp_ A (Proposition 3.10)
and that B"P + C,(1 — P) = C, + ¢P. This contradicts the definition
of C,. Thus we must have that C,() = lubSp A(_#({)) for every
LeZ.

A similar proof holds for C..
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The following proposition shows that if A, is in the essential
central spectrum of A with respect to % then A4, — A is small on a
large subspace with respect to _~4

PROPOSITION 3.13. Let .o~ be a von Newmann algebra, let _7 be
a central ideal of &7 let A be a self-adjoint element of .7 let A, be
an element of the essential central spectrum of A with respect to .7
and let €>0. If F is the spectral projection of A, — A corresponding
to the interval [—¢, ], then FPe . # for some central projection P
implies Pe. .7 (i.e. P<1— P,).

Proof. Let P be a central projection with PFe._% We show
Pe.” We may assume that P # 0. Let { be a point in the spectrum
of the center of .o~ such that P*({) = 1. We have that

(4, — A} Q) = (4 — AL — F)(F(Q))-

If 1 — F)(”Q) 0, then (4, — A)(~({) is invertible in .7 (_7 ({)).
Since this is not possible, we have that 1(_#({)) = 0. This means
that Pe _# (). Since { with the property P*() = 1 is arbitrary in
the last relation, we have that Pe._.” by Lemma 3.1.

We now characterize the essential central spectrum of a self-
adjoint element in terms of the canonical form of a central ideal (cf.
Remark 2.6ff. and Definition 2.8).

ProrosiTioN 3.14. Let .7 be a von Neumann algebra with no finite
type I direct summand, let _# be a central ideal of .7 and let A be
a self-adjoint element in 7. An element A, is in the essential central
spectrum of A with respect to 7 if and only if there is an orthogonal
sequence {E,} of projections in .7 of dimension greater than dim 7
such that AE. (7)) = E,A(_7) and |[(A, — A)E,(A)|| = 0™ for every
n=12 -+ and A, = A,P._.

Proof. Let A, be in the essential central spectrum of A with
respect to .~ There is no loss of generality in the assumption that
P, =1 and that 4,=0. [9; IIl, 5, Problem 7]. Let F, be the
spectral projection of A corresponding to the interval [—=n™", n™'] for
=12 ++--; then we have that {F,} is a monotonely decreasing
sequence of projections such that dim F', > dim..# (Propositions 3.13
and 2.9).

Let ..” be represented in the form .# = _%(K) (2.4-2.6). Now
let {P;} be a maximal set of mutually orthogonal central projections
such that for each ¢ there is a natural number j(7) with (F, — F,.)P; €
. whenever k = j(i). This means that AF;,P;c..# since
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AF; Pi(7) || = [|AFP(A) || = k™

for arbitrary k& = j(¢). Hence, setting F = >, F;;,P; and P =, P,
we obtain a projection F of central support P such that AFe._# and
EP < F (Proposition 2.9). Since .97 has no finite type I direct sum-
mands, we may find a sequence {G,} of orthogonal projections of
sum F'P such that the central support of G, is P and such that EP <
G.,. Indeed, there is a central projection R majorized by P such that
FR is properly infinite and F(P — R) is finite. In the first instance
FR is the sum of a sequence of mutually orthogonal projections each
equivalent to F'R [9; III, 8, Corollary 2]. In the second instance, we
have that E(P — R) = 0. Indeed, E is a properly infinite projection
and E(P — R) is finite since E(P — R) < F(P — R). Now F(P — R)
may be written as the sum of a sequence of orthogonal projections
of central support P — R [9; III, 1, Theorem 1, Corollary 3].

Now, for every nonzero central projection @ majorized by P’ =
1 — P and for every n =1, 2, ---, there is a nonzero central projec-
tion Q' with @ =< @ and a natural number m = #» such that (F, —
F,.)Q has central support @ and EQ < (F, — F,,)®@ (Proposition
2.9). By induction we may find sets {G,;|i€I,} (1 < n < ) of pro-
jections with the following properties:
(1) if @,; denotes the central support of G,; then EQ,; < G,.Q.:
(Gel,;n=12 +-);
(2) {Q.:liel,} is a mutually orthogonal set of sum P’;
(8) for each 7¢I, there is a natural number s = s(i) = n with G,; =
(F, — F.1,))Q.:; and
(4) ifeel,,jel,, and Q,;Q,; # 0 then s(3) < s(j) whenever m < n.
Here I, is a countable indexing set with I, NI, %= @ for m +# =u.
Indeed, at the (n + 1) — st stage of the induction we work in algebras
of the form .&7Q;, «+- Q.;,(i;€ I;) and then sum the appropriate pieces
together by summing over those pieces corresponding to the same
s(i). Setting G = 3,{G,;|1€l,}, we obtain sequence of mutually
orthogonal projections of central support P’ such that EP' < G, P,
AG) = GJA, and ||AG) || < n™* forevery n =1,2, ---. Setting E, =
G, + G for n=1,2, -+, we obtain a sequence {E,} of mutually
orthogonal projections of central support 1 such that

E < E,, AE,(.7) = E,A(.%), and |AE,(.7)| <n™

for every =.

Conversely, let {E,} be a sequence of (not necessarily orthogonal)
projections which satisfy the conditions of the proposition for the central
element A,. Suppose there is a B in .o~ with B(4, — A)(.~7 () =
1+0 for some { in the spectrum of the center. Then we have
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that
|E(F )l = [|B(4, — AE (7 Q)| =n||Bll,

for every n» = 1, 2, -+ - implies || E,(_7 ({)) || = 0 for all sufficiently large
n. However, this means that ||E,(.7({")]| = 0 for all {’ in a neigh-
borhood of { since ' — || E,. (.7 ({"))]| is a continuous function of the
spectrum of the center into {0, 1} (Theorem 3.2). So there is a pro-
jection P in the center with P*({) = 1 such that E,Pc.” (Lemma
3.1). But this contradicts the hypothesis that dim E, > dim .# (Pro-
position 2.9). Consequently, the element A, is in the essential spec-
trum of A with respect to A4

COROLLARY 38.15. Let .&7 be a wvorn Neumann algebra with no
finite type I direct summands and let # be a central ideal of .7
Then the essential central spectrum with respect to 7 of a self-adjoint
element A contains A, if and only if there is a sequence {E,} of
mutually orthogonal projections of dimension greater than dim .7
such that ||(A, — A)E,|| = n™* forevery n=1,2 ««« and A, = A,P...

Proof. There is no loss of generality in the assumption that 4,=0
since every element in the essential central spectrum of A is self-
adjoint. Then there are orthogonal projections {F,} such that dim F, >
dim .7 AF,(.7) = F,A(.¥) and ||AF,.(.“)|| < (2n)™ for every = =
1,2, .-- (Proposition 3.14). For every =m there is a B,e.” with
|AF, — B,F,|| < (2n)™'. There is a projection G, € .7 such that G, <
F,and ||B,F,1—G)||=<@n)". LetE,=F,— G, IfQisa central
projection with QFE, € _%, then QF,c€.” and QP , = 0 and so dim E, >
dim ..# (Proposition 2.9.). But we have that

IAE, || = (A — B)E,[| + [[B.E.|| = n™" .

Thus {E,} is the required sequence.
The converse is derived from Proposition 3.14 since ||B(.7)|| <
|| B|| for every Be .

COROLLARY 3.16. Let &7 be a wvon Neumann algebra with no
finite type I direct summand and let .7 be a central ideal in 7 If
the left-essential (resp. right-essential) central spectrum of an element
A in 7 contains A,, then there is a sequence {E,} of orthogonal pro-
jections in 7 such that dim E, > dim .” and ||(4, — A)E,|| < »n™
(resp. ||(Ay — A)*E, || = n™') for every n=1,2, «+-.

Proof. Since the essential central spectrum of (4, — A)*(4, — A)
contains 0, the Corollary 3.15 ecan be applied.
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REMARK 3.17. If &7 is a finite type I algebra, .7 is a central
ideal, Ae.o and A, in the essential central spectrum of A with
respect to .7 then D. Deckard and C. Pearcy [6] showed that there
is an abelian projection E of central support P_. in .o with (4,—A)E=
0.

4. The essential central range. Let .o be a von Neumann
algebra with center 2. Then .9~ may be considered as a module
over 2. Let .o~ be the 2 -module of all bounded module homomor-
phisms of .o~ into 2" and let .7+ be the set of all elements of &7~
which map .&" into 2 *. For a central ideal .7 of .o let E, ()=
{pe. 7 "|¢(#7) = (0) and ¢(P,) = P.}. Here P, is the orthogonal
complement of the largest central projection in .% We notice that
E, () is the set of all states (i.e. elements ¢ of .o7~* with ¢(1) = 1}
of &7~ which vanish on .# whenever P. = 1, or equivalently, if
7 = _%(E) (Remark 2.6), whenever the central support of E is equal
to P (Corollary 2.7). In particular, the set E,(.”) is equal to the
set of all states which vanish on .# whenever _# is the ideal gen-
erated by the set of all finite projections or _# is the strong radical
of a properly infinite von Neumann algebra (Examples 2.11 and 2.12).
It is clear that E,(.#) is compact in the topology of pointwise con-
vergence on . where is 2 taken with the weak topology, i.e., in
the 0, (.57~, &7)-topology of .o7~. If {¢;|¢ € I}is any subset of E,(_7}
and {P;|te I} is a set of orthogonal central projections of sum 1, then
#(4) = >, P;¢;(A) defines an element ¢ in E,(.”). Furthermore, we
see that E,(_7) is central-convex in the sense that C¢, + 1 — C)¢, is
in E,(.#) for every ¢, and ¢, in E, () and Cin 2 with 0 < C < 1.

DEFINITION 4.1. Let .7 be a von Neumann algebra, let .7 be
a central ideal of 7 and let A be an element of &7, The set 27 (A)=
{6(A)|p € E (7))} will be called the essential central range of A with
respect to % We notice that 97.(A) is a central-convex, weakly com-
pact (and consequently uniformly closed) subset of the sphere in the
center of .7 of radius || A|| about the origin.

PROPOSITION 4.2. Let .7 be a von Neumann algebra, let #Z be
a central ideal of .57 and let A be an element of 7 Then for every
{ im the spectrum of the center of .7, the set 25 (A)(() = {B{)|Be
5 (A)} is a compact set of complex numbers.

Proof. Since .27 (A)(£) is bounded, it is sufficient to show that
2 AA)C) is closed. If a is the limit of a sequence {¢,(4)"({)} where
é,€ E,(7) for every n = 1,2, ..+, we show that € 22.(4)({). There
is no loss of generality in assuming that a = 0. We may assume
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that |6,(A)*Q)| < n™* for every n=1,2,---. There is a sequence
{P,} of central projections with |/¢,(4)P,|| = n™', and P,({) =1 for
everyn=1,2 +--. LetQ, =glb{P,---P,jn=12, +--}and let Q,=
P(1—-P), Q.= PP1~—P,),-+-; then{Q;|2 =0,1,2, -.+}is a sequence
of orthogonal central projections of sum P,. The homomorphism

Vo =1 — P)g, + Qs + 2 {Qis:]e = 1,2, ---}
is an element of E,(_#) and so
4y = limyr(4) = (1 — P)g(4) + 2 {Qub(A) i = 1, 2, -}

is in 9% (A4). Since 1 — P)*) =0 and Q) =0 for all ¢ =1,
either Q) =1 or > {1 =zn}*) =1 for all n=1,2,---. 1In
either case A2 ({) = O since || >, {Q:|2=0,n,n+1, ---}4,]| = n~". This
means that 0¢ 275(A4)(0).

We need the following lemma. Its proof is a simple reworking
of [19; proof of corollary to (a5) implies (al)].

Lemma 4.3. Let .7 be a von Neumann algebra, let 7 be a
central ideal of .7, and let E be a projection in . There is posi-
tive module homomorphism of the module .o into its center which
vanishes on 7 and satisfies the relation ¢(1) = ¢(E) =1 — Q where
Q s the largest central projection of & such that EQe A

THEOREM 4.4. Let o7 be a von Newmann algebra. The essential
central range of a self-adjoint element A of .o with respect to a
central ideal _# 1s the smallest central-convex subset of &7 which
contains the essential central spectrum of A with respect to A

Proof. Let 2 be the center of .o/ let { be in the spectrum of
%, and let ¢ be an element of E,(.#). Let 4; be the bounded linear
functional on .o~ defined by ¢.(B) = ¢(B)*() for all Be.ot If
B, -, B, are in .% and C, ---C, are in {, then

¢c(z BiCi) = Z C'Z\(C)¢C(Bi) =0.

This proves that ¢, vanishes on a dense subset of [{] and so vanishes
on [{]. Hence ¢, vanishes on .7 ({). Now let C,=glb 2 — Sp_ A
and C, =lub 2 — Sp-A. We have that C}(Q) = A(”(Q) = C2©)
in .o7(_#({)). (Proposition 3.12). This means that

$(C)"(C) = C(Q) = ¢(DMNQ) = C(Q) = 4(C)"(Q)

for all { with P3() = 1. Consequently, we have that C, = C,P, <
#(A) =C,P,=C, So we may find a C in & with 0 < C <1 such
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that CC, + 1 — C)C, = $(A). Hence, the smallest central convex set
containing 2" — Sp_A contains 22-(4).

Conversely, to show the opposite relation we simply must show
that C, and C, are in .%5.(4). We work with C,. Given ¢ > 0, there
is a projection FE in .o such that E commutes with A, [|(C, — A)FE|| <
¢, and if EP is in ¥ for a central projection P then P is in .7
(Proposition 3.13). There is a ¢ in E,(.”) such that ¢(E) = P..
(Lemma 4.3). From the Cauchy-Schwarz inequality for elements of
A~*, we obtain

16(4) — C.l = |[8(A = C)I| =
l6((A — CHE) || + l[s((A — C)X — E)) |
e+ [lA-Clll¢1 — E) = ¢

Because .%77.(A) is uniformly closed and because & > 0 is arbitrary,
we have that C,e .97 (A). By a similar argument C, e .27 (4).

COROLLARY 4.5. Let .o be a von Neumann algebra. The essen-
tial central range of an element A in &7 with respect to a central
ideal 7 s equal to a set {A,} iof and only if AP, = A, and A — A€
A

Proof. TFirst let the essential central range .97(A) of A be
equal to A,. Then ¢(A) = A, for every ¢€ E,(_”). Hence ¢(A+ A*)=
A, + A7 for every e E,(#). This means that the essential central
spectrum of A + A* — (4, + A¥) with respect to the ideal .7 is equal
to {0} (Theorem 4.4). Hence A + A* — (4, + AJ)e.# (Proposition
3.12 and Lemma 8.1). Similarly we find that (A — 4%) — (4, — A¥) e A
Consequently, we have that 4 — A,e A

The converse is obvious.

The following remarks lead to a characterization of the essential
central range. This reduces to the known characterization of the
essential numerical range of the algebra of all bounded operators on
a separable Hilbert space [11; 5.1]. Let .o be a von Neumann algebra
on the Hilbert space H and let 2 be the center of .o. Let E be
an abelian projection with central support P in the commutant 2’ of
2 Jef. 9; 1, §7]. For every Ae .o, there is a unique 7.(4) in 2P
with EAE = t,(A)E. Then A — t;(4) defines an element in .o~
with 7;(1) = P. For every projection P in 2 let V() = {tz¢€
7~ | E is an abelian projection in 2’ of central support P}; for every
Ac o7 let Wp(A) = uniform closure {¢(4)l¢ € Vo(.7)}.

We now need a version of the Toeplitz-Hausdorff Theorem.

LEMMA 4.6. Let .o be a von Neumann algebra. Then, for
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every Ac 7 and central projection P, the set {¢(A)|pe Vp(.¥)} is
central-convex.

Proof. There is no loss of generality in the assumption that
P=1. Let E and E, be maximal abelian projections (i.e. abelian
projections with central support 1) in the commutant 2"’ of the center
% of o7 and let Ce 2 with 0 < C £ 1. Setting F = lub{E, E.},
we obtain a projection F such that the reduced algebra 27, is the
product of homogeneous algebras of type I, where n < 2. Indeed, we
have that lub{E, E,} — E, < E, and so lub{E, E,} — E, is abelian.
So there is no loss of generality in the assumption that .o = 2 is
homogeneous of degree 2 since the degee 1 case requires no further
proof. Now we may write ¢(B) = C7t;(B) + (1 — C)75(B) as ¢(B) =
A, (B) + Ayp,(B) where F, F, are orthogonal maximal abelian projec-
tions of sum 1 and A,, A, are elements in 2+ with A4, + 4, = 1 [14;
§4]. So we may assume that E, and E, are orthogonal of sum 1. Let
T; =74 (1 =1,2). Since it is sufficient to find a maximal abelian pro-
jection E with 7,(A—7,(A))=Cr,(A—7.(4)), we may assume that 7,(4)=
0. Now there is a sequence {P,} of orthogonal projections in 2" such
that z,(4)P, is invertible in 2 P, and 7 (4)1 — 3. P,) = 0. Because
the sum of abelian projections with orthogonal central supports is
again abelian, there is no loss of generality in the assumption that
7.(A) = 1.

The rest of this lemma is the classical Toeplitz-Hausdorff theorem.
Let U be a partial isometry of .o~ with U*U = E, and UU* = E,
and let A = E,+ AU+ A, U*, where A, A, 2. There is a unitary
operator Vin 2" with VA, — Af| = A, — Af. Let T = V*A, + VA,.
There is a De 2 with —1 £ D <1 such that

D'+ DA — D)Y*T =C
[6]. Now, by direct calculation, we find that
E = DE, + VD1 — DU + V*D(1 — D)'*U* + (1 — D)E,

is a projection in &7 of central support 1 that vanishes on the range
of (1 — C¥»'"*E, — VCE,. So E must be a maximal abelian projeection.
Finally, by another calculation, we obtain that FAE = CE.

Let .o be a von Neumann algebra with center 2. Let .o~ be
considered as a 2 -module and let .o~ _ be the % -module of all o-weakly
continuous module homomorphisms of % into 2. Let % =."~"N .97
be the set of all normal (i.e. positive o-weakly continuous) module
homomorphisms of .57 into 2~

Now we can extend Lemma 4.6.
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LEMMA 4.7. Let .o be a von Newmann algebra, let P be a central
projection of .7, and let Ac . 7; then

We(4) = {$(4) [¢ e ., ¢(1) = P}

Proof. First let ¢e .97 with ¢(1) = P. We show that ¢(4) ¢
Wpr(A). There is a monotonely decreasing sequence {A,} of positive
elements in the center %" of . and a sequence {F,} of orthogonal
abelian projections in the commutant 2’ of 2 with central supports
{P,} respectively such that lim 4,=0 (uniformly), >, A, = P (strongly),
E,..< E,, supp P} =supp A, (n=1,2,-.-+), and ¢(B) = >.A4,7, (B)
(strongly) for all Be . ([16; Theorem 2] and [14; §4]). There is a
mutually orthogonal set {Q;} in (2°) of sum P such that

lim, > {A4,Q:;|1 =< n < m} = PQ;

uniformly (cf. [14, Theorem 4.1]). For each @Q; we may therefore find
an m; with || B;Q;|| < ¢, where B; = 3 {A4,.|n = m;} and where ¢ > 0
is a preassigned constant. Now there are abelian projections F,(1 <
k< m; =m) of central support PQ; such that E.,Q; < F,. Since
supp P; = supp A, we have that ¢, = 3 {47 |1 =k =<m—1}+ Bz,
is equal to > {4, Qv |1 =k =m — 1} + B, . Since > {4,Q:]1 =
k< m — 1} + B;Q; = PQ,, there is an abelian projection G; in 2" of
central support PQ; such that 7,,(4) = ¢,(4) (Lemma 4.6). Notice
that

1(¢:(A) — (AN Q|| = | Bitr, (A [+ 1| 2 { A7, (A) [ = m}Qs || = 2| A]] .
Now >, G; = G is an abelian projection of central support P and
[6(4) — za(A) || = lubl[{(4) — 74,(A)Q:|] = 2e[A] .

So ¢(A) e Wp(A) since ¢ > 0 is arbitrary and W,(4) is closed.
The converse relation is obvious since 7, is a normal module
homomorphism.

PROPOSITION 4.8. Let .&7 be a von Neumann algebra. Then the
essential central range of an element A in % with respect to the
central ideal .7 is equal to N{Wy(A + B)|Be..#}. Here P= P._.

Proof. Let ¢c E (7). Let Q be the central projection in .o~
such that .o7Q is a discrete algebra and .o (1 — @) is a continuous
algebra. There is a net {4,} (resp. {¢.}) of elements of (.7 Q)L (resp.
(7 (1 — Q)I) with ¢,(Q) = P-Q (resp. ¢.(1 — Q) = P-(1 — @) such
that lim ¢,(BQ) = ¢(BQ) (resp. lim ¢,(B1—Q)) = ¢(B(1—Q))) uniformly
for every Be . This follows from Theorem 5.4 (resp. Theorem 5.1)
of [17]. Then setting 6,.(B) = ¢,(BQ) + 6. (B(1 — Q)), we obtain a
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net {¢,,} in &7 with ¢,,1) = P, for all m, » and lim ¢,,.(B) = ¢(B)
(uniformly) for all Be .o, Let Be.” and let ¢ > 0; then there is
a ¢n, With [[6,,(B))]| =¢ and [[¢,.(4) — ¢(4)[| = ¢ since ¢(B) = 0.
Since ¢ > 0 is arbitrary and since W,(A + B) is closed, we have that
¢(A)e Wp(A + B) by Lemma 4.7. Since Be.” is arbitrary ¢(A)e
N{WsA + B)|Be..”}. So (A cnN{WsA-+ B)|Be 7}

We now prove that the opposite inclusion relation is true. First
let A be self-adjoint. We show that 0 N {W(4 + B)|B = B*c . .”}
implies that 0e 225 (4). Let 2 be the center of .o~ and let C, =
Iub % — Sp,A. Suppose there is an a >0 and a nonzero pro-
jection @ In 2 with @ £ P and C,Q £ —2a@. We have that
(C, — A(7(C) = 0 for every { in the spectrum of 2~ (Proposition
3.12). If f. (resp. —f_) is the function that is identity on the real
interval [0, <) (resp. (—<=,0]) and 0 on the complement, we have
that f_(C, — A) is a self-adjoint element in .7 (Lemma 3.1). How-
ever, by hypothesis there is an abelian projection F in 2’ of central
support P with ||zx(f_(C, — A) — A)|| £ a. On the other hand, we
have that

Qrs(f(C, — 4) — A) = Qr(f:(C, — A) — C) = 2aQ .

This is a contradiction. Hence, we find that C,P=0. Since 1—-Pec . 7
we have that C,(1—-P) = 0 and so C, = 0 (cf. Remark 3.8). Similarly,
we obtain C,=glb 2" —Sp.(4) £0 and finally that 0¢ % (A) (Theo-
rem 4.4).

Now let A be an arbitrary element of .o~ with 0e N {W,{4 +
B)|Be.¥}. Let & ={|B| = (B*B)'*|Be 2 (A)}. We note that .&¥
is a monotonely decreasing net in 2. Indeed, let B and C be in
27 (A). There is a central projection @ with Q|B|+ (1 — @) |C| =
glb{|B|, |C|}. But the set .2 (A) is central-convex and so .7 (4)
contains D = QB + (1 — @C. Thus, we have that |D| = Q|B]| +
1 —@Q)|C|is in &% Thus .&° has a greatest lower bound B, in 27".
We show B, = 0 by arguing by contradiction. Suppose there is a
point £ in the spectrum Z of 2~ with B} () > 0. Then we may assume
that B} = glb {C*() |C e .<#} since By(() = glb {C*()|C € .5} holds on
a dense open set of Z [7]. Thereis a Ce .2%-(A) such that [C*({)| =
B}{) (Proposition 4.2). Then we may find a unitary U in %~ such
that UC = |C|. We have that 0e N{W(UA + B)|Be . ”} since
UWx(A + U*B)) = W.(UA + B) and that B, = glb{|B||Be 27(UA)}
since . (UA) = U 2¢(A). Furthermore, we have that |C|e 27 (UA).
Hence, there is no loss in generality in assuming that thereisa Ce
97 (A) with CMN{) = B{{). Nowlet A, = (4 + A")/2 and 4, = (A —
A*)/2i. We show that 0e N{Ws(4;+ B)|B=B*e 7} 1 =35 < 2).
In fact, given ¢ > 0 and B = B*c . %, there is an abelian projection £
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with central support P in the commutant of 2" such that ||z;(A+ B)||<
e. Hence, we have that

[[7e(A + A* + 2B)|| = ||z5(A + B) + (A + B)*|| < 2¢ .

Similarly, we may find an abelian projection F of central support P
such that ||7,(A— A* + 2iB)||<2¢. Now by the preceding paragraph
we conclude that 0e 975 (4,;) (1 =<7 <2). Let ¢ be an element of .o&7~*
with ¢(1) = P, ¢(.#) = 0, and ¢(4,) = 0. However, every element of
the form ag(A) + 1 —a)C 0 =a =1)is in 2. (A) and so there is
at least one & with 0 < a < 1 such that

lag(A)"C) + 1 — )CM Q| < CMNE) = B(©) -

Indeed ¢(4)"({) is pure imaginary. This contradicts the choice of B,.
Hence, we must have that 0e 975(A).

PRrROPOSITION 4.9. Let .7 be a von Neumann algebra; then A, is
wn the essential central range of Ae .7 with respect to the central
wdeal 7 if AP, = A, and if, given € > 0, there is a projection E
with dim F > dim _# such that ||E(4, — A)E|| <e. Conversely, if
Aec .7 15 self-adjoint and if A, s in the essential central range of
A with respect to _7 then there is a projection E in &7 with dim E >
dim 7 such that ||E(A, — A)E]| < e.

Proof. The first statement follows from Lemma 4.3 and Propo-
sition 2.9 since the essential central range .5 (4) of A with respect
to .“ is uniformly closed.

Now let A be self-adjoint and let A,¢ .55,.(A4). There is no loss
of generality in assuming at the outset that 4, = 0 and that P, = 1.
Let . have the canonical form .# = _%(F) (Remark 2.6). Let
e >0 be given. Let C,=glb 2 —Sp_A4 and let C, = lub 2 —8p_A4A
where 2 is the center of .o Since 0¢ .9, (A), we have that C, <
0 < C, (Theorem 4.4).

Now let R be the largest central projection such that .o/ R is of
type I and _# R = 0. Consequently, if G is a finite type I projection
majorized by 1 — R, then Ge .” (1 — R) (Proposition 2.2). By Proposi-
tion 3.10 we may assume that either R=1or 1 — R = 1.

First suppose theat B = 1. We may assume that .7 is equal the
commutant of its center [9; I, 8, Theorem 1]. Then there are abelian
projections E, and E, of central support 1 in .o such that

[[72,(4) — Cil| + |lz5(4) — Cull S ¢

(Theorem 4.4 and Proposition 4.8). Thereisa Cin 2 with0=C=1
such that CC, + (1 — C)C, = 0, and there is an abelian projection E
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of central support 1 in .o~ such that 7,(4) = Cry,(4) + L — C)74,(4)
(Lemma 4.6). Thus, we obtain

IEAE|| = |ICll1izs(A) — Gl + [I1 — Cll [[75,(4) — Cull = ¢ .

So we may assume that 1 — R = 1. Because the closure of every
open subset of the spectrum Z of 2~ is open, we may find a sequence
{P,i»=0,1,2 .-} of mutually orthogonal central projections of sum 1
such that

C,P,< —n'P, <0< n'P,<C,P,

for n =1,2,--+, and C;, C, P, = 0. We shall find projections E, of
central support P, such that FP, < E, and ||E,AE,|| < 4c. Then we
shall have that £ = 3 E, has central support 1, F < E, and || FAFE|| =
lub, || E,AE,P,|| = 4¢ (cf. [9, III, §1]). Now, we have that . 7, =
P, = %, (EP,) is a representation of the central ideal .7 of
%7 P, in canonical form. Since C,C, P, = 0, there is a P, in (2" P,) with
PiC, + (P, — P)C, =0 (Lemma 3.4). Thus, we see that 0e 2P, —
Sp_-,(AP,) (Proposition 3.10) and so we may find the projection E,
(Proposition 3.13). By reducing to an algebra .o~ P,, we may assume
that €, £ —a <0< a £ C, (Proposition 3.10).

It is sufficient to show that every nonzero Qe (2°) majorizes a
nonzero Re (2°) such that there is a Ge (%) of central support R
with FR < G and ||GAG|| < 4e. Then the usual maximality argument
for the projections R may be employed to find the projection E,. By
making yet another reduction to a direct summand of .7, we may
assume, without loss of generality, that there are natural numbers
m, n, and p such that

fmp™ + Cill =p7 =¢ and |[np™ - C,l[=e¢.

We now find = (resp. m) orthogonal projections F; of dimension
greater than dim . such that ||(C, — A)F;||=<¢ (resp. |[(C, — A)F};|| =
€). We normally would apply Proposition 3.14, however it is necessary
for the combined set of m 4 n projections to be orthogonal and so
the following additional argument is required. Let A, and A, be ele-
ments of .7+ such that A, — A4, = 4 and A.4, = 0. TFor every (e
Z, we have that —C7(€) = [[4:,(-7 (0) || and CL(C) = [|A.(~ ()] (Pro-
position 8.12). Let G, and G, be the domain projections of 4, and A,,
respectively. For definiteness, let G = G,. If @ is a central projec-
tion with GQe .7 then @Q = 0; otherwise, there is a (e Z with
G(# () = GR(FA(0) = 0 and consequently with ||4,(.7 ()] = 0.
This implies that dim G > dim .~ So there is a projection G’ with
F~G =£G. We now restrict .o~ to the subspace of the Hilbert
space determined by G to obtain the von Neumann algebra .o =
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GG (cf. [9; I, §2]). The set GG = _7 is easily seen to be a
central ideal of .%7 since the center of &% is 2°G = %% [9; III, 5,
Problem 7]. We have that A,e.»7}. Since the spectrum of 27, is
the set X = {{G|C e Z}, we have that the smallest ideal [(G] of .o~
which contains {G is G[{]G. We may now easily show that

1A(A% + [EGD 1| = inf{||A + B + C||[Be .7, Ce [CG]}

is equal to ||A.(.#Z ()| for every {e Z. This means that C,G =
lub 2% — 8p_-, A, (Proposition 8.12). Therefore, we may find a set
F,F, --- F, of mutually orthogonal projections in .57 of dimension
greater than dim .7 such that

AF(A) = FA(%) and [[(C.G — A)F( A =

for every 7 =1, 2, +--, m (Proposition 3.14). Indeed, the algebra .o7
has no finite type I direct summands. Thus, we may find orthogonal
projections F, F,, --+, F,, majorized in .o by G = G, such that

F~Q@<F,AF () = F;A(”), and |[(C, — AF(7)||<Ze

for every ¢ =1,2, ---, m. Likewise, we may find orthogonal projee-
tions F,., ++-, F,., majorized by G, such that F < F;, AF () =
F,A(7), and ||(C, — A)F(#7)||<¢c forevery i =m + 1, ---, m + n.
Since G, and G, are orthogonal, the projections F,, ---, F,,, are
mutually orthogonal. There are partial isometries U;;(1 <4, < m+n)
of .o~ which satisfy the following properties:
(1) U;U, = 0,U,; (6 = Kronecker delta);
(2) U; = Up; and
(3) U is a projection with F ~ U, < F;, for all 4,7, k, .
The element E' = (m + n)™* >, U;; is a projection in .o with E'~F,
i.e. dim E’ > dim.” Here, indeed, a calculation using (m + n) x
(m + n) complex matrices suffices. Furthermore, using the fact that
AF(.7) = F;A(.”) for every 7, we have that
| E"AE ()|
= [|E"(4 — (C, 22 {Usli = m} + C, 25 {Usli > mh)) E'(7)||
+ I E(S{C.Uli < mh + SHCUsli > m)E(F) ||
= [lm + n)7 355 G {Uk(A — C)Ujlb = m}
+ 2H{UA — C) Uk > mh(A)]|
+ l[(m + )G, + nC)E(F) | < 2 .
Now there is a Be.” with ||E'AE — E'BE’|| < 3:. In the ideal
.7, we may find a spectral projection E” for E'B*BE’' majorized by

E’ so that ||BE'Q1 — E")||<e. If QE — E")e . 7 for some Qe (%),
then QFE €. and consequently @ = 0. This means that
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dim (E'— E") > dim _#
(Proposition 2.9). Setting E = E’ — E”, we obtain the relation
|EAE| < [|[E(A — B)E|| + ||[EBE|| < 4¢ .

REMARK 4.10. If .o~ is the algebra of all bounded operators on
a separable Hilbert space H and .# is the ideal of completely con-
tinuous operators, then Fillmore, Stampfli, and Williams [11, Theorem
5.1, Corollary] have obtained Proposition 4.8 without the added restric-
tion that A is self-adjoint. The theorem of Fillmore, et al., depends
on properties of Hilbert-Schmidt operators on separable H; however,
it is likely that the restriction can also be removed here.

Let .o be a von Neumann algebra. Let U(.o) be the group of
unitary operators of .o~ and let & be the set of positive real-valued
functions f of finite support such that > {f(U)| Ue U(.s7)} = 1. For
each fe& and 4 in & let f-A = {f(U)U*AU|Uec U()} and
let 2¢"(A) be the uniform closure of {f-A|fe&}. If Be.Zs&'(A),
then .%7"(B) < .2¢"(A). Then the intersection .2 (4) of 2 "(A) with
the center is a nonvoid closed convex subset of the center ([8]; cf. also
[9; III, §5]). Furthermore the set .27"(4) (resp. .7 (A4)) is central-
convex in the sense that CC, + (1 — C)C, is in (A) (resp. .2 (A))
for every C, and C, in .27"(4) (resp. .5 (4)) and C in the center
with 0 < C <1 [19; proof, Lemma 6].

The following forms the basis for our analysis of 5 "(A4).

ProPOSITION 4.11. Let .o be a von Neuman algebra and let A be
an element in 7. Let { be a point in the spectrum of the center of
. Then the set .2 (A)() = {B ") |Be .2 (A)} is a compact subset of
the complex plane.

Proof. Because .7"(A)(C) is bounded, it is sufficient to show that
227 (A)(€) contains an arbitrary limit point . Due to the fact that
(A — o)) = % (A)(Q) — «a, there is no loss in generality in proving
that 0 e .277(4)() whenever 0 is a limit point of .27 (4)((). We proceed
to do this. For every n =1,2, --+, there is a function f, in the
subset & of real-valued functions on the unitary operators of .%~ and
a central projection P, of .o with P}{) =1 and ||(f,-4)P,|| <27
Let {Q;} be the sequence of orthogonal projections defined by @, =
P, — PP,Q,= PP, — PPP, ---, and let Be 2%7(A). Thenlet C, =
B — P) + 2 {(fi- A1 =it =n} + (forr DQ, (n=1,2,---). Here
Q, =P, -+ P, is the orthogonal complement of (1 — P) + >, {Q;|1 =
1= mn}. We notice that C, € %#7(A) for every = since .2¢7(A) is central-
convex. However, the sequence {C,} is Cauchy since ||C, — C,.,|| <
max {[[(fori AQurilly [ (farer A) Qs [} 277", This means that {C,} con-
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verges to an element C in .2¢¥’(4). We have that
ICO I = lim ||C,(0) ]| = lim [[((fas:» DR || = limsup 2™ =0

and thus C is in the ideal [{]. This means that .2#”(C) C [{]. How-
ever, we have that .277(C) < 27"'(4) because Ce .2¢'(4). This means
that 227 (4) N [{] # @, or equivalently, that 0e .2 (4)(Q).

THEOREM 4.12. Let .o~ be a properly infinite von Neumann
algebra, let 7 be the strong radical of .7, and let A be an element
of 7. Then the set 27 (A) is equal to the set 5% (A) = {¢(4)|¢ is a
state of o7~ with ¢(_F) = (0)}.

REMARK 4.13. Here notice E,(_#) is the set of all states of
&7~ which vanish on _Z

Proof. First let A be self-adjoint. We show that every element
C in the essential central spectrum of A with respect to _# is in
2#(A). There is no loss of generality in assuming for this that
C = 0. Then for every ¢ > 0, there is a projection E in .&7 such that

|AE||<¢ and E~1

(Example 2.12 and Corollary 3.15).

There are orthogonal projections E’ and E” of sum E such that
E' ~ E" ~ E [9; III, 8, Corollary 2]. By replacing E by E’, we may
assume that [|AE||<¢ and E~1— E ~1. Then the element

27(E — (1 — E)A(E~ (1 — E)) + A) = EAE + (1 — E)A(l — E)

is in %¥7(A). Now let E,, ---, E, be orthogonal projections of sum E
with E, ~ +«+« ~ E, ~ FE, and let U, ---, U, be unitary operators in
% so that the domain support of (1 — E)U; equals E;. For every
unit vector z in the Hilbert space, we have

| 22{n"" Ui (EAE + (1 — E)A(l — E))U|l = @ = n}||
|2 n U EAEUz|| + || S »7'Ur'(1 — E)A(L — E)U||
< n(ne) + | SnE U1 — E)A(L — E)U:Ew||
=e¢+nA]l.

This proves that .2¢'(4) contains an element of norm less than or
equal to ¢ + n7'||A]]. Because ¢ >0 and % are arbitrary, the set
¥ (A) contains 0. This means that the essential central spectrum
of A with respect to _# is contained in .577(4). Hence, the least
upper bound C, and the greatest lower bound C, of the essential
central spectrum are in .97°(4). Since .97,(A4) is the smallest central-



ESSENTIAL CENTRAL SPECTRUM AND RANGE FOR ELEMENTS 375

convex set containing C, and C, (Theorem 4.4) and since 277 (A4) is
central convex, we have that .27 .(4) € .27 (4).

Now let A be an arbitrary element of .o~ and let ¢e K (_2).
We may assume that ¢(4) = 0. We show that 0 is in 2 (4)() =
{BMC)|Be .2r (A)} for every  in the spectrum of the center. Since
27 (A)(C) is compact (Proposition 4.11), there is a C in .22 (4) with
[CMO) | = glb {la||ae 27 (A)()}. There is no loss of generality in
assuming C*{) = 0. We obtain a contradiction by assuming C"({) >
0. Indeed, we have that ¢(4A+ A*)=¢(A)+¢(A)*=0. By the preceding
paragraph we conclude that 0e 277 (27'(4 + A*)) and so there is a
sequence {f,} in the subset & of functions on the unitary operators
of .o with limf,-(27(4 + A*) = 0. We may also assume that
{fur((20)(A — A*))} converges to a self-adjoint element B in the
center [9; III, §5, Problem 2]. Hence, the element B is in .27 (4).
However, we must have that B"({) = 0. Indeed, if B"{) # 0, then
the distance to the origin of the line segment L in the complex plane
with end-points C*({) and ¢B"({) is less than C*({). However, this
contradicts the definition of C since L c.% (A)({). So we must have
that C*({) = 0, and hence 0.5 (A)({). The proof is now completed
by a compactness argument. Let ¢ > 0 be given. For every { in
the spectrum of the center, there a C, in 277 (4) and a central projec-
tion P, with P({) = 1 such that ||C.P,|| <e. Due to the compact-
ness of the spectrum of the center, we may find C, ---, C, in 2% (A4)
and orthogonal central projections P, ---, P, of sum1 such that

1>V C:Pll=¢.

However, .277°(A) is central-convex and so >, C;P;c .2 (A). Since ¢ >0
is arbitrary and since .277(.) is closed, we have that 0ec . 27(4).
This completes the first part of the proof.

Conversely, let Ce .97 (4). There is no loss of generality in
assuming C = 0. We find ¢ in E,(_#) with ¢(4) = 0: Let ¢, be a
state of .o~ that vanishes on _# (Lemma 4.3). Let {f,} be a
sequence of functions in & such that limf,-A = 0. Let ¢, be the
state of E,(_#) given by 4,(B) = ¢(f,-B) for every B in . Due
to the compactness of the state space of .~ in the o,(.%™, &)
topology, there is a subnet {$n,} of {3,} and a state ¢ of .o~ such
that {4, (B)} converges weakly to ¢(B) for every B in .o Clearly,
the state ¢ vanishes on _# However, for every & and y in the
Hilbert space, we have that

[(3(A)z, ¥) | = lim;|(8,,(A)x, v)| = lim sup || 6| |[ ;- All [[z]] [ly]l = 0.
This proves that ¢(4) = 0, and so 0e 2 (4).

COROLLARY 4.14. Let .o be a properly infinite von Neumann
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algebra and let A be an element of .57 Then the convex subset 27 (A)
of the center is weakly compact.

Proof. For any central ideal .7, the set .27 -(A4) is weakly compact
(Introduction, §4).

Let A be an element in the von Neumann algebra %% Define
& (A) to be the intersection of the weak closure of .277(A) with the
center of .o% Using the tools we developed here, we can extend the
theorem of J. Conway [4] from the case of properly infinite factors
to pro perly infinite algebras with arbitrary centers. For this exten-
sion the following lemma is needed.

LEMMA 4.15. Let &7 be a von Neumann algebra on the Hilbert
space H. Let f be a 0,( 7, & )-continuous hermitian functional
on 7~ (i.e. f(¢) is real for every ¢ im &7~ which takes hermitian
elements of &7 into hermitian elements of the cemter). Then there
s an x€ H and a self-adjoint Ae .7 such that f(¢) = (p(A)x, x) for
every ¢e .7,

Proof. There are x,, «++, 2, ¥y, *+*, ¥, in Hand A, ---, A, in .7
such that f(¢) = >, (6(4,)x;, y;) for all ¢ in .7~ [17; §2, Introduction].
For each ¢ there are z;; (1 <j < 4) such that

Wajyy = Weyy + Wy, + 7;(wzea - w

%44

where w,_,.(B) = (Bx;, ¥;) and w, = w,,. on the center of .27 [9; ], 4,
Theorem 6 and III, 1, Theorem 4, Corollary]. Then there is an « in
H with w, = >};;w,,; [9; III, 1, Theorem 4, Corollary]. For each ij,
there is a positive element C;; in the center with (BC;;x, x) = (Bz,;, 2:;)
for all B in the center (Radon-Nikodym theorem). Thus there is an
element B = 3 4:(Ciy — Ci, + i(Cy; — Cy)) in .o with f(g) = (4(B), @)
for every ¢ in .&7~. If ¢*(B) = ¢(B*)* for ¢€ .o, then

(3(B*)*w, ®) = f(3*) = f(9)” = (8(B)w, ¥)~

for every ¢ in .7~ implies that f(¢) = (¢(B*)z, ) = (¢(B)x, ) for every
¢ in &0 Hence, f(¢) = (¢(A)x, x) for every ¢ in .&7~. Here A =
27Y(B + B*).

THEOREM 4.16. Let .o~ be a properly infinite von Neumann
algebra, and let 7 be the ideal of finite elements of .o7; then & (A) =
% (A) for every A in S

Proof. One may prove the theorem using the same steps (with
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appropriate modifications) that Conway [4] employed in his proof for
factor algebras. We content ourselves with pointing out the appro-
priate steps. Let & be the set of all states of .o~ such that ¢(4) e
& (A) for all A in &~ For every Aec . and A,e ©(A), there is a
$€ & such that ¢(4) = 4,. This uses the o0,(%~, &)-topology in-
stead of the weak *-topology of the dual of .o~ [4; Lemma 5]. The
set Z(4) is equal to {0} for every Ae . [4; Lemma 6]. Hence,
the set & is a subset of E,(.#). But if A is self-adjoint and g¢
E,(.7), then ¢(A)e & (A) since the least upper bound and the greatest
lower bound of the essential central spectrum of A with respect to
. are in € (A) (argue as in [4; Lemma 4] based on Proposition 3.13)
and since & (A) is central-convex (use the fact that .2¢7(A) is central-
convex). If thereis ¢, in E,(_”) but not in the o, (.7, .o)-compact
convex set &, then there is a 0,(.27~, .%7)-continuous hermitian funec-
tional on &7~ which strongly separates ¢, from &. However, every
ow{(.57~, .o7)-continuous hermitian functional f of .o~ is of the form
f(9) = (¢(A)z, x) for some fixed self-adjoint A in & and some vector
2 in the Hilbert space. This contradicts the fact that ¢6,(A4) e & (4)
and so that ¢,(4) = ¢(A) for some ¢c%. Hence, & = E,(.#) and
% (A) = € (A).

COROLLARY 4.17. Let .7 be a o-finite properly infinite wvon
Neumann algebra; then .27 (A) = G (A) for every A in 7

Proof. The ideal generated by the finite elements of .o~ is the
strong radical of .&% The corollary then follows from Theorems 4.12
and 4.16.

5. Applications. Using the notions of essential central spec-
trum and essential numerical range, we can extend some theorems
on commutators and derivations to arbitrary properly infinite von
Neumann algebras. These theorems are known for the algebra of all
bounded linear operators on a Hilbert space, which is generally
assumed to be separable, but the techniques employed there also
suffice here.

A linear map ¢ of an algebra is said to be a derivation if 6(AB) =
AS(B) + 6(A)B for every A and B in the algebra. 8. Sakai [27]
proved that every derivation ¢ of a von Neumann algebra .o is inner
in the sense that there is an A in .o such that 6(B) = AB — BA for
every B in .%7. The next proposition is due to J. G. Stampfli [29]
for the algebra of bounded linear operators on a Hilbert space. His
technique suffices here.

PrOPOSITION [Stampfli] 5.1. The range of a derivation on a von



378 H. HALPERN

Neumann algebra is not uniformly dense in the algebra.

Proof. Since every von Neumann algebra may be written as a
product of a finite and a properly infinite von Neumann algebra, it
is sufficient to consider these two cases separately. If the algebra is
finite, then the range of the derivation is contained in the set of ele-
ments whose canonical operator-valued trace vanishes. So the range
of a derivation cannot be dense. If the von Neumann algebra .o7
is properly infinite and the derivation 6 on .o is given by 4(B) =
AB — BA, then we construct an operator that is not in the closure of
the range of §. Let A4, be a central element such that (4 — 4,)(_#())
is neither left nor right invertible for all { in the spectrum of the
center. Here _# is the strong radical of .o (Theorem 3.5). Because
0(B) = (A — A)B — B(A — A,) for all Be .o, we may assume 4, = 0.
There are sequences {E,} and {F,} of mutually orthogonal projections
in .o~ such that E, ~1~F,, ||AE,||<n, and ||F,A| < n™ for
for every # =1, 2, --. (Example 2.12 and Corollary 3.16). Then there
is a partial isometry U in . with domain support E = > E; and
range support F' = > F; such that UE; = F;U. We show that « =
[|U— 6(B)|| = 1 for every Be .. Indeed, forevery n =1,2, -+, we
have that

1= |F,UE| || F.(U— dB)E,|| + [|[F.OBE,| = a+ 2n7||B] .

Hence the open ball of radius 1 about U does not meet the range
of 4.

In [18], we showed that an element A in a properly infinite von
Neumann algebra .o is a commutator in .o (i.e. there are elements
B and C with A = BC — CB) provided 0 € 2 (A). We can also prove
that 0e 2% (A) provided A = BC — CB and *(B*B — BB*) is a posi-
tive operator in &% Now an element A is said to be a self-adjoint
commutator if A = BC — CB with B = B*. H. Radjavi [25] charac-
terized those self-adjoint elements in the algebra B(H) of all bounded
linear operators on a separable Hilbert space H which are self-adjoint
commutators and J. Anderson [1] recently announced that he has
completely characterized self-adjoint commutators in B{(H). We prove
a proposition in this direction for properly infinite von Neumann
algebras using a matrix calculation of M. David [5].

PROPOSITION 5.2. Let .7 be a properly infinite von Neumann
algebra and let A be a self-adjoint element in .7 If 0 is in the
essential central spectrum of A with respect to the strong radical of
57, them A 1s a self-adjoint commutator in Y.
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Proof. There is a sequence {E,} of orthogonal projections with
E,~1 and ||AE,{{=<1/n! for all n=1,2 --- (Lemma 3.16 and
Example 2.12). Thus, [|E,AE,|| < min{1/m!, 1/n!}. Then the matrix
calculation of M. David [5; Theorem 3] is applicable.

Acknowledgement. The author would like to thank Professor
Carl Pearcy for bringing J. G. Stampfli’s result [29] to his attention
and for suggesting extending it to von Neumann algebras. He also
wishes to thank Professor Stampfli for a letter in which he outlined
his proof (cf. Introduction §5).

Added in Proof, August 24, 1972. We have obtained a better
version of Proposition 5.2 by showing that A is a self-adjoint com-
mutator whenever 0 is in the essential central range of A.
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