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ON THE ABSOLUTE MATRIX SUMMABILITY
OF FOURIER SERIES

B. KUTTNER AND B. N. SAHNEY

The paper investigates sufficient conditions under which
a summability method of a certain general type absolutely
sums the Fourier series of any function of bounded variation.
The main theorem includes a recent theorem of M. Izumi and
S. Izumi, who considered the problem for the special case of
Norlund summability.

The summability methods considered are those given by a series-
to-series transformation 4 = («w,,,). That is to say, given any series

(1) S a,

k=0

we describe (1) as summable A to s if
by = g U, 1l

is defined for all n, and if

(2) 3. b,

converges to s. We describe (1) as absolutely summable |A]| if (2)
converges absolutely. Under certain quite weak restrictions on A,
necessary and sufficient conditions under which the Fourier series of
any function of bounded variation should be absolutely summable |A]|
have been given by Tripathy [10, Lemma 2]; his result will be stated
later as Lemma 1. But the conditions obtained by Tripathy are of
such a nature that it is not usually easy in any given example to
determine whether they are satisfied or not. The object of the present
paper is to obtain sufficient conditions which, while less general, are
simpler than those of Tripathy. However, it does not seem possible
to obtain reasonably general sufficient condition in any very simple
form.

We will be concerned with the case in which A is absolutely
conservative, that is to say, it is such that, whenever (1) converges
absolutely, so does (2). It is known [4, 6] that in order that this
should hold it is necessary and sufficient that, for &k = 0,

oo

(3) S @l = O -
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We remark that, in order that A should be absolutely regular, that
is to say, that in order that, whenever (1) converges absolutely then
(2) converges absolutely to the same sum, it is necessary and sufficient
that (3) should hold and that, further, for all £ = 0,

(4) goa"’k =1.
2. We now state our main result.

THEOREM. Let A = («,,,) be an absolutely conservative series-to-
series transformation, with «,,, =0 for all n, k. Suppose that either

(a) For each fized n, there is a positive integer r(n) such that
Q... 18 mondecreasing for 1 <k < r(n), and nonincreasing for k =
r(n), or

(b) For each fixed n, there is a positive tnteger s(n), such that
,../k s nondecreasing for 1 <k < s(n), and monincreasing for k=
s(n). Suppose also in case (a) that, for K =1,

r{n) +K

(5) s L%, =00,

r22K (M) k=r(a)—K
and in case (b) that, for K = 1,

s{n)+K
(6) > LS =00,
s(m=2K s(n) k=s(n)—~K
Then the Fourter series of any function of bounded variation is abso-
lutely summable |A|.

REMARK. It is clear that (5) is equivalent to

r(n)+K o
(5) S~k =0
rm2eK k=r(m—K K
and it is sometimes more convenient to express (5) in this form. Since
there are 2K + 1 terms in the inner sum in (5), and since the middle
term is the greatest, a sufficient condition for (5) is that

- B )

However (7), while much simpler than (5) is less general, and, as will
be shown later, fails to be satisfied in some important cases. In a
similar way, (6) is equivalent to

s{n) +K

®) S =0

s(n) 22K k=sm—K [

also, a sufficient condition for (6) is that
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(8) s(%wc}sﬁ—(ﬁ;ﬁ) - O(%) ’

It is clear that either one of (a), (b) could be satisfied without
the other holding. If, however, they both hold, then (5) is a weaker
assumption than (6). Thus, in this case, the first form of the theorem

is preferable. To prove this assertion, we write 4,, ¢, for the inner
sums in (§), (6’) respectively, and shall first show that

(9) 0, < 29, .

To this end, we first note that s(n) < r(n). Consider first the case
in which »(n) — s(n) = K. Since «,,,/k is nonincreasing for k = s(n),
we have!, for £ =0,1, ..., K — 1,

amn, r(n) + K — 24) . an,rn) + K —2n — 1)

rn) + K — 2un rin) + K —2¢ —1
(10) < 2a(n, s(n) + K — 1) .
B sm) + K—n
Also,
a(n, r(n) — K) _ a(n, s(n)
rm)y — K~ s(n)
whence

s{n)+K o
k=s(n) k

where the dash indicates the term %k = s(n), is multiplied by 1/2. If
r(n) — s(n) = t(n) < K, then (10) still holds for ¢ < ¢(n) — 1. Hence

tin)—1 ok
1) g,<2 5 20Lsm+ K- a(n, r(n) + K — v)
( ) - /tz:l(‘) S(n) + K _ # + y=2t(n) T(n) + K —y

where the first sum on the right is taken as 0 if ¢(n) = 0. Since the
second sum on the right of (11) can be written

M q(n, s(n) + K — p)
=ty s(m) + K — ¢ ’

we again deduce (9).
It now follows from (9) that

s(n) 22K s(n)=2K

However, since s(n) < r(n), there may be values of n for which »(n) =
2K, but s(n) < 2K; these values will occur in the sum (5’), but not

! To avoid complicated suffixes, we write a(n, k) for as,r whenever n, k are replaced
by more complicated expressions
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in (6"). If we show that, in any case, the contribution of these terms
to the sum (5’) is bounded, the conclusion will now follow. If r(n) =
2K but s(n) < K, then, since «,,/k is nonincreasing for k = K we
deduce that

2K + 1a,,x

0.,
K

IA

If »(n) = 2K and K < s(n) < 2K, then «,,, is nondecreasing for &t <
2K. Hence, for all k=1

an,k < a,n,s('n) < anﬂK

E = sm) K

so that
(2K + 1)an,2K
e

Thus the sum of the terms in question does not exceed

0.

IA

@—Kktﬁi:o (an,K + an,zK) = 0(1) )

by (3).

3. We now state the lemma of Tripathy already mentioned.

LEMMA 1. Let A = («,,,) be a series-to-series transformation such
that

8

12) [ Qo] < oo

n=0

i

and such that, for every fized n,

sin kt
k

(13) Ly(t) = 3 s

converges boundedly in t. Then in order that the Fourier series of
any function of bounded variation should be absolutely summable |A|,
it is sufficient that

14) S 1L = 0
and necessary that the sum (14) should be essentially bounded.
It may be remarked that the result is not quite correctly stated

in [10], where it is asserted that the essential boundedness of (14)
is necessary and sufficient. But on examining the proof of sufficiency
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in [10], we find that it requires the boundedness, and not just the
essential boundedness, of (14). The point is not of great importance,
since if we assume that, for every fixed =,

Z_;lank— nk+1|<oo;

in other words, that b, is defined whenever (1) converges, it is easy
to prove that the essential boundedness of (14) is equivalent to its
boundedness. This result is not, however, required for our present
purposes.

In what follows, we will suppose throughout that 0 <t <z. We
will apply the hypothesis (5) or (6) with K = [x/t]; thus, in any equations
involving both K and ¢, it will be assumed that this relation holds.

We require two further lemmas.

LEMMA 2. Let A = («,,,) be an absolutely conservative series-to-
series tramsformation. If, for every fixed n, .k is ultimately
nonnegative nonincreasing (and thus, in particular, if the hypotheses
of the theorem are satisfied) then the hypotheses of Lemma 1 are
satisfied.

Equation (12) follows at once as a special case of (3). Thus,
taking n as fixed, we have only to verify that (13) converges boundedly.
Suppose that «,,,/k is nonnegative nonincreasing for k¥ = M. Then
we have, uniformly in k%, k, for K, M < k, < k,,

sin kt a(n, k) ]
(15) 5% @, S0k < —-—————(2 L)
2

But (8) implies that a(n, k) is bounded; hence the expression on the
right of (15) is O(1) uniformly in the range considered, and, for fixed
t, tends to 0 (uniformly in k,) as %k, — . Since M is a constant,

M—1

>l

k=1

sin kt

nyk

is bounded; also, if K = M,

K
> |
k=M

B <t 3 ) = 0)
k=M
(by the boundedness of «,,, and the definition of K). Hence the result.

LEMMA 3. Suppose that 6, = 0. Suppose that 0, is nondecreasing
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for 1 <k <s, and nonincreasing for k=s. Then, for any positive
integers a, b, and any t with 0 <t <,
s+K

=A 3> 0 »

k=max(1,s—K)

(16)

Zb] *
0.
k=a

where A is an absolute constant.

That portion (if any) of the sum on the left for which s — K <
k < s + K clearly satisfies the required inequality. Also, by partial
summation, that portion (if any) for which % > s + K does not, in
modulus, exceed

2 _§..= 2 0
T—e | " Tl - [(K+ iz "
<2 _57,.

|1 — e¥|i=s

That portion of the sum (if any) for which £ < s — K may be dealt
with in a similar way, and the conclusion follows.

This lemma is a slight generalisation of a lemma due to McFadden
[5] which has been much used in investigations on the Norlund
summability of Fourier series.

4, We now come to the proof of the theorem. It follows from
Lemmas 1 and 2 that it is enough to show that the hypotheses of
the theorem imply (14). Consider first those values of » (if any) for
which r(n) < 2K in case (a), and for which s(n) < 2K in case (b). In
case (b), we are given that «, ,/k is nonincreasing for £ = 2K; in case
(a), we are given that «,,, is nonincreasing for k = 2K; hence, a
fortiori, so is «,,/k. Thus, in either case, since the partial sums of
S, sin kt are O(1/t), we have

il sin kt ®por )
k%‘;K (29" 2 = 0< 2Kt ) = O @p,2x)

by definition of K. For those terms in the sum (13) for which k <
2K, we use |sin kt| < kt; and it follows that

La)] = Ot S i} + O@aun) -

Hence the contribution to the sum (14) of those values of » now
under consideration is

17 O{ttil s a,,,,,} + O{i aMK} = 0)

=1 n=0 n=0

by (8) and the definition of K.
We now investigate the remaining values of nm. Consider first
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case (b). For any fixed », we apply Lemma 3 with ¢, = «,,,/k, and
take the imaginary part of (16). It follows at once that

s(n)+K o
L) = 0f "5 farl;
k=s(m—K [
and (14) therefore follows from (6’) and (17).
Now consider case (a). Since a,,, is nonincreasing for k = r(n)
80 is a,,/k; thus the part of the sum (13) for which £ > r(n) — K
may be dealt with as in case (b). The part for which £ < K may
be dealt with by using |sin k¢| < kt, as in the proof of (17). Thus,
writing

r{n)—K 1 t
Rn(t) = I;K an,kSIHkk »

it remains only to show that

(18) 2 R, =0Q) .
rin)22K
Now,
R,.(t) = 1 - mgK A, [cos (k — i)t — coS (lc 4 l)t]
osin Ly ¢k 2 2
= —-—1—{— S cos (k + —1—>M,¢<a”’k)
2 sin %t =K 2 k7

«@ 4 1
+ K cos (K — ——)t
i cos& 5

_an,rn) — K+ 1) _ 1
P cos(r(n) K + 2>t}.
Since
Ak<an,k> = _ Qe 44(@,1) ,
k kE(E+ 1) E+1

it follows that

. 1 r{n)—K an, T(ﬂ)—K’ A (an,k) l
R.(t) = 0]X —Due [, |
® {t[EK WE+D & kel

A, x , amn,rn) — K+1
i K * rn) — K+1 ]}
= O{R.(¢) + R.() + RL.(H) + RO},

say. Now, since «,,, is nondecreasing in the relevant range
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R‘nz(t) _ —ir(n)*'K Ak(an,k)
" t ==x k+1

17955 a1 a,, n 1 a(n, rn) — K +1)
t =& kk-+1) t K t rm) — K+1
= R.(H) — R,(t) + R.() ,

so that
R,t) = O{R,() + R.(1)} .
Next,

By £ 25—t 5 an = 00)

Kk + 1) + 1)
by (3) and the definition of K. Finally, if »(n) = 2K,

a(n, r(n) — K + 1)}
tr(n)

r(n)22K

R.(t) =

o
- { Kr(n)k r;:mm “”’k}
abmy

an,k} ’
r(n) r= r(n)—K+1
so that

> R.@) =0,

r(n) 22K
by (5). The proof of the theorem is thus completed.

5. We now consider an application of our general theorem to
the special case of Norlund summability. We recall that, given a
sequence p = {p,}, Norlund summability (N, p) is defined as given by
the sequence-to-sequence transformation

(19 te = 5 35, Priti

where we write
P,=p,+ D+ 0.}
it is assumed that p is such that, for all n, P, = 0. If we write
ta=by+ b+ o bys,=a,+a + +--a,
we see that (19) can be expressed as the series-to-series transformation

b0=a0;
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bn=]§:(%§—:‘——%?>an =1,

where we adopt the convention that P_, = 0. Thus we have, with the
notation of our main theorem, «,,, = 0 for k > =, while, for1 <k <=n

P'n—-k _ Pn—k—-l
p, P,
— Pnpn—Jc _ Pﬂ—-kpn .
PnP‘n—l

Now consider the case in which {p,} is nonnegative nonincreasing.
We remark that, since P, = 0, we then have p, > 0. Further (since
P, = 0){P,} is nondecreasing; thus it follows from (20) that «,,, = 0.
Thus we may omit the modulus signs in (3); and it is now easy to
see that (4), and hence (3), holds. Thus, in the case now considered,
(N, p) is absolutely regular. Further, for fixed =, p,_, is nondecreasing
and P,_, nonincreasing as k increases from 1 to n. Since «, , = 0 for
k > n, it follows that condition (a) is satisfied, with »(n) = n. Also
equation (5) becomes

a'n.,k =
(20)

oo 1 n _
(21) n§K m k=§iK (PoPn—r — Payp,) = 0Q1) .

The inner sum in (21) does not exceed

Z Pnp'n,——K:PnPK)

k=n—K

and thus a sufficient condition for (21) to hold is that

(22) S =)

However, since the hypotheses on » imply that P,_, ~ P,, and that
P < P,y < 2Py, it is easily seen that (22) is equivalent to the slightly
simpler condition

(23) S =o(k).

Thus our theorem includes the following result;

THEOREM A. Suppose that {p,} s momnegative nonincreasing,
and that (23) holds. Then the Fourier series of any function of
bounded variation is absolutely summable |N, p|.

The assumption that {p,} is nonnegative nonincreasing is not,
without some further condition, sufficient for the conclusion, for it
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has been shown by Pati [8] that, when p, = 1/(n + 1), it is not
true that the Fourier series of any function of bounded variation is
absolutely summable |N, p|. This example also shows that, in our
main theorem, the assumptions that A is absolutely conservative and
that (a) holds would not alone suffice for the conclusion.

Theorem A is included in a recent, slightly more general, theorem
of M. Izumi and S. Izumi [3]. It includes earlier theorems of H. P.
Dikshit [2, Theorem 2] and T. Singh [9]; the result of Singh itself
generalises a theorem of Pati [7]. The theorems of Dikshit and of
Singh are respectively as follows.

THEOREM B. Suppose that p, > 0, and that p,.,/v. 1s non decreas-
wng, and less than or equal to 1 for all n. Suppose that (23) holds.
Then the Fourier series of any function of bounded wvariation is
absolutely summable |N, p|.

THEOREM C. Suppose that, for all n, p, = p,., > 0, and that

Dy — Dusi 1S NOWINCTeasing. Suppose also that

X Pn —_—
(24) Z‘o i O(Px) -

Then the fourier series of any function of bounded variation ts abso-
lutely summable | N, p|.

It is immediately evident that Theorem A includes Theorem B.
The result that Theorem A includes Theorem C follows from the
following lemma, which shows that, in Theorem C, we may replace
(24) by (23).

valent. In fact, either is equivalent to the assertion
(¢) There is a constant integer r > 1, and a constant » > 1 such
that, for all suffictently large n,

LEMMA 4. Suppose that p, > 0, p, = 0. Then (23), (24) are equi-

(25) P,, = \P, .

We first prove that (23) implies (c). Suppose, then, that (23) holds.
Thus there is a constant M such that, for all sufficiently large K,

= 1 M
= =
Z‘K nP, = Py
Since P, is nondecreasing, this gives
M rK 1 1 rK 1
2z > > =.
P, ,;K nP, = P,y n=kn
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But

rK 1
3= ——logr
n=K N

as K— o, and (c) therefore follows if r has been chosen so that
(26) logr > M.
If (24) holds, we have, for all sufficiently large K,

% P,

= .

Thus, replacing K by 7K,

rK

MP,, >
“ Z'n+1 Z

+1

and we again deduce (¢) if » has been chosen so that (26) holds.

417

We now consider the converse implications. Suppose, then, that

(25) holds for n = n,. Then, for v = n,

r{yv+1)—1
1 < T~ 1 ]
w=rv wP, — rvP,, VAP,

Hence, for K = n, and s = 1,

r8TlE—) rSK—1 1
3 1 1

27) =
wrmr nP, N n=rig nP,

By successive applications of (27), we deduce that for s = 0,

rSTlg—1 1 1 7E7v 1 1 TE-1 ] ( 1
<= < — =0 .
ZT;K nP, A° nZ‘K nP, — NPy nz=k n VPK>

Hence

wg“K n;n - O<?11; g}%) - 0<7};) ’

which gives (23). To prove (24), we have, for v = n,,

YT _ Py o P o P,
S mrl o T+l v tl

Hence, for s > 1,

r8ting—1 P rSmy—1 P
E n >N\ "

I R

so that, for 0 <s<¢—1,



418 B. KUTTNER AND B. N. SAHNEY

,s+1n0_1 P 1 rtno—-l P
n < n .
n=rSng N + 1 - )\:t_l_x n=rt“1n0 n + 1

(28)

Now take any K = n,. Choose t so that r'n, £ K < r**'n,. Then,
by (28),

£k P =l p =1 1 rlng—1 P
n kil + L
(29) “Z‘O n+ 1 n=0 9, -} 1 ‘gs AP n=rt—la; N + 1
K P,

’
n=ritng N + 1

where the second term on the right is omitted when ¢ = 0. The first
term on the right of (29) is a constant, and is thus certainly O(Px),
since Py = p, > 0. Also

Tt'no—-l rtno—-l
S P op S L~ ory;

n=rt—1ln; N —+ 1 n=rt—lng N + 1
K P K 1
n_< P = O(P
n:zrtnon-I—l - Kn§n0n+1 Fx)

(since K < r**'ny). Thus (24) follows.

The conditions (7), (8) have been mentioned as giving simple
sufficient conditions. But, while simpler than (5) or (6), they appear
to be insufficiently general to be of great use. Consider, for example,
the case of Cesaro summability (C, ). This is a Norlund method with

pn:<n+5—1>_
n

If 0 <0 <1, then the conditions of Theorem A are satisfied. Thus
that theorem includes the result that the Fourier series of any function
of bounded variation is absolutely summable |C, §|; this result was
long ago proved by Bosanquet [1]. Now, in this case, «,, = 0 for

k> m, while, for 1 <k < n,
(n—k—i—&—l)
k n—k
n

(n + 5)

n

Thus (a), (b) are both satisfied, with »(n) = s(n) = n. But either (7)
or (8) reduces to

an,k =

En—(bﬁj = 0(z)
n

and this is satisfied only if 6 = 1.
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6. As another application of our main theorem, we let {k(n)} be
an increasing sequence of nonnegative integers, with %(0) = 0, and
define
_ (1 (B(n) =k < k(n + 1);

0 otherwise.

(£ 99"

»

Thus absolute summability | A| of a given series reduces to the absolute
convergence of the series formed from it by bracketing together, for
every m, those terms whose suffixes k satisfy k(n) < k < k(n + 1). It
is clear that (a), (b) are both satisfied, with »(n) = s(n) = k(n) (except
when n = 0). In this case, the weaker conditions (7), (8) still give a
significant result. Either of these conditions is equivalent to

1 1
30 —=0(=).
(30) ku%‘éz{ k(n) O<K>
We note that (30) is satisfied, in particular, if
31) liminf X £ D 5y
= Te(n)

Thus our theorem includes the following result. Suppose that (31)
holds. Let us bracket together, in the way indicated, the terms of the
Fourier series of any function of bounded variation. Then the result-
ing series 1s absolutely convergent.
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