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In this paper a theorem is proved which connects bound-
ed analytic functions in the unit disk and sequences of quasi-
subordinate functions. As an application a necessary and
sufficient condition for certain sequences of quasi-subordinate
functions to converge is found.

Let / and F be analytic functions in | z \ < R. If there exist
two functions φ and ω which are analytic in \z\ < R and satisfy
ω(0) = 0, I φ(z) I ̂  1 , I ω(z) \ < R , a n d f ( z ) = φ(z)F(w(z)) f o r \ z \ < R ,
then we say that / is quasi-subordinate to F in \z\ < R and write
f<qF. Without loss of generality we may assume that R = 1.
This class was introduced by Robertson [2, 3].

We note that there are two special cases of quasi-subordination
which are of interest: If φ is the constant function one, then / is
subordinate to F, and on the other hand, if co is the identity func-
tion, then / is majorized by F.

Let B denote the class of functions θ which are analytic in
I z I < 1 and satisfy | θ(z) | ^ 1 for | z \ < 1. Then the functions φ
and o) which are defined above are elements of B. In this paper we
prove a theorem which connects functions in B and sequences of
quasi-subordinate functions. As an application we find necessary and
sufficient conditions for certain sequences of quasi-subordinate func-
tions to converge. This is a generalization of Pommerenke's results
[1] on sequences of subordinate functions.

Let {fn}, n = 1, 2, , be a sequence of functions which are
analytic in [ z \ < 1 such that fn <qfn+1 for each n or fn+1 <qfn for
each n. When considering the convergence of such sequences we
need to require that either the sequence {Λ(0)} converges or the func-
tions agree at a single point. In this paper we shall assume that
the functions agree at a single point. Further we may assume that
the point is z = 0 for if the functions fn agree at the point a Φ 0
then we could consider the functions gjz) = fn((z—ά)/(l — az)). We
will use fn(0) = 0 for all n, otherwise the function φ would be identi-
cally one. The proof for the case where {fn(0)} is convergent is
similar.

THEOREM 1. Let {fn} be a sequence of functions which are ana-
lytic in \z\<l and satisfy fn(0) = 0, an - fl{Q) Φ0, and fn(z) <qfn+ι,
and let φn+ί, con+1 e B and con+1(0) = 0 be such that
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fn(z) = φn+ι(z)fn+ί(ωn+ι(z))

for [ z ( < 1. If Σn=2 arg φn(0) converges and l im^^α^ = a, | a \ < oo,
then Π^=2 ί̂ (O) converges.

Proof. We observe that if m<n, then we have fm-<qfn. Thus
for m < n there are functions 0mw, <ymw e J5 where comn(0) — 0 such
that

/•(«) = ΦU*)/*(<»»*(*))

for | 2 | < 1. Let ^w »+i(«) = ^*+i(«) We now observe that

Λ(0) = ^ . (

or

α, there exists anSince 0 < | am \ ^ | an \ for m < n and
integer K such that if w > m > if, then

( 2 ) i ί = - - l < ε .

From (1) and (2) we see that

an

We now observe that

Thus we have

••(0)= Π Φu(0).
k

Π < 1

for ^ > m > if. Since Σ~= 2 arg ^(0) converges this says that ΠϊU ^̂ (0)
converges. Further we have that (ύ'n(0) —* 1 and 0)^(0) = 1.

In applying Theorem 1 to sequences of quasi-subordinate functions
we will also need two lemmas for functions in B. The proofs of the
lemmas are essentially in [1].

LEMMA 1. Let φeB, φ(0) = 0, and satisfy \ φ(0) \ ̂  σ > 0. Then
the mapping w — φ(z) maps the disk
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σ
• • - • l + i / l - σ 2

univalently onto a region that contains \ w | < p2.

LEMMA 2. For ε > 0 and 0 < r < 1, there exists an rj > 0 (τ](ε, r))
if φe B satisfies φ(z) = Σ~=o /3%£w αmZ | β fc — 1

- zk
ε 9 for I 2 , < r .

THEOREM 2. Lei {/n} δe α sequence of analytic functions in
\z\<l such that /n(0) - 0, A •<,/•+» and α n = / (0) ^ 0, and let
0Λ+1, α>%+2 e B and ωn+1(0) = 0 be such that fn(z) = φn+1(z)fn+1(ωn+ι(z)) for
I z I < 1 and Σ"=2 arg ^^(0) converges, ΓΛβ^ ί/̂ e sequence {fn} converges
uniformly in \ z \ < r for every 0 ^ r < 1 if and only if

lim an = a , \a

PROOF. If {fn} converges uniformly in | z \ ̂  r for every 0 < r < 1
then αΛ =/*(0) converges. Further since | an \ ̂  | αrΛ+11, /Λ(0) = 0,
and an Φ 0 we see that l i m , ^ αM = α: Φ 0 and | α | < ©o.

Let o)n+1, φn+1 e By and con+ι(0) = 0 be as defined in Theorem 2.
Further for m < n, let 0m%, ωm n e B with ωmw(0) = 0 be such that

( 3 )

Suppose that an
a \ < 00. Then by Theorem 1 the product

IK=2 f̂c(O) converges. We will first show that {/„} is a normal family
in ] z ] < 1.

Let r, 0 < r < 1, be fixed and σ determined by

V r = σ

Since σ < 1 and

1 + Vl-σ2

a Φ 0, there exists an integer Nλ such that

> σ , for n> m> Nx .

Further, since | φmn(z) | ^ 1, we have | φmn(0) I"1 ^ 1. For n> m> Nt

we have ω'mn(0) = am/(anφmn(0)) or

( 4 ) ω'mn(0) I - >σ .

Thus by Lemma 1 the mapping ζ = ωmn(z) for n < m < Nx maps

I 3 \<V~r univalently onto a domain that contains | ζ | < r. Let ψmn

be the inverse of ζ = comn(z) in | ζ | < r, then
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I ψmn(ζ) \^VT.

From (3) we may write

^ for I ζ

For I ζ I <^ r we have

max~ m i n ^ l ^ ^ l i . i ί v — ' v / !

From Lemma 2 with & = 0, given ε > 0, there exists an η such that
if i β0 - 11< Ύ] then | φ(z) - 11 < ε for \z\<r. Since Π*=2 ̂ *(0)
converges by Theorem 1 and φmn(0) = Πfc=m+i ̂ ^(0), there exists an
integer N2 such that if n > m > N2 then | φmn(0) - 11 < rj. Let N =
max(iVΊ, JVi). Thus, by Lemma 2 we have that | φmn{z) — 1 | < ε for

2| ^ r and n > m > N or

min I φmn(z) | ^ 1 — ε .

Hence, for n > N and | ζ | ^ r we have

max1 — ε

Thus there exists M(r) such that

(5) \fn(z)\

for all n, that is, {/n} is locally uniformly bounded. Therefore {fn}
is normal.

Let {fnj be a subsequence of {/w} which is uniformly convergent
in I z I S n> for every r0 < 1. Let / be the limit function of {fnj\.
Let ε > 0 and r < 1. Then choose v0 such that

for v ^ v0 and | z | ^ r. From inequality (5) we have that the se-
quence {fn} is bounded in | z | ^ r and thus equicontinuous in | z \ ̂  r.
Therefore there exists a <? > 0 such that

!/•&)-/.(*)!< e/3

for I ^ - ^21 < δ, I «! I <; r + δ, | ̂  | ^ r + δ, and for all ̂ .

Using (4), the convergence of Σ"=2 arg φn(0), and applying Lemma 2
we have that there exists an integer M1 such that if n JΞ> m ̂  Mίy then

I ωmH(ί5) - z | < δ , for \z \ ̂  r
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where M1 is chosen so that | ω'mn(Q) — 11 < η for a suitable η. Again
making use of Lemma 2 we have that there exists an integer Mz

such that if n > m > M2 then

I φmM - 1 1 < ΦM (r), for \z\<r.

Let M = max {Mu M2, nVQ}. If M ^ k < nv and | z | < r then

\fk(z) - f(z) I ̂  \fk(z) - f%y(z) I + |Λv(s) - /(«)
< ε/3 + |Λv(«) - ^ y(«)

< ε/3 + ε/3 + M(r) ε/SM(r) = ε

for \z\ ^ r and k > M. This completes the proof of Theorem 2.

THEOREM 3. Let {fn} be a sequence of functions analytic in
I z I < 1 such that fn(0) = 0, αw = /«(0) =£ 0, α^d / Λ + 1 < f f/Λ, α^ώ ϊeί
φn+1, ωn+1 e B and o)n+1(0) = 0 δ

/or I z I < 1 αraί Σ ^ = 2 arg ^(0) converges. Then the sequence {fn} con-
verges uniformly in | £ | = r / o r every r <1 if the sequence {an} con-
verges. The limit function is constant if and only if

limα% = 0 .

The proof of this theorem is similar to that of Theorem 2 and
Pommerenke's Theorem 2 [1].
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