THE HASSE-WITT-MATRIX OF SPECIAL PROJECTIVE VARIETIES

LEONHARD MILLER
THE HASSE-WITT-MATRIX OF SPECIAL
PROJECTIVE VARIETIES

LEONHARD MILLER

The Hasse-Witt-matrix of a projective hypersurface defined over a perfect field \(k \) of characteristic \(p \) is studied using an explicit description of the Cartier-operator. We get the following applications. If \(L \) is a linear variety of dimension \(n + 1 \) and \(X \) a generic hypersurface of degree \(d \), which divides \(p - 1 \), then the Frobenius-operator \(\mathcal{F} \) on \(H^i(X \cdot L; O_{X \cdot L}) \) is invertible.

As another application we prove the invertibility of the Hasse-Witt-matrix for the generic curve of genus two. We don't study the Frobenius \(\mathcal{F} \) directly, but the Cartier-operator [1]. It is well-known, that for curves Frobenius and Cartier-operator are dual to each other under the duality of the Riemann-Roch theorem. A similar fact is true for higher dimension via Serre duality. We have therefore to extend to the whole “De Rham” ring the description of the Cartier-operator given in [4] for 1-forms. We give this extension in §1. Diagonal hypersurfaces are studied in §2 and the invertibility of the Hasse-Witt-matrix is proved, if the degree divides \(p - 1 \). The same theorem for the generic hypersurface follows then from the semicontinuity of the matrix rank. The §3 is devoted to hyperelliptic curves and is intended as a preparation for a detailed study of curves of genus two.

1. The Cartier-operator of a projective hypersurface. We extend the explicit construction of the Cartier-operator given in [4] to the whole “De Rham” ring, but restrict ourself to projective hypersurfaces.

As an application we show: Let \(V \) be a projective hypersurface of dimension \(n - 1 \), defined by a diagonal equation \(F(X) = \sum_{i=0}^r a_i X_i \), \(a_i \in k \) a perfect field of char \(k = p > 0, a_i \neq 0 \). Let \(X \) be a linear variety of dimension \(t + 1 \). If \(r \) divides \(p - 1 \), then

\[
\mathcal{F} : H^i(X \cdot V, O_{X \cdot V}) \to H^i(X \cdot V, O_{X \cdot V})
\]

is invertible, \(\mathcal{F} \) being the induced Frobenius endomorphism. We have to rely on a technical proposition, which is a collection of some lemmas in [4]. We give first the proposition.

Proposition 1. Let

\[
\psi : k[T] \to k[T] \quad (T = (T_1, \cdots, T_n))
\]
be \(k \ p^{-1} \)-linear and

\[
\psi(T^\mu) = \begin{cases}
T^\mu & \text{if } \mu = p \cdot \nu \\
0 & \text{else}
\end{cases}.
\]

Then the following holds:

1. \(\psi(T_{\mu_1} \cdots T_{\mu_h}) = T_{\mu_1} \cdots T_{\mu_h}, \) for some \(\mu \in k[T] \)
2. Let \(D_{\mu} = T_{\mu} \frac{\partial}{\partial T_{\mu}} \) and \(D_{\mu}g = 0 \) for a given \(1 \leq \mu \leq n, \) then
 \(\psi(D_{\mu}h \cdot g) = 0 \)
3. Let \(D_{\mu}g = 0, \) then \(\psi(h^{p-1}D_{\mu}h \cdot g) = D_{\mu}h \psi(g). \)

Proof.

1. By the \(p^{-1} \)-linearity of \(\psi \) we may assume \(h \) to be a monomial. The statement follows then directly from the definition of \(\psi. \)

2. \(\psi \) is \(p^{-1} \)-linear, so we may assume \(h \) to be a monomial
 \[h = T_{r_1} \cdots T_{r_n}, \quad 0 \leq r_i \leq p - 1 \]
 (say \(\mu = n \)), then \(D_{\mu}h = r_n \cdot h. \) If \(r_n = 0 \) then (2) is trivially true. So \(r_n \neq 0. \) Again because of \(p^{-1} \)-linearity we may also assume \(g \) to be monomial.

 But \(D_{\mu}g = 0, \) so
 \[g = T_{v_1} \cdots T_{v_n}^{p-1}, \quad 0 \leq v_i \leq p - 1. \]

 So the exponent of \(T_n \) in \(D_{\mu}h \cdot g \) is \(r_n \) and \(0 < r_n \leq p - 1, \) therefore not divisible by \(p. \) The definition of \(\psi \) gives
 \[\psi(D_{\mu}h \cdot g) = 0. \]

3. We may write
 \[h = f_0 + f_1 \cdot T_\mu + \cdots + f_r \cdot T_\mu^r, \quad 0 \leq r \leq p - 1 \]
 and
 \[D_{\mu}f_i = 0. \]

 We proceed by induction on \(T. \) \(r = 0 \) clear. Let \(r \geq 1, \) then \(h = f + T_\mu \bar{h} \) with \(D_{\mu}f = 0 \ deg f, \bar{h} < r. \) Now
 \[T_{\mu}^{p-1} \bar{h}^{p-1} D_{\mu}(T_\mu \bar{h}) = (T_\mu \bar{h})^p \left(\frac{D_{\mu}T_\mu}{T_\mu} + \frac{D_{\mu}\bar{h}}{\bar{h}} \right). \]

 By \(p^{-1} \)-linearity of \(\psi \) and induction assumption for \(\bar{h} \) we get
 \[
 \psi(g \cdot T_{\mu}^{p-1} \bar{h}^{p-1} D_{\mu}(T_\mu \bar{h})) = T_\mu \bar{h} \psi(g) + T_\mu \psi(g \cdot \bar{h}^{p-1} D\bar{h})
 = \psi(g)(T_\mu \bar{h} + T_\mu D_{\mu} \bar{h})
 = D_{\mu}(T_\mu \bar{h}) \cdot \psi(g). \]
On the other hand

\[T_{\mu}^p h^p = (h - f)^p = h^p + \frac{\partial P}{\partial h}, \]

where \(P \) is a polynomial in \(f \) and \(h \). We have

\[D_{\mu}(T_{\mu}h) = D_{\mu}(h - f) = D_{\mu}h. \]

So

\[T_{\mu}^p h^p D_{\mu}(T_{\mu}h) = h^p D_{\mu}h + D_{\mu}P. \]

Multiply by \(g \) and apply \(\psi \), then one gets

\[D_{\mu}h \psi(g) = D_{\mu}(T_{\mu}h)\psi(g) = \psi(h^p D_{\mu}h \cdot g) + \psi(D_{\mu}P \cdot g). \]

But by (2)

\[\psi(D_{\mu}P \cdot g) = 0. \]

Let \(F(X_1 \cdot \cdot \cdot X_n) \) define a absolutely irreducible hypersurface \(V/k \) in \(\mathcal{P}_{k,k} \) char \(k = p > 0 \). We denote by \(f(X_1 \cdot \cdot \cdot X_n) \) an affinization of \(F \). Let \(F_{\mu} = (\partial/\partial X_{\mu}) F \), similar \(1 \leq \mu \leq n \). We assume \(f_n \) not to be the zero function on \(V \). Let \(K = K(V) \) be the function field of \(V \). We assume that \(K = K^p(x_1 \cdot \cdot \cdot x_j \cdot \cdot \cdot x_n) \) for any index \(j \). The \(x_i \) are the coordinate functions and \(\bar{x}_j \) means omit \(x_j \). As a consequence of these assumptions, we have that for a given index \(j \) any function \(z \in K \) can be represented modulo \(F \) by a rational function \(G(X_1 \cdot \cdot \cdot X_n) \), which is \(X_j \)-constant, i.e. such that \(\partial G/\partial X_j = 0 \). Write

\[F_{i_1 \cdot \cdot \cdot i_r} = (X_{i_1} \cdot \cdot \cdot X_{i_r} \cdot X_n)^{-1} F. \]

Definition 1. Let

\[\psi_{F_{i_1 \cdot \cdot \cdot i_r}} = F_{i_1 \cdot \cdot \cdot i_r} \cdot F_{i_1 \cdot \cdot \cdot i_r}. \]

Let \(\omega = \sum_{i_1 \cdot \cdot \cdot i_r} h_{i_1 \cdot \cdot \cdot i_r} \cdot dx_{i_1} \wedge \cdot \cdot \cdot \wedge dx_{i_r} \) be \(r \)-form on \(V \). Put

\[\omega_{i_1 \cdot \cdot \cdot i_r} = \frac{dx_{i_1} \wedge \cdot \cdot \cdot \wedge dx_{i_r}}{f_n}. \]

Define

\[C(\omega) = \sum_{i_1 \cdot \cdot \cdot i_r} \psi_{F_{i_1 \cdot \cdot \cdot i_r}}(h_{i_1 \cdot \cdot \cdot i_r} - f_n) \omega_{i_1 \cdot \cdot \cdot i_r}. \]

The definition is justified by the following theorem.

Theorem 1. (1) \(C \) is \(p^{-1} \)-linear

(2) If \(\omega = d\varphi \), then \(C(\omega) = 0 \)
If \(\omega = z_{i_1}^{r-1} \cdots z_{i_r}^{r-1} dz_{i_1} \wedge \cdots \wedge dz_{i_r} \), then \(C(\omega) = dz_{i_1} \wedge \cdots \wedge dz_{i_r} \).

In other words, if one restricts \(C \) to \(Z_{r|k} \), the closed forms, then

\[
C: Z_{r|k} \rightarrow \Omega_{r|k}
\]

is the Cartier-operator of \(V \) [1].

Proof of the theorem.

1. The \(p \)-linearity follows from the \(p \)-linearity of \(\psi \).
2. Let \(\varphi = \sum_{i_1, \ldots, i_{r-1}} \varphi_{i_1, \ldots, i_{r-1}} dx_{i_1} \wedge \cdots \wedge dx_{i_{r-1}} \) be a \((r-1)\)-form, then

\[
d\varphi = \sum_{j} \sum_{i_1, \ldots, i_{r-1}} \frac{\partial}{\partial x_j} (\varphi_{i_1, \ldots, i_{r-1}}) dx_j \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_{r-1}}.
\]

To simplify the notation we put for the moment

\[
\varphi_{i_1, \ldots, i_{r-1}} = \tilde{\varphi}
\]

and

\[
F_{i_1, \ldots, i_{r-1}} = \tilde{F}.
\]

To compute \(C(d\varphi) \) we have to compute

\[
\varphi_{\tilde{T}} \left(\frac{\partial}{\partial x_j} \tilde{\varphi} \cdot f_{m} \right)
\]

for every system \((j, i_1, \ldots, i_{r-1})\).

Now remembering the definition of \(\varphi^{\tilde{T}} \) we have to show

\[
\varphi(F^{p-1}D_xFX_{i_1} \cdots X_{i_{r-1}}D_j\varphi) = 0
\]

in order to get \(C(d\varphi) = 0 \).

We have to use the above proposition. We apply first (3) and then (2) and get:

\[
\varphi(F^{p-1}D_xFX_{i_1} \cdots X_{i_{r-1}}D_j\varphi) = D_x\varphi(F^{p-1}X_{i_1} \cdots X_{i_{r-1}}D_j\varphi) = 0.
\]

Remark, that we assume \(j \neq (i_1, \ldots, i_{r-1}) \) otherwise

\[
dx_j \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_{r-1}} = 0.
\]

That shows \(C(d\varphi) = 0 \)

3. Let \(\omega = z_{i_1}^{r-1} \cdots z_{i_r}^{r-1} dz_{i_1} \wedge \cdots \wedge dz_{i_r} \).

We have
\[dz_i \wedge \cdots \wedge dz_{i_r} = \sum_{i_1, \ldots, i_r} D_{i_1} z_{i_1} \cdots D_{i_r} z_{i_r} \frac{dx_{i_1} \wedge \cdots \wedge dx_{i_r}}{x_{i_1} \cdots x_{i_r}}, \]

\[D_j = x_j \frac{\partial}{\partial x_j}. \]

To compute \(C(\omega) \), we have to work out

\[U = \psi(F^{p^{-1}}D_n F \cdot Z_i^{\gamma_i} \cdot D_{i_1} Z_{i_1} \cdots Z_{i_r}^{\gamma_r} D_{i_r} Z_{i_r}) \mod F. \]

\[Z_j \mod F = z_j. \]

We apply several times (3) of the proposition and get

\[U \equiv D_n F D_{i_1} Z_{i_1} \cdots D_{i_r} Z_{i_r} \mod (F). \]

Therefore

\[C(\omega) = \sum_{i_1, \ldots, i_r} D_n f D_{i_1} z_{i_1} \cdots D_{i_r} z_{i_r} \frac{dx_{i_1} \wedge \cdots \wedge dx_{i_r}}{x_{i_1} f_n x_{i_1} \cdots x_{i_r}}. \]

All forms of highest degree \(n - 1 \) are closed. We use the fact, that \(H^\omega(V, \Omega^{n-1}) \) has a basis of the following form

\[\omega_n = x_i^{u_i} \cdots x_n^{u_n} \omega_0. \]

where

\[\omega_0 = \frac{dx_1 \wedge \cdots \wedge dx_{n-1}}{x_1 \cdots x_n f_n}, \]

\[\sum_{i=1}^{n} u_i \leq r; \ r = \deg V \quad \text{and} \quad 1 \leq u_i. \]

Recall \(x_i = X_i / X_0 \) are coordinate functions on \(V \) and of the affinization of \(F, f_n = \partial f / \partial x_n. \)

We get the important corollary to the theorem.

Corollary 1. Let \(A_{x,v} \) be the matrix of the Cartier-operator on \(H(V, \Omega^{n-1}) \) with respect to the above basis \(\omega_n \). Then

\[A_{x,v} = \text{coefficient of } X^v \text{ in } \psi(F^{p^{-1}} \cdot X^v) \]

\[X^v = X_0^{u_0} \cdots X_n^{u_n}, \quad \sum_{i=0}^{n} u_i = \sum_{i=0}^{n} v_i = r \]

\[1 \leq u_i \quad \text{for} \quad i = 1 \cdots n. \]
Proof. By definition
\[C(\omega_u) = \psi_F(\prod_{i=0}^{n-1} x_i^{u_i-1} \cdots x_n^{u_n-1}) \frac{dx_1 \wedge \cdots \wedge dx_{n-1}}{f_n} \]
\[= \psi(f^{p-1} \cdot x^u) \omega_v. \]

Now recall
\[\psi(f^{p-1} \cdot x^u) = \psi \left(\frac{F^{p-1} X_0^{u_0} \cdots X_r^{u_r}}{X_0^{pr}} \right) \mod F \]
\[\sum_{i=0}^{n} u_i = r, \quad 1 \leq u_i, \quad i = 1 \cdots n. \]

If \(A_{u,v} \) is the coefficient of \(X^v \) in \(\psi(F^{p-1} \cdot X^u) \).

Then
\[C(\omega_u) = \sum_{\sum_{i=1}^{n} u_i = r} A_{u,v} x_1^{u_1} \cdots x_n^{u_n} \omega_v = \sum_{r} A_{u,v} \omega_v. \]

Notice
\[\sum_{i=0}^{n} u_i = \sum_{i=0}^{n} v_i = r, \quad 1 \leq u_i, 1 \leq v_i, \quad i = 1 \cdots n. \]

REMARK. We have now an explicit description for the Cartier-operator on \(H^0(V, \Omega_{\psi}^1) \). We can use Serre duality \(H^0(V, \Omega_{\psi}^1) \cong H^{n-1}(V, \mathcal{O}_V) \). Under this duality \(\psi \) is the Frobenius \(\mathcal{F} \) on \(H^{n-1}(V, \mathcal{O}_V) \). We have therefore also an explicit description for \(\mathcal{F} \).

2. The Cartier-operator of a diagonal hypersurface. Let \(F(X) = \sum_{i=0}^{r} a_i X_i^r \) define a "generic" hypersurface. To compute the Cartier-operator, by the preceding discussion we have to analyse
\[\psi(F^{p-1} X^u) \quad \left(\sum_{i=0}^{n} u_i = r, \quad u_i > 0 \right). \]

Let us adapt the following notation:
\[\rho^i = \rho_0^i \cdots \rho_n^i, \quad \sigma^i = \prod_{i=0}^{n} a_i^{u_i}, \quad X^{u+1} = \prod_{i=0}^{n} X_i^{u+1}, \]
\[|u| = \sum_{i=0}^{n} u_i, \quad u > 0 \iff u_i > 0 \quad (i = 0 \cdots n). \]

THEOREM 2. Let
\[\text{char } k = p > 0, \quad F(X) = \sum_{i=0}^{n} a_i X_i^r, \quad \prod_{i=0}^{n} a_i \neq 0 \in k \]
\(V/k \) is defined by \(F \). Suppose \(r \) divides \(p - 1 \). Then the Cartier-operator
is invertible.

Proof.

\[F^{p-1} = \sum_{m = p-1}^{\infty} \frac{(p-1)!}{m!} a_m X^{r_m}. \]

Using \(p^{-1} \)-linearity of \(\psi \) we get

\[\psi(F^{p-1}X^u) = \sum_{m = p-1}^{\infty} \frac{-1}{m!} \alpha_m (X^{r_m+u}) = \sum_{m = p-1}^{\infty} \frac{-1}{m!} \alpha_m X^v. \]

We put \(\alpha = \alpha^{\frac{1}{sp}} \), and \(rm + u = pv \). Notice if \(u > 0 \) and \(|u| = r \), then also \(v > 0 \) and \(|v| = r \). If we write

\[\psi(F^{p-1}X^u) = \sum_{|v| = r} A_{u,v}X^v, \]

then we have

\[
A_{u,v}^p = \begin{cases}
- \frac{1}{m!} a_m & \text{if } rm = (p-1)v + v - u, |u| = |v| = r, u > 0, v > 0 \\
0 & \text{else .}
\end{cases}
\]

Let us now assume:

\[p - 1 = rs. \]

If \(r \) divides \(v - u \) put \(v - u = r \cdot E(u, v) \) then

\[
A_{u,v}^s = \begin{cases}
- \frac{1}{m!} a_m & \text{if } r|v - u \quad \text{and } m = sv + E(u, v) \\
0 & \text{else .}
\end{cases}
\]

We fix now a total ordering of \(u, v \). Let us order the \(n \)-tuples \((u_1, \ldots, u_n)\) resp \((v_1, \ldots, v_n)\) lexicographically and put

\[
u_0 = r - \sum_{i=1}^{n} u_i \text{ resp. } v_0 = r - \sum_{i=1}^{n} v_i.
\]

\(v < u \) means now, that either \(v_i < u_i \) or \(v_i = u_i \) for \(i = 1 \cdots j - 1 \) but \(v_j < u_j \). If any case, if \(v < u \), then \(v_j < u_j \) for some \(j \). We claim if \(v < u \), the \(A_{u,v} = 0 \).

Case 1. \(r \) does not divide \(u - v \), then \(A_{u,v} = 0 \).

Case 2. \(r \) divides \(u - v \). Now if \(v < u \) then for some \(j \) \(u_j - v_j > 0 \)
and r divides $u_i - v_j$. But $r \geq u_j$ and $v_j \geq 1$, so $r - 1 \geq u_j - v_j$, therefore r cannot divide $u_i - v_j$. This contradiction shows, if $v < u$, then $A_{u,v} = 0$. $A_{u,v}$ is therefore a triangle matrix.

What is the diagonal?

$$A^p_{u,v} = -\frac{1}{m!} a^m$$

with $m = s \cdot u$. Therefore

$$(\det A_{u,v})^p = \prod_u \left(-\frac{1}{(su)!}\right) a^s u^s \neq 0$$

Corollary 2. The assumptions are the same as in the theorem. Then

$$\mathcal{F}: H^{n-1}(V, \mathcal{O}_V) \rightarrow H^{n-1}(V, \mathcal{O}_V) \quad (\mathcal{F} \text{ is the Frobenius morphism})$$

is invertible.

Proof. Clear by Serre duality and the fact that $C = \mathcal{F}$.

The Cartier-operator of $W \cdot H$. The differential operator C as given in Definition 1 on Ω^1 is by p^{-1}-linearity completely determined on Ω^1 by its value on $\omega = h \cdot dx$, where x runs through a set of coordinate functions.

We have $C(\omega) = x^{-1} \psi(xh)dh$, that notation is only intrinsic, if $d\omega = 0$, because ψ depends on the coordinate system. If we choose a different coordinate system, then we get in general a different operator; but for ω with $d\omega = 0$, we get the same, namely the Cartier-operator.

That fact can be exploited in the following way. Suppose

$$W = \{x_1 = x_2 = \cdots = x_t = 0\} \cap H.$$

We write now C_H resp. C_w for the the operators. The above definition shows $\bigoplus_{i=1}^t Kdx_i$ is stable under C_H. But by the property of ψ, $\psi(X_i H) = X_i \mathcal{H}$ for some \mathcal{H}, we have for

$$\omega = x_i hdx_i \quad i \neq j \quad i, j \text{ arbitrary}$$

$$C_H(\omega) = x_i \mathcal{H}dx_i.$$

Let $\mathcal{H} = \{x_i \cdots x_t\}$, then $\mathcal{H}\Omega^1_{H/k} \bigoplus \bigoplus_{i=1}^t \mathcal{O}_H dx_i$ is stable under C_H. By the exact sequence

$$0 \rightarrow \mathcal{H}\Omega^1_{H/k} + \bigoplus_{i=1}^t \mathcal{O}_H dx_i \rightarrow \Omega^1_{H/k} \rightarrow \Omega^1_{w/k} \rightarrow 0$$

C_H induces an operator C_w on $\Omega^1_{w/k}$. C_w has again the properties
THE HASSE-WITT-MATRIX OF SPECIAL PROJECTIVE VARIETIES

(1) C_w is p^{-1}-linear
(2) $C_w(dh) = 0$
(3) $C_w(h^{p-1}dh) = dh$.

If we restrict C_w to the closed forms on W, then C_w is the Cartier-operator.

Let now L be an arbitrary linear variety. After a suitable coordinate change we may assume L is the intersection of some coordinate hyperplanes. $W = L \cdot H$ has then the above shape.

Let us assume that the hypersurface H has a diagonal defining equation of degree d dividing $p - 1$, $p = \text{char } k$. Then the above Theorem 1 shows that C_w is semisimple on $\mathcal{O}_{k, L}$. In the same way as before we can extend C_w to any $\mathcal{O}_{k, L}$, in particular to $\mathcal{O}_{k, V}$, where $m = \dim W$. As result of this discussion we get:

THEOREM 3. If L is a linear variety of dimension $m + 1$, then there exists a hypersurface H of degree d, which divides $p - 1$, such that

$$\mathcal{F}: H^m(L \cdot H, \mathcal{O}_{L, H}) \to H^m(L \cdot H, \mathcal{O}_{L, H})$$

is invertible.

3. The Cartier-operator of plane curves. For curves the explicit description of the Cartier-operator is of special interest if one wants to study, how the Cartier-operator varies with the moduli of the curve. Unfortunately one is restricted to plane curves, because the above explicit form of the Cartier-operator is available only for hypersurfaces.

If one specializes the above results to plane curves, one has to assume, that the curve is singularity free.

The space $W = \{\text{homogenous forms of degree } d - 3\}$ is for non-singular curves V of degree d isomorphic to $H^0(V, \Omega^1_{k, V})$ under

$$W \simeq H^0(V, \mathcal{O}_{k, V})$$
$$P(X) \mapsto P(x)\omega_0$$

where the coordinate functions are given by

$$x = X_1/X_0, \quad y = X_2/X_0 \mod F,$$

F being the defining equation for V and $f(x, y)$ the affinization, f_γ denotes $\partial f/\partial y$. With that notation $\omega_0 = dx/f_\gamma$.

But it is important to know, that one can give a similar description also for singular curves. Then W is the space of $P(X)$, which define the “adjoint” curves to V. These are those curves, which cut out at least the “double point divisor”.

3* The Cartier-operator of plane curves* For curves the explicit description of the Cartier-operator is of special interest if one wants to study, how the Cartier-operator varies with the moduli of the curve. Unfortunately one is restricted to plane curves, because the above explicit form of the Cartier-operator is available only for hypersurfaces. If one specializes the above results to plane curves, one has to assume, that the curve is singularity free.

The space $W = \{\text{homogenous forms of degree } d - 3\}$ is for non-singular curves V of degree d isomorphic to $H^0(V, \Omega^1_{k, V})$ under

$$W \simeq H^0(V, \mathcal{O}_{k, V})$$
$$P(X) \mapsto P(x)\omega_0$$

where the coordinate functions are given by

$$x = X_1/X_0, \quad y = X_2/X_0 \mod F,$$

F being the defining equation for V and $f(x, y)$ the affinization, f_γ denotes $\partial f/\partial y$. With that notation $\omega_0 = dx/f_\gamma$.

But it is important to know, that one can give a similar description also for singular curves. Then W is the space of $P(X)$, which define the “adjoint” curves to V. These are those curves, which cut out at least the “double point divisor”.
To give an explicit basis depends on nature of the singularities.

Hyperelliptic curves: Let $p = \text{char } k > 2$.

For a detailed study of the Hasse-Witt-matrix of hyperelliptic curves one needs the explicit Cartier-operator with respect to various “normal forms”.

Let the hyperelliptic V be given by $y^2 = f(x)$, $\deg f(x) = 2g + 1$ and such that $f(x)$ has no multiple roots. V has a singularity at “infinity”. One could apply the above method and work out the adjoint curves in order to get a basis for $H^q(V, \Omega_{V/k})$. But we have already a basis, namely if $\omega = dx/y$ then $\{x^i\omega \mid i = 0 \cdots g - 1\}$ form a basis.

We specialize the results of §2 and get from Corollary 1 as matrix for the Cartier-operator with respect to the above basis (let us put $p - 1/2 = m$):

$$A_{u,v} = \text{coefficient of } x^{u+1} \text{ in } \psi(f(x)^m x^{u+1}) \quad 0 \leq u \leq g - 1.$$

Legendre form: We assume now the defining equation in Legendre form.

$$f(x) = x(x - 1) \prod_{i=1}^{r} (x - \lambda_i) \quad r = 2g - 1 \quad \lambda_i \neq \lambda_j \neq 0, 1.$$

Notation: Let

$$|\rho| = \rho_i + \cdots + \rho_r$$

$$\lambda^\rho = \lambda_1^{\rho_1} \cdots \lambda_r^{\rho_r}.$$

The permutation group of r elements S_r operates on the monomials

$$\lambda^\rho \rightarrow \lambda^{\pi\rho}, \pi \in S_r.$$

Let G_ρ be the fix group of $\lambda^{m-\rho}$ and $G^{(\rho)} = S_r/G_\rho$. Let

$$H^{(\rho)}(\lambda) = \sum_{\pi \in G^{(\rho)}} \lambda^{m-\gamma^{(\rho)}}.$$

Apparently

$$H^{(\rho)} = H^{(\bar{\rho})}, \text{ iff } \bar{\rho} = \bar{\pi}(\rho).$$

We may therefore assume

$$0 \leq \rho_1 \leq \rho_2 \leq \rho_r \leq m.$$

For given

$$0 \leq u \leq g - 1 \text{ let } \rho_v = |\rho| - vp + u.$$

Put

$$a^{(p)}_{u,v} = (-1)^{v+m}(m) \cdots (m)$$

and

$$A^{p}_{u,v} = \sum_{\rho} a^{(p)}_{u,v}(\rho)\,0 \leq u \leq g - 1, \ r = 2g - 1$$

the summation condition being:

$$0 \leq \rho_{1} \leq \cdots \leq \rho_{r} \leq m \ , \ \rho_{0} = |\rho| - vp + u \ , \ 0 \leq \rho_{0} \leq m$$

$$vp - u + m \geq |\rho| \geq vp - u .$$

We state as a proposition

PROPOSITION 2. Let be $A_{u,v}, \ 0 \leq \frac{u}{v} \leq g - 1$, as defined above, and $\omega = dx/y$, then

$$C(x^{a}\omega) = \sum_{0 \leq u \leq g - 1} A^{p}_{u,v}x^{a}\omega$$

is the Cartier-operator.

Applications: We want to investigate, when the Cartier-operator is invertible. It seems that an answer to that question, without any restrictions is not available. It is therefore worthwhile to have various methods even in special cases. \(^1\)

We restrict ourself to genus 2, although the method could be applied to higher genus, but the calculations would be very easy. Let $p > 2$ and $g = 2$

i.e. $y^{2} = x(x - 1)(x - \lambda_{1})(x - \lambda_{2})(x - \lambda_{3}) \ , \ \lambda_{i} \neq \lambda_{j} \neq 0, 1 \ i \neq j .$

The notation is the same as above.

$H^{(p)}(\lambda)$ is homogeneous in the λ's of degree $3m - |\rho|$, $m = (p - 1)/2$.

We have

$$A^{p}_{u,v} = \sum_{0 \leq \rho_{1} \leq \rho_{2} \leq \rho_{3} \leq m} a^{(p)}_{u,v}(\rho)\,0 \leq \frac{u}{v} \leq 1$$

$$\rho_{0} = |\rho| - vp + u \ \ vp - u \leq |\rho| \leq vp - u + m .$$

We want to know of $A^{p}_{u,v}$, what the forms of lowest homogeneous degree in the λ's are. We have to give $|\rho|$ the maximal possible value.

We use the shorthands

\(^1\) Added in proof: We settled this question in the meantime, see \([6]\).
and \(D(u, v) = \text{degree of the lowest homogeneous term in } A_{x, v} \). In the list below is \(\rho_0 = \max |\rho| - vp + u \).

| \((u, v)\) | \(\max |\rho|\) | \(\rho_0\) | \(D(u, v)\) |
|-------|-------|-------|-------|
| \((0, 0)\) | \(m\) | \(m\) | \(p - 1\) |
| \((0, 1)\) | \(3m\) | \(m - 1\) | \(0\) |
| \((1, 0)\) | \(m - 1\) | \(m\) | \(p\) |
| \((1, 1)\) | \(3m\) | \(m\) | \(0\) |

We get therefore:

\[A_{x, v}^p A_{x, v}^p = \text{terms of degree } p - 1 + \text{higher terms} \]

\[A_{x, v}^p A_{x, v}^p = \text{terms of degree } p + \text{higher terms} . \]

The lowest degree term \(L \) in \(\det (A_{x, v})^p \) is given by

\[
L = m \sum_{\rho} \binom{m}{\rho} H^{(\rho)}(\lambda)
\]

\[
\rho_1 + \rho_2 + \rho_3 = m
\]

\[
0 \leq \rho_1 \leq \rho_2 \leq \rho_3 .
\]

Notice, if \(\rho \neq \bar{\rho} \), then \(H^{(\rho)} \) and \(H^{(\bar{\rho})} \) have no monomial in common. Therefore \(L \) is not the zero polynomial. We are able to specialize the variables \((\lambda_0, \lambda_3, \lambda_3) \) in the algebraic closure of \(k \), such that \(\det (A_{x, v}) \neq 0 \). In other words, there exist curves of genus two with invertible Cartier-operator.

We do not know, what the smallest finite field is, over which such a curve exists.

REMARK. For large \(p \) we could push through a similar discussion for higher genus. We omit that, because there is a more elegant method for large \(p \) by Lubin (unpublished). Let \(y^2 = x^{p+1} + ax^{p+1} + x \). The claim is, that for large \(p \) (depending on \(g \)) and variable \(a \) the Hasse-Witt-matrix of that curve is a permutation matrix.

REFERENCES

3. H. Hasse and E. Witt, *Zyklische unverzweigte Erweiterungskörper vom Primzahlgrade \(p \) über einem algebraischen Funktionenkörper der Charakteristik \(p \)*. Monatshefte

6. ———, Curves with invertible Hasse-Witt-matrix (appears in Math. Annalen)

Received June 28, 1971. This research was supported partially by the Ohio State University and partially by NSF-grant GP-20833.

Ohio State University
Arne P. Baartz and Gary Glenn Miller, *Souslin’s conjecture as a problem on the real line* ... 277
Joseph Barback, *On solutions in the regressive isols* 283
Barry H. Dayton, *Homotopy and algebraic K-theory* 297
M. V. Deshpande and N. E. Joshi, *Collectively compact and semi-compact sets of linear operators in topological vector spaces* ... 317
Samuel Ebenstein, *Some H^p spaces which are uncomplemented in L^p* 327
David Fremlin, *On the completion of locally solid vector lattices* 341
Herbert Paul Halpern, *Essential central spectrum and range for elements of a von Neumann algebra* ... 349
G. D. Johnson, *Superadditivity intervals and Boas’ test* 381
Norman Lloyd Johnson, *Derivation in infinite planes* 387
V. M. Klassen, *The disappearing closed set property* 403
B. Kuttner and B. N. Sahney, *On the absolute matrix summability of Fourier series* ... 407
George Maxwell, *Algebras of normal matrices* 421
Kelly Denis McKennon, *Multipliers of type (p, p)* 429
James Miller, *Sequences of quasi-subordinate functions* 437
Leonhard Miller, *The Hasse-Witt-matrix of special projective varieties* 443
Michael Cannon Mooney, *A theorem on bounded analytic functions* 457
M. Ann Piech, *Differential equations on abstract Wiener space* 465
Robert Piziak, *Sesquilinear forms in infinite dimensions* 475
Muril Lynn Robertson, *The equation $y'(t) = F(t, y(g(t)))$* 483
Leland Edward Rogers, *Continua in which only semi-aposyndetic subcontinua separate* ... 493
Linda Preiss Rothschild, *Bi-invariant pseudo-local operators on Lie groups* ... 503
Raymond Earl Smithson and L. E. Ward, *The fixed point property for arcwise connected spaces: a correction* 511
Linda Ruth Sons, *Zeros of sums of series with Hadamard gaps* 515
Arne Stray, *Interpolation sets for uniform algebras* 525
Alessandro Figà-Talamanca and John Frederick Price, *Applications of random Fourier series over compact groups to Fourier multipliers* 531