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The problem of whether a manifold M admits a fixed
point free map is an old one. One well known result is that
if the Euler characteristic y(M) = 0, then M has such a map.
In the case where M is a closed differentiable manifold this
follows easily from the fact that y(M) = 0 if and only if the
tangent bundle of M admits a nonzero cross-section (see Hopf
[4]). But x(S**) =2, and S?* certainly admits a fixed point
free map, namely, the antipodal map. Therefore, the vanishing
of the Euler characteristic of a manifold is only a sufficient,
though hardly a necessary, condition for the manifold to have
a fixed point free map. In the search for other invariants
it is natural to generalize somewhat and state the problem in
terms finding coincidence free maps.

The object of this paper is to give an elementary proof
of the fact that, given a continuous map f: (W»,oW™) — (M»,
oM™) between oriented C~-manifolds, there is a well defind
obstruction o(f) to finding a special sort of map F: M —> M
with the property that F'(x) + f(x) for all x€ W. This is the
content of Theorem 1 in §2. F will not necessarily be homo-
topic to f, but then this is something that should not be
required in view of the fact that the antipodal map on S*»
is not homotopic to the identity map either. In Theorem 2
we prove that o(identity) behaves naturally with respect to
tangential maps.

The author would like to thank the referee for bringing the work
of F. B. Fuller ([2] and [3]) and E. Fadell ([1]) to his attention. In
§3 we discuss the relationship between this paper and their work and
how Theorem 1 might be generalized to the case f: K*— M", where
K is an n-complex and M is a l-connected closed manifold. One of
the main differences between our approach and that of Fuller, Fadell,
and others who have worked on the question of coincidences of maps
is that they have allowed themselves to make changes only by a
homotopy. They obtain fairly complete results with that restriction in
terms of Lefschetz numbers (see [1]). On the other hand, we partially
free ourselves from this requirement (in the sense that our maps
will be homotopic only on the (n — 1)-skeleton in general), so that
there are more possibilities for F.

Finally, we have restricted ourselves to differentiable manifolds
because all the constructions and proofs, which are quite simple from
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a geometric point of view, follow from a few elementary facts about
C~-manifolds. In particular, it is because we have an exponential
map from the tangent bundle of these manifolds to the manifold that
allows us to use a nonzero vector field over the (» — 1)-skeleton (which
always exists) to homotope any given map to another which is
coincidence free with the first on the (n — 1)-skeleton. Thus, the
whole problem reduces to being able to make maps on a disk coincidence
free in a certain way, which also is not hard. Most probably, the
results themselves are true for topological manifolds, but the proofs
would be more technical.

1. The definition of o(f, g, o). Throughout this paper all man-
ifolds will be compact, connected, oriented and C=. If M is a manifold,
then TM, will denote the tangent space of M at x and exp,: TM,—
M will be the standard exponential map. (NOTE. exp, will not be
defined everywhere if M has a boundary.) We assume that a base
point » has been chosen in the interior of M, int (M). Set M, =
M — p. Furthermore, the metric on M will be induced from a suitable
Riemannian metric on its tangent bundle. A good reference for most
of the facts we need to know about vector fields is Milnor [8].

Consider a continuous map f: (W", oW") — (M", oM™, n = 1.

Let D, be the closed n-disk in int (M) centered at p» and of
radius 6 > 0. Choose a differentiable map g: (W, 0 W) — (M, 0M) which
is an e-approximation to f for some ¢ > 0, i.e., dist (f(%), g(x)) < ¢
for all xe€ W. Just how small 6 and ¢ have to be will be determined
as we go along. That we are able to make the desired choices will
be justified by the fact that we can always change the Riemannian
metric on M. First of all, 0 and ¢ must satisfy

(I) e<dist(x, exp,(v)) < d/3 for each x€ M and each ve TM,

in the domain of exp, with ||v|| = 1.

By choosing a small enough §, we may assume that ¢ is transverse
regular on oD,, and that if B,, --., B, are the components of ¢g~*(D)
then B; is an n-disk in int (W) and g¢|B; is a diffeomorphism of B;
onto D,. Let D be the closed n-disk centered at » and of radius ¢/2.
Set C; =g (D)NB; and N= W — int (C,U --- UC,). Figure 1 below
should help in keeping track of the various definitions.

Next, let ¢ be a nondegenerate vector field on M which points
inward at all boundary points of M and such that the isolated zeros
of o all lie in int (D). Fix distinct »,€ TM,, 1 <1 < 2(k — 1), with
[lv;]] = 1 and let S; = {exp,(tv;)|e/2 < t < §}. We require further that
o(x) is transverse to the tangent vector of S; at every z€S; and
“pointing away from p.” Define h: N— M by

h(z) = exp,(0(g9(@))/lla(g@)]]) -
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FIGURE 1

With the right Riemannian metric on M, » will be well defined since
o points inward on oM. Clearly, 2 is homotopic to f|N. It also
follows from the definition of ¢ on the S; and (I) that
(II) h(x) # f(x), for xe N, and A((ON — W)U g *(S)U «-+ U
97 (S, 4—n)) & M — int (D); in fact, h(ON — 0W) & D, — int (D).
Case 1. Assume that n=3. Then we can connect the C; with small
tubes. Let @;: [0, 1] — N be disjoint imbeddings which meet 0N trans-
versally and such that ,(0) € 3C;, p;(1) € 3C;.,, 9(®:([0,1]) N B;) = Syi_ss
and g(®([0, 1)) N B;1) = Su. Set L; = 9,([0, 1]) and let T; be a tubular
neighborhood of L; in N. We may suppose that TN T; = @ = g(T;) N
9(T;), for i=j. Define B=g*(D)U T,U +-- UT,_, and Y = 6B U
T.U +++ UT,,. Bis a closed n-disk. (I) and (II) imply that if we
choose the T; small enough, then

(IIT) WY)< M — int (D) .

Assume that this is done. Therefore, the problem of extending & to
a map F: W— M with F(x) = f(x) for all ze W reduces to finding
an extension %, B— M — int (D) of h|0B with hy(x) = f(x) for x ¢ B.

Let ge oD and let G=rx,_,(M,, g¢). The orientation of W induces an
orientation on 0C;; and therefore, in the notation of Hu [5] we get well
defined obstructions v; = v"(k|0C;) € H*(C;, 0C;; G) with the property
that v; = 0 if and only if 4|0C; extends to a map A&;: C;— M — int (D),

since M — int (D) is a deformation retract of M.

Next, let W, = W — 2, where ¢g(z) = p, and let @, = B — int C,.

Consider
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where j#,1=0,1, -+, 5, are induced from the natural inclusion maps.
Define ;€ H*(W, 0W; G) by the equation

JEIFTIEIET ) = i
DEFINITION. o(f, g,0) =N + <+« + N € HY(W, 0W; G).

Let a; € m,(M,, q) be the elements determined by ¢g(L;). Recall that
(M, q) acts on G. This action induces an action of x,(},, q) on
H"(B, 0B; G). Then it is easy to check from the definitions that the
obstruction v*(h|0B) € H*B, 6B; G) satisfies v"(h|0B) = ¥ (vy) +
Qe JEOE T (V) + oo e+ GG (). It follows that 5355 '(o(f, 9,
o)) = ¥"(h|0B) if the a; act trivially on H"(B, 0B; G).

DEFINITION. f is said to satisfy (*) if the above construction
can be performed in such a way that a;-5(J¥7'(7)) = 5@ (V).

LEMMA 1. Let n = 3. f will satisfy (*) in any one of the follow-
g sttuations:

(a) M, is (n — 1)-simple; in particular, if M s l-connected.

) fam(W,z) — (M, p) is onto, or the a; above are zero.

(¢) For some g,k =1 above. For example, this is so if f =
identity.

Proof. If M is 1-connected, then M, is 1l-connected because 7 =
3. Therefore, (a) is obvious. (c) and the second part of (b) are also
obvious. The first part of (b) follows from the fact that in that case
we can always choose our paths L; so that a; = 0. We need n=3
here in order to be able to realize homotopy classes of paths by
imbeddings.

Let us summarize our discussion in a lemma.
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LEMMA 2. Let m = 3. Suppose [ satisfies (*) and we have
performed the constructions above with respect to a vector field o and
approximation g. Then there is a well defined obstruction o(f, g, 0) €
HY(W,o0W; G) with the property that o(f, g, o) = 0 if and only if there
exists a map hi: W — M such that

(@) h,|W — int(B) = h, and

(b) h(B) S M — int (D).

By construction %, will also have the property that &.(z) = f(x)
for x¢ T,U -+ U T,,. We would like to have A, differ from f on
the T; also, but we can arrange this if we are a little more careful
about how we define 2 and A,. (NOTE. The h, we get may not
agree with » on T; — (06BN T).)

Since n =3, we may assume that ¢g|L; are disjoint imbeddings.
Furthermore, we can also require that o(x) is transverse to the tangent
vector of g(L;) for every xe g(L;) and “pointing away from p.” Then
by changing the Riemannian metric on M and making the T, still
smaller, if necessary, we can assume that (T, N f(T;) = @ for all ¢
and j. Therefore, h,(0T;) N f(T;) = @. Now homotope h,(T;) into a
neighborhood of %,(0B) using h,(B) and keeping k,|0B fixed. This
can be done simultaneously for all . In effect, we push &,(T,_, N oC})
through A,(B — C,) towards h,(0B — 0C,). We can do this in such
a way so that now Ai(x) # f(z) for xe T, U -+ U T,_,. But then
hy(x) # f(x) for x € W, since we have not disturbed anything on M —
int (B).

We have therefore proved the following:

LEMMA 3. Let n =38 and suppose f satisfies (*). Let o be
a vector field on M and g a differentiable approximation to f as
described above. Then there is a well defined obstruction o(f, g, o) e
HY(W, oW; (M, q)) with the property that o(f, g,0) =0 if and
only if there exists a map F: W — M such that

(a) F(x) # f(x) for all xe W, and

(b) F(x) = h(x) for x outside some open n-disk im W, where h
1s obtained from o and g as above.

NotEe. o(f, g, o) actually depends also on p, ¢, and the orienta-
tions, but the vanishing of o(f, g, o) is independent of this data.
Also, since H"(W, oW; z,_,(M,, q)) ~ «,_.(M,, q), we can think of o(f,
g, 0) as bing an element of z,_,(M,, q).

DEFINITION. Any map F which satisfies the conclusion of Lemma
3 with respect to some ¢ will be called a g-map for f to indicate its
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intimate relation to o, namely (b).

Case 2. Assume that » < 2. In certain cases we can still define
an obstruction o(f, g, o) € H(W, oW; &,_.(M,, ¢)) having the properties
described in Lemma 3. x,_,(M,, ¢) may not be abelian when n = 2.
In that case we identify that cohomology group with =,_,(M,, q).
Nevertheless one can manipulate the group formally just like other
cohomology groups.

(a) Suppose M?* is arbitrary and f is the identity map. If we
work directly with 7, (M,, ¢) rather than cohomology groups, then
o(identity, identity, o) can be defined just like in Case 1, because the
only difficulties that were encountered there were due to the fact
that % could be larger than 1. (k& was the number of components of
9~ Y(D) for some n-disk D.)

(b) Suppose f is arbitrary and M = S" or D*. If M = S", then
M, is contractible and it is easy to show that there is no obstruction
at all to getting a o-map F: W — S" with F(z) = f(x) for all xe W
and all vector fields 0. If M = D", then there is again no difficulty
in using the procedure of Case 1 to define an obstruction o(f, g, 0) €
Toi(D* — p) ~ Z or Z, with the desired properties.

DEFINITION. f is said to satisfy (**) if one of the following holds:
(a) m =3 and f satisfies (*).

(b) m =2 and f is the identity.

(¢ M™= 8" or D"

2. The obstruction o(f). Suppose we are given a continuous
map f:(W", OW"™) — (M", 0M") so that f satisfies (**). Then we
defined in § 1 an obstruction o(f, g, 0) € HY(W, o0 W; 7,_,(M,, q)) to finding
a o-map F:W — M with F(z) # f(x) for all € W. Now we would
like to show that in fact o(f, g, 0) does not depend on o or g. We
retain the notation developed in §1.

Assume that n = 2. Observe that HY(W, oW; m,_(D, — p, q)) ~
Tuo D, — »,q) = Z. Let 1y = degree (h|0C,) + -+ + degree (k|3C,) €
H*(W,oW; 7,_(D, — p, q). (NOTE. degree (2]|0C;) = v"(h|0C;), which
is the obstruction to extending % |0C; to a map from C; — D, — int (D).)
It follows from the definitions that if

o H"(W, ow; Z) = H"(W, ow; nn—-l(Dl - D, Q))
— HYW, oW, m,_,(M,, q))
is induced by the coefficient homomorphism 7,_,(D, — p, q) — 7,_,(M,,

q), then a(®) = o(f, g9, 0). Let y(M) denote the Euler characteristic
of M and set d = degree (f) = degree (f|B: (B, 0B) — (M, M,)). Then
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it is known that » = d-(index of ¢) = d-x(M), where the index of ¢
is the sum of the indices at the zeros of . (See Milnor [8]; in par-
ticular, the Poincaré-Hopf theorem.) This shows that 7, and hence
o(f, g, 0), is independent of ¢ and g.

If » =1, then M = §' or D' and it is trivial to see that o(f, g, 0)
is again independent of ¢ and g.

DEFINITION. o(f) = o(f, g, 0) for some ¢ and g. Let o(M) =
o(identity: M — M).
We can now state the first theorem of this paper.

THEOREM 1. Suppose that f: (W, o W*)— (M", 0M™) is a continuous
map and that f satisfies (xx). Then there is a well defined obstruction
o(f) e H (W, oW; &,,_(M,, q)) with the following properties:

(@) o(f) =0 of and only if there is a wvector field ¢ on M and
a o-map F: W— M with F(x) %= f(x) for all x€ W.

(b) a(degree (f)-x(M)) = o(f).

Proof. Theorem 1 is a consequence of Lemma 3 and the remarks
made at the beginning of this section.

Observe that although F'| W, is homotopic to f|W, F need not
be homotopic to f. For example, if W = M = S and f = identity,
then F is homotopic to the antipodal map and therefore has degree
(— 1)+,

COROLLARY 1. Let f: (W,0W)— (M, 0M). Then there is a map
F: W — M such that F(x) = f(x) for x€ W if any one of the following
conditions is satisfied:

(@) (M) =0.

(b) ﬂ-'n—l(MO’ Q) = 0.

(¢) degree (f) = 0.
In particular, every homotopy sphere admits a fixed point free map.

Proof. If f satisfies (**), then the corollary follows from
Theorem 1. If f does not satisfy (**), then one has to go back and
look at the various constructions in the proof of Theorem 1 to see
that the corollary is still true.

NoTE. (a) and (c) in the corollary follow also from the work
of [1], and [3] in the case where M™ is closed, l-connected, and
n=3.

The condition 7,_,(M,, q) = 0 is of course very strong. Unfortun-
ately, the map « above is often one-to-one so that o(M) gives us no
more information than y(M/) in that case. However, the next corollary
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is useful for certain spherical manifolds. (See [6] for a definition of
“spherical.”)

COROLLARY 2. Let M™ be a closed 1-connected manifold and f: M —
M. Suppose that all the nonzero elements of w,_,(M, q) have order
2. Then there s a map F: M — M such that F(x) + f(x) for xe M.
In particular, M admits a fized point free map.

Proof. The conditions on M imply that M is spherical and that
A(M) = 2 or 0. The case x(M) = 0is clear. If y(M) = 2, then o(f) =
a(degree (f)-2) = 0, and we can apply Theorem 1.

Next, let f: (M", oM") — (W", 0W") be a continuous map which
preserves the tangent bundles. It is well known that the Euler
characteristic behaves naturally with respect to such maps, i.e., x(M) =
degree (f)-x(W). We want to show now that the obstructions defined
in this paper satisfy an analogous formula.

Approximate f by a differerentiable map g: (M, oM) — (W, oW).
If 0 is a vector field on W, then g will induce a vector field g*o on
M. We can also find a closed n-disk D < intW so that ¢g7(D) =
C,U +-- UC,, where C; is a closed n-disk in the interior of M and
g|C;: C;— D is a diffeomorphism. Assume that the zeros of o are
contained in int (D). Then all the zeros of g*o will lie in ¢7%(D). In
fact, for each zero of o, there will be & zeros of g*o with the same
index.

Let p and z be the base points of M and W, respectively, and
let » = 2. By connecting the C; with little tubes we can find a closed
n-disk Bsuch that C,U -« UC, S BZ int M and pe B. If we assume
that M, and W, are (n — 1)-simple, then we can ignore base points.
Therefore, g, and hence f, induces a well defined homomorphism g;:
LMy — 7, W, because M — int (B) is deformation retract of M,.
If we now recall our definitions of o(M) and o(W), then the next
theorem follows easily:

THEOREM 2. Let f:(M", oM™ — (W™, 0W™), n =2, be a continuous
tangential map. Assume that M, and W, are (n — 1)-simple. Then
Bs(o(M)) = degree (f)-o(W), where B;:m, My— T, W, is the map
induced by f as above.

Theorem 2 enables us to compute o(W) once we know o(M) and
we have a tangential map of degree 1.

COROLLARY 3. If M, is (n— 1)-simple, then o(M) is an invariant
of the tangential homotopy type of (M, oM). (Actually, all we meed
18 a tangential homotopy equivalence f: M —W such that f(0M) S oW
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and deg f =1.)

3. Relationships to other obstructions. In this section we would
like to discuss the relationship between the obstruction o(f) and the
ones defined in [1] and [3]. We shall indicate how one might extend
Theorem 1 and then make a concluding remark.

Suppose that M*, n =3, is a 1l-connected closed manifold and
fiM— M. 1t follows from [1] and [3] that » = degree (f)-x(M)e
H"M; r,_ (D, — »,q) = HYM; Z) = Z is the obstruction to finding a
map F: M — M such that F' is homotopic to f and F(x) = f(x) for all
xe€ M. This and Theorem 1(b) shows that o(f) is a weaker obstruction
than that in [1] and [3], since the latter maps onto the former under
a. Note that the F in Theorem 1(a) will be homotopic to f if and
only if degree (f)-x(M) = 0.

Next, if we drop our hypothesis of differentiability and use the
techniques of [1], [2], and [3] instead, it is most probable that the
following extension of Theorem 1 is true:

CONJECTURE. Let M", n =3, be a 1-connected closed topological
manifold. Suppose that K is a finite n-complex and that f: K — M"
is a continuous map. Then there is a well defined obstruction o(f) €
HY(K; x,_.(M,, q)) such that o(f) = 0 if and only if there exists a map
F: K— M with F(x) # f(x) for all z€ K and F homotopic to f on
the (n — 1)-skeleton of K.

Finally, this paper suggests that the next step in the program for
determining when a manifold admits a fixed point free map is to allow
maps to have even more freedom and require that they be homotopic
(via a vector field) only over the (n — 2)-skeleton, then only over the
(n— 8)-skeleton, and so on. This process may lead to a nice well defined
sequence of obstructions which might be computable in certain cases.
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